EP3026128B1 - Procédé de commande de microstructure brute ausferritique de pièces en fer ductile - Google Patents

Procédé de commande de microstructure brute ausferritique de pièces en fer ductile Download PDF

Info

Publication number
EP3026128B1
EP3026128B1 EP14382479.5A EP14382479A EP3026128B1 EP 3026128 B1 EP3026128 B1 EP 3026128B1 EP 14382479 A EP14382479 A EP 14382479A EP 3026128 B1 EP3026128 B1 EP 3026128B1
Authority
EP
European Patent Office
Prior art keywords
temperature
shakeout
thermal
modulus
thermal modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14382479.5A
Other languages
German (de)
English (en)
Other versions
EP3026128A1 (fr
Inventor
Susana Méndez
Urko de la Torre
Ramón Suarez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veigalan Estudio 2010 SLU
Fundacion Azterlan
Original Assignee
Veigalan Estudio 2010 SLU
Fundacion Azterlan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veigalan Estudio 2010 SLU, Fundacion Azterlan filed Critical Veigalan Estudio 2010 SLU
Priority to EP14382479.5A priority Critical patent/EP3026128B1/fr
Priority to ES14382479T priority patent/ES2823555T3/es
Publication of EP3026128A1 publication Critical patent/EP3026128A1/fr
Application granted granted Critical
Publication of EP3026128B1 publication Critical patent/EP3026128B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling

Definitions

  • the present invention relates to the techniques used to obtain ausferritic ductile iron parts, and more particularly to techniques to obtain ausferritic as-cast microstructures without an austempering heat treatment.
  • ausferritic ductile iron For the manufacturing of ausferritic ductile iron with high quality the most common and easiest to reproduce method consists in an austempering process.
  • the ausferritic ductile iron obtained accordingly is usually referred to as austempered ductile iron (ADI).
  • ADI austempered ductile iron
  • the austempering process is a three step heat treatment which comprises the austenitization of the casting at a temperature higher than 850oC until the matrix structure attains a reasonably uniform carbon content; quenching to an intermediate temperature range of 260 to 400oC and tempering, which consists in the transformation to austenitic-ferritic structure at the isothermal temperature. This process increases the final cost of the casting and also the lead time.
  • ausferritic castings can be produced in as-cast conditions.
  • This engineered cooling reduces the energy required to produce a component (avoiding the austempering heat treatment) and improves the added value of the parts, as well as reducing the lead time. In addition, the entire life-cycle-energy is reduced.
  • the present invention provides a method as defined by claim 1.
  • the preferred embodiments are defined in dependent claims 2-11.
  • the melts were prepared in a 100 kg medium frequency induction furnace (250 Hz, 100 kW).
  • the metallic charge was made up of low alloyed steel scrap (0.007 % C; 0.002 % Si; 0.17 % Mn; 0.003 % P; 0.006 % S), high purity nickel (99 % min.), FeMo (64.25 % Mo; 2.05 % Si; 0.019 % C; 0.042 % S; 0.030 % P) and copper (99 % min.), in addition to graphite (99 % min; ⁇ 0.03 % S; ⁇ 0.04 % H; ⁇ 0.01 % N) and FeSi75 (74.6 % Si; 0.83 % Al; 0.12 % C).
  • the chemical composition was checked and adjusted adding the needed above mentioned materials according to the required carbon, silicon, nickel, copper and molybdenum contents.
  • the tapping process from the furnace to the ladle was carried out at a temperature range between 1510 and 1530 oC.
  • the spheroidization treatment was performed following the sandwich methodology, adding 1.2 % (by weight considering the total weight of the treated melt) of a FeSiMg alloy (46.21 % Si, 6.47 % Mg, 0.98 % Ca, 0.67 % Al and 0.97 % RE).
  • the inoculation was carried out in mold using 0.2 % (by weight with respect to the total weight of the casting plus feeding and feeling systems) of a Germalloy ingot (71.7 % Si, 3.93 % Al, 0.99 % Ca, Traces % Mg, Traces % RE) or Amerinoc (69.9 % Si; 0.49 % Bi; 0.93 % Al; 1.38 % Ca; 0.24 % Ce; 0.13 % La; 0.19 % Zr; grain size of 0.2-0.5 mm).
  • the range of chemical compositions in wt% of the cast parts was as follows: 3.58-3.75 % C, 2.00-2.15 % Si, 0.18-0.25 % Mn, 0.007-0.010 % P, 0.006-0.009 % S, 0.038-0.049 % Mg.
  • the alloying elements changed to develop the CCT diagrams were Ni, Cu and Mo and they were on the following ranges: 2.86-5.05 % Ni, 0.01-0.22 % Mo, 0.09-0.90 % Cu.
  • the second step of the trials was to define the processing temperatures to obtain an ausferritic microstructure as-cast and relate them to the different thermal moduli of the castings.
  • the alloy that presented a pearlitic nose on more prolonged times was considered, that is (in weight %): 3.63-3.75 % C, 2.04-2.15 % Si, 0.19-0.24 % Mn, 0.007-0.010 % P, 0.006-0.009 % S, 0.042-0.049 % Mg, 2.86-3.01 % Ni, 0.17-0.22 % Mo, 0.09-0.19 % Cu.
  • the pouring temperature was between 1390 and 1410 oC.
  • the castings followed a controlled cooling process.
  • all the samples were shaken out at the same instant and air cooled till they reached the temperature range where the ausferrite formation can occur.
  • the samples were introduced into an insulating medium presenting a thermal conductivity lower than 0.006 W/mK.
  • the insulating material used for these trials was expanded pearlite with a mesh size less than 5 mm and a density between 40-120 kg/m 3 . The aim of this step is to maintain a constant temperature to enable the ausferritic reaction to occur.
  • the isothermal transformation time was defined as 90 minutes for all the samples.
  • the samples were air cooled to room temperature.
  • Figure 1 an example of some cooling curves as a function of the thermal modulus is shown.
  • the isothermal transformation temperature as a function of the thermal modulus was calculated.
  • Equation 1 an equation to calculate the minimum cooling rate (CR min ) to avoid the pearlitic nose as a function of the nickel, copper and molybdenum contents (Equation 1) was developed.
  • the thickness window in which this methodology is feasible was defined.
  • the shakeout process cannot be carried out at any temperature.
  • the upper limit (1050 oC) was defined around 50 oC below the solidus temperature. This is due to the fact that shaking out a casting which is not completely solid can lead to casting defects as microporosity or high thermal stress.
  • the lower limit was defined as 50 oC over the eutectoid transformation temperature. This temperature is a function of the thermal modulus and the alloy content.
  • the Figure 3 shows the influence of the thermal modulus and the alloy content on the eutectoid transformation temperature.
  • the value of the shakeout temperature for a thermal modulus of 0.6 cm is a constant determined by an iterative calculus method. This reference value is needed to change the moment of the shakeout, which enables to fit, for the different sections, the shakeout temperature into the range defined by the upper and lower limit (when possible).
  • the model can calculate several shakeout moments that make the process feasible.
  • the iterative method chooses the one that gives the lower shakeout temperature, with the aim of reducing the thermal stress due to a high temperature shakeout.
  • the result is the shakeout temperature for the minimum and maximum thermal moduli of a casting.
  • the aim of the cooling process is to obtain fully ausferritic microstructures. Therefore, once defined the alloy to avoid the pearlitic nose and the shakeout temperature as a function of the different thermal moduli of a casting, the next step which has a decisive importance is the isothermal transformation temperature.
  • the temperature at which the different thermal moduli of a casting are to be introduced into an insulating medium was calculated based on the experimental results.
  • the model calculates the isothermal transformation temperature as a function of the thermal modulus (Equation 4).
  • T isothermal transformation M C 293.39 ⁇ M cm + T isothermal transformation 0.6 cm C ⁇ 180
  • the value of the isothermal transformation temperature for the modulus 0.6 cm is needed. This reference value fits (when possible) the isothermal transformation temperature of the different moduli into the defined range (explained below).
  • the isothermal transformation must take place into a determined temperature range to obtain the desired microstructure and thus the mechanical properties that allow meeting the requirements of the ADI materials.
  • the upper limit was considered as 450 oC, temperature above which it is not considered in the literature that the obtained ausferrite shows the desired mechanical properties.
  • the lower limit is considered as the martensite start formation temperature (M S ).
  • M S martensite start formation temperature
  • the model defines if the given casting can be produced following this methodology and when feasible, the temperature at which the casting should be introduced into the insulating medium. From the different possibilities that offers the iterative calculus, the optimum solution is the one that enables to obtain the desired mechanical properties in terms of ultimate tensile strength and hardness.
  • the mechanical properties of the different samples were analyzed by means of tensile and hardness tests.
  • the Table 3 shows the mechanical properties obtained on one of the trials as a function of the thermal moduli of the castings. All the castings were handled together (shaken out and inserted into the insulating medium at the same time).
  • Table 3 Mechanical properties as a function of the thermal modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)

Claims (11)

  1. Procédé de commande de la microstructure ausferritique brute de coulée dans un procédé pour obtenir des pièces en fer avec des sections de différentes épaisseurs, qui comprend :
    a) le calcul d'un module thermique maximal, qui correspond à la section de la pièce ayant la plus grande épaisseur, et d'un module thermique minimal, qui correspond à la section de la pièce ayant la plus faible épaisseur, de la pièce ;
    b) l'obtention de la vitesse de refroidissement (°C/s) pour les modules thermiques maximal et minimal compte tenu du refroidissement par l'air, lesdites vitesses de refroidissement étant extraites d'une courbe de refroidissement obtenue de façon expérimentale à partir de plusieurs échantillons ayant différents modules thermiques ;
    c) le calcul de la vitesse de refroidissement minimale (CRmin) nécessaire pour éviter le nez perlitique, en fonction de différentes teneurs en Ni, Cu et Mo (% en poids) comprises dans une composition chimique de la pièce en fer,
    dans lequel lesdites teneurs en Ni, Cu et Mo varient comme suit :
    Ni : 3,0 à 5,0 % en poids,
    Mo : 0,0 à 0,2 % en poids,
    Cu : 0,0 à 1,0 % en poids
    dans lequel la vitesse de refroidissement minimale (CRmin) est calculée en utilisant la formule suivante : CR min ° C / s = 2,35 0,33 * Ni % en poids 0,1 * Cu % en poids 4,0 * Mo % en poids
    Figure imgb0023
    d) la sélection d'une desdites compositions avec une vitesse de refroidissement minimale (CRmin) inférieure à la vitesse de refroidissement pour le module thermique maximal ;
    e) le calcul de la température eutectoïde (Teutectoïde, °C) en fonction du module thermique pour la composition sélectionnée, pour tous les modules thermiques différents de la pièce ;
    f) le calcul de la température de décochage, démoulage, (Tdécochage, °C) pour chaque module thermique de la pièce ;
    g) déterminer si la température de décochage Tdécochage pour le module thermique minimal est au-dessus de la température eutectoïde (Teutectoïde) calculée en e) et si la température de décochage Tdécochage pour le module thermique maximal est en-dessous de la température de solidus (Tsolidus, °C) ;
    h) la sélection, parmi les Tdécochage, de la température la plus basse ;
    i) le calcul de la température de transformation isotherme Ttransformation_isotherme pour chaque module thermique de la pièce ;
    j) déterminer si la température de transformation isotherme Ttransformation_isotherme pour les modules thermiques minimal et maximal est comprise entre 450 °C et 170 °C ;
    k) la sélection, parmi les températures de transformation isotherme Ttransformation_isotherme, de celle qui correspond le mieux aux propriétés mécaniques ciblées.
  2. Procédé selon la revendication 1, dans lequel l'étape b) comprend les étapes suivantes :
    b1) obtention de diagrammes de transformation refroidissement continus (CCT) pour plusieurs alliages avec différentes teneurs en Ni, Cu et Mo.
    b2) considérer les courbes de refroidissement obtenues dans l'étape b1) comme étant des lignes droites dans la plage de température de 600 °C à 700 °C et représenter la pente des droites dans un diagramme taux refroidissement/module thermique.
    b3) obtention d'une droite de régression pour les pentes de l'étape b2).
  3. Procédé selon la revendication 1, dans lequel, dans l'étape e), la température eutectoïde (Teutectoïde) en fonction du module thermique est calculée en utilisant la formule : T eutectoïdeM ° C = 41,93 * M 2 cm 2 + 115,03 * M cm + 593,24 .
    Figure imgb0024
  4. Procédé selon la revendication 1, dans lequel, dans l'étape f), la température de décochage (Tdécochage) pour les différents modules thermiques est calculée en utilisant la formule : T décochageM ° C = 568,40 * M cm 341,04 + T décochage 0 6 cm ° C .
    Figure imgb0025
  5. Procédé selon la revendication 1, dans lequel l'étape g) comprend le fait de déterminer si Tdécochage pour le module thermique minimal est au-dessus de la température eutectoïde + 50 °C et si Tdécochage pour le module thermique maximal est en-dessous de la température de solidus - 50 °C, dans lequel la limite supérieure pour la section du module thermique maximal de décochage est une température de 1050 °C.
  6. Procédé selon la revendication 1, dans lequel, dans l'étape i), la température de transformation isotherme est calculée en utilisant la formule : T transformation _ isothermeM ° C = 293,39 * M cm + T transformation _ isotherme 0,6 cm ° C 180 .
    Figure imgb0026
  7. Procédé selon la revendication 1, qui comprend en outre l'étape de :
    l) calcul de la résistance ultime à la traction (UTS) d'un module thermique donné en utilisant la formule suivante : UTS MPa = 1,2231 * T transformation _ isothermeM ° C + 1308,2 .
    Figure imgb0027
  8. Procédé selon la revendication 1, qui comprend en outre l'étape de :
    m) calcul de la dureté théorique (HB) des pièces en utilisant la formule suivante : HB = 0,483 * T transformation _ isothermeM ° C + 466,34 .
    Figure imgb0028
  9. Procédé selon la revendication 1, qui comprend en outre les étapes de :
    ll) calcul de la température de transformation isotherme optimale en utilisant la formule suivante : T transformation _ isothermeM ° C = 0,8176 * UTS MPa + 1069,58 .
    Figure imgb0029
  10. Procédé selon la revendication 1, qui comprend en outre les étapes de :
    mm) calcul de la température de transformation isotherme optimale en utilisant la formule suivante : T transformation _ isothermeM ° C = 965,50 2,070 * HB .
    Figure imgb0030
  11. Procédé selon la revendication 1, dans lequel le module thermique minimal de la pièce est supérieur à 0,4 et le module thermique maximal de la pièce est inférieur à 1,5.
EP14382479.5A 2014-11-27 2014-11-27 Procédé de commande de microstructure brute ausferritique de pièces en fer ductile Active EP3026128B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14382479.5A EP3026128B1 (fr) 2014-11-27 2014-11-27 Procédé de commande de microstructure brute ausferritique de pièces en fer ductile
ES14382479T ES2823555T3 (es) 2014-11-27 2014-11-27 Un método para controlar la microestructura en bruto de colada ausferrítica en piezas de hierro dúctiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14382479.5A EP3026128B1 (fr) 2014-11-27 2014-11-27 Procédé de commande de microstructure brute ausferritique de pièces en fer ductile

Publications (2)

Publication Number Publication Date
EP3026128A1 EP3026128A1 (fr) 2016-06-01
EP3026128B1 true EP3026128B1 (fr) 2020-06-24

Family

ID=52016017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14382479.5A Active EP3026128B1 (fr) 2014-11-27 2014-11-27 Procédé de commande de microstructure brute ausferritique de pièces en fer ductile

Country Status (2)

Country Link
EP (1) EP3026128B1 (fr)
ES (1) ES2823555T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114021067A (zh) * 2021-11-04 2022-02-08 湖州鼎盛机械制造有限公司 一种用于生产优质球铁件的铁液成分窗口快速确定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749658A1 (fr) 2012-12-27 2014-07-02 Veigalan Estudio 2010 S.L.U. Procédé de production de coulée de fonte ductile ausferritique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3026128A1 (fr) 2016-06-01
ES2823555T3 (es) 2021-05-07

Similar Documents

Publication Publication Date Title
Azizi et al. Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting
CN103459630B (zh) 高温特性优异的铝合金
US9718125B2 (en) Steel plate for producing light structures and method for producing said plate
CN107746917B (zh) 模具钢及其制作方法和应用、模具
JP6954846B2 (ja) 球状黒鉛鋳鉄
KR20090043555A (ko) 가벼운 구조체를 제조하기 위한 강판 및 그 강판을 제조하는 방법
Shakerin et al. Interface engineering of additively manufactured maraging steel-H13 bimetallic structures
CN101082097A (zh) 耐疲劳裂纹性优异的高Cr铸铁及其制造方法
EP2749658A1 (fr) Procédé de production de coulée de fonte ductile ausferritique
CN112981261A (zh) 一种非调质钢及其应用、制品和制法
Fazliana et al. Effect of tungsten carbide partial dissolution on the microstructure evolution of a laser clad surface
Zellagui et al. Effect of heat treatments on the microstructure, mechanical, wear and corrosion resistance of casted hadfield steel
EP3168319B1 (fr) Acier haute résistance faiblement allié pour formage à chaud de pièces de haute résistance et de limite élastique élevée
CN1989265A (zh) 焊接热影响区的低温韧性优良的焊接结构用钢及其制造方法
Röttger et al. Description of a new concept for the development of adapted hot-work tool steels for laser-powder bed fusion
EP3026128B1 (fr) Procédé de commande de microstructure brute ausferritique de pièces en fer ductile
Qin et al. Microstructure and mechanical properties of friction stir welds on unmodified and P-modified Al-Mg2Si-Si alloys
JP6328968B2 (ja) 球状黒鉛鋳鉄、及び球状黒鉛鋳鉄の製造方法
JP2004099923A (ja) 高強度ダクタイル鋳鉄
Bhat et al. Hybrid Heat Treatment for Conventionally Treatable Steel Powder Reinforced Age Hardenable Aluminium Alloy Matrix Composites and Mechanical Property Evaluation
TW202309308A (zh) 鋼材及使用其之鋼製品
JP2009214122A (ja) 熱間圧延用複合ロール及びその製造方法
Howell et al. Fe-Mn-Al-C Alloy Steels–A New Armor Class
Upadhyaya et al. Study on the effect of austempering temperature on the structure-properties of thin wall austempered ductile iron
van gen Hassend et al. Study on the austemperability of thin-wall ductile cast iron produced by high-pressure die-casting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161201

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VEIGALAN ESTUDIO 2010 S.L.U.

Owner name: FUNDACION AZTERLAN

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014066941

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1283956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014066941

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2823555

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210507

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211117

Year of fee payment: 8

Ref country code: DE

Payment date: 20211126

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014066941

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 10