EP3022278A1 - Hochleistungsbrennstoffzusammensetzungen - Google Patents
HochleistungsbrennstoffzusammensetzungenInfo
- Publication number
- EP3022278A1 EP3022278A1 EP14738843.3A EP14738843A EP3022278A1 EP 3022278 A1 EP3022278 A1 EP 3022278A1 EP 14738843 A EP14738843 A EP 14738843A EP 3022278 A1 EP3022278 A1 EP 3022278A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fischer
- tropsch derived
- base oil
- density
- diesel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 109
- 239000000446 fuel Substances 0.000 title claims abstract description 73
- 239000002199 base oil Substances 0.000 claims abstract description 46
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000005864 Sulphur Substances 0.000 claims abstract description 44
- 239000003208 petroleum Substances 0.000 claims abstract description 24
- 239000003921 oil Substances 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 239000002283 diesel fuel Substances 0.000 claims description 11
- 238000002347 injection Methods 0.000 abstract description 7
- 239000007924 injection Substances 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 description 23
- 238000009472 formulation Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 239000000779 smoke Substances 0.000 description 9
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- -1 flow improvers (e.g. Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229920002367 Polyisobutene Polymers 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- NKRVGWFEFKCZAP-UHFFFAOYSA-N 2-ethylhexyl nitrate Chemical compound CCCCC(CC)CO[N+]([O-])=O NKRVGWFEFKCZAP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000013556 antirust agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 150000003443 succinic acid derivatives Chemical class 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- GGQRKYMKYMRZTF-UHFFFAOYSA-N 2,2,3,3-tetrakis(prop-1-enyl)butanedioic acid Chemical class CC=CC(C=CC)(C(O)=O)C(C=CC)(C=CC)C(O)=O GGQRKYMKYMRZTF-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004146 Propane-1,2-diol Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical class NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- HLYOOCIMLHNMOG-UHFFFAOYSA-N cyclohexyl nitrate Chemical compound [O-][N+](=O)OC1CCCCC1 HLYOOCIMLHNMOG-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000006280 diesel fuel additive Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- FSWDLYNGJBGFJH-UHFFFAOYSA-N n,n'-di-2-butyl-1,4-phenylenediamine Chemical compound CCC(C)NC1=CC=C(NC(C)CC)C=C1 FSWDLYNGJBGFJH-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
- C10L1/08—Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1616—Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0438—Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0438—Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
- C10L2200/0446—Diesel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
- C10L2200/0492—Fischer-Tropsch products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2230/00—Function and purpose of a components of a fuel or the composition as a whole
- C10L2230/22—Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2300/00—Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
- C10L2300/30—Mixture of three components
Definitions
- the present invention relates high power fuel compositions prepared by blending a petroleum derived low sulphur diesel with a Fischer-Tropsch (GTL) derived gasoil and a Fischer-Tropsch (GTL) derived base oil, and to the use of a Fischer-Tropsch derived base oil in said fuel compositions.
- GTL Fischer-Tropsch
- GTL Fischer-Tropsch
- High viscosity fuels can be formulated by blending high viscosity components such as disclosed in WO2005/054411 into conventional diesel. However, there is a limit on how much can be blended whilst adhering to limits on certain properties (distillation, density) in diesel fuel specifications (e.g. EN 590). Additionally, the high viscosity components also increase the density of the fuel, and thus can be detrimental in terms of smoke emissions (as found in WO2005/054411) . According to WO2005/054411, this is overcome by the addition of a third low density component, which is required to maintain the emissions performance of the high viscosity fuel.
- the present invention relates to fuel compositions with increased power performance while still complying with the geographically relevant diesel fuel specification (e.g. EN 590). Moreover, unlike WO2005/054411, the viscosity increasing components in this present invention do not increase the density of the formulation and so there is no detriment to the emissions performance compared to conventional diesel.
- new fuel compositions comprising a low sulphur petroleum derived diesel component and a Fischer-Tropsch derived gas oil component, further comprising a high viscosity low density Fischer-Tropsch derived base oil component (e.g. GTL Baseoil 3), which fuel compositions display increased power performance when compared to conventional diesel, with no detriment to emissions performance .
- a low sulphur petroleum derived diesel component and a Fischer-Tropsch derived gas oil component
- a high viscosity low density Fischer-Tropsch derived base oil component e.g. GTL Baseoil 3
- an embodiment of the present invention is a fuel composition prepared by blending a petroleum derived low sulphur diesel comprising ⁇ 50 ppm of sulphur with a Fischer-Tropsch derived gasoil and a Fischer-Tropsch derived base oil wherein the amount of the petroleum derived low sulphur diesel is from 60% up to 80% v/v of the total composition; the amount of Fischer-Tropsch derived gasoil is from 10% up to 30% v/v of the total composition; the amount of Fischer-Tropsch derived base oil is from 10% up to 30% v/v of the total composition; the amounts of the Fischer-Tropsch derived gas oil and Fischer-Tropsch derived base oil together being at least 20% v/v of the total composition; and wherein the petroleum derived low sulphur diesel has a density of 0.81 to 0.865 g/cm 3 at 15°C and a kinematic viscosity
- the composition has increased power performance in a diesel injection engine when compared to fuel compositions comprising only a petroleum derived low sulphur diesel comprising ⁇ 50 ppm of sulphur and a
- a high power fuel can be defined as a fuel which improves the vehicle tractive effort (VTE) and/or the resulting acceleration performance of vehicles fitted with compression ignition engines, compared to conventional diesel. More details on high power fuels and a method for determining VTE can be found in WO2005/054411.
- Fischer-Tropsch derived gasoil in combination with a specific Fischer-Tropsch derived Base Oil 3 allows for blends to be obtained with a higher viscosity at a lower density than is possible by using just a Fischer-Tropsch derived gasoil (as disclosed in WO2005/054411) , whilst still complying with the geographically relevant diesel fuel specification (e.g. EN 590), thus allowing a higher power formulation than would otherwise be possible.
- a further embodiment of the invention relates to the use of a Fischer-Tropsch derived base oil in a fuel composition comprising a petroleum derived low sulphur diesel comprising ⁇ 50 ppm of sulphur and a Fischer-Tropsch derived gasoil, for the purpose of increasing the power performance of a diesel engine, wherein the amount of the petroleum derived low sulphur diesel is from 60% up to 80% v/v of the total composition; the amount of Fischer-Tropsch derived gasoil is from 10% up to 30% v/v of the total composition; the amount of Fischer-Tropsch derived base oil is from 10% up to 30% v/v of the total composition; the amounts of the Fischer-Tropsch derived gas oil and Fischer-Tropsch derived base oil together being at least 20% v/v of the total composition; and wherein the petroleum derived low sulphur diesel has a density of 0.81 to 0.865 g/cm 3 at 15°C and a kinematic viscosity
- the Fischer- Tropsch derived gasoil has a density of 0.76 to 0.80 g/cm 3 at 15°C and a kinematic viscosity (ASTM D445) from 2.0 to 4.5 mm /s at 40°C; and the Fischer-Tropsch derived base oil has a density of 0.79 to 0.82 g/cm 3 at 15°C and a kinematic viscosity (ASTM D445) from 7.5 to 12.0 mm 2 /s at 40°C.
- Tropsch derived gasoil is from 10% up to 30% v/v of the total composition and the amount of Fischer-Tropsch derived base oil is from 10% up to 30% v/v of the total composition while the amounts of the Fischer-Tropsch derived gas oil and Fischer-Tropsch derived base oil together at least are 20% v/v of the total composition.
- the amount of Fischer-Tropsch derived base oil is from at least 15%, more preferred at least 20%, and most preferred 30% v/v of the total composition.
- the amount of Fischer-Tropsch derived gasoil is preferably from 10% up to 20%, and more preferred 10% v/v of the total composition.
- the fuel composition comprises 60% v/v of the petroleum derived low sulphur diesel, 10% v/v of the Fischer-Tropsch derived gasoil and 30% v/v of the Fischer-Tropsch derived base oil.
- the paraffinic nature of the Fischer-Tropsch derived components in the present invention mean that the high power fuel compositions of the present inventions will have high cetane numbers compared to conventional diesel. It is well known that high cetane number fuels can be beneficial for reducing emissions compared to conventional diesel. Therefore, as well as the low density emissions benefits, the high power formulations in the present invention may also have further emissions benefits as a consequence of their high paraffinic content and high cetane number. Fuel compositions of the present invention are particularly suitable for use as a diesel fuel, and they are especially useful for arctic applications, as winter grade diesel fuel.
- a further embodiment of the invention relates to the use of fuel compositions according to the present invention as a fuel in a direct or indirect injection diesel engine, in particular in conditions requiring a fuel with good cold flow properties.
- a cloud point of -10°C or lower or a cold filter plugging point (CFPP) of -20°C or lower may be possible with fuel compositions according to the present invention.
- CFPP cold filter plugging point
- Both Fischer-Tropsch derived base oil and Fischer-Tropsch derived gasoil can have a lower inherent CFPP than the low sulphur diesel component. This means that the proposed formulation will be expected to have improved cold flow performance over the diesel component, enabling the formulation to be used as winter grade fuel, or in the case of forming a formulation with a base diesel with better cold flow, even an arctic grade could be achieved.
- the petroleum derived low sulphur diesel comprising ⁇ 50 ppm of sulphur according to the invention may be for example an ultra low sulphur diesel (ULSD) or a Zero sulphur diesel (ZSD) .
- the low sulphur diesel comprises ⁇ 10 ppm of sulphur.
- the petroleum derived low sulphur diesel used in the present invention will typically have a density from 0.81 to 0.865, preferably 0.82 to 0.85, more preferably 0.825 to 0.845 g/cm 3 at 15°C; a cetane number (ASTM D613) at least 51; and a kinematic viscosity (ASTM D445) from 1.5 to 4.5, preferably 2.0 to 4.0, more preferably from 2.2 to 3.7 mm 2 /s at 40°C.
- Fischer-Tropsch derived is meant that the gasoil or base oil is, or derives from, a synthesis product of a Fischer-Tropsch condensation process. The Fischer-Tropsch reaction converts carbon monoxide and hydrogen into longer chain, usually paraffinic, hydrocarbons :
- n (CO + 23 ⁇ 4) (-C3 ⁇ 4 - ) n + n3 ⁇ 40 + heat, in the presence of an appropriate catalyst and typically at elevated temperatures (e.g. 125 to 300°C, preferably 175 to 250°C) and/or pressures (e.g. 5 to 100 bar, preferably 12 to 50 bar) . Hydrogen: carbon monoxide ratios other than 2:1 may be employed if desired.
- the carbon monoxide and hydrogen may themselves be derived from organic or inorganic, natural or synthetic sources, typically either from natural gas or from organically derived methane.
- a Fischer-Tropsch gasoil product or base oil product may be obtained directly from the Fischer-Tropsch reaction, or indirectly for instance by fractionation of a Fischer-Tropsch synthesis product or from a hydrotreated Fischer-Tropsch synthesis product.
- Hydrotreatment can involve hydrocracking to adjust the boiling range (see, e. g. GB2077289 and EP0147873) and/or hydroisomerisation which can improve cold flow properties by increasing the proportion of branched paraffins.
- EP0583836 describes a two-step hydrotreatment process in which a Fischer-Tropsch synthesis product is firstly subjected to hydroconversion under conditions such that it undergoes substantially no isomerisation or hydrocracking (this hydrogenates the olefinic and oxygen- containing components) , and then at least part of the resultant product is hydroconverted under conditions such that hydrocracking and isomerisation occur to yield a substantially paraffinic hydrocarbon fuel or oil. Desired diesel fuel fraction (s) may subsequently be isolated for instance by distillation.
- Typical catalysts for the Fischer-Tropsch synthesis of paraffinic hydrocarbons comprise, as the catalytically active component, a metal from Group VIII of the periodic table, in particular ruthenium, iron, cobalt or nickel. Suitable such catalysts are described for instance in EP0583836.
- SMDS Shell Middle Distillate Synthesis
- This process produces diesel range products by conversion of a natural gas (primarily methane) derived synthesis gas into a heavy long-chain hydrocarbon (paraffin) wax which can then be hydroconverted and fractionated to produce liquid transport fuels such as the gasoils useable in diesel fuel compositions.
- a natural gas primarily methane
- paraffin paraffin wax
- Versions of the SMDS process utilising fixed-bed reactors for the catalytic conversion step, are currently in use in Bintulu, Malaysia, and in Pearl GTL, Ras Laffan, Amsterdam. (Gas) oils prepared by the SMDS process are commercially available for instance from the Royal Dutch/Shell Group of Companies.
- the Fischer-Tropsch derived gasoil or base oil according to the present invention is a product prepared by a Fischer-Tropsch methane condensation reaction using a hydrogen/carbon monoxide ratio of less than 2.5, preferably less than 1.75, more preferably from 0.4 to 1.5.
- the Fischer-Tropsch derived (gas) oil according to the present invention is a product prepared by the SMDS process, utilising fixed-bed multi-tubular reactors and a promoted cobalt catalyst. Suitably it will have been obtained from a hydrocracked Fischer-Tropsch synthesis product, or a product from a two-stage hydroconversion process such as that described in EP0583836.
- Fischer-Tropsch derived gasoil or base oil will consist of at least 95% w/w, more preferably at least 98% w/w, and most preferably up to 100% w/w of paraffinic components, preferably iso- and normal paraffins. Some cyclic paraffins may also be present. According to the present invention the weight ratio of iso-paraffins to normal paraffins is suitably from 0.3 up to 12, in particular from 2 to 6.
- a Fischer- Tropsch derived gasoil or base oil has essentially no, or undetectable levels of, sulphur and nitrogen. Compounds containing these heteroatoms tend to act as poisons for Fischer-Tropsch catalysts and are therefore removed from the synthesis gas feed. Further, the process as usually operated produces no or virtually no aromatic components.
- the aromatics content of a Fischer-Tropsch gasoil will typically be below 1% w/w, preferably below 0.5% w/w and more preferably below 0.1% w/w.
- the Fischer-Tropsch derived gasoil used in the present invention will typically have a density from 0.76 to 0.80, preferably 0.77 to 0.79, more preferably 0.775 to 0.785 g/cm 3 at 15°C; a cetane number (ASTM D613) greater than 70, suitably from 74 to 85; a kinematic viscosity (ASTM D445) from 2.0 to 5.0, preferably from
- sulphur content (ASTM D2622) of 5 ppmw (parts per million by weight) or less, preferably of 2 ppmw or less .
- the Fischer-Tropsch derived base oil used in the present invention will typically have a density from 0.79 to 0.82, preferably 0.800 to 0.815, and more preferably
- a kinematic viscosity (ASTM D445) from 7.5 to 12.0, preferably 8.0 to 11.0, more preferably from 9.0 to 10.5, mm 2 /s at 40°C; and a sulphur content (ASTM D2622) of 5 ppmw (parts per million by weight) or less, preferably of 2 ppmw or less.
- the fuel composition may be additivated with further additives.
- the (active matter) concentration of each such additive in a fuel composition is preferably up to 10000 ppmw, more preferably in the range from 5 to 1000 ppmw, advantageously from 75 to 300 ppmw, such as from 95 to 150 ppmw.
- Such additives may be added at various stages during the production of a fuel composition; those added to a base fuel at the refinery for example might be selected from anti-static agents, pipeline drag reducers, flow improvers (e.g., ethylene/vinyl acetate copolymers or acrylate/maleic anhydride copolymers) , lubricity enhancers, anti-oxidants and wax anti-settling agents.
- anti-static agents e.g., pipeline drag reducers, flow improvers (e.g., ethylene/vinyl acetate copolymers or acrylate/maleic anhydride copolymers)
- flow improvers e.g., ethylene/vinyl acetate copolymers or acrylate/maleic anhydride copolymers
- lubricity enhancers e.g., anti-oxidants and wax anti-settling agents.
- the fuel composition may for instance include a detergent, by which is meant an agent (suitably a surfactant) which can act to remove, and/or to prevent the build up of, combustion related deposits within an engine, in particular in the fuel injection system such as in the injector nozzles.
- a detergent by which is meant an agent (suitably a surfactant) which can act to remove, and/or to prevent the build up of, combustion related deposits within an engine, in particular in the fuel injection system such as in the injector nozzles.
- a detergent preferred concentrations are in the range 20 to 500 ppmw active matter detergent based on the overall fuel composition, more preferably 40 to 500 ppmw, most preferably 40 to 300 ppmw or 100 to 300 ppmw or 150 to 300 ppmw.
- Detergent- containing diesel fuel additives are known and commercially available.
- suitable detergent additives include polyolefin substituted succinimides or succinamides of polyamines, for instance polyisobutylene succinimides or polyisobutylene amine succinamides, aliphatic amines, Mannich bases or amines and polyolefin (e.g. polyisobutylene) maleic anhydrides.
- polyolefin substituted succinimides such as polyisobutylene succinimides.
- lubricity enhancers include lubricity enhancers; dehazers, e.g. alkoxylated phenol formaldehyde polymers; anti-foaming agents (e.g. commercially available polyether-modified polysiloxanes) ; ignition improvers (cetane improvers) (e.g. 2-ethylhexyl nitrate (EHN) , cyclohexyl nitrate, di-tert-butyl peroxide and those disclosed in US4208190 at column 2, line 27 to column 3, line 21); anti-rust agents (e.g.
- dehazers e.g. alkoxylated phenol formaldehyde polymers
- anti-foaming agents e.g. commercially available polyether-modified polysiloxanes
- ignition improvers cetane improvers
- cetane improvers e.g. 2-ethylhexyl nitrate (EHN) ,
- succinic acid derivative having on at least one of its alpha-carbon atoms an unsubstituted or substituted aliphatic hydrocarbon group containing from 20 to 500 carbon atoms, e.g. the pentaerythritol diester of polyisobutylene-substituted succinic acid) ; corrosion inhibitors; reodorants; anti-wear additives; anti- oxidants (e.g.
- the additive contain an anti- foaming agent, more preferably in combination with an anti-rust agent and/or a corrosion inhibitor and/or a lubricity additive.
- a lubricity enhancer be included in the fuel composition, especially when it has a low (e.g. 500 ppmw or less) sulfur content.
- the lubricity enhancer is conveniently present at a concentration from 50 to 1000 ppmw, preferably from 100 to 1000 ppmw, based on the overall fuel composition.
- the (active matter) concentration of any dehazer in the fuel composition will preferably be in the range from 1 to 20 ppmw, more preferably from 1 to 15 ppmw, still more preferably from 1 to 10 ppmw and advantageously from 1 to 5 ppmw.
- the (active matter) concentration of any ignition improver present will preferably be 600 ppmw or less, more preferably 500 ppmw or less, conveniently from 300 to 500 ppmw.
- the present invention may in particular be applicable where the fuel composition is used or intended to be used in a direct injection diesel engine, for example of the rotary pump, in-line pump, unit pump, electronic unit injector or common rail type, or in an indirect injection diesel engine.
- the fuel composition may be suitable for use in heavy-and/or light-duty diesel engines, emissions benefits often being more marked in heavy-duty engines.
- the viscosity increasing components in this present invention do not increase the density of the formulation and so there is no detriment to the emissions performance compared to conventional diesel.
- the same component is able to impart both high viscosity and low density, and so this new invention offers the opportunity of producing high power fuels with emissions benefits as opposed to just emissions neutrality.
- These emissions benefits compared to conventional diesel are expected to be due to both i) the lower density and ii) the higher cetane number provided by the Fischer-Tropsch derived viscosity increasing components.
- Fig.2 Viscosity-density properties of components used in the present invention and components used according to WO2005/054411 (Gravex 925, HVI55) .
- a Shell internal fuel blend modelling program x blendpro 2000' was used to model the density and viscosity of a range of potential blends of the three components.
- the properties of the components used in this modelling are listed in Table 1.
- Figure 1 shows the three components to be blended in the present invention as black squares ( ⁇ ) .
- the crosses ( + ) between these individual components show the modelled density and viscosity of each of the potential blends of the three components (that were modelled) .
- the (x) points show the range in density and viscosity of conventional diesel fuels. It can be seen from the figure, all of the possible blends of the three components have a higher viscosity, and a lower density than conventional diesel.
- Fig.2 the viscosity-density properties of components used in the present invention and components used according to WO2005/054411 are shown.
- the fuel formulation with increased power according to the disclosure of WO2005/054411 was achieved by using a high viscosity high density component within the formulation (see Fig. 2, upper right corner: Gravex 925, HVI55) .
- the high viscosity component used in the present invention can be classed as "non-traditional" in the sense that whilst high in viscosity it is actually low in density, i.e. the density is below 0.845 (the maximum density point on EU diesel fuels) (see Fig. 2, lower left corner) .
- Figure 3 shows the acceleration, VTE and smoke percentage benefits, respectively, for some formulations according to the present invention, using the equations in WO2005/054411.
- the two Fischer- Tropsch derived viscosity components (GTL B03 and GTL Gasoil) are in a 50/50 (v/v) ratio, with this mixture being blended into conventional diesel from 20-60%. More data can be found in Table 3.
- the fuel formulation with increased power according to the disclosure of WO2005/054411 was achieved by using a high viscosity, high density component within the formulation. This had an unfortunate side effect of simultaneously increasing density, which tends to make the smoke emissions poorer.
- In order to restore the emissions performance according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according to restore the emissions performance, according
- the present invention has the key advantage that it negates the need of the low density component (component iii) according to WO2005/054411. This is because both of the Fischer-Tropsch derived components of the present invention (GTL B03 and GTL Gasoil) have the ability to simultaneously reduce density and increase viscosity, which results in simultaneous lower emissions and yet increased power.
- the cloud point of each of the same blends as shown in Figure 3 was modelled using x blendpro' .
- the Fischer-Tropsch derived viscosity components i.e. the Fischer-Tropsch derived gasoil and the Fischer- Tropsch derived base oil
- this mixture is blended into conventional diesel from 0-60%.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Lubricants (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14738843.3A EP3022278B1 (de) | 2013-07-16 | 2014-07-14 | Hochleistungsbrennstoffzusammensetzungen |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13176589 | 2013-07-16 | ||
EP14738843.3A EP3022278B1 (de) | 2013-07-16 | 2014-07-14 | Hochleistungsbrennstoffzusammensetzungen |
PCT/EP2014/065054 WO2015007694A1 (en) | 2013-07-16 | 2014-07-14 | High power fuel compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3022278A1 true EP3022278A1 (de) | 2016-05-25 |
EP3022278B1 EP3022278B1 (de) | 2018-06-13 |
Family
ID=48783122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14738843.3A Active EP3022278B1 (de) | 2013-07-16 | 2014-07-14 | Hochleistungsbrennstoffzusammensetzungen |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150021232A1 (de) |
EP (1) | EP3022278B1 (de) |
WO (1) | WO2015007694A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10407637B2 (en) | 2015-08-17 | 2019-09-10 | Shell Oil Company | Fuel composition |
ES2834933T3 (es) * | 2015-11-11 | 2021-06-21 | Shell Int Research | Proceso de preparación de una composición de combustible diésel |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1296939B1 (it) * | 1997-12-09 | 1999-08-03 | Euron Spa | Procedimento per la predizione delle caratteristiche a freddo di gasoli |
US7244350B2 (en) * | 2001-08-08 | 2007-07-17 | Shell Oil Company | Process to prepare a hydrocarbon product having a sulphur content below 0.05 wt |
US20050154240A1 (en) * | 2002-06-07 | 2005-07-14 | Myburgh Ian S. | Synthetic fuel with reduced particulate matter emissions and a method of operating a compression ignition engine using said fuel in conjunction with oxidation catalysts |
US6846778B2 (en) * | 2002-10-08 | 2005-01-25 | Exxonmobil Research And Engineering Company | Synthetic isoparaffinic premium heavy lubricant base stock |
GB0226726D0 (en) * | 2002-11-15 | 2002-12-24 | Bp Oil Int | Method |
AU2004295472B2 (en) * | 2003-12-01 | 2009-02-26 | Shell Internationale Research Maatschappij B.V. | Power increase and increase in acceleration performance of a compression ignition engine provided by the diesel fuel composition |
AR056027A1 (es) * | 2005-08-12 | 2007-09-12 | Shell Int Research | Composiciones de combustible |
KR101437700B1 (ko) * | 2006-03-31 | 2014-09-03 | 제이엑스 닛코닛세키에너지주식회사 | 경유조성물 |
US8624068B2 (en) * | 2006-03-31 | 2014-01-07 | Nippon Oil Corporation | Gas oil composition |
JP4863772B2 (ja) * | 2006-05-31 | 2012-01-25 | Jx日鉱日石エネルギー株式会社 | 軽油組成物 |
EP2227522A1 (de) * | 2007-11-28 | 2010-09-15 | Shell Internationale Research Maatschappij B.V. | Benzinzusammensetzungen |
US8152869B2 (en) * | 2007-12-20 | 2012-04-10 | Shell Oil Company | Fuel compositions |
RU2495916C2 (ru) * | 2007-12-28 | 2013-10-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Применение повышающего вязкость компонента в дизельном топливе |
EP2078743A1 (de) * | 2008-01-10 | 2009-07-15 | Shell Internationale Researchmaatschappij B.V. | Kraftstoffzusammensetzung |
EP2257614B1 (de) * | 2008-03-26 | 2016-09-14 | Shell Internationale Research Maatschappij B.V. | Verwendung eines viskositätsindexverbesserers in einem dieseltreibstoff |
US9624446B2 (en) * | 2012-06-19 | 2017-04-18 | Inaeris Technologies, Llc | Low temperature property value reducing compositions |
-
2014
- 2014-07-14 EP EP14738843.3A patent/EP3022278B1/de active Active
- 2014-07-14 WO PCT/EP2014/065054 patent/WO2015007694A1/en active Application Filing
- 2014-07-14 US US14/330,476 patent/US20150021232A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2015007694A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP3022278B1 (de) | 2018-06-13 |
US20150021232A1 (en) | 2015-01-22 |
WO2015007694A1 (en) | 2015-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1913120B1 (de) | Kraftstoffzusammensetzungen | |
US8273137B2 (en) | Fuel composition | |
ZA200408311B (en) | Diesel fuel compositions | |
US9017429B2 (en) | Fuel compositions | |
EP3022278B1 (de) | Hochleistungsbrennstoffzusammensetzungen | |
US10041013B2 (en) | Fischer-Tropsch derived fuel compositions | |
US20150184097A1 (en) | Diesel fuel formulatin and use thereof | |
US8771385B2 (en) | Fuel compositions | |
US10407637B2 (en) | Fuel composition | |
EP3374471A1 (de) | Verfahren zur herstellung einer dieselkraftstoffzusammensetzung | |
EP2078744A1 (de) | Kraftstoffzusammensetzungen | |
WO2018206729A1 (en) | Process for preparing an automotive gas oil fraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20170207 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180116 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1008509 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014026976 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180913 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180914 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1008509 Country of ref document: AT Kind code of ref document: T Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181013 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014026976 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180714 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180714 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
26N | No opposition filed |
Effective date: 20190314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140714 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180613 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230425 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20230712 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240530 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240613 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240604 Year of fee payment: 11 |