EP3014704A1 - Polarisation device for a satellite telecommunications antenna and associated antenna - Google Patents

Polarisation device for a satellite telecommunications antenna and associated antenna

Info

Publication number
EP3014704A1
EP3014704A1 EP14726562.3A EP14726562A EP3014704A1 EP 3014704 A1 EP3014704 A1 EP 3014704A1 EP 14726562 A EP14726562 A EP 14726562A EP 3014704 A1 EP3014704 A1 EP 3014704A1
Authority
EP
European Patent Office
Prior art keywords
frequency
antenna
polarization
degrees
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14726562.3A
Other languages
German (de)
French (fr)
Other versions
EP3014704B1 (en
Inventor
Gérard Collignon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineo Defense SAS
Original Assignee
Ineo Defense SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ineo Defense SAS filed Critical Ineo Defense SAS
Publication of EP3014704A1 publication Critical patent/EP3014704A1/en
Application granted granted Critical
Publication of EP3014704B1 publication Critical patent/EP3014704B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave

Definitions

  • the present invention relates to the field of polarizers for satellite telecommunications antenna.
  • the invention also relates to an associated satellite telecommunications antenna.
  • the invention finds a particularly advantageous application for transmitting and receiving data to or from a satellite, particularly for satellite communications of the Satcom type (acronym for satellite communication or "satellite communications" in English terminology).
  • Satellite communications typically use a Tx transmit frequency band and a Rx receive band.
  • the polarization is often circular in opposite directions in transmission and reception, in particular for some satellites working in the X, Ka and Q / V bands.
  • circular polarization is particularly well suited to communications between a mobile (land vehicle, ship, plane ..) and a satellite because it does not require polarization orientation unlike linear polarization.
  • the radiating elements (patch, dipole, ...) are, in most cases, bi-polarization linear and the circular polarization is obtained by means of a hybrid coupler 90 ° (or equivalent) associated with each element or each line of radiating elements if the antenna is active or electronically scanned.
  • the main The disadvantage of this structure stems from the fact that the power distribution on the N radiating elements requires the use of two splitters at one input and N outputs. Either a dispatcher for transmission and a splitter for reception or a splitter for each of the two orthogonal linear polarizations.
  • the present invention intends to overcome the drawbacks of the prior art by proposing a polarization device for using a satellite telecommunications antenna provided with radiating elements with a single linear polarization and therefore with a single splitter and a single access for the bands.
  • Rx and Tx The two circular polarizations are made in free space in front of the antenna by means of a polarizer which converts the linear polarization into left circular polarizations in the frequency band Tx and right circular polarization in the frequency band Rx, or vice versa.
  • the present invention relates, according to a first aspect, to a polarization device for a satellite telecommunications antenna comprising at least one frequency-selective layer capable of transforming a linear polarization, comprising two components, in left circular polarization in a first frequency band in transmission and in right circular polarization in a second frequency band in reception or vice versa, the phase difference between the two components of the linear polarization being between -85 and -95 degrees, preferably -90 degrees in one of the bands of frequency, and the phase shift between the two components of the linear polarization being between +85 and +95 degrees, preferably +90 degrees in the other frequency band.
  • the invention makes it possible to reduce the complexity of the radiating elements and the splitters of a satellite telecommunications antenna and thus to facilitate its realization.
  • the invention also makes it possible to limit the size of a satellite telecommunications antenna facilitating its implementation in a mobile terminal.
  • the transmission and reception frequencies are separated by filtering by means of a diplexer.
  • the device comprises several frequency-selective layers of identical patterns. Alternatively, the pattern may be different between the different layers.
  • the at least one frequency-selective layer is formed on a printed circuit comprising a substrate with a thickness of 2 mm and a relative dielectric constant equal to 2.2.
  • the selected substrate is RT / duroid 5880.
  • the device comprises four frequency-selective layers.
  • the device comprises a susceptance corresponding to the following equation:
  • a characteristic adjusts the slope around a cutoff frequency as a function of frequency.
  • the device comprises a susceptance corresponding to the following equation: wherein a characteristic adjusts the slope around a cutoff frequency as a function of frequency.
  • the device comprises at least one dielectric layer. This embodiment makes it possible to improve the adaptation of the polarization device.
  • the invention relates to a satellite telecommunications antenna comprising a polarization device according to the first aspect of the invention.
  • the antenna is flat.
  • the polarization device is particularly well suited to a flat antenna or it brings a reduction in size but it can also be used for any type of antenna.
  • the flat antenna consists of an array of radiating elements of conductive material type or dipoles or equivalent.
  • FIG. 1 illustrates a flat satellite telecommunications antenna provided with a polarizer according to one embodiment of the invention
  • FIG. 2 illustrates a rate of susceptances of a frequency-selective layer according to one embodiment of the invention
  • FIG. 3 illustrates a pattern of a frequency-selective layer according to a first embodiment
  • FIG. 4 illustrates a pattern of a frequency selective layer according to a second embodiment
  • Figure 5 illustrates a pattern of a frequency selective layer according to a third embodiment
  • Figure 6 illustrates a pattern of a frequency selective layer according to a fourth embodiment
  • FIG. 7 illustrates a shape of the differential phase of the polarization device comprising four frequency selective layers of a satellite telecommunications antenna for the Ka band.
  • FIG. 1 shows a flat satellite communications antenna 11 covered with a biasing device 10 comprising a plurality of frequency selective layers 12 according to one embodiment of the invention.
  • the satellite telecommunications antenna 11 is connected to a transmission channel 27 capable of transmitting information in both directions of circulation.
  • the signal to be transmitted is applied to the input of the Tx filter 20 and then sent to the antenna 11 by the transmission channel 27.
  • the satellite telecommunications antenna 1 1 picks up a raw signal which is directed on the transmission channel 27 until to the Rx filter 21 to be directed to the receiver 26.
  • the set of filters Rx 21 and Tx 20 is a diplexer.
  • a linear polarization E emitted by the antenna 1 1 can be decomposed into two linear components at ⁇ 45 °: Ex and Ey.
  • the polarization device 10 is a phase shifter in free space for transforming the components Ex and Ey of the linear polarization E of the antenna in left circular polarization or in right circular polarization.
  • the polarization device imposes a phase shift between the linear polarization Ex and the linear polarization Ey between -85 and -95 degrees, preferably -90 degrees to obtain the left circular polarization, or a phase shift between the linear polarization Ex and the linear polarization Ey between +85 and +95 degrees, preferably +90 degrees to obtain the right circular polarization.
  • a left or right circular polarization In reception, a left or right circular polarization is converted into linear polarization according to the same reciprocal principle.
  • the direction of the right circular polarization in reception and left in transmission can be reversed simply by physically turning the polarization device by 90 °, which has the effect of inverting the components Ex and Ey and thus of reversing the sign of the phase shift. 90 °.
  • the polarization device 10 comprises four frequency-selective layers 12 comprising an identical metallic pattern making it possible to obtain the desired phase shift.
  • the polarization device may comprise any number of frequency-selective layers 12 and their patterns may to be different.
  • the polarization device of the invention grants the circuits to obtain a phase shift of + 90 ° in the reception frequency band Rx and a phase shift of -90 ° in the frequency band Emission Tx. (or the opposite).
  • the susceptance B (imaginary part of the admittance) of each frequency selective layer 12 is different according to the x and y components, the differential phase shift ⁇ / y is given by:
  • N 90 / ⁇ / y
  • the sum of the differential phase differences is close to 90 °.
  • the adaptation of the assembly is obtained by discarding the different frequency-selective layers 12 of approximately one-quarter of a wavelength.
  • the reception frequency band Rx and a phase shift of -90 ° in the Emission Tx frequency band, it is necessary to conform to the following equation:
  • FIG. 2 reveals a series resonance curve of the susceptance By for the component y and a parallel resonance curve of the susceptance Bx for the component x.
  • the series resonance may correspond to the component x and the parallel resonance may correspond to the component y.
  • the series resonance of the By susceptance may correspond to the equation: and the parallel resonance of the susceptance Bx can correspond to the equation:
  • the components of susceptance Bx and By are obtained with an identical pattern on four frequency-selective layers 12 whose behavior is that of a parallel LC circuit for the component Ex and a series LC circuit for the component Ey or vice versa.
  • the pattern can take various forms to adjust the pace and parameters of phase shifts or susceptances.
  • FIG. 3 reveals an example of a pattern of frequency-selective layers 12 consisting of a network of parallel horizontal continuous wires and of an array of vertical dipoles, the pitch of this network being of the order of a half-length of wave ⁇ / 2 is about 5mm to 30 GHz.
  • the son are made by parallel lines and the dipoles are made by solid rectangles regularly spaced in columns and connected in their middle.
  • the pattern of FIG. 3 makes it possible to obtain an Ex component exhibiting a behavior equivalent to a capacitance C1 in parallel with an inductance L1 and a component Ey exhibiting a behavior equivalent to an inductance L2 in series with a capacitance C2.
  • Figure 4 shows a pattern of a frequency selective layer 12 consisting of parallel lines of solid squares regularly spaced in columns. Between each group of four solid squares 35 are placed empty squares 36 and between the parallel lines of solid squares 35 are arranged solid lines 29b passing through the middle of the empty squares 36.
  • the pattern of FIG. 4 makes it possible to obtain a component Ex exhibiting a behavior equivalent to a capacitance C3 in parallel with an inductance L3 and a component Ey exhibiting a behavior equivalent to an inductance L4 in series with a capacitance C4 placed in parallel with a capacitance C5.
  • Figure 5 reveals a pattern of a frequency selective layer 12 consisting of parallel lines of segments 38. Between two parallel segments 38 are arranged crosses 39 regularly spaced column.
  • the pattern of FIG. 5 makes it possible to obtain an Ex component exhibiting a behavior equivalent to a capacitance C6 in series with an inductance C5 connected in parallel with an inductance L6 in series with a capacitance C7 and an component Ey exhibiting a behavior equivalent to a L7 inductance in series with C8 capacitance.
  • FIG. 6 reveals a pattern of a frequency-selective layer 12 consisting of horizontal meander wires 40 which make it possible to adjust the value of the corresponding inductance in order to obtain a parallel resonance of selectivity.
  • X-polarization satisfactorily associated with double resonators 41 in split (double C) rectangular rings which give a suitable selectivity series resonance in polarization along y.
  • the pattern of frequency-selective layers 12 is then determined according to the desired electrical behaviors.
  • the differential phase difference of a layer is therefore:
  • the differential phase difference of a layer is therefore 22.5 ° in the transmit frequency band Tx and -22.5 ° in the receive frequency band Rx.
  • the total thickness of the polarization device is 6 mm.
  • the appearance of the differential phase ⁇ y of the complete polarization device 10 is shown in FIG. 7 as a function of the frequency F.
  • the differential phase of the reception frequency band Rx is stationary and close to + 90 °.
  • the differential phase of the transmit frequency band Tx is stationary and close to -90 °.
  • This embodiment thus makes it possible to obtain a phase shift close to + 90 ° in the reception frequency band Rx and a phase shift close to -90 ° in the frequency band in Tx transmission.
  • the number of layers can be reduced or increased depending on the desired performance in terms of adaptation, ellipticity rate and incidence operating range.
  • dielectric constants and thicknesses equal to about a quarter of a wavelength in the material.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

The present invention relates to a polarisation device (10) for a satellite telecommunications antenna (11) comprising at least one frequency selective layer (12) able to convert a linear polarisation (E), comprising two components (Ex, Ey), into left circular polarisation in a first transmission frequency band (Tx) and into right circular polarisation in a second receiving frequency band (Rx) or vice versa, the phase shift between the two components (Ex, Ey) of the linear polarisation (E) being comprised between -85 and -95 degrees, preferably -90 degrees in one of the frequency bands (Rx, Tx), and the phase shift between the two components (Ex, Ey) of the linear polarisation (E) being comprised between +85 and +95 degrees, preferably +90 degrees in the other frequency band (Rx, Tx).

Description

DISPOSITIF DE POLARISATION POUR ANTENNE DE TELECOMMUNICATIONS PAR SATELLITE ET ANTENNE ASSOCIEE  POLARIZATION DEVICE FOR SATELLITE TELECOMMUNICATIONS ANTENNA AND ANTENNA THEREFOR
Domaine de l'invention Field of the invention
La présente invention se rapporte au domaine des polariseurs pour antenne de télécommunications par satellite. L'invention concerne également une antenne de télécommunications par satellite associée. The present invention relates to the field of polarizers for satellite telecommunications antenna. The invention also relates to an associated satellite telecommunications antenna.
L'invention trouve une application particulièrement avantageuse pour l'émission et la réception des données vers ou depuis un satellite notamment pour les télécommunications par satellites de type Satcom (acronyme de communication par satellite ou « Satellite communications » en terminologie anglo-saxonne). The invention finds a particularly advantageous application for transmitting and receiving data to or from a satellite, particularly for satellite communications of the Satcom type (acronym for satellite communication or "satellite communications" in English terminology).
Etat de la technique State of the art
Les télécommunications par satellite utilisent habituellement une bande de fréquence à l'émission Tx et une bande de fréquences à la réception Rx. La polarisation est souvent circulaire de sens opposé en émission et réception, notamment pour certains satellites travaillant dans les bandes X, Ka et Q/V. Satellite communications typically use a Tx transmit frequency band and a Rx receive band. The polarization is often circular in opposite directions in transmission and reception, in particular for some satellites working in the X, Ka and Q / V bands.
L'utilisation de la polarisation circulaire est particulièrement bien adaptée aux communications entre un mobile (véhicule terrestre, navire, avion..) et un satellite car elle ne nécessite aucune orientation de polarisation contrairement à la polarisation linéaire. The use of circular polarization is particularly well suited to communications between a mobile (land vehicle, ship, plane ..) and a satellite because it does not require polarization orientation unlike linear polarization.
La réalisation d'une antenne réseau plate pour cette application nécessite donc l'utilisation d'éléments rayonnants bi bandes (bande Rx et bande Tx) et bi polarisations (circulaire gauche et circulaire droite). Le sens de polarisation est préférentiellement commutable. The realization of a flat network antenna for this application therefore requires the use of two-band radiating elements (Rx band and Tx band) and bi-polarizations (circular left and right circular). The direction of polarization is preferentially switchable.
Les éléments rayonnants (patch, dipôles, ...) sont, le plus souvent, bi polarisation linéaire et la polarisation circulaire est obtenue au moyen d'un coupleur hybride 90° (ou équivalent) associé à chaque élément ou à chaque ligne d'éléments rayonnants si l'antenne est active ou à balayage électronique. Le principal inconvénient de cette structure provient du fait que la distribution de puissance sur les N éléments rayonnants nécessite l'utilisation de deux répartiteurs à une entrée et N sorties. Soit un répartiteur pour l'émission et un répartiteur pour la réception soit un répartiteur pour chacune des deux polarisations linéaires orthogonales. The radiating elements (patch, dipole, ...) are, in most cases, bi-polarization linear and the circular polarization is obtained by means of a hybrid coupler 90 ° (or equivalent) associated with each element or each line of radiating elements if the antenna is active or electronically scanned. The main The disadvantage of this structure stems from the fact that the power distribution on the N radiating elements requires the use of two splitters at one input and N outputs. Either a dispatcher for transmission and a splitter for reception or a splitter for each of the two orthogonal linear polarizations.
Exposé de l'invention Presentation of the invention
La présente invention entend remédier aux inconvénients de l'art antérieur en proposant un dispositif de polarisation permettant d'utiliser une antenne de télécommunications par satellite munie d'éléments rayonnants à une seule polarisation linéaire donc à un seul répartiteur et un seul accès pour les bandes Rx et Tx. Les deux polarisations circulaires sont réalisées en espace libre devant l'antenne au moyen d'un polariseur qui transforme la polarisation linéaire en polarisations circulaire gauche dans la bande de fréquences Tx et en polarisation circulaire droite dans la bande de fréquences Rx, ou inversement. The present invention intends to overcome the drawbacks of the prior art by proposing a polarization device for using a satellite telecommunications antenna provided with radiating elements with a single linear polarization and therefore with a single splitter and a single access for the bands. Rx and Tx. The two circular polarizations are made in free space in front of the antenna by means of a polarizer which converts the linear polarization into left circular polarizations in the frequency band Tx and right circular polarization in the frequency band Rx, or vice versa.
A cet effet, la présente invention concerne, selon un premier aspect, un dispositif de polarisation pour antenne de télécommunications par satellite comportant au moins une couche sélective en fréquence apte à transformer une polarisation linéaire, comprenant deux composantes, en polarisation circulaire gauche dans une première bande de fréquence en émission et en polarisation circulaire droite dans une seconde bande de fréquence en réception ou inversement, le déphasage entre les deux composantes de la polarisation linéaire étant compris entre -85 et -95 degrés, préférentiellement -90 degrés dans une des bandes de fréquence, et le déphasage entre les deux composantes de la polarisation linéaire étant compris entre +85 et +95 degrés, préférentiellement +90 degrés dans l'autre bande de fréquence. To this end, the present invention relates, according to a first aspect, to a polarization device for a satellite telecommunications antenna comprising at least one frequency-selective layer capable of transforming a linear polarization, comprising two components, in left circular polarization in a first frequency band in transmission and in right circular polarization in a second frequency band in reception or vice versa, the phase difference between the two components of the linear polarization being between -85 and -95 degrees, preferably -90 degrees in one of the bands of frequency, and the phase shift between the two components of the linear polarization being between +85 and +95 degrees, preferably +90 degrees in the other frequency band.
L'invention permet de réduire la complexité des éléments rayonnants et des répartiteurs d'une antenne de télécommunications par satellite et ainsi de faciliter sa réalisation. En outre, l'invention permet également de limiter l'encombrement d'une antenne de télécommunications par satellite facilitant son implantation dans un terminal mobile. De manière classique, les fréquences en émission et en réception sont séparées par filtrage au moyen d'un diplexeur. Selon un mode de réalisation, le dispositif comporte plusieurs couches sélectives en fréquence de motifs identiques. En variante, le motif peut être différent entre les différentes couches. The invention makes it possible to reduce the complexity of the radiating elements and the splitters of a satellite telecommunications antenna and thus to facilitate its realization. In addition, the invention also makes it possible to limit the size of a satellite telecommunications antenna facilitating its implementation in a mobile terminal. Conventionally, the transmission and reception frequencies are separated by filtering by means of a diplexer. According to one embodiment, the device comprises several frequency-selective layers of identical patterns. Alternatively, the pattern may be different between the different layers.
Selon un mode de réalisation, l'au moins une couche sélective en fréquence est réalisée sur un circuit imprimé comprenant un substrat d'épaisseur 2mm et de constante diélectrique relative égale à 2.2. Par exemple, le substrat sélectionné est de type RT/duroid 5880. According to one embodiment, the at least one frequency-selective layer is formed on a printed circuit comprising a substrate with a thickness of 2 mm and a relative dielectric constant equal to 2.2. For example, the selected substrate is RT / duroid 5880.
Selon un mode de réalisation, le dispositif comporte quatre couches sélectives en fréquence. According to one embodiment, the device comprises four frequency-selective layers.
Selon un mode de réalisation, le dispositif comporte une susceptance correspondant à l'équation suivante : According to one embodiment, the device comprises a susceptance corresponding to the following equation:
dans laquelle une caractéristique permet de régler la pente autour d'une fréquence de coupure en fonction de la fréquence. wherein a characteristic adjusts the slope around a cutoff frequency as a function of frequency.
Selon un mode de réalisation, le dispositif comporte une susceptance correspondant à l'équation suivante : dans laquelle une caractéristique permet de régler la pente autour d'une fréquence de coupure en fonction de la fréquence. According to one embodiment, the device comprises a susceptance corresponding to the following equation: wherein a characteristic adjusts the slope around a cutoff frequency as a function of frequency.
Selon un mode de réalisation, le dispositif comporte au moins une couche diélectrique. Cette réalisation permet d'améliorer l'adaptation du dispositif de polarisation. Selon un deuxième aspect, l'invention concerne une antenne de télécommunications par satellite comportant un dispositif de polarisation selon le premier aspect de l'invention. According to one embodiment, the device comprises at least one dielectric layer. This embodiment makes it possible to improve the adaptation of the polarization device. According to a second aspect, the invention relates to a satellite telecommunications antenna comprising a polarization device according to the first aspect of the invention.
Selon un mode de réalisation l'antenne est plate. Le dispositif de polarisation est particulièrement bien adapté à une antenne plate ou il apporte une réduction de l'encombrement mais il peut également être utilisé pour tout type d'antenne. De préférence, l'antenne plate est constituée d'un réseau d'éléments rayonnants de type patchs en matériau conducteur ou de dipôles ou équivalents. According to one embodiment, the antenna is flat. The polarization device is particularly well suited to a flat antenna or it brings a reduction in size but it can also be used for any type of antenna. Preferably, the flat antenna consists of an array of radiating elements of conductive material type or dipoles or equivalent.
Brève description des dessins Brief description of the drawings
On comprendra mieux l'invention à l'aide de la description, faite ci-après à titre purement explicatif, des modes de réalisation de l'invention, en référence aux Figures dans lesquelles : The invention will be better understood by means of the description, given below purely for explanatory purposes, of the embodiments of the invention, with reference to the figures in which:
• la Figure 1 illustre une antenne de télécommunications par satellite plate munie d'un polariseur selon un mode de réalisation de l'invention ; FIG. 1 illustrates a flat satellite telecommunications antenna provided with a polarizer according to one embodiment of the invention;
• la Figure 2 illustre une allure des susceptances d'une couche sélective en fréquence selon un mode de réalisation de l'invention ;FIG. 2 illustrates a rate of susceptances of a frequency-selective layer according to one embodiment of the invention;
• la Figure 3 illustre un motif d'une couche sélective en fréquence selon un premier mode de réalisation ; FIG. 3 illustrates a pattern of a frequency-selective layer according to a first embodiment;
• la Figure 4 illustre un motif d'une couche sélective en fréquence selon un deuxième mode de réalisation ;  FIG. 4 illustrates a pattern of a frequency selective layer according to a second embodiment;
• la Figure 5 illustre un motif d'une couche sélective en fréquence selon un troisième mode de réalisation ; et  Figure 5 illustrates a pattern of a frequency selective layer according to a third embodiment; and
• la Figure 6 illustre un motif d'une couche sélective en fréquence selon un quatrième mode de réalisation ; et  Figure 6 illustrates a pattern of a frequency selective layer according to a fourth embodiment; and
• la Figure 7 illustre une allure de la phase différentielle du dispositif de polarisation comportant quatre couches sélectives en fréquence d'une antenne de télécommunications par satellite pour la bande Ka.  FIG. 7 illustrates a shape of the differential phase of the polarization device comprising four frequency selective layers of a satellite telecommunications antenna for the Ka band.
Description détaillée des modes de réalisation de l'invention La Figure 1 révèle une antenne de télécommunications par satellite 1 1 plate recouverte d'un dispositif de polarisation 10 comprenant plusieurs couches sélectives 12 en fréquence selon un mode de réalisation de l'invention. L'antenne de télécommunications par satellite 1 1 est reliée à un canal de transmission 27 apte à transmettre des informations dans les deux sens de circulation. Lorsque l'antenne de télécommunications par satellite 1 1 est utilisée en émission, dans la première bande de fréquence en émission Tx, le signal à émettre 25 est appliqué à l'entrée du filtre Tx 20 puis envoyé à l'antenne 1 1 par le canal de transmission 27. Lorsque l'antenne 1 1 est utilisée en réception, dans la seconde bande de fréquence en réception Rx, l'antenne de télécommunications par satellite 1 1 capte un signal brut qui est dirigé sur le canal de transmission 27 jusqu'au filtre Rx 21 afin d'être orienté vers le récepteur 26. L'ensemble des filtres Rx 21 et Tx 20 constitue un diplexeur. DETAILED DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION Figure 1 shows a flat satellite communications antenna 11 covered with a biasing device 10 comprising a plurality of frequency selective layers 12 according to one embodiment of the invention. The satellite telecommunications antenna 11 is connected to a transmission channel 27 capable of transmitting information in both directions of circulation. When the satellite telecommunications antenna 11 is used in transmission, in the first transmission frequency band Tx, the signal to be transmitted is applied to the input of the Tx filter 20 and then sent to the antenna 11 by the transmission channel 27. When the antenna 1 1 is used in reception, in the second reception frequency band Rx, the satellite telecommunications antenna 1 1 picks up a raw signal which is directed on the transmission channel 27 until to the Rx filter 21 to be directed to the receiver 26. The set of filters Rx 21 and Tx 20 is a diplexer.
Une polarisation linéaire E émise par l'antenne 1 1 peut être décomposée en deux composantes linéaires à ±45° : Ex et Ey. Le dispositif de polarisation 10 est un déphaseur en espace libre permettant de transformer les composantes Ex et Ey de la polarisation linéaire E de l'antenne en polarisation circulaire gauche ou en polarisation circulaire droite. Le dispositif de polarisation impose un déphasage entre la polarisation linéaire Ex et la polarisation linéaire Ey compris entre -85 et -95 degrés, préférentiellement -90 degrés pour obtenir la polarisation circulaire gauche, ou un déphasage entre la polarisation linéaire Ex et la polarisation linéaire Ey compris entre +85 et +95 degrés, préférentiellement +90 degrés pour obtenir la polarisation circulaire droite. A linear polarization E emitted by the antenna 1 1 can be decomposed into two linear components at ± 45 °: Ex and Ey. The polarization device 10 is a phase shifter in free space for transforming the components Ex and Ey of the linear polarization E of the antenna in left circular polarization or in right circular polarization. The polarization device imposes a phase shift between the linear polarization Ex and the linear polarization Ey between -85 and -95 degrees, preferably -90 degrees to obtain the left circular polarization, or a phase shift between the linear polarization Ex and the linear polarization Ey between +85 and +95 degrees, preferably +90 degrees to obtain the right circular polarization.
En réception, une polarisation circulaire gauche ou droite est transformée en polarisation linéaire suivant le même principe réciproque. Le sens de la polarisation circulaire droite en réception et gauche en émission peut être inversé simplement en tournant physiquement le dispositif de polarisation de 90°, ce qui a pour effet d'inverser les composantes Ex et Ey et donc d'inverser le signe du déphasage de 90°. In reception, a left or right circular polarization is converted into linear polarization according to the same reciprocal principle. The direction of the right circular polarization in reception and left in transmission can be reversed simply by physically turning the polarization device by 90 °, which has the effect of inverting the components Ex and Ey and thus of reversing the sign of the phase shift. 90 °.
Le dispositif de polarisation 10 comprend quatre couches sélectives en fréquence 12 comprenant un motif métallique identique permettant d'obtenir le déphasage souhaité. En variante, le dispositif de polarisation peut comporter un nombre quelconque de couches sélectives en fréquences 12 et leurs motifs peuvent être différents. Contrairement à un dispositif de polarisation classique ou un déphasage constant de 90° en fonction de la fréquence est recherché, le dispositif de polarisation de l'invention accorde les circuits pour obtenir un déphasage de +90° dans la bande de fréquence réception Rx et un déphasage de -90° dans la bande de fréquence Emission Tx. (ou l'inverse). The polarization device 10 comprises four frequency-selective layers 12 comprising an identical metallic pattern making it possible to obtain the desired phase shift. In a variant, the polarization device may comprise any number of frequency-selective layers 12 and their patterns may to be different. Unlike a conventional polarization device or a constant phase shift of 90 ° depending on the frequency is sought, the polarization device of the invention grants the circuits to obtain a phase shift of + 90 ° in the reception frequency band Rx and a phase shift of -90 ° in the frequency band Emission Tx. (or the opposite).
La susceptance B (partie imaginaire de l'admittance) de chaque couche sélective en fréquence 12 est différente selon les composantes x et y, le déphasage différentiel Δφχ/y est donné par : The susceptance B (imaginary part of the admittance) of each frequency selective layer 12 is different according to the x and y components, the differential phase shift Δφχ / y is given by:
Δφχ/y = Atan (Bx/2) - Atan (By/2) Δφχ / y = Atan (Bx / 2) - Atan (By / 2)
Si les motifs sont identiques sur chaque couche, le nombre de couches N pour obtenir un déphasage de 90° est donc de : If the patterns are identical on each layer, the number of layers N to obtain a phase shift of 90 ° is therefore:
N=90/ Δφχ/y N = 90 / Δφχ / y
Si les motifs de chaque couche ne sont pas identiques, la somme des déphasages différentiels est voisine de 90°. If the patterns of each layer are not identical, the sum of the differential phase differences is close to 90 °.
L'adaptation de l'ensemble est obtenue en écartant les différentes couches sélectives en fréquence 12 de ¼ de longueur d'onde environ. De plus, pour obtenir un déphasage de 90° dans la bande de fréquence réception Rx et un déphasage de -90° dans la bande de fréquence Emission Tx, il est nécessaire de se conformer à l'équation suivante : The adaptation of the assembly is obtained by discarding the different frequency-selective layers 12 of approximately one-quarter of a wavelength. In addition, in order to obtain a 90 ° phase shift in the reception frequency band Rx and a phase shift of -90 ° in the Emission Tx frequency band, it is necessary to conform to the following equation:
Δφχ/yTx = - Δφχ/yRx Δφχ / yTx = - Δφχ / yRx
L'allure des susceptances B utilisées est représentée sur la Figure 2 en fonction de la fréquence F. La Figure 2 révèle une courbe de résonance série de la susceptance By pour la composante y et une courbe de résonance parallèle de la susceptance Bx pour la composante x. En variante, la résonance série peut correspondre à la composante x et la résonance parallèle peut correspondre à la composante y. The appearance of the susceptances B used is represented in FIG. 2 as a function of the frequency F. FIG. 2 reveals a series resonance curve of the susceptance By for the component y and a parallel resonance curve of the susceptance Bx for the component x. Alternatively, the series resonance may correspond to the component x and the parallel resonance may correspond to the component y.
Dans un exemple de réalisation, la résonance série de la susceptance By peut correspondre à l'équation : et la résonance parallèle de la susceptance Bx peut correspondre à l'équation : In an exemplary embodiment, the series resonance of the By susceptance may correspond to the equation: and the parallel resonance of the susceptance Bx can correspond to the equation:
Les équations de ces susceptances Bx et By offrent une possibilité d'ajuster les fréquences de résonance FO et les coefficients B1 et B2 pour obtenir les déphasages ou les susceptances nécessaires au bon fonctionnement du dispositif de polarisation 10. Ces équations permettent également d'obtenir une phase Δφχ/y stationnaire dans les deux bandes de fréquence Rx et Tx. The equations of these susceptances Bx and By offer a possibility of adjusting the resonance frequencies FO and the coefficients B1 and B2 to obtain the phase shifts or susceptances necessary for the proper functioning of the polarization device 10. These equations also make it possible to obtain a phase Δφχ / y stationary in the two frequency bands Rx and Tx.
Les composantes de la susceptance Bx et By sont obtenues avec un motif identique sur quatre couches sélectives en fréquence 12 dont le comportement est celui d'un circuit LC parallèle pour la composante Ex et d'un circuit LC série pour la composante Ey ou inversement. Le motif peut prendre des formes diverses permettant de régler l'allure et les paramètres des déphasages ou des susceptances. The components of susceptance Bx and By are obtained with an identical pattern on four frequency-selective layers 12 whose behavior is that of a parallel LC circuit for the component Ex and a series LC circuit for the component Ey or vice versa. The pattern can take various forms to adjust the pace and parameters of phase shifts or susceptances.
La Figure 3 révèle un exemple de motif des couches sélectives en fréquence 12 constitué d'un réseau de fils continus horizontaux parallèles et d'un réseau de dipôles verticaux, le pas de ce réseau est de l'ordre d'une demi longueur d'onde λ/2 soit environ 5mm à 30 GHz. Les fils sont réalisés par des lignes parallèles et les dipôles sont réalisés par des rectangles pleins 30 régulièrement espacés en colonnes et reliés en leur milieu. Le motif de la Figure 3 permet d'obtenir une composante Ex présentant un comportement équivalent à une capacitance C1 en parallèle avec une inductance L1 et une composante Ey présentant un comportement équivalent à une inductance L2 en série avec une capacitance C2. Des variantes de ce motif donnent des degrés de liberté supplémentaires permettant d'accorder le circuit avec plus de souplesse, le pas est toujours voisin de λ/2. Par exemple, la Figure 4 révèle un motif d'une couche sélective en fréquence 12 constitué de lignes parallèles de carrés pleins 35 régulièrement espacés en colonnes. Entre chaque groupe de quatre carrés pleins 35 sont disposés des carrés vides 36 et entre les lignes parallèles de carrés pleins 35 sont disposés des traits pleins 29b passant par le milieu des carrés vides 36. Le motif de la Figure 4 permet d'obtenir une composante Ex présentant un comportement équivalent à une capacitance C3 en parallèle avec une inductance L3 et une composante Ey présentant un comportement équivalent à une inductance L4 en série avec une capacitance C4 placés en parallèle avec une capacitance C5. FIG. 3 reveals an example of a pattern of frequency-selective layers 12 consisting of a network of parallel horizontal continuous wires and of an array of vertical dipoles, the pitch of this network being of the order of a half-length of wave λ / 2 is about 5mm to 30 GHz. The son are made by parallel lines and the dipoles are made by solid rectangles regularly spaced in columns and connected in their middle. The pattern of FIG. 3 makes it possible to obtain an Ex component exhibiting a behavior equivalent to a capacitance C1 in parallel with an inductance L1 and a component Ey exhibiting a behavior equivalent to an inductance L2 in series with a capacitance C2. Variants of this pattern give additional degrees of freedom to grant the circuit more flexibly, the step is always close to λ / 2. For example, Figure 4 shows a pattern of a frequency selective layer 12 consisting of parallel lines of solid squares regularly spaced in columns. Between each group of four solid squares 35 are placed empty squares 36 and between the parallel lines of solid squares 35 are arranged solid lines 29b passing through the middle of the empty squares 36. The pattern of FIG. 4 makes it possible to obtain a component Ex exhibiting a behavior equivalent to a capacitance C3 in parallel with an inductance L3 and a component Ey exhibiting a behavior equivalent to an inductance L4 in series with a capacitance C4 placed in parallel with a capacitance C5.
Dans un autre exemple, la Figure 5 révèle un motif d'une couche sélective en fréquence 12 constitué de lignes parallèles de segments 38. Entre deux segments 38 parallèles sont disposées des croix 39 régulièrement espacés en colonne. Le motif de la Figure 5 permet d'obtenir une composante Ex présentant un comportement équivalent à une capacitance C6 en série avec une inductance C5 montés en parallèle avec une inductance L6 en série avec une capacitance C7 et une composante Ey présentant un comportement équivalent à une inductance L7 en série avec une capacitance C8. In another example, Figure 5 reveals a pattern of a frequency selective layer 12 consisting of parallel lines of segments 38. Between two parallel segments 38 are arranged crosses 39 regularly spaced column. The pattern of FIG. 5 makes it possible to obtain an Ex component exhibiting a behavior equivalent to a capacitance C6 in series with an inductance C5 connected in parallel with an inductance L6 in series with a capacitance C7 and an component Ey exhibiting a behavior equivalent to a L7 inductance in series with C8 capacitance.
Dans un autre mode de réalisation préférentiel, la Figure 6 révèle un motif d'une couche sélective en fréquence 12 constitué de fils horizontaux 40 en méandre qui permettent d'ajuster la valeur de l'inductance correspondante afin d'obtenir une résonance parallèle de sélectivité satisfaisante en polarisation suivant x associés à des doubles résonateurs 41 en anneaux rectangulaires fendus (double C) qui donnent une résonance série de sélectivité convenable en polarisation suivant y. Les fréquences de résonance et la sélectivité des deux résonnances, série en polarisation suivant y, et parallèle en polarisation suivant x, permettent d'obtenir le déphasage souhaité Δφχ/y dans les deux bandes de fréquence Rx et Tx. A cet effet, le motif de la Figure 6 permet d'obtenir une composante Ex présentant un comportement équivalent à une capacitance C9 en série avec une inductance L8 montés en parallèle avec une inductance L9 et une composante Ey présentant un comportement équivalent à une inductance L10 en série avec une capacitance C10 montés en parallèle avec une inductance L1 1 et montés en série avec une capacitance C1 1 et montés en parallèle avec une capacitance C12. Lors de la réalisation d'un dispositif de polarisation 10, il convient tout d'abord étudier la fréquence d'utilisation de l'antenne 1 1 . Par exemple, pour une antenne de télécommunications par satellite (Satcom) de la bande Ka, les bandes de fréquences suivantes sont utilisées : bande de fréquence en réception Rx : de 17.7 à 20.2 GHz In another preferred embodiment, FIG. 6 reveals a pattern of a frequency-selective layer 12 consisting of horizontal meander wires 40 which make it possible to adjust the value of the corresponding inductance in order to obtain a parallel resonance of selectivity. X-polarization satisfactorily associated with double resonators 41 in split (double C) rectangular rings which give a suitable selectivity series resonance in polarization along y. The resonant frequencies and the selectivity of the two resonances, series in polarization along y, and parallel in polarization along x, make it possible to obtain the desired phase shift Δφχ / y in the two frequency bands Rx and Tx. For this purpose, the pattern of FIG. 6 makes it possible to obtain an Ex component exhibiting a behavior equivalent to a capacitance C9 in series with an inductance L8 connected in parallel with an inductance L9 and a component Ey exhibiting a behavior equivalent to an inductance L10. in series with a capacitance C10 connected in parallel with an inductor L1 1 and connected in series with a capacitance C1 1 and connected in parallel with a capacitance C12. When producing a polarization device 10, it is firstly necessary to study the frequency of use of the antenna 1 1. For example, for a Ka-band satellite telecommunication antenna (Satcom), the following frequency bands are used: Rx receive frequency band: 17.7 to 20.2 GHz
bande de fréquence en émission Tx : de 27.5 à 30 GHz  Tx transmit frequency band: 27.5 to 30 GHz
Le motif des couches sélectives en fréquences 12 est ensuite déterminé en fonction des comportements électriques recherchés. Par exemple, les couches sélectives en fréquences 12 sont réalisées sur un circuit imprimé dont le substrat est de type RT/duroid 5880 d'épaisseur 2mm et de constante diélectrique relative ^ =2.2. The pattern of frequency-selective layers 12 is then determined according to the desired electrical behaviors. For example, the frequency-selective layers 12 are produced on a printed circuit whose substrate is of RT / duroid 5880 type with a thickness of 2 mm and a relative dielectric constant = = 2.2.
Les susceptances au centre de la bande de fréquence en réception Rx sont : Bx= -0.4 et By = 0.4. Les susceptances au centre de la bande de fréquence en émission Tx sont : Bx= 0.4 et By = -0.4. The susceptances at the center of the reception frequency band Rx are: Bx = -0.4 and By = 0.4. The susceptances in the center of the transmit frequency band Tx are: Bx = 0.4 and By = -0.4.
Le déphasage différentiel d'une couche est donc : The differential phase difference of a layer is therefore:
Δφχ/y = 2 Atan (0.4/2) = 22.5° Δφχ / y = 2 Atan (0.4 / 2) = 22.5 °
Le déphasage différentiel d'une couche est donc de 22.5° dans la bande de fréquence en émission Tx et de -22.5° dans la bande de fréquence en réception Rx. The differential phase difference of a layer is therefore 22.5 ° in the transmit frequency band Tx and -22.5 ° in the receive frequency band Rx.
Si le dispositif de polarisation 10 comporte quatre couches sélectives en fréquence 12 séparées d'un espacement de λ/4 dans le matériau soit 2 mm, l'épaisseur totale du dispositif de polarisation est donc de 6mm. If the polarization device 10 has four frequency selective layers 12 separated by a spacing of λ / 4 in the material of 2 mm, the total thickness of the polarization device is 6 mm.
L'allure de la phase différentielle Δφχ y du dispositif de polarisation 10 complet est représentée sur la Figure 7 en fonction de la fréquence F. La phase différentielle de la bande de fréquence en réception Rx est stationnaire et voisine de +90°. A l'inverse, la phase différentielle de la bande de fréquence en émission Tx est stationnaire et voisine de -90°. The appearance of the differential phase Δφχ y of the complete polarization device 10 is shown in FIG. 7 as a function of the frequency F. The differential phase of the reception frequency band Rx is stationary and close to + 90 °. Conversely, the differential phase of the transmit frequency band Tx is stationary and close to -90 °.
Ce mode de réalisation permet ainsi d'obtenir un déphasage proche de +90° dans la bande de fréquence réception Rx et un déphasage proche de -90° dans la bande de fréquence en transmission Tx. En variante, le nombre de couches peut être réduit ou augmenté en fonction des performances souhaitées en termes d'adaptation, de taux d'ellipticité et de plage de fonctionnement en incidence. This embodiment thus makes it possible to obtain a phase shift close to + 90 ° in the reception frequency band Rx and a phase shift close to -90 ° in the frequency band in Tx transmission. Alternatively, the number of layers can be reduced or increased depending on the desired performance in terms of adaptation, ellipticity rate and incidence operating range.
Il est également possible d'améliorer l'adaptation en ajoutant de part et d'autre une ou plusieurs couches diélectriques de constantes différentes et d'épaisseurs égales à environ un quart de longueur d'onde dans le matériau. Par exemple, une couche de constante diélectrique 1 .5 et d'épaisseur 2.5mm environ à l'entrée et a la sortie. It is also possible to improve the adaptation by adding on either side one or more dielectric layers of different constants and thicknesses equal to about a quarter of a wavelength in the material. For example, a layer of dielectric constant 1.5 and thickness of about 2.5 mm at the inlet and the outlet.

Claims

REVENDICATIONS
1 . Dispositif de polansation (10) pour antenne de télécommunications par satellite (1 1 ) caractérisé en ce qu'il comporte au moins une couche sélective en fréquence (12) apte à transformer une polarisation linéaire (E), comprenant deux composantes (Ex, Ey), en polarisation circulaire gauche dans une première bande de fréquence en émission (Tx) et en polarisation circulaire droite dans une seconde bande de fréquence en réception (Rx) ou inversement, et en ce que 1. Polansation device (10) for a satellite telecommunications antenna (1 1) characterized in that it comprises at least one frequency-selective layer (12) capable of transforming a linear polarization (E), comprising two components (Ex, Ey ), in left circular polarization in a first transmit frequency band (Tx) and in a right circular polarization in a second receive frequency band (Rx) or vice versa, and in that
- le déphasage entre les deux composantes (Ex, Ey) de la polarisation linéaire (E) est compris entre -85 et -95 degrés, préférentiellement -90 degrés dans une des bandes de fréquence (Rx, Tx), et  the phase shift between the two components (Ex, Ey) of the linear polarization (E) is between -85 and -95 degrees, preferably -90 degrees in one of the frequency bands (Rx, Tx), and
- le déphasage entre les deux composantes (Ex, Ey) de la polarisation linéaire (E) est compris entre +85 et +95 degrés, préférentiellement +90 degrés dans l'autre bande de fréquence (Rx, Tx).  the phase difference between the two components (Ex, Ey) of the linear polarization (E) is between +85 and +95 degrees, preferably +90 degrees in the other frequency band (Rx, Tx).
2. Dispositif selon la revendication 1 , caractérisé en ce qu'il comporte plusieurs couches sélectives en fréquence (12) possédant des motifs identiques. 2. Device according to claim 1, characterized in that it comprises a plurality of frequency selective layers (12) having identical patterns.
3. Dispositif selon l'une des revendications 1 à 2, caractérisé en ce que l'au moins une couche sélective en fréquence (12) est réalisée sur un circuit imprimé comprenant un substrat d'épaisseur 2mm et de constante diélectrique relative (¾· ) égale à 2.2. 3. Device according to one of claims 1 to 2, characterized in that the at least one frequency-selective layer (12) is formed on a printed circuit comprising a substrate of thickness 2 mm and relative dielectric constant (¾ · ) equal to 2.2.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte quatre couches sélectives en fréquence (12). 4. Device according to one of claims 1 to 3, characterized in that it comprises four frequency selective layers (12).
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte une susce tance (B) correspondant à l'équation suivante : 5. Device according to one of claims 1 to 4, characterized in that it comprises a susce tance (B) corresponding to the following equation:
dans laquelle une caractéristique (B2) permet de régler la pente autour d'une fréquence de coupure (F0) en fonction de la fréquence (F). wherein a characteristic (B 2 ) makes it possible to adjust the slope around a cutoff frequency (F 0 ) as a function of the frequency (F).
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte une susceptance (B) correspondant à l'équation suivante : dans laquelle une caractéristique Bx) permet de régler la pente autour d'une fréquence de coupure (F0) en fonction de la fréquence (F). 6. Device according to one of claims 1 to 5, characterized in that it comprises a susceptance (B) corresponding to the following equation: wherein a characteristic B x ) makes it possible to adjust the slope around a cutoff frequency (F 0 ) as a function of the frequency (F).
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce qu'il comporte au moins une couche diélectrique. 7. Device according to one of claims 1 to 6, characterized in that it comprises at least one dielectric layer.
8. Antenne (11) de télécommunications par satellite comportant un dispositif de polarisation (12) selon l'une des revendications 1 à 7. Antenna (11) for satellite telecommunications comprising a polarization device (12) according to one of claims 1 to 7.
9. Antenne (11) selon la revendication 8, caractérisée en ce qu'elle est plate. 9. Antenna (11) according to claim 8, characterized in that it is flat.
EP14726562.3A 2013-06-27 2014-05-20 Polarisation device for a satellite telecommunications antenna and associated antenna Active EP3014704B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356168A FR3007913B1 (en) 2013-06-27 2013-06-27 POLARIZATION DEVICE FOR SATELLITE TELECOMMUNICATIONS ANTENNA AND ANTENNA THEREFOR
PCT/EP2014/060339 WO2014206649A1 (en) 2013-06-27 2014-05-20 Polarisation device for a satellite telecommunications antenna and associated antenna

Publications (2)

Publication Number Publication Date
EP3014704A1 true EP3014704A1 (en) 2016-05-04
EP3014704B1 EP3014704B1 (en) 2017-04-19

Family

ID=50064696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14726562.3A Active EP3014704B1 (en) 2013-06-27 2014-05-20 Polarisation device for a satellite telecommunications antenna and associated antenna

Country Status (5)

Country Link
US (1) US10333203B2 (en)
EP (1) EP3014704B1 (en)
ES (1) ES2633512T3 (en)
FR (1) FR3007913B1 (en)
WO (1) WO2014206649A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3035559B1 (en) * 2015-04-22 2018-06-15 Eutelsat S A METHOD OF GENERATING POLARIZED SIGNALS CIRCULARLY FROM A POLARIZATION CONTROLLER OF A SOIL STATION
EP3454419B1 (en) * 2017-09-11 2020-07-29 Thales Polarizing reflector for multiple beam antennas
US10840573B2 (en) 2017-12-05 2020-11-17 The United States Of America, As Represented By The Secretary Of The Air Force Linear-to-circular polarizers using cascaded sheet impedances and cascaded waveplates
US10547117B1 (en) 2017-12-05 2020-01-28 Unites States Of America As Represented By The Secretary Of The Air Force Millimeter wave, wideband, wide scan phased array architecture for radiating circular polarization at high power levels
JP7064467B2 (en) * 2019-04-18 2022-05-10 株式会社東芝 Antenna device
CA3157569A1 (en) * 2019-11-20 2021-05-27 Hughes Network Systems, Llc System and method for improving link performance with ground based beam former

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793330A (en) * 1996-11-20 1998-08-11 Gec-Marconi Electronic Systems Corp. Interleaved planar array antenna system providing opposite circular polarizations
US6285323B1 (en) * 1997-10-14 2001-09-04 Mti Technology & Engineering (1993) Ltd. Flat plate antenna arrays
US8228235B2 (en) * 2004-03-15 2012-07-24 Elta Systems Ltd. High gain antenna for microwave frequencies
JP4795344B2 (en) * 2004-07-23 2011-10-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Metamaterial
US7683444B2 (en) * 2005-09-30 2010-03-23 The United States Of America As Represented By The Secretary Of The Navy Metamaterial structure has resonant and strip line elements comprising a photoconductive semiconductor material formed on substrate to induce negative permeability and negative permittivity in operating frequency range
US8054146B2 (en) * 2005-11-14 2011-11-08 Iowa State University Research Foundation, Inc. Structures with negative index of refraction
US20080212921A1 (en) * 2007-03-02 2008-09-04 Georgia Tech Research Corporation Optical interconnect devices and structures based on metamaterials
US8299874B2 (en) * 2008-07-25 2012-10-30 The Invention Science Fund I, Llc Rolled resonant element
TWI420739B (en) * 2009-05-21 2013-12-21 Ind Tech Res Inst Radiation pattern insulator and antenna system thereof and communication device using the antenna system
US9459375B2 (en) * 2010-11-05 2016-10-04 Tufts University Active manipulation of electromagnetic wave propagation in metamaterials
EP2469653A1 (en) * 2010-12-22 2012-06-27 Cobham Cts Ltd Electromagnetic wave polarizer screen

Also Published As

Publication number Publication date
ES2633512T3 (en) 2017-09-21
WO2014206649A1 (en) 2014-12-31
US10333203B2 (en) 2019-06-25
US20160372820A1 (en) 2016-12-22
FR3007913A1 (en) 2015-01-02
EP3014704B1 (en) 2017-04-19
FR3007913B1 (en) 2016-09-02

Similar Documents

Publication Publication Date Title
EP3014704B1 (en) Polarisation device for a satellite telecommunications antenna and associated antenna
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP1073143B1 (en) Dual polarisation printed antenna and corresponding array
FR2966986A1 (en) RADIANT ELEMENT OF ANTENNA
EP1589608A1 (en) Compact RF antenna
FR2857165A1 (en) BI-BAND ANTENNA WITH DOUBLE ACCESS
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR2752646A1 (en) PLANE PRINTED ANTENNA WITH OVERLAPPING ELEMENTS SHORT CIRCUITS
EP0604338A1 (en) Space-saving broadband antenna with corresponding transceiver
EP0098192B1 (en) Multiplexing device for combining two frequency bands
FR2863111A1 (en) Multi-band aerial with double polarization includes three sets of radiating elements including crossed dipoles for maximum polarization decoupling
EP1228552A1 (en) Dual-frequency band printed antenna
CA2696279C (en) Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
FR2945380A1 (en) COMPACT MULTIFACEAL ANTENNA.
WO2012069492A1 (en) Planar antenna having a widened bandwidth
FR2655202A1 (en) CIRCULAR POLARIZATION ANTENNA, IN PARTICULAR FOR ANTENNA NETWORK.
FR2923658A1 (en) SYSTEM OF TWO ANTENNAS ISOLATED AT A WORKING FREQUENCY
EP2009735A1 (en) Antenna with diversity of polarisation for transmitting and/or receiving audio and/or video signals
WO2009077529A2 (en) Very wide band active antenna for passive radar
FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
FR2724491A1 (en) MINIATURIZED, DOUBLE-POLARIZED, VERY WIDE BAND PLATED ANTENNA
EP1249889B1 (en) Microwave filter with a dielectric resonator
FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
FR2599899A1 (en) Plane array antenna with printed supply conductors having low loss and incorporated pairs of wide-band overlying radiating slots

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 886758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014008846

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 886758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170419

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2633512

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014008846

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

26N No opposition filed

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 10

Ref country code: FR

Payment date: 20230530

Year of fee payment: 10

Ref country code: ES

Payment date: 20230615

Year of fee payment: 10

Ref country code: DE

Payment date: 20230526

Year of fee payment: 10

Ref country code: CH

Payment date: 20230605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230525

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240524

Year of fee payment: 11