EP3007842B1 - Method for producing heat- and wear-resistant molded parts, in particular engine components - Google Patents

Method for producing heat- and wear-resistant molded parts, in particular engine components Download PDF

Info

Publication number
EP3007842B1
EP3007842B1 EP14728909.4A EP14728909A EP3007842B1 EP 3007842 B1 EP3007842 B1 EP 3007842B1 EP 14728909 A EP14728909 A EP 14728909A EP 3007842 B1 EP3007842 B1 EP 3007842B1
Authority
EP
European Patent Office
Prior art keywords
sintering material
following composition
wear
remainder
unavoidable impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14728909.4A
Other languages
German (de)
French (fr)
Other versions
EP3007842A1 (en
EP3007842B2 (en
Inventor
Heiko Heckendorn
Roland Ruch
Lutz Steinert
Klaus Wintrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50897583&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3007842(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3007842A1 publication Critical patent/EP3007842A1/en
Publication of EP3007842B1 publication Critical patent/EP3007842B1/en
Application granted granted Critical
Publication of EP3007842B2 publication Critical patent/EP3007842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Definitions

  • the invention relates to a process for the production of heat-resistant and wear-resistant molded parts, in particular engine components.
  • VSR valve seat ring
  • VSR tribological system valve
  • the main stresses in the tribological valve / VSR system are high relative movement and high surface pressure on the valve seat due to high combustion pressures of 200 to 250 bar for highly stressed commercial vehicle and stationary engines, high thermal stress with valve seat ring valve temperatures of 300 to 500 ° C and low solid lubrication when using alternative fuels and novel exhaust aftertreatment concepts. This creates an extreme tribological stress on the components valve and VSR, which must be countered especially with appropriate material concepts.
  • Relaxation is a thermally activated process that occurs under mechanical stress at high temperatures and causes components to release internal stress.
  • relaxation is the transformation of elastic strain into plastic creep at constant total elongation.
  • the VSR reduces these stresses by relaxation.
  • the initially purely elastic elongation caused by the press-fitting is partially converted into plastic creep.
  • the VSR has a lower coverage after removal. Consequently, valve seat rings must have sufficient relaxation resistance.
  • valve seat rings are subjected to corrosive application due to application.
  • the tribochemical load on VSR is exacerbated by the measures under the new emission regulations.
  • EGR exhaust gas recirculation
  • Critical states do not occur at high loads, but at standstill when the engine cools down.
  • the use of corrosion-resistant VSR is required, at least on the inlet side.
  • the prior art discloses a variety of methods for producing the above-described engine components; For example, by casting techniques on the processes of centrifugal and sand casting, as well as powder metallurgy via pressing and sintering. Also, special manufacturing processes in which material is applied by a build-up welding process are known.
  • valve seat rings which are formed by thermally sprayed layers of a Co or Co / Mo base alloy and a Lichtbogendrahtspritzmaschine one or more metallic cored wires, the jacket contains the essential portion of the Co to be deposited.
  • the WO 2001/049437 A2 a powder metallurgy produced sintered molded part for tribological parts in the automotive industry with high temperature and wear resistance, which consists of a powder mixture with molybdenum-phosphorus-carbon steel powder and at least one other, substantially phosphorus-free steel powder in a weight ratio of 5:95 to 60:40, carbon powder and at least one solid lubricant is available.
  • the US2003 / 177866 discloses a method for producing rigid molds from an Fe-based sintered material by preparing the sintered material by water atomization, drying and agglomeration with an organic binder, followed by pressing and sintering.
  • Cast-formed VSR are mainly used in the commercial vehicle sector.
  • Typical materials for medium to high loads are high-alloy, modified high-speed steels and high-alloy Fe-Cr steels.
  • these materials are generally no longer able to meet the highest demands in heavy commercial vehicle and stationary engines and in alternative fuel operation. This requires special alloys based on Ni and Co. These are characterized by high hot compressive strength, high temperature resistance and excellent wear properties. In addition, these materials show sufficient resistance to relaxation and corrosion.
  • EP 1 536 027 B1 a sintered body of a raw or granulated powder having a relative density of 97% or more.
  • a powder with an average particle size of 8.5 ⁇ m or less is to be provided for this purpose. Since the average grain size of the high powder for filtering according to the information in the document is comparatively small, the filtration diffusion rate is improved and the quality of the filtering increased to a great extent.
  • the object of the invention is to provide a process for the production of heat-resistant and wear-resistant molded parts, in particular engine components, which circumvents the above-mentioned disadvantages in the prior art.
  • engine components for highly stressed commercial vehicle and stationary engine applications are to be created, which have sufficient wear resistance, low part costs, and good machinability on the production lines of end customers.
  • the present invention therefore turns away from the prior art, which calls for achieving high densities, in particular of> 97% grain size for the sintered powder of ⁇ 8.5 microns. Accordingly, according to the invention leads, contrary to the prior art, an increase in the particle sizes to> 10 microns, preferably to> 30 microns and more preferably to> 50 microns in conjunction with a water atomization at comparable high densities of the sintered body.
  • a Fe or Co based sintered material having an average particle size of> 10 .mu.m, preferably of> 30 .mu.m and more preferably of> 50 .mu.m, is produced by water atomization, i.
  • high pressure water is used to smash the molten metal stream; then the agglomeration of the sintered material is carried out by spray drying to 10 to 400 microns with an organic binder, optionally solid lubricants and / or hard phases are added; then a cold or warm isostatic pressing of the sintered material is carried out with a pressure of 400 to 900 MPa to densities of 5 to 7 g / ccm; then the sintering of the green compacts takes place at temperatures of 1,000 to 1,350 ° C and finally a post-processing step.
  • the sintering material used is a cobalt-based alloy having the following composition in% by weight: max. 5.0 Fe; Max. 0.7 C; 15.0 - 25.0 Mo; 14.0 - 23.0 Cr; 0.7-1.4 Si; Rest of Co; as well as max. 3.0 unavoidable impurities.
  • the sintering material used is a cobalt-based alloy having the following composition in% by weight: max. 3.0 Fe; 2.0-2.8 C; 27.0 - 32.0 Cr; 0.5-1.5 Si; Rest of Co; as well as max. 3.0 unavoidable impurities.
  • an N 2 -H 2 atmosphere is used as a protective atmosphere with a mixing ratio of about 80 - 20% or vacuum. It has been found that the temperatures during sintering are between 1,000 to 1,300 ° C, with an Fe-based sintered material in the lower temperature range, ie, from 1,000 to 1,200 ° C and a Co-based material in the upper temperature range, ie 1,100 to 1300 ° C must be sintered. The preparation of the Fe- or Co-based sintered material is carried out by a so-called. Water atomization.
  • the powder metallurgical production process makes it possible to produce high-precision molded parts, which require fewer post-processing steps compared to the classical production by casting.
  • materials with special structural properties can be produced.
  • the components produced have an improved microstructure and distribution of the hard phases compared to the prior art.
  • the microstructure of the alloys according to the invention is composed of a matrix having a particle size of 5-10 ⁇ m, in which uniformly finely divided carbides or intermetallic phases having a particle size of likewise 5-10 ⁇ m and optionally solid lubricants, such as, for example, MoS 2 , are stored.
  • heterogeneous microstructure is very promising from a tribological point of view: heterogeneous microstructures with hard carbides or intermetallic phases, for example, have proven effective against the wear mechanisms of adhesion, surface distortion and abrasion (see Sommer, Heinz, & Schöfer, 2011).
  • Typical powder-metallurgically produced engine component moldings are based on base iron and shellac base powders and also have a heterogeneous microstructure with embedded hard phases and solid lubricants.
  • inlet components with low to medium requirements can be produced, among other things, materials with open porosity.
  • the porosity is usually filled with Cu via an infiltration process.
  • the susceptibility to oxidation is reduced and on the other hand the thermal conductivity is increased.
  • Various attempts to produce the above-described high-alloy Fe base and in particular Co base alloys with in some cases sufficient corrosion resistance by means of classical powder metallurgical production methods have failed. It has thus been found that the materials described can be produced exclusively by the production method described.
  • the invention is based on the general idea of combining the advantages of powder metallurgy with the advantages of casting technology, with the aim of economically producing highly wear-resistant engine components, in particular valvetrain and turbocharger components for use in high-temperature applications or powder metallurgy production of high-alloyed alloys. and especially co-base materials.
  • the invention is based on the finding that the powder-metallurgical production of engine components, such as valve seat rings, for high-temperature applications is characterized by a low post-processing requirement, high cost-efficiency and resource-saving production.
  • Various experiments have shown that classic cast materials with equivalent property profile can be produced exclusively via the described manufacturing process. It was found that materials with very heterogeneous structures and positive wear properties can be produced
  • the moldings, in particular engine components, must be post-processed, in particular machined, since the green compacts shrink by 10 to 20% during the sintering process.
  • a finishing step is understood to mean turning (outside and inside), plan, round and vibratory grinding. Which or which post-processing step (s) are used depends on the respective engine component to be produced.
  • the Nachbeailleungs site is significantly reduced in the inventive method compared to the classical casting technique, whereby the economic production of high-alloy Fe and especially co-base materials is possible.
  • solid lubricants which are resistant up to temperatures of 1100 ° C, possibly with a very high proportion, be added.
  • the solid lubricants and optionally hard phases are formed as a heterogeneous structure and evenly distributed in the molding.
  • molybdenum disulfide (MoS 2 ), manganese sulfide (MnS) and calcium fluoride (CaF) can be used as the solid lubricant.
  • MoS 2 molybdenum disulfide
  • MnS manganese sulfide
  • CaF calcium fluoride
  • the addition of solid lubricants leads on the one hand to increased wear resistance in dry environments such as those present in internal combustion engines and, on the other hand, to improved machinability during the finishing of the engine manufacturer.
  • hard materials for example intermetallic phases or ferro-molybdenum (FeMo), can be admixed.
  • the hard phases have a grain size of at least 50 to max. 500 ⁇ m, preferably from 150 ⁇ m to 300 ⁇ m.
  • the densely sintered base materials may also contain hard, fine-grained and fine-grained carbides as well as other heterogeneously distributed carbides. This leads to increased wear resistance and relaxation resistance, since grain boundary slip and material deformation are hindered.
  • a sintered molded part produced according to the invention has increased corrosion resistance in comparison to conventional sintered materials with open or Cu-filled pores.
  • components for internal combustion engines can be produced economically from materials which are exclusively known by casting technology. This opens up wear-technological and economic advantages. To date, no manufacturing process is known with which, with equal high efficiency such material concepts can be realized.
  • the parameters for further processing of the granulated sintered material according to conventional powder metallurgical production methods can be determined by a small number of tests, since the person skilled in the art is familiar with the effects which occur in principle.
  • the heat-resistant and wear-resistant molded parts produced by the process according to the invention have a wide field of application.
  • the focus is on the application in the field of engine components which have a dense, heterogeneous microstructure and uniformly distributed solid lubricants and hard phases, and / or in the area of components which have a high corrosion resistance through a dense structure.
  • engine components which have a dense, heterogeneous microstructure and uniformly distributed solid lubricants and hard phases, and / or in the area of components which have a high corrosion resistance through a dense structure.
  • These include, in particular, valve seat rings for highly loaded internal combustion engines, in particular utility vehicle and stationary engines and bearing bushes for turbochargers and other components of the exhaust gas line, which must have excellent tribological properties with the lowest solid lubrication; In addition, they must withstand high stress temperatures and pressures of> 210 bar.
  • Example 1 describes the production according to the invention of a material which is known by casting technology known as PL 510.
  • a water atomized sintered material having the following composition in wt .-%: 1.5-2.0 C; 5.0-13.0 Mo; 5.0-10.0 Cr; 0.8-1.8 Si; Max. 1.0 Mn; 1.5-4.0 V; 0 - 10.0 Co remainder Fe, with an average grain size of> 30 microns was sintered according to the inventive method to form a molding, wherein a first Cold isostatic presses with a pressure of 800 MPa, debindering at 750 ° C, and finally a sintering under inert gas (H 2 - N 2 ) at 1135 ° C for 40 min and a subsequent heat treatment, namely a hardening at 920 ° C and tempering at 670 ° C was carried out.
  • the density of the molding obtainable by the process according to the invention hereinafter referred to as PLS 510, is 7.51 g / cc; the hardness is 55.3 to 58.7 HRC.
  • the molding is particularly suitable for high temperature applications and has a high wear and relaxation resistance.
  • microstructures of the two materials PL 510 and PLS 510 are in the Fig. 1 and FIG. 2. This shows in comparison that in both micrographs, the gray hard phase is well and evenly formed, but in the PLS 510 finely divided, is present. These very finely divided carbides prove to be particularly advantageous for the molding according to the invention in relation to the described high-temperature applications. In particular, from a tribological point of view, significant advantages compared to the classic material of the casting technique can be seen.
  • Example 2 describes the production according to the invention of a material which is known by casting technology known as PL 860.
  • a water atomized sintered material having the following composition in wt .-%: 0.1 - 0.3 Fe; 2.0-2.8 C; 27.0 - 32.0 Cr; 0.5-1.5 Si; 10.0 - 14.0 W; Residue Co, with an average grain size of> 30 microns was sintered according to the inventive method to form a molding, initially a cold isostatic pressing with a pressure of 800 MPa, debindering at 750 ° C, and finally sintering under vacuum at 1250 ° C. for 3 h took place.
  • the density of the molding obtainable by the process according to the invention is 8.47 to 8.56 g / cc; the hardness is 53.8 HRC.
  • the molding is particularly suitable for high temperature applications and has a high wear, relaxation and corrosion resistance. It was proven on a relaxation test bench that the material PLS 860, a improved relaxation resistance, in comparison to the material PL 860. This is also clear from the microstructural characteristics of the two materials, which are represented by the micrographs of Figs. 3 and 4. It shows that the material has a heterogeneous microstructure with finely divided hard phases. As a result, grain boundary sliding is prevented on the one hand. Furthermore, experience has shown that the microstructure has a very positive effect on wear resistance.
  • Example 3 describes the production according to the invention of a material which is known by casting under the name PL 26 is known.
  • a water atomized sintered material having the following composition in wt .-%: 0.2 - 1.0 C; 20.0-30.0 Cr; 14.0 - 23.0 Ni; 1.0-3.0 Mo; 0.5-1.0 Mn; 1.8-3.5 Si; 2.0 - 4.0 W; 1.0-3.0 Nb; 0.2-1.0 S; Residual Fe, with an average particle size of> 30 microns was sintered according to the inventive method to form a molding, initially a cold isostatic pressing with a pressure of 800 MPa, debindering at 750 ° C, and finally sintering under inert gas (H 2 - N 2 ) was carried out at 1120 ° C for 1 h.
  • the density of the molding obtainable by the process according to the invention, hereinafter referred to as PLS 26, is 7.35 g / cc; the hardness is 265 HV 10.
  • the molded part is particularly suitable for high-temperature applications and has a high resistance to wear, relaxation and corrosion.
  • microstructures of the two materials PL 26 and PLS 26 are shown in Figs. 5 and 6.
  • Example 4 describes the production according to the invention of a co-base material which is known by casting technology under the designation PL 840.
  • a water atomized sintered material with the following composition in wt .-%: max. 5.0 Fe; Max. 1.0 C; 15.0 - 30.0 Mo; 11.0 - 25.0 Cr; 1.0-2.5 Si; Residual Co, with an average particle size of> 30 microns was sintered according to the inventive method to form a molding, wherein initially a cold isostatic pressing with a pressing pressure of 800 MPa, debindering at 750 ° C, and finally sintering under vacuum at 1,250 ° C for 3 hours.
  • the density of the molding obtainable by the process according to the invention is 8.62 g / cc; the hardness is 49.2 to 51.1 HRC.
  • the molding is particularly suitable for high temperature applications and has a high wear and relaxation resistance.
  • the microstructures of the two materials PL 840 and PLS 840 are shown in Figs. 7 and 8.
  • the PLS 840 material shows a heterogeneous structure with uniformly distributed intermetallic phases and solid lubricants, while the PL 840 material shows large coherent hard phases, which means that increased wear and relaxation resistance can be expected.
  • the machinability of PLS 840 material is significantly improved compared to PL 840.
  • the production of the material PLS 840 is significantly increased compared to its casting counterpart.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von warmbeständigen und verschleißfesten Formteilen, insbesondere Motorkomponenten.The invention relates to a process for the production of heat-resistant and wear-resistant molded parts, in particular engine components.

Grundsätzlich besteht immer Interesse an warmbeständigen und verschleißfesten Formteilen. Insbesondere an Motorkomponenten, wie beispielsweise Ventiltriebs- und Turboladerkomponenten, werden höchste Anforderungen bezüglich Warmfestigkeit, Temperatur- und Verschleißbeständigkeit gestellt. Aber auch hochtemperaturbeanspruchte, rotationssymmetrische Motorkomponenten, wie Ventilführungen, Lagerbuchsen, Wellendichtringe, Ventilsitzringe (VSR) und Motorkomponenten für die Abgasrückführung (AGR-Komponenten) müssen diesen Anforderungen gerecht werden.Basically, there is always interest in heat-resistant and wear-resistant molded parts. In particular, engine components, such as valve train and turbocharger components, highest demands are made in terms of thermal stability, temperature and wear resistance. But even high-temperature-stressed, rotationally symmetrical engine components such as valve guides, bearing bushes, shaft seals, valve seat inserts (VSR) and engine components for exhaust gas recirculation (EGR components) must meet these requirements.

So muss beispielsweise ein Ventilsitzring (VSR) als tribologischer Partner zum Ventil ein sicheres Abdichten des Brennraums für eine einwandfreie Verbrennung, einen fehlerfreien Ladungswechsels, den Wärmetransport vom Ventil und dem Brennraum zum Zylinderkopf, sowie eine verlustfreie Führung des Frisch- und Abgasstroms gewährleisten.For example, a valve seat ring (VSR) as a tribological partner to the valve must ensure a secure sealing of the combustion chamber for proper combustion, a faultless charge exchange, the heat transfer from the valve and the combustion chamber to the cylinder head, as well as a lossless guidance of the fresh and exhaust gas flow.

Eine auf die jeweilige Applikationen zugeschnittene Gestaltung und der richtige Werkstoff für diese Motorkomponente, bzw. die Kombination der Komponenten VSR und Ventil sind deshalb essenziell, um einen einwandfreien Verbrennungsverlauf zu gewährleisten. Eine hohe Verschleißrate am VSR führt zum Verlust des Ventilspiels und damit zu Undichtigkeiten und Kompressionsverlusten. Die Weiterentwicklung von Verbrennungsmotoren und damit die Steigerung der Leistungsdichte und Reduzierung der Emissionswerte werden deshalb unter anderem durch die Funktionsfähigkeit des tribologischen Systems Ventil/VSR begrenzt.A tailored to the respective applications design and the right material for this engine component, or the combination of the components VSR and valve are therefore essential to ensure a perfect combustion process. A high wear rate on the VSR leads to the loss of valve clearance and thus to leaks and compression losses. The further development of internal combustion engines and thus the increase in power density and reduction of emission values are therefore limited, among other things, by the functionality of the tribological system valve / VSR.

Die Hauptbeanspruchungen im tribologischen System Ventil/VSR sind beispielsweise für hochbeanspruchte Nutzfahrzeug- und Stationärmotoren eine hohe Relativbewegung und hohe Flächenpressung am Ventilsitz in Folge hoher Verbrennungsdrücke von 200 bis 250 bar, eine hohe thermische Beanspruchung mit Temperaturen am Ventilsitz des Ventilsitzrings von 300 bis 500 °C und geringe Festkörperschmierung bei Verwendung von alternativen Kraftstoffen und neuartiger Abgasnachbehandlungskonzepte. Dadurch entsteht an den Komponenten Ventil und VSR eine extreme tribologische Beanspruchung, der vor allem mit entsprechenden Werkstoffkonzepten entgegnet werden muss.For example, the main stresses in the tribological valve / VSR system are high relative movement and high surface pressure on the valve seat due to high combustion pressures of 200 to 250 bar for highly stressed commercial vehicle and stationary engines, high thermal stress with valve seat ring valve temperatures of 300 to 500 ° C and low solid lubrication when using alternative fuels and novel exhaust aftertreatment concepts. This creates an extreme tribological stress on the components valve and VSR, which must be countered especially with appropriate material concepts.

Darüber hinaus werden an die Komponenten anwendungsabhängig weitere technische Anforderungen gestellt, wie zum Beispiel eine ausreichende Relaxations- und Korrosionsbeständigkeit. Relaxation ist ein thermisch aktivierter Prozess, der unter mechanischer Belastung bei hohen Temperaturen auftritt und dazu führt, dass Bauteile innere Spannungen abbauen. Kurz gesagt, ist Relaxation die Umwandlung von elastischer Dehnung in plastische Kriechdehnung bei konstanter Gesamtdehnung. In einem mit einem definierten Übermaß, der sogenannten Überdeckung, in den Zylinderkopf eingepressten VSR entstehen hohe Druckspannungen. Abhängig von der Höhe der Belastung und der Relaxationsbeständigkeit des jeweiligen Werkstoffs baut der VSR diese Spannungen durch Relaxation ab. Die anfänglich rein elastische Dehnung durch das Einpressen wird teilweise in plastische Kriechdehnung umgewandelt. Der VSR weist nach dem Ausbau eine geringere Überdeckung auf. Folglich müssen Ventilsitzringe eine ausreichende Relaxationsbeständigkeit aufweisen.In addition, depending on the application, additional technical requirements are made of the components, such as sufficient relaxation and corrosion resistance. Relaxation is a thermally activated process that occurs under mechanical stress at high temperatures and causes components to release internal stress. In short, relaxation is the transformation of elastic strain into plastic creep at constant total elongation. In a VSR pressed into the cylinder head with a defined excess, the so-called overlap, high compressive stresses occur. Depending on the level of stress and the relaxation resistance of the respective material, the VSR reduces these stresses by relaxation. The initially purely elastic elongation caused by the press-fitting is partially converted into plastic creep. The VSR has a lower coverage after removal. Consequently, valve seat rings must have sufficient relaxation resistance.

Weiterhin werden Ventilsitzringe anwendungsbedingt korrosiv beansprucht. Zum Beispiel ist die tribochemische Belastung an VSR durch die Maßnahmen im Zuge der neuen Abgasvorschriften verschärft. In Nutzfahrzeug-Anwendungen kann es durch Abgasrückführung (AGR) zur Verringerung der Stickoxidemissionen zu Kondensatbildung im Einlass kommen und infolgedessen zur Korrosion an den VSR. Dabei treten kritische Zustände nicht etwa bei hohen Lasten auf, sondern im Stillstand, wenn der Motor abkühlt. In vielen Nutzfahrzeug -Anwendungen ist deshalb der Einsatz korrosionsbeständiger VSR zumindest auf der Einlassseite erforderlich.Furthermore valve seat rings are subjected to corrosive application due to application. For example, the tribochemical load on VSR is exacerbated by the measures under the new emission regulations. In commercial vehicle applications, exhaust gas recirculation (EGR) can lead to condensate formation in the inlet to reduce nitrogen oxide emissions and, as a result, corrosion to the VSR. Critical states do not occur at high loads, but at standstill when the engine cools down. In many commercial vehicle applications, therefore, the use of corrosion-resistant VSR is required, at least on the inlet side.

Im Stand der Technik ist eine Vielzahl von Verfahren zur Herstellung vorstehend beschriebener Motorkomponenten bekannt; beispielsweise gießtechnisch über die Verfahren Schleuder- und Sandguss, sowie pulvermetallurgisch über Pressen und Sintern. Auch spezielle Fertigungsverfahren, bei denen Material durch einen Auftragsschweißprozess aufgebracht wird, sind bekannt.The prior art discloses a variety of methods for producing the above-described engine components; For example, by casting techniques on the processes of centrifugal and sand casting, as well as powder metallurgy via pressing and sintering. Also, special manufacturing processes in which material is applied by a build-up welding process are known.

So offenbart die WO 2005/012590 A2 ein Verfahren zur Herstellung von Ventilsitzringen die durch thermisch gespritzte Schichten aus einer Co oder Co/Mo-Basislegierung gebildet sind und ein Lichtbogendrahtspritzverfahren mit einem oder mehreren metallischen Fülldrähten, deren Mantel den wesentlichen Anteil des abzuscheidenden Co enthält.So revealed the WO 2005/012590 A2 a method for producing valve seat rings which are formed by thermally sprayed layers of a Co or Co / Mo base alloy and a Lichtbogendrahtspritzverfahren with one or more metallic cored wires, the jacket contains the essential portion of the Co to be deposited.

Ferner offenbart die WO 2001/049437 A2 ein pulvermetallurgisch hergestelltes SinterFormteil für tribologische Teile in der Kraftfahrzeugindustrie mit hoher Temperatur- und Verschleißfestigkeit, welches aus einer Pulvermischung mit Molybdän-Phosphor-Kohlenstoff-Stahlpulver und wenigstens einem weiteren, im wesentlichen phosphorfreien Stahlpulver im Gewichtsverhältnis von 5:95 bis 60:40, Kohlenstoffpulver sowie wenigstens einem Festschmierstoff erhältlich ist.Further, the WO 2001/049437 A2 a powder metallurgy produced sintered molded part for tribological parts in the automotive industry with high temperature and wear resistance, which consists of a powder mixture with molybdenum-phosphorus-carbon steel powder and at least one other, substantially phosphorus-free steel powder in a weight ratio of 5:95 to 60:40, carbon powder and at least one solid lubricant is available.

Die US2003/177866 offenbart ein Verfahren zur Herstellung von steifen Pressformen aus einem Fe-basierenden Sinterwerkstoffs durch Herstellung des Sintermaterials durch Wasserverdüsung, Trocknung und Agglomeration mit einem organischen Bindemittel, gefolgt von dem Verpressen und Sintern.The US2003 / 177866 discloses a method for producing rigid molds from an Fe-based sintered material by preparing the sintered material by water atomization, drying and agglomeration with an organic binder, followed by pressing and sintering.

Gusstechnisch hergestellte VSR werden vorwiegend im Nutzfahrzeug-Bereich eingesetzt. Typische Werkstoffe für mittlere bis hohe Beanspruchungen sind hochlegierte, modifizierte Schnellarbeitsstähle und hochlegierte Fe-Cr-Stähle. Höchsten Beanspruchungen in schweren Nutzfahrzeug- und Stationärmotoren und dem Betrieb mit alternativen Kraftstoffen genügen diese Werkstoffe aber in der Regel nicht mehr. Hierfür bedarf es Sonderlegierungen auf Ni- und Co-Basis. Diese zeichnen sich durch hohe Warmdruckfestigkeit, hohe Temperaturbeständigkeit und hervorragende Verschleißeigenschaften aus. Zudem zeigen diese Werkstoffe ausreichende Beständigkeit gegen Relaxation und Korrosion.Cast-formed VSR are mainly used in the commercial vehicle sector. Typical materials for medium to high loads are high-alloy, modified high-speed steels and high-alloy Fe-Cr steels. However, these materials are generally no longer able to meet the highest demands in heavy commercial vehicle and stationary engines and in alternative fuel operation. This requires special alloys based on Ni and Co. These are characterized by high hot compressive strength, high temperature resistance and excellent wear properties. In addition, these materials show sufficient resistance to relaxation and corrosion.

Im Zuge der steigenden Emissionsanforderungen, sowie der Leistungssteigerung und der Verlängerung der Wartungsintervalle werden für Nutzfahrzeug- und Stationärmotoren vermehrt derartige Werkstoffkonzepte erforderlich.In the course of increasing emission requirements, as well as the increase in performance and the extension of the maintenance intervals for commercial vehicle and stationary engines increasingly such material concepts are required.

Bekannt sind zwei Fertigungsverfahren zur gusstechnischen Herstellung von VSR, nämlich der Schleuder- und Sandguss. Schleuderguss eignet sich insbesondere für große Stückzahlen. Aufgrund des hohen Nachbearbeitungsbedarfs bestehen jedoch technologische und wirtschaftliche Grenzen. So ist die Herstellung von hochfesten Co-oder Ni-Basis-Werkstoffen über Schleuderguss nur bedingt möglich bzw. aufgrund der schweren Zerspanbarkeit in der Regel unwirtschaftlich. Sandguss hingegen eignet sich nur für kleinere und mittlere Stückzahlen. Die einzelnen Schritte der Nachbearbeitung sind im Schleuder- und Einzelguss gleich. In beiden Fällen muss der VSR vollständig bearbeitet werden, um die Gusshaut zu entfernen.Two production methods are known for the casting production of VSR, namely the centrifugal and sand casting. Centrifugal casting is particularly suitable for large quantities. However, there are technological and economic limitations due to the high need for reworking. Thus, the production of high-strength Co or Ni-based materials via centrifugal casting is only partially possible or due to the heavy machinability usually uneconomical. Sand casting, on the other hand, is only suitable for small and medium quantities. The individual steps of post-processing are the same in spin casting and single casting. In both cases, the VSR must be completely processed to remove the casting skin.

Schließlich offenbart die EP 1 536 027 B1 einen Sinterkörper aus einem rohen oder granulierten Pulver mit einer relativen Dichte von 97 % oder mehr. Erfindungsgemäß ist hierfür ein Pulver mit einer durchschnittlichen Korngröße von 8,5 µm oder weniger vorzusehen. Da die durchschnittliche Korngröße des hohen Pulvers für die Filterung gemäß den Angaben in der Druckschrift vergleichsweise klein ist, wird die Filterung Diffusionsgeschwindigkeit verbessert und die Qualität der Filterung in ausgeprägten Maße erhöht.Finally, the reveals EP 1 536 027 B1 a sintered body of a raw or granulated powder having a relative density of 97% or more. According to the invention, a powder with an average particle size of 8.5 μm or less is to be provided for this purpose. Since the average grain size of the high powder for filtering according to the information in the document is comparatively small, the filtration diffusion rate is improved and the quality of the filtering increased to a great extent.

Aufgrund des hohen Gehalts an teuren Legierungselementen und der beschriebenen Problematik bei der konventionellen Herstellung, insbesondere eines derart fein gemahlenen Pulvers, bedarf es einer Bereicherung des Standes der Technik, um die Markanforderungen und die obig beschriebenen divergierenden Zielsetzung zu erfüllen.Due to the high content of expensive alloying elements and the problem described in the conventional production, in particular of such a finely ground powder, it is necessary to enrich the state of the art in order to meet the market requirements and the divergent objective described above.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren zur Herstellung von warmbeständigen und verschleißfesten Formteilen, insbesondere Motorkomponenten bereitzustellen, das die oben genannten Nachteile im Stand der Technik umgeht. Insbesondere sollen Motorkomponenten für hochbeanspruchte Nutzfahrzeug- und Stationärmotor-Anwendungen geschaffen werden, die ausreichende Verschleißbeständigkeit, günstige Teilekosten, sowie eine gute Bearbeitbarkeit auf den Fertigungsstraßen der Endkunden aufweisen. Des Weiteren sollen mit dem Verfahren hergestellte warmbeständige und verschleißfeste Formteilen angegeben werden.The object of the invention is to provide a process for the production of heat-resistant and wear-resistant molded parts, in particular engine components, which circumvents the above-mentioned disadvantages in the prior art. In particular, engine components for highly stressed commercial vehicle and stationary engine applications are to be created, which have sufficient wear resistance, low part costs, and good machinability on the production lines of end customers. Furthermore, should be specified by the process produced resistant to wear and wear resistant moldings.

Zur Lösung der Aufgabe wird vorgeschlagen, ein, wasserverdüstes auf Fe- oder Cobasierendes Sintermaterial herzustellen, das eine Korngröße von > 10 µm, bevorzugt von > 30 µm und besonders bevorzugt von > 50 µm aufweist, und dieses Material gemäß den weiteren Verfahrensschritten nach Anspruch 1 zu behandeln.To achieve the object it is proposed to produce a water-atomized sintered material based on Fe or Cobas which has a particle size of> 10 μm, preferably of> 30 μm and particularly preferably of> 50 μm, and this material according to the further method steps according to claim 1 to treat.

Die vorliegende Erfindung wendet sich demnach ab vom Stand der Technik, der zur Erreichung hoher Dichten insbesondere von > 97 % Korngröße für das Sinterpulver von < 8,5 µm fordert. Erfindungsgemäß führt demnach wider dem Stand der Technik eine Erhöhung der Korngrößen auf > 10 µm, bevorzugt auf > 30 µm und besonders bevorzugt auf > 50 µm in Verbindung mit einer Wasserverdüsung zu vergleichbar hohen Dichten der Sinterkörper.The present invention therefore turns away from the prior art, which calls for achieving high densities, in particular of> 97% grain size for the sintered powder of <8.5 microns. Accordingly, according to the invention leads, contrary to the prior art, an increase in the particle sizes to> 10 microns, preferably to> 30 microns and more preferably to> 50 microns in conjunction with a water atomization at comparable high densities of the sintered body.

Erfindungsgemäß sind dabei folgende Verfahrensschritte auszuführen: Zunächst erfolgt die Herstellung eines auf Fe- oder Co-basierenden Sintermaterials mit einer mittleren Korngröße von > 10 µm, bevorzugt von > 30 µm und besonders bevorzugt von > 50 µm durch Wasserverdüsung, d.h. es wird Wasser unter Hochdruck zum zerschlagen des schmelzflüssigen Metallstrahls verwendet; dann erfolgt die Agglomeration des Sinterwerkstoffs über Sprühtrocknung auf 10 bis 400 µm mit einem organischen Bindemittel, wobei gegebenenfalls Festschmierstoffe und/oder Hartphasen beigemischt werden; dann erfolgt ein kalt- oder warmisostatisches Verpressen des Sinterwerkstoffs mit einem Pressdruck von 400 bis 900 MPa auf Dichten von 5 bis 7 g/ccm; dann erfolgt das Sintern der Grünlinge bei Temperaturen von 1.000 bis 1.350 °C und schließlich ein Nachbearbeitungsschritt.The following process steps are to be carried out according to the invention: First, a Fe or Co based sintered material having an average particle size of> 10 .mu.m, preferably of> 30 .mu.m and more preferably of> 50 .mu.m, is produced by water atomization, i. high pressure water is used to smash the molten metal stream; then the agglomeration of the sintered material is carried out by spray drying to 10 to 400 microns with an organic binder, optionally solid lubricants and / or hard phases are added; then a cold or warm isostatic pressing of the sintered material is carried out with a pressure of 400 to 900 MPa to densities of 5 to 7 g / ccm; then the sintering of the green compacts takes place at temperatures of 1,000 to 1,350 ° C and finally a post-processing step.

Als Sintermaterial wird in einer Ausführungsform der Erfindung eine auf Eisen basierende Legierung mit folgender Zusammensetzung in Gew.-% eingesetzt:

  • 1,5 - 2,0 C; 5,0 - 13,0 Mo; 5,0 - 10,0 Cr; 0,8 - 1,8 Si; max. 1,0 Mn; 1,5 - 4,0 V; 0-10,0 Co Rest Fe; sowie max. 3,0 nicht vermeidbaren Verunreinigungen.
In one embodiment of the invention, the sintering material used is an iron-based alloy having the following composition in% by weight:
  • 1.5-2.0 C; 5.0 - 13.0 Mo; 5.0-10.0 Cr; 0.8-1.8 Si; Max. 1.0 Mn; 1.5 - 4.0 V; 0-10.0 Co residue Fe; as well as max. 3.0 unavoidable impurities.

Als Sintermaterial wird in einer weiteren Ausführungsform der Erfindung eine auf Eisen basierende Legierung mit folgender Zusammensetzung in Gew.% eingesetzt:

  • 1,9 - 2,2 C; 6,5-8,5 Cr; 1,1 - 1,4 Si; <0,5 Ni; 0,6-0,8 Mn; 2,3-2,7 V; 0,1 - 0,3S; 0 - 10,0 Co; Rest Fe; sowie max. 3,0 nicht vermeidbaren Verunreinigungen.
In a further embodiment of the invention, the sintering material used is an iron-based alloy having the following composition in% by weight:
  • 1.9-2.2 C; 6.5-8.5 Cr; 1.1-1.4 Si; <0.5 Ni; 0.6-0.8 Mn; 2.3-2.7 V; 0.1-0.3S; 0-10.0 Co; Remainder Fe; as well as max. 3.0 unavoidable impurities.

Als Sintermaterial wird in einer weiteren Ausführungsform der Erfindung eine auf Eisen basierende Legierung mit folgender Zusammensetzung in Gew.% eingesetzt:

  • 0,2 -1,0 C; 20,0 -30,0 Cr; 14,0 - 23,0 Ni; 1,0 -3,0 Mo; < 2,0 Mn; 1,8 - 3,5 Si; 2,0 - 4,0 W; 1,0 - 3,0 Nb; 0,2 - 1,0 S; Rest Fe sowie max. 3,0 nicht vermeidbaren Verunreinigungen.
In a further embodiment of the invention, the sintering material used is an iron-based alloy having the following composition in% by weight:
  • 0.2-1.0 C; 20.0 -30.0 Cr; 14.0 - 23.0 Ni; 1.0-3.0 Mo; <2.0 Mn; 1.8-3.5 Si; 2.0 - 4.0 W; 1.0-3.0 Nb; 0.2-1.0 S; Remainder Fe and max. 3.0 unavoidable impurities.

Als Sintermaterial wird in einer weiteren Ausführungsform der Erfindung eine auf Eisen basierende Legierung mit folgender Zusammensetzung in Gew.% eingesetzt:

  • 0,6 - 1,1 C; 1,5 - 3,5 Mo; 21,0 - 28,0 Cr; 14,0 - 23,0 Ni; 2,0 - 3,3 Si; 2,0 - 3,5 W; 1,0-3,0 Nb; 1,0 - 3,5 Cu; Rest Fe; sowie max. 3,0 nicht vermeidbaren Verunreinigungen.
In a further embodiment of the invention, the sintering material used is an iron-based alloy having the following composition in% by weight:
  • 0.6-1.1 C; 1.5-3.5 Mo; 21.0 - 28.0 Cr; 14.0 - 23.0 Ni; 2.0-3.3 Si; 2.0 - 3.5 W; 1.0-3.0 Nb; 1.0-3.5 Cu; Remainder Fe; as well as max. 3.0 unavoidable impurities.

Als Sintermaterial wird in einer bevorzugten Ausführungsform der Erfindung eine auf Cobalt basierende Legierung mit folgender Zusammensetzung in Gew.-% eingesetzt: max. 5,0 Fe; max. 0,7 C; 15,0 - 25,0 Mo; 14,0 - 23,0 Cr; 0,7 - 1,4 Si; Rest Co; sowie max. 3,0 nicht vermeidbaren Verunreinigungen.In a preferred embodiment of the invention, the sintering material used is a cobalt-based alloy having the following composition in% by weight: max. 5.0 Fe; Max. 0.7 C; 15.0 - 25.0 Mo; 14.0 - 23.0 Cr; 0.7-1.4 Si; Rest of Co; as well as max. 3.0 unavoidable impurities.

Als Sintermaterial wird in einer weiteren bevorzugten Ausführungsform der Erfindung eine auf Cobalt basierende Legierung mit folgender Zusammensetzung in Gew.-% eingesetzt: max. 3,0 Fe; 2,0 - 2,8 C; 27,0 - 32,0 Cr; 0,5 - 1,5 Si; Rest Co; sowie max. 3,0 nicht vermeidbaren Verunreinigungen.In a further preferred embodiment of the invention, the sintering material used is a cobalt-based alloy having the following composition in% by weight: max. 3.0 Fe; 2.0-2.8 C; 27.0 - 32.0 Cr; 0.5-1.5 Si; Rest of Co; as well as max. 3.0 unavoidable impurities.

Als Schutzatmosphäre wird eine N2-H2-Atmosphäre mit einem Mischungsverhältnis von ca. 80 - 20 % oder Vakuum eingesetzt. Es wurde herausgefunden, dass die Temperaturen während des Sinterns zwischen 1.000 bis 1.300 °C liegen, wobei ein Sintermaterial auf Fe-Basis im unteren Temperaturbereich, d.h. von 1.000 bis 1.200 °C und ein Material auf Co-Basis im oberen Temperaturbereich, d.h. 1.100 bis 1.300 °C gesintert werden muss. Die Herstellung des auf Fe- oder Co-basierenden Sintermaterials erfolgt durch eine sog. Wasserverdüsung.As a protective atmosphere, an N 2 -H 2 atmosphere is used with a mixing ratio of about 80 - 20% or vacuum. It has been found that the temperatures during sintering are between 1,000 to 1,300 ° C, with an Fe-based sintered material in the lower temperature range, ie, from 1,000 to 1,200 ° C and a Co-based material in the upper temperature range, ie 1,100 to 1300 ° C must be sintered. The preparation of the Fe- or Co-based sintered material is carried out by a so-called. Water atomization.

Das pulvermetallurgische Herstellverfahren ermöglicht es, hochpräzise Formteile zu produzieren, die weniger Nachbearbeitungsschritte bedürfen im Vergleich zur klassischen Herstellung über Gießen. Darüber hinaus können Werkstoffe mit besonderen Gefügeeigenschaften hergestellt werden. Im Rahmen der Erfindung wurde herausgefunden, dass die hergestellten Komponenten gegenüber dem Stand der Technik eine verbesserte Gefügestruktur und Verteilung der Hartphasen aufweisen. So setzt sich das Gefüge der erfindungsmäßigen Legierungen aus einer Matrix mit einer Partikelgröße von 5-10 µm zusammen, in der gleichmäßig fein verteilte Karbide oder intermetallische Phasen mit einer Korngröße von ebenfalls 5-10 µm und ggf. Festschmierstoffe, wie zum Beispiel MoS2, eingelagert sind. Der heterogene Gefügeaufbau ist aus tribologischer Sicht sehr vielversprechend: So haben sich heterogene Gefüge mit harten Karbiden oder intermetallischen Phasen etwa gegen die Verschleißmechanismen Adhäsion, Oberflächenzerrütung und Abrasion bewährt (vgl. Sommer, Heinz, & Schöfer, 2011).The powder metallurgical production process makes it possible to produce high-precision molded parts, which require fewer post-processing steps compared to the classical production by casting. In addition, materials with special structural properties can be produced. In the context of the invention, it has been found that the components produced have an improved microstructure and distribution of the hard phases compared to the prior art. Thus, the microstructure of the alloys according to the invention is composed of a matrix having a particle size of 5-10 μm, in which uniformly finely divided carbides or intermetallic phases having a particle size of likewise 5-10 μm and optionally solid lubricants, such as, for example, MoS 2 , are stored. The heterogeneous microstructure is very promising from a tribological point of view: heterogeneous microstructures with hard carbides or intermetallic phases, for example, have proven effective against the wear mechanisms of adhesion, surface distortion and abrasion (see Sommer, Heinz, & Schöfer, 2011).

Darüber hinaus lassen sich dichte Gefüge herstellen, was zu einer erhöhten Korrosionsbeständigkeit führt, im Vergleich zu klassischen Sinterwerkstoffen aus konventionellen Sinterpulvern mit einer initialen Korngröße größer 50 µm. Diese Gefügeeigenschaften lassen sich nicht über die bis dato bekannten Fertigungsverfahren herstellen. Somit stellt das Verfahren sowohl für die Fe- basierte Tool-Steel-Werkstoffe und inbesondere für die Co- und Ni-basierten Sonderwerkstoffe eine Bereicherung des Stands der Technik dar.In addition, dense microstructures can be produced, which leads to increased corrosion resistance, compared to conventional sintered materials from conventional sintered powders with an initial particle size greater than 50 microns. These structural properties can not be produced by the hitherto known production methods. Thus, the process is an enrichment of the state of the art both for the Fe-based Tool Steel materials and in particular for the Co and Ni-based special materials.

Typische pulvermetallurgisch hergestellte Formteile für Motorkomponenten basieren auf Eisen- und Schellarbeitsstahl-Grundpulvern und weisen ebenfalls ein heterogenes Gefüge mit eingelagerten Hartphasen und Festschmierstoffen auf. Erfahrungsgemäß können Einlasskomponenten mit geringen bis mittleren Anforderungen unter anderem Materialien mit offener Porosität hergestellt werden. Für höhere Anforderungen und Auslasskomponenten wird die Porosität in der Regel über einen Infiltrierprozess mit Cu gefüllt. Dadurch wird einerseits die Anfälligkeit gegen Oxidation verringert und andererseits die Wärmeleitfähigkeit erhöht. Diverse Versuche zur Herstellung der obig beschriebenen hochlegierten Fe-Basis und insbesondere Co-Basislegierungen mit zum Teil ausreichender Korrosionsbeständigkeit mittels klassischer pulvermetallurgischer Herstellverfahren sind gescheitert. So wurde herausgefunden, dass die beschriebenen Werkstoffe ausschließlich über das beschriebene Fertigungsverfahren hergestellt werden können.Typical powder-metallurgically produced engine component moldings are based on base iron and shellac base powders and also have a heterogeneous microstructure with embedded hard phases and solid lubricants. Experience has shown that inlet components with low to medium requirements can be produced, among other things, materials with open porosity. For higher requirements and outlet components, the porosity is usually filled with Cu via an infiltration process. As a result, on the one hand the susceptibility to oxidation is reduced and on the other hand the thermal conductivity is increased. Various attempts to produce the above-described high-alloy Fe base and in particular Co base alloys with in some cases sufficient corrosion resistance by means of classical powder metallurgical production methods have failed. It has thus been found that the materials described can be produced exclusively by the production method described.

Die Erfindung geht von dem allgemeinen Gedanken aus, die Vorteile der Pulvermetallurgie mit den Vorteilen der Gusstechnologie zu verbinden, mit dem Ziel der wirtschaftlichen Herstellung von höchstverschleißfesten Motorkomponenten, insbesondere Ventiltriebs- und Turboladerkomponenten für die Anwendung in Hochtemperaturanwendungen bzw. die pulvermetallurgische Herstellung von hochlegierten Fe- und insbesondere Co-Basis-Werkstoffen.The invention is based on the general idea of combining the advantages of powder metallurgy with the advantages of casting technology, with the aim of economically producing highly wear-resistant engine components, in particular valvetrain and turbocharger components for use in high-temperature applications or powder metallurgy production of high-alloyed alloys. and especially co-base materials.

Der Erfindung liegt die Erkenntnis zugrunde, dass sich die pulvermetallurgische Herstellung von Motorkomponenten, wie beispielsweise Ventilsitzringen, für Hochtemperaturanwendungen durch einen geringen Nachbearbeitungsbedarf, hohe Kosteneffizienz und ressourcenschonende Herstellung auszeichnet. Diverse Versuche haben gezeigt, dass klassische Gusswerkstoffe mit gleichwertigem Eigenschaftsprofil ausschließlich über das beschriebene Fertigungsverfahren hergestellt werden können. Dabei wurde herausgefunden, dass Werkstoffe mit sehr heterogenen Gefügen und positiven Verschleißeigenschaften hergestellt werden könnenThe invention is based on the finding that the powder-metallurgical production of engine components, such as valve seat rings, for high-temperature applications is characterized by a low post-processing requirement, high cost-efficiency and resource-saving production. Various experiments have shown that classic cast materials with equivalent property profile can be produced exclusively via the described manufacturing process. It was found that materials with very heterogeneous structures and positive wear properties can be produced

Die Formteile, insbesondere Motorkomponenten, müssen nachbearbeitet, insbesondere spanend nachbearbeitet werden, da die Grünlinge während des Sinterprozesses um 10 bis 20% schrumpfen. Unter einem Nachbearbeitungsschritt werden ein Drehen (außen und innen), ein Plan-, ein Rund- und ein Gleitschleifen verstanden. Welcher bzw. welche Nachbearbeitungsschritt(e) zum Einsatz kommen hängt von der jeweils herzustellenden Motorkomponente ab. Der Nachbearbeitungsbedarf ist bei dem erfindungsgemäßen Verfahren im Vergleich zur klassischen Gusstechnik deutlich reduziert, wodurch die wirtschaftliche Herstellung von hochlegierten Fe- und insbesondere Co-Basis-Werkstoffen möglich wird.The moldings, in particular engine components, must be post-processed, in particular machined, since the green compacts shrink by 10 to 20% during the sintering process. A finishing step is understood to mean turning (outside and inside), plan, round and vibratory grinding. Which or which post-processing step (s) are used depends on the respective engine component to be produced. The Nachbearbeitungsbedarf is significantly reduced in the inventive method compared to the classical casting technique, whereby the economic production of high-alloy Fe and especially co-base materials is possible.

Zudem können Festschmierstoffe, die bis zu Temperaturen von 1.100 °C beständig sind, gegebenenfalls mit sehr hohem Anteil, beigemischt werden. Die Festschmierstoffe und gegebenenfalls Hartphasen sind als heterogenes Gefüge ausgebildet und gleichmäßig in dem Formteil verteilt. Als Festschmierstoff kann beispielsweise Molybdändisulfid (MoS2), Mangansulfid (MnS) und Calciumfluorid (CaF) eingesetzt werden. Die Beimischung der Festschmierstoffe führt einerseits zu einer erhöhten Verschleißbeständigkeit in trockenen Umgebungen wie sie im Verbrennungsmotor vorliegen und andererseits zu einer verbesserten Bearbeitbarkeit bei der Endbearbeitung des Motorenherstellers.In addition, solid lubricants, which are resistant up to temperatures of 1100 ° C, possibly with a very high proportion, be added. The solid lubricants and optionally hard phases are formed as a heterogeneous structure and evenly distributed in the molding. For example, molybdenum disulfide (MoS 2 ), manganese sulfide (MnS) and calcium fluoride (CaF) can be used as the solid lubricant. The addition of solid lubricants leads on the one hand to increased wear resistance in dry environments such as those present in internal combustion engines and, on the other hand, to improved machinability during the finishing of the engine manufacturer.

Ferner können Hartstoffe, zum Beispiel intermetallische Phasen oder Ferro-Molybdän (FeMo), beigemischt werden. Die Hartphasen haben eine Korngröße von zumindest 50 bis max. 500 µm, bevorzugt von 150 µm bis 300 µm. Die dichtgesinterten Basis-Werkstoffe können zudem harte, feinkörnige und feinverteile Karbide sowie weitere heterogen verteilte Karbide enthalten. Dies führt zu einer erhöhten Verschleißbeständigkeit und Relaxationsbeständigkeit, da Korngrenzengleiten und Werkstoffdeformationen behindert werden.Furthermore, hard materials, for example intermetallic phases or ferro-molybdenum (FeMo), can be admixed. The hard phases have a grain size of at least 50 to max. 500 μm, preferably from 150 μm to 300 μm. The densely sintered base materials may also contain hard, fine-grained and fine-grained carbides as well as other heterogeneously distributed carbides. This leads to increased wear resistance and relaxation resistance, since grain boundary slip and material deformation are hindered.

Auch wurde gefunden, dass ein erfindungsgemäß hergestelltes Sinterformteil eine erhöhte Korrosionsbeständigkeit im Vergleich zu konventionellen Sinterwerkstoffen mit offenen oder Cu-gefüllten Poren aufweist.It has also been found that a sintered molded part produced according to the invention has increased corrosion resistance in comparison to conventional sintered materials with open or Cu-filled pores.

Insgesamt können erfindungsgemäß Komponenten für Verbrennungsmotoren aus Werkstoffen wirtschaftlich hergestellt werden, die ausschließlich gusstechnisch bekannt sind. Damit eröffnen sich verschleißtechnische und wirtschaftliche Vorteile. Bis dato ist kein Fertigungsverfahren bekannt, mit dem, mit gleich hoher Wirtschaftlichkeit derartige Werkstoffkonzepte realisiert werden können.Overall, according to the invention, components for internal combustion engines can be produced economically from materials which are exclusively known by casting technology. This opens up wear-technological and economic advantages. To date, no manufacturing process is known with which, with equal high efficiency such material concepts can be realized.

Die Parameter zur Weiterverarbeitung des granulierten Sintermaterials gemäß konventionellen pulvermetallurgischen Fertigungsverfahren können durch eine geringe Anzahl an Versuchen festgelegt werden, da der Fachmann mit den im Prinzip auftretenden Effekten vertraut ist.The parameters for further processing of the granulated sintered material according to conventional powder metallurgical production methods can be determined by a small number of tests, since the person skilled in the art is familiar with the effects which occur in principle.

Die nach dem erfindungsgemäßen Verfahren hergestellten, warmbeständigen und verschleißfesten Formteilen, insbesondere Motorkomponenten, besitzen ein weites Anwendungsfeld. Schwerpunktmäßig liegt die Anwendung im Bereich der Motorkomponenten die ein dichtes, heterogenes Gefüge und gleichmäßig verteilte Festschmierstoffe und Hartphasen aufweisen, und/oder im Bereich der Komponenten, die eine hohe Korrosionsbeständigkeit durch ein dichtes Gefüge aufweisen. Hierunter zählen insbesondere Ventilsitzringe für hochbelastete Verbrennungskraftmaschinen, insbesondere Nutzfahrzeug- und Stationärmotoren und Lagerbuchsen für Turbolader und andere Komponenten des Abgasstrangs, die hervorragende tribologische Eigenschaften mit geringster Festkörperschmierung haben müssen; zudem müssen sie hohen Beanspruchungstemperaturen und Drücken von > 210 bar standhalten.The heat-resistant and wear-resistant molded parts produced by the process according to the invention, in particular engine components, have a wide field of application. The focus is on the application in the field of engine components which have a dense, heterogeneous microstructure and uniformly distributed solid lubricants and hard phases, and / or in the area of components which have a high corrosion resistance through a dense structure. These include, in particular, valve seat rings for highly loaded internal combustion engines, in particular utility vehicle and stationary engines and bearing bushes for turbochargers and other components of the exhaust gas line, which must have excellent tribological properties with the lowest solid lubrication; In addition, they must withstand high stress temperatures and pressures of> 210 bar.

Die Erfindung wird durch nachfolgende Verfahrensbeispiele näher beschrieben.The invention is described in more detail by the following process examples.

Beispiel 1:Example 1:

Beispiel 1 beschreibt die erfindungsgemäße Herstellung eines Werkstoffes, der gusstechnisch hergestellt unter der Bezeichnung PL 510 bekannt ist.Example 1 describes the production according to the invention of a material which is known by casting technology known as PL 510.

Ein wasserverdüstes Sintermaterial mit folgender Zusammensetzung in Gew.-%: 1,5-2,0 C; 5,0-13,0 Mo; 5,0-10,0 Cr; 0,8-1,8 Si; max. 1,0 Mn; 1,5-4,0 V; 0 - 10,0 Co Rest Fe, mit einer durchschnittlichen Korngröße von > 30 µm wurde gemäß dem erfindungsgemäßen Verfahren zu einem Formteil gesintert, wobei zunächst ein kaltisostatischen Pressen mit einem Pressdruck von 800 MPa, ein Entbindern bei 750 °C, und schließlich ein Sintern unter Schutzgas (H2 - N2) bei 1135 °C für 40 min sowie eine anschließende Wärmebehandlung, nämlich ein Härten bei 920 °C und Anlassen bei 670 °C erfolgte.A water atomized sintered material having the following composition in wt .-%: 1.5-2.0 C; 5.0-13.0 Mo; 5.0-10.0 Cr; 0.8-1.8 Si; Max. 1.0 Mn; 1.5-4.0 V; 0 - 10.0 Co remainder Fe, with an average grain size of> 30 microns was sintered according to the inventive method to form a molding, wherein a first Cold isostatic presses with a pressure of 800 MPa, debindering at 750 ° C, and finally a sintering under inert gas (H 2 - N 2 ) at 1135 ° C for 40 min and a subsequent heat treatment, namely a hardening at 920 ° C and tempering at 670 ° C was carried out.

Die Dichte des nach dem erfindungsgemäßen Verfahren erhältlichen Formteils, nachfolgend als PLS 510 bezeichnet, liegt bei 7,51 g/ccm; die Härte beträgt 55,3 bis 58,7 HRC. Das Formteil eignet sich insbesondere für Hochtemperaturanwendungen und weist eine hohe Verschleiß- und Relaxationsbeständigkeit auf.The density of the molding obtainable by the process according to the invention, hereinafter referred to as PLS 510, is 7.51 g / cc; the hardness is 55.3 to 58.7 HRC. The molding is particularly suitable for high temperature applications and has a high wear and relaxation resistance.

Die Gefügeausprägungen der beiden Werkstoffe PL 510 und PLS 510 sind in den Abb. 1 und 2 dargestellt. Hierbei zeigt sich im Vergleich, dass bei beiden Schliffbildern die graue Hartphase gut und gleichmäßig ausgebildet ist, jedoch bei dem PLS 510 feinverteilter, vorliegt. Diese sehr feinverteilten Carbide erweisen sich als besonders vorteilhaft für das erfindungsgemäße Formteil in Bezug auf die beschriebenen Hochtemperaturanwendungen. Insbesondere aus tribologischer Sicht lassen sich erhebliche Vorteile im Vergleich zur klassischen Werkstoff der Gusstechnik erkennen.The microstructures of the two materials PL 510 and PLS 510 are in the Fig. 1 and FIG. 2. This shows in comparison that in both micrographs, the gray hard phase is well and evenly formed, but in the PLS 510 finely divided, is present. These very finely divided carbides prove to be particularly advantageous for the molding according to the invention in relation to the described high-temperature applications. In particular, from a tribological point of view, significant advantages compared to the classic material of the casting technique can be seen.

Beispiel 2:Example 2:

Beispiel 2 beschreibt die erfindungsgemäße Herstellung eines Werkstoffes, der gusstechnisch hergestellt unter der Bezeichnung PL 860 bekannt ist.Example 2 describes the production according to the invention of a material which is known by casting technology known as PL 860.

Ein wasserverdüstes Sintermaterial mit folgender Zusammensetzung in Gew.-%: 0,1 - 0,3 Fe; 2,0 - 2,8 C; 27,0 - 32,0 Cr; 0,5 - 1,5 Si; 10,0 - 14,0 W; Rest Co, mit einer durchschnittlichen Korngröße von > 30 µm wurde gemäß dem erfindungsgemäßen Verfahren zu einem Formteil gesintert, wobei zunächst ein kaltisostatischen Pressen mit einem Pressdruck von 800 MPa, ein Entbindern bei 750 °C, und schließlich ein Sintern unter Vakuum bei 1250 °C für 3 h erfolgte.A water atomized sintered material having the following composition in wt .-%: 0.1 - 0.3 Fe; 2.0-2.8 C; 27.0 - 32.0 Cr; 0.5-1.5 Si; 10.0 - 14.0 W; Residue Co, with an average grain size of> 30 microns was sintered according to the inventive method to form a molding, initially a cold isostatic pressing with a pressure of 800 MPa, debindering at 750 ° C, and finally sintering under vacuum at 1250 ° C. for 3 h took place.

Die Dichte des nach dem erfindungsgemäßen Verfahren erhältlichen Formteils, nachfolgend als PLS 860 bezeichnet, liegt bei 8,47 bis 8,56 g/ccm; die Härte beträgt 53,8 HRC. Das Formteil eignet sich insbesondere für Hochtemperaturanwendungen und weist eine hohe Verschleiß-, Relaxations- und Korrosionsbeständigkeit auf. Auf einem Relaxationsprüfstand wurde nachgewiesen, dass der Werkstoff PLS 860, eine verbesserte Relaxationsbeständigkeit aufweist, im Vergleich zu dem Werkstoff PL 860. Dies wird auch durch die Gefügeausprägungen der beiden Werkstoffe deutlich, die durch die Schliffbilder der Abb. 3 und 4 dargestellt sind. Dabei zeigt sich, dass der Werkstoff ein heterogenes Gefüge mit fein verteilten Hartphasen aufweist. Dadurch wird einerseits Korngrenzengleiten verhindert. Ferner wirkt sich das Gefüge erfahrungsgemäß äußerst positiv auf die Verschleißbeständigkeit aus.The density of the molding obtainable by the process according to the invention, hereinafter referred to as PLS 860, is 8.47 to 8.56 g / cc; the hardness is 53.8 HRC. The molding is particularly suitable for high temperature applications and has a high wear, relaxation and corrosion resistance. It was proven on a relaxation test bench that the material PLS 860, a improved relaxation resistance, in comparison to the material PL 860. This is also clear from the microstructural characteristics of the two materials, which are represented by the micrographs of Figs. 3 and 4. It shows that the material has a heterogeneous microstructure with finely divided hard phases. As a result, grain boundary sliding is prevented on the one hand. Furthermore, experience has shown that the microstructure has a very positive effect on wear resistance.

Beispiel 3:Example 3:

Beispiel 3 beschreibt die erfindungsgemäße Herstellung eines Werkstoffes, der gusstechnisch hergestellt unter der Bezeichnung PL 26 bekannt ist.Example 3 describes the production according to the invention of a material which is known by casting under the name PL 26 is known.

Ein wasserverdüstes Sintermaterial mit folgender Zusammensetzung in Gew.-%: 0,2 - 1,0 C; 20,0 - 30,0 Cr; 14,0 - 23,0 Ni; 1,0 - 3,0 Mo; 0,5 - 1,0 Mn; 1,8 - 3,5 Si; 2,0 - 4,0 W; 1,0 - 3,0 Nb; 0,2 - 1,0 S; Rest Fe, mit einer durchschnittlichen Korngröße von > 30 µm wurde gemäß dem erfindungsgemäßen Verfahren zu einem Formteil gesintert, wobei zunächst ein kaltisostatischen Pressen mit einem Pressdruck von 800 MPa, ein Entbindern bei 750 °C, und schließlich ein Sintern unter Schutzgas (H2- N2) bei 1.120 °C für 1 h erfolgte. Die Dichte des nach dem erfindungsgemäßen Verfahren erhältlichen Formteils, nachfolgend als PLS 26 bezeichnet, liegt bei 7,35 g/ccm; die Härte beträgt 265 HV 10. Das Formteil eignet sich insbesondere für Hochtemperaturanwendungen und weist eine hohe Verschleiß-, Relaxations- und Korrosionsbeständigkeit auf.A water atomized sintered material having the following composition in wt .-%: 0.2 - 1.0 C; 20.0-30.0 Cr; 14.0 - 23.0 Ni; 1.0-3.0 Mo; 0.5-1.0 Mn; 1.8-3.5 Si; 2.0 - 4.0 W; 1.0-3.0 Nb; 0.2-1.0 S; Residual Fe, with an average particle size of> 30 microns was sintered according to the inventive method to form a molding, initially a cold isostatic pressing with a pressure of 800 MPa, debindering at 750 ° C, and finally sintering under inert gas (H 2 - N 2 ) was carried out at 1120 ° C for 1 h. The density of the molding obtainable by the process according to the invention, hereinafter referred to as PLS 26, is 7.35 g / cc; the hardness is 265 HV 10. The molded part is particularly suitable for high-temperature applications and has a high resistance to wear, relaxation and corrosion.

Die Gefügeausprägungen der beiden Werkstoffe PL 26 und PLS 26 sind in den Abb. 5 und 6 dargestellt.The microstructures of the two materials PL 26 and PLS 26 are shown in Figs. 5 and 6.

Beispiel 4:Example 4:

Beispiel 4 beschreibt die erfindungsgemäße Herstellung eines Co-Basiswerkstoffs, der gusstechnisch hergestellt unter der Bezeichnung PL 840 bekannt ist.Example 4 describes the production according to the invention of a co-base material which is known by casting technology under the designation PL 840.

Ein wasserverdüstes Sintermaterial mit folgender Zusammensetzung in Gew.-%: max. 5,0 Fe; max. 1,0 C; 15,0 - 30,0 Mo; 11,0 - 25,0 Cr; 1,0 - 2,5 Si; Rest Co, mit einer durchschnittlichen Korngröße von > 30 µm wurde gemäß dem erfindungsgemäßen Verfahren zu einem Formteil gesintert, wobei zunächst ein kaltisostatischen Pressen mit einem Pressdruck von 800 MPa, ein Entbindern bei 750 °C, und schließlich ein Sintern unter Vakuum bei 1.250 °C für 3 h erfolgte.A water atomized sintered material with the following composition in wt .-%: max. 5.0 Fe; Max. 1.0 C; 15.0 - 30.0 Mo; 11.0 - 25.0 Cr; 1.0-2.5 Si; Residual Co, with an average particle size of> 30 microns was sintered according to the inventive method to form a molding, wherein initially a cold isostatic pressing with a pressing pressure of 800 MPa, debindering at 750 ° C, and finally sintering under vacuum at 1,250 ° C for 3 hours.

Die Dichte des nach dem erfindungsgemäßen Verfahren erhältlichen Formteils, nachfolgend als PLS 840 bezeichnet, liegt bei 8,62 g/ccm; die Härte beträgt 49,2 bis 51,1 HRC. Das Formteil eignet sich insbesondere für Hochtemperaturanwendungen und weist eine hohe Verschleiß- und Relaxationsbeständigkeit auf.The density of the molding obtainable by the process according to the invention, hereinafter referred to as PLS 840, is 8.62 g / cc; the hardness is 49.2 to 51.1 HRC. The molding is particularly suitable for high temperature applications and has a high wear and relaxation resistance.

Die Gefügeausprägungen der beiden Werkstoffe PL 840 und PLS 840 sind in den Abb. 7 und 8 dargestellt. Hierbei zeigt sich im Vergleich, dass der Werkstoff PLS 840 ein heterogenes Gefüge mit gleichmäßig verteilten intermetallischen Phasen und Festschmierstoffen aufweist während der Werkstoff PL 840 große, zusammenhängende Hartphasen zeigt, was bedeutet, dass eine erhöhte Verschleiß- und Relaxationsbeständigkeit erwarten zu erwarten ist. Ferner wurde herausgefunden, dass die Zerspanbarkeit des Werkstoffs PLS 840 im Vergleich zu PL 840 deutlich verbessert ist. So ist die Herstellung des Werkstoffs PLS 840 im Vergleich zu seinem gusstechnischen Pendant deutlich erhöht.The microstructures of the two materials PL 840 and PLS 840 are shown in Figs. 7 and 8. In comparison, the PLS 840 material shows a heterogeneous structure with uniformly distributed intermetallic phases and solid lubricants, while the PL 840 material shows large coherent hard phases, which means that increased wear and relaxation resistance can be expected. It has also been found that the machinability of PLS 840 material is significantly improved compared to PL 840. Thus, the production of the material PLS 840 is significantly increased compared to its casting counterpart.

Claims (9)

  1. Method for producing heat-resistant and wear-resistant moulded parts, in particular engine components, using a sintering material based on Fe or Co, according to the following procedure:
    - production of the sintering material based on Fe or Co with a particle size > 10 µm, preferably > 30 µm, and particularly preferably > 50 µm, by water atomisation;
    - agglomeration of the sintering material by spray drying to from 10 to 400 µm with an organic binder, optionally admixture of solid lubricants and/or hard phases;
    - cold or hot isostatic pressing of the material with a pressure of from 400 to 2000 MPa to densities of from 5 to 7 g/ccm;
    - sintering of the green compacts at temperatures of from 1000 to 1300°C;
    - finishing of the moulded parts.
  2. Method according to Claim 1, characterised in that an iron-based alloy having the following composition in wt.% is used as the sintering material: 1.5 - 2.0 C; 5.0 - 13.0 Mo; 5.0 - 10.0 Cr; 0.8 - 1.8 Si; at most 1.0 Mn; 1.5 - 5.0 V; 0 - 4.0 Ti; 0 - 10.0 Co; remainder Fe; and at most 3.0 unavoidable impurities.
  3. Method according to Claim 1, characterised in that an iron-based alloy having the following composition in wt.% is used as the sintering material: 1.9 - 2.6 C; 6.5 - 8.5 Cr; 1.1 - 1.8 Si; < 0.5 Ni; 0.6 - 0.8 Mn; 2.3 - 2.7 V; 0.1 - 0.3 S; 1.0 - 3.0 W; 7.0-14.0 Mo; 0 - 10.0 Co; remainder Fe; and at most 3.0 unavoidable impurities.
  4. Method according to Claim 1, characterised in that an iron-based alloy having the following composition in wt.% is used as the sintering material: 0.2 - 1.0 C; 20.0 - 30.0 Cr; 14.0 - 23.0 Ni; 1.0 - 3.0 Mo; < 2.0 Mn; 1.8 - 3.5 Si; 2.0 - 4.0 W; 1.0 - 3.0 Nb; 0.2 - 1.0 S; remainder Fe; and at most 3.0 unavoidable impurities.
  5. Method according to Claim 1, characterised in that an iron-based alloy having the following composition in wt.% is used as the sintering material: 0.6 - 1.1 C; 1.5 - 3.5 Mo; 21.0 - 28.0 Cr; 14.0 - 23.0 Ni; 2.0 - 3.3 Si; 2.0 - 3.5 W; 1.0 - 3.0 Nb; 1.0 - 3.5 Cu; remainder Fe; and at most 3.0 unavoidable impurities.
  6. Method according to Claim 1, characterised in that a cobalt-based alloy having the following composition in wt.% is used as the sintering material: 5.0 Fe; at most 1.0 C; 15.0 - 30.0 Mo; 1 1.0 - 25.0 Cr; 1.0 - 2.5 Si; remainder Co; and at most 3.0 unavoidable impurities.
  7. Method according to Claim 1, characterised in that a cobalt-based alloy having the following composition in wt.% is used as the sintering material: at most 3 Fe; 2.0 - 2.8 C; 27 - 32 Cr; 0.5 - 1.5 Si; 10.0 - 14.0 W; remainder Co; and at most 3.0 unavoidable impurities.
  8. Method according to any one of Claims 1 to 7, characterised in that hard substances having a particle size of from at least 50 µm to at most 500 µm, preferably from 150 µm to 300 µm, are admixed.
  9. Method according to any one of Claims 1 to 7, characterised in that solid lubricants, which are stable up to temperatures of 1100°C, are admixed.
EP14728909.4A 2013-06-11 2014-06-02 Method for producing heat- and wear-resistant molded parts, in particular engine components Active EP3007842B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210895.8A DE102013210895A1 (en) 2013-06-11 2013-06-11 Process for the production of heat-resistant and wear-resistant molded parts, in particular engine components
PCT/EP2014/061376 WO2014198576A1 (en) 2013-06-11 2014-06-02 Method for producing heat- and wear-resistant molded parts, in particular engine components

Publications (3)

Publication Number Publication Date
EP3007842A1 EP3007842A1 (en) 2016-04-20
EP3007842B1 true EP3007842B1 (en) 2017-03-29
EP3007842B2 EP3007842B2 (en) 2020-02-12

Family

ID=50897583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14728909.4A Active EP3007842B2 (en) 2013-06-11 2014-06-02 Method for producing heat- and wear-resistant molded parts, in particular engine components

Country Status (3)

Country Link
EP (1) EP3007842B2 (en)
DE (1) DE102013210895A1 (en)
WO (1) WO2014198576A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210895A1 (en) 2013-06-11 2014-12-11 Mahle International Gmbh Process for the production of heat-resistant and wear-resistant molded parts, in particular engine components
DE102015211623A1 (en) * 2015-06-23 2016-12-29 Mahle International Gmbh Method for producing a valve seat ring
SE541184C2 (en) * 2017-03-14 2019-04-23 Vbn Components Ab High carbon content cobalt-based alloy
CN110418688B (en) 2017-03-14 2022-04-05 Vbn组件有限公司 High carbon content cobalt-based alloy
DE102017218123A1 (en) * 2017-10-11 2019-04-11 Mahle International Gmbh Method for producing a valve seat ring by powder metallurgy
DE102018205818A1 (en) 2018-04-17 2019-10-17 Ford Global Technologies, Llc Method for operating a hybrid electric vehicle
DE102018214344A1 (en) * 2018-08-24 2020-02-27 Mahle International Gmbh Process for the manufacture of a powder metallurgical product
EP4209611A1 (en) * 2022-01-11 2023-07-12 Garrett Transportation I Inc. High silicon stainless steel alloys and turbocharger kinematic components formed from the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988524A (en) 1973-01-15 1976-10-26 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
US20030177866A1 (en) 2002-03-22 2003-09-25 Omg Americas, Inc. Agglomerated stainless steel powder compositions and methods for making same
DE102013210895A1 (en) 2013-06-11 2014-12-11 Mahle International Gmbh Process for the production of heat-resistant and wear-resistant molded parts, in particular engine components

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129444A (en) * 1973-01-15 1978-12-12 Cabot Corporation Power metallurgy compacts and products of high performance alloys
GB1495705A (en) * 1973-12-18 1977-12-21 Dain R Making steel articles from powder
GB9405946D0 (en) * 1994-03-25 1994-05-11 Brico Eng Sintered valve seat insert
US5629091A (en) * 1994-12-09 1997-05-13 Ford Motor Company Agglomerated anti-friction granules for plasma deposition
AU3368101A (en) 2000-01-06 2001-07-16 Bleistahl-Produktions Gmbh And Co. Kg Powder metallurgy produced sinter shaped part
DE10334703A1 (en) 2003-07-30 2005-02-24 Daimlerchrysler Ag Valve seat rings made of Co or Co / Mo base alloys and their production
DE102005001198A1 (en) * 2005-01-10 2006-07-20 H.C. Starck Gmbh Metallic powder mixtures
GB2440737A (en) * 2006-08-11 2008-02-13 Federal Mogul Sintered Prod Sintered material comprising iron-based matrix and hard particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988524A (en) 1973-01-15 1976-10-26 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
US20030177866A1 (en) 2002-03-22 2003-09-25 Omg Americas, Inc. Agglomerated stainless steel powder compositions and methods for making same
DE102013210895A1 (en) 2013-06-11 2014-12-11 Mahle International Gmbh Process for the production of heat-resistant and wear-resistant molded parts, in particular engine components

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Höganäs Handbook for Sintered Components", 1 December 2013, article ANONYM: "Compacting of Metal Powders", pages: 7 - 11, XP055448085
SCHATT, WERNER, WIETERS, KLAUS-PETER, KIEBACK, BERND: "Pulvermetallurgie Technologien und Werkstoffe", 2007, article "2 Herstellung von Pulvern", pages: 1 - 16, XP055448069
SCHATT, WERNER, WIETERS, KLAUS-PETER, KIEBACK, BERND: "Pulvermetallurgie Technologien und Werkstoffe", 2007, article "5 Formgebung der Pulver", pages: 111 - 153, XP055448078
SCHATT, WERNER, WIETERS, KLAUS-PETER, KIEBACK, BERND: "Pulvermetallurgie Technologien und Werkstoffe", 2007, ISBN: 978-3-540-68112-0, article "Aufbereitung der Pulver", pages: 51 - 69, XP055448074
SCHATT, WERNER, WIETERS, KLAUS-PETER, KIEBACK, BERND: "Pulvermetallurgie Technologien und Werkstoffe", 2007, ISBN: 978-3-540-68112-0, article ANONYM: "Prüfung und Charakterisierung der Pulver", pages: 71 - 88, XP055448063

Also Published As

Publication number Publication date
WO2014198576A1 (en) 2014-12-18
DE102013210895A1 (en) 2014-12-11
EP3007842A1 (en) 2016-04-20
EP3007842B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
EP3007842B1 (en) Method for producing heat- and wear-resistant molded parts, in particular engine components
DE102005022104B4 (en) Sintered iron based alloy with dispersed hard particles
TWI467031B (en) Iron vanadium powder alloy
RU2490353C2 (en) Low-alloy steel powder
EP3325194B1 (en) Tribological system comprising a valve seat insert (vsi) and a valve
DE102010055463A1 (en) Sintered valve guide and manufacturing method therefor
EP0372223A1 (en) Copper-based sintering material, its use and process for preparing work pieces from this material
DE102013004817A1 (en) Sintered alloy and process for its production
DE112015005554T5 (en) IRON-BASED ALLOY POWDER FOR POWDER METALLURGY AND A SINTER-FORGED COMPONENT
DE102018209682A1 (en) Process for the manufacture of a powder metallurgical product
WO2018095928A1 (en) Powder metallurgy produced steel material containing hard material particles, method for producing a component from said type of steel material and component produced from the steel material
EP3150304A1 (en) Method for the production of a valve seat insert
AT507836B1 (en) METHOD FOR PRODUCING A STEEL MOLDING PART
WO2001079575A1 (en) Nitrogen alloyed steel, spray compacted steel, method for the production thereof and composite material produced from said steel
EP3530400A1 (en) Method for producing a component, in particular a vehicle component, and correspondingly manufactured component
AT505698B1 (en) METHOD FOR PRODUCING A SINTER-CURABLE SINTER MOLDING PART
DE102007031464A1 (en) Steam inlet valve of a steam turbine
EP3326739B1 (en) Iron carbon alloy and methods for making and using the alloy
DE2063846B2 (en) Process for the manufacture of molded bodies from high-speed steel
DE102018214344A1 (en) Process for the manufacture of a powder metallurgical product
WO2018095610A1 (en) Powder metallurgy produced steel material, method for producing a component from said type of steel material and component produced from the steel material
DE112005002568T5 (en) Sintered alloys for cam lobes and other high wear items
EP1250518B1 (en) Powder metallurgy produced valve body and valve fitted with said valve body
WO2001049437A2 (en) Powder metallurgy produced sinter shaped part
DE102020213651A1 (en) Wear-resistant, highly thermally conductive sintered alloy, especially for bearing applications and valve seat inserts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 1/00 20060101AFI20161027BHEP

Ipc: B22F 3/15 20060101ALI20161027BHEP

Ipc: B22F 5/00 20060101ALI20161027BHEP

Ipc: B22F 3/24 20060101ALI20161027BHEP

Ipc: B22F 9/08 20060101ALI20161027BHEP

Ipc: C22C 33/02 20060101ALI20161027BHEP

Ipc: C22C 1/04 20060101ALI20161027BHEP

Ipc: B22F 3/10 20060101ALI20161027BHEP

Ipc: B22F 3/04 20060101ALI20161027BHEP

Ipc: B22F 9/02 20060101ALI20161027BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 879257

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003240

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014003240

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: BLEISTAHL-PRODUKTIONS GMBH & CO KG.

Effective date: 20171227

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170602

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190626

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190627

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20200212

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014003240

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 879257

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200602

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 10