EP2992127B1 - Method for surface treatment of a metallic substrate - Google Patents

Method for surface treatment of a metallic substrate Download PDF

Info

Publication number
EP2992127B1
EP2992127B1 EP14728808.8A EP14728808A EP2992127B1 EP 2992127 B1 EP2992127 B1 EP 2992127B1 EP 14728808 A EP14728808 A EP 14728808A EP 2992127 B1 EP2992127 B1 EP 2992127B1
Authority
EP
European Patent Office
Prior art keywords
solution
protective coating
corrosion
range
hydrozincite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14728808.8A
Other languages
German (de)
French (fr)
Other versions
EP2992127A1 (en
Inventor
Gerald Luckeneder
Karl-Heinz Stellnberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Priority to PL14728808T priority Critical patent/PL2992127T3/en
Publication of EP2992127A1 publication Critical patent/EP2992127A1/en
Application granted granted Critical
Publication of EP2992127B1 publication Critical patent/EP2992127B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon

Definitions

  • the invention relates to a method for the surface treatment of a metallic substrate, in particular steel sheet, with a protective coating based on Zn, in which a chloride-containing solution is applied to this protective coating and thereby a corrosion protection layer comprising hydrozincite and simoncollect is formed at least in some areas.
  • WO2012 / 091385A2 propose to set the weight ratios of Al and Mg in the protective coating based on Zn so that the formation of Simonkolleit is easier in the event of corrosion. It is proposed that the protective coating should have a ratio of Al to (Mg + Al) in a range from 0.38 to 0.48.
  • compositional regulations disadvantageously cause a comparatively high outlay, in particular if protective coatings are to be applied to a metal sheet by means of a hot-dip process - the reproducibility of the process is therefore difficult to ensure.
  • such regulations mostly only lead to a compromise between improved corrosion behavior on the one hand and undesirable changes in mechanical, chemical and / or electrical properties on the other. The usability of the sheet coated in this way can be significantly restricted.
  • JP 01127683A the JP 04165082A and the JP 2011168855A for steel sheets, coatings containing Zn, Mg and / or Al.
  • the invention is therefore based on the task, starting from the prior art described at the outset, of changing a method for surface treatment of a sheet coated with a protective layer based on Zn in such a way that the corrosion resistance is increased, the range of fluctuation is reduced and its production is accelerated.
  • a high reproducibility of the process should be ensured and the process should be applicable regardless of the composition of the protective coating based on Zn.
  • the invention solves the problem set by the process features of claim 1, wherein the protective coated substrate with the, adjusted with the aid of an acid to a pH in the range of 4 to 6 and having 1.8 to 18.5 wt .-% chloride Solution to form an increased proportion of Simonzolleitreact in the corrosion protection layer compared to the hydrozincite.
  • Preferred embodiments of the method are defined in claims 2 to 10.
  • the protective-coated substrate reacts with the solution which has been adjusted to a pH in the range from 4 to 6 and has from 1.8 to 18.5% by weight of chloride with the aid of an acid, a particularly advantageous corrosion protection layer can be achieved on the protective coating .
  • This solution according to the invention in particular also water-based, can considerably favor the formation of Simonkolleit on the treated or corroded surface of the protective coating.
  • the composition of the anticorrosive layer can be influenced in one direction in such a way that an increased proportion of Simoncollegium compared to the hydrozincite fraction. This means that the protective-coated substrate can be expected to be highly resistant to corrosion.
  • this directional treatment or corrosion of the protective coating can be carried out independently of the composition of a protective coating based on Zn - any compositions can therefore be improved with regard to their corrosion resistance.
  • a universally applicable and reproducible process can therefore be made available in which the influence of a hot-dip process on corrosion resistance or its fluctuation range with regard to the layer thickness, its continuity and composition can be significantly reduced.
  • the method according to the invention for increasing the corrosion resistance can be distinguished in particular if the protective coating has a Zn-Al-Mg base to which the chloride-containing solution is applied and thereby at least in some areas a corrosion protection layer comprising hydrozincite, simoncollect and hydrotalcite is formed.
  • a corrosion protection layer comprising hydrozincite, simoncolleite and hydrotalcite.
  • Their corrosion-prone and superficial intermetallic phases can be supplemented with Simonkolleit and become more corrosion-resistant. This also resulted in a comparatively compact surface coating, which in turn can lead to increased mechanical strength of the protective coating.
  • the improved connectivity achieved in this way can be used for further layers, for example lacquers or the like, on this protective coating.
  • the production of the protective coating which is improved in corrosion resistance, is accelerated and the process can therefore be carried out comparatively quickly.
  • a solution which has 5 to 30% by weight NaCl has proven to be particularly advantageous. This is not only inexpensive and easy to manufacture, it also has a positive procedural influence. 5 to 10% by weight of NaCl can be particularly suitable in order to ensure a sufficiently high proportion of chloride in the solution for the process.
  • the solution applied to the protective coating consists of water, NaCl and HCl.
  • this solution can also have inevitable impurities due to the manufacturing process.
  • This solution which was easy to manufacture, was found to be particularly advantageous in the reaction with a Zn-Al-Mg protective coating, in which a proportion of Simonkolleit of over 80% was formed in the treated areas of the protective coating.
  • a comparatively high proportion of Simonkolleit can be ensured by the solution reacting with the coating for a maximum of 20 minutes. Even with this relatively short reaction time, the method according to the invention can ensure a particularly fast process and can subsequently also be used for industrial purposes.
  • reaction time of the solution with the protective coating can be reduced even further if the metallic substrate is anodically charged during the reaction with the solution.
  • the formation of Simonkolleit can be favored and the process can be further accelerated.
  • the invention can be particularly distinguished in the case of protective coatings based on Zn, which are applied to the sheet by means of a hot-dip process, that is to say produced on the sheet.
  • Known parameter fluctuations in the hot-dip process which can influence the corrosion resistance of the protective coating formed with it, can thus be compensated for.
  • the method according to the invention can therefore ensure the highest level of corrosion protection on metal sheets in a particularly reproducible manner.
  • reaction of the solution with the protective coating forms a corrosion protection layer with a layer thickness in the range from 150 nm to 1.5 ⁇ m, a result in a sufficiently compact reaction layer with Simonkolleit in order to reproducibly increase the corrosion resistance of the protective-coated substrate.
  • the chemical resistance of the protective coating based on Zn can be increased further if the reaction of the solution with the protective coating forms a corrosion protection layer with a proportion of at least 80%, in particular at least 90%, of Simonkolleit.
  • the method according to the invention can be distinguished in particular in the case of a Zn-Al-Mg protective coating in which the quotient of Al / (Al + Mg) is in the range from 0.5 to 1.0, in particular if the quotient of Al / (Al + Mg) is 0.5.
  • Table 1 Overview of the investigated protective coated steel sheets 1, 2, 3 Composition of the solution Simonkolleit Hydrozincite Hydrotalcite 1 no treatment undefined / variable 2nd 5% NaCl with a pH of 4-5 90% 5% 5% 3rd 10% NaCl with a pH of 5 90% 5% 5%
  • the protective-coated sheets treated with the solution according to the invention each showed compact corrosion-protective layers with layer thicknesses in the range from 150 nm to 1.5 ⁇ m.

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren zur Oberflächenbehandlung eines metallischen Substrats, insbesondere Stahlblechs, mit einer Schutzbeschichtung auf Zn-Basis, bei dem auf diese Schutzbeschichtung eine chloridhaltige Lösung aufgebracht und dadurch mindestens bereichsweise eine Korrosionsschutzschicht, aufweisend Hydrozinkit und Simonkolleit, ausgebildet wird.The invention relates to a method for the surface treatment of a metallic substrate, in particular steel sheet, with a protective coating based on Zn, in which a chloride-containing solution is applied to this protective coating and thereby a corrosion protection layer comprising hydrozincite and simoncollect is formed at least in some areas.

Stand der TechnikState of the art

Aus dem Stand der Technik ist bekannt, Stahlblech mit einer Schutzbeschichtung auf Zn-Al-Mg Basis zu versehen, um damit die Korrosionsbeständigkeit des Stahlblechs zu erhöhen. Überraschend zeigten diese schutzbeschichteten Stahlbleche dennoch eine vergleichsweise stark schwankende Korrosionsbeständigkeit.It is known from the prior art to provide steel sheet with a protective coating based on Zn-Al-Mg in order to increase the corrosion resistance of the steel sheet. Surprisingly, these protective coated steel sheets showed a comparatively strongly fluctuating corrosion resistance.

Zu diesen schutzbeschichteten Stahlblechen durchgeführte Korrosionstests nach DIN EN ISO 9227 (NSS) - unter Verwendung einer wässrigen, 5%-igen NaCl Lösung, pH-Wert-reguliert mit NaOH - zeigten die Ausbildung einer Korrosionsschicht mit Hydrotalcit, Hydrozinkit und Simonkolleit als Bestandteile (" XPS investigation on the surface chemestry of corrosion products on ZnMgAl-coated steel", Duchoslav et al., AOFA 2012 ). In der Korrosionsschicht lag die Konzentration von Hydrozinkit Zn5(CO3)2(OH)6 deutlich über jener von Simonkolleit Zn5(OH)8Cl2•H2O. Zudem fand sich in der Korrosionsschicht Hydrotalcit (Zn,Mg)6Al2(OH)16CO3•4H2O. Von Simonkolleit ist zudem bekannt, eine gegenüber Hydrozinkit erhöhte Korrosionsbeständigkeit aufzuweisen.Corrosion tests carried out on these protective coated steel sheets in accordance with DIN EN ISO 9227 (NSS) - using an aqueous, 5% NaCl solution, pH-regulated with NaOH - showed the formation of a corrosion layer with hydrotalcite, hydrozincite and Simonkolleit as components (" XPS investigation on the surface chemestry of corrosion products on ZnMgAl-coated steel ", Duchoslav et al., AOFA 2012 ). The concentration of hydrozincite Zn5 (CO3) 2 (OH) 6 in the corrosion layer was significantly higher than that of Simonkolleit Zn5 (OH) 8Cl2 • H2O. In addition, hydrotalcite (Zn, Mg) 6Al2 (OH) 16CO3 • 4H2O was found in the corrosion layer. From Simonkolleit is also known to have increased corrosion resistance compared to hydrozincite.

Aus der Veröffentlichung von KEPPERT T A ET AL: "Influence of the pH value on the corrosion of Zn-Al-Mg hot-dip galvanized steel sheets in chloride containing environments", NACE INTERNATIONAL - CORROSION 2012 CONFERENCE & EXPO; 11.-15. März 2012, SALT LAKE CITY, UT [US], Bd. NACE-2012-1493, XP055130631 ist ein Verfahren zur Untersuchung der pH-Abhängigkeit auf die Korrosion von verzinkten Stahlblechen in chloridhaltiger Umgebung bekannt. Im Einzelnen wurden herkömmlich feuerverzinkte (HDG) und mit Zn-Al-Mg-Legierung (ZM, A/Al+Mg=0,5) versehene Stahlbleche mit 35 ± 1 °C warmen Lösungen von 5 ± 0,5 Masse% NaCl besprüht, wobei die Lösungen unter anderem mittels HCl auf unter anderem pH 1, 3 und 7 eingestellt wurden.From the publication of KEPPERT TA ET AL: "Influence of the pH value on the corrosion of Zn-Al-Mg hot-dip galvanized steel sheets in chloride containing environments", NACE INTERNATIONAL - CORROSION 2012 CONFERENCE &EXPO; 11.-15. March 2012, SALT LAKE CITY, UT [US], vol. NACE-2012-1493, XP055130631 a method for investigating the pH dependence on the corrosion of galvanized steel sheets in a chloride-containing environment is known. Specifically, conventionally hot-dip galvanized (HDG) and with Zn-Al-Mg alloy (ZM, A / Al + Mg = 0.5) steel sheets were sprayed with 35 ± 1 ° C warm solutions of 5 ± 0.5 mass% NaCl The solutions were adjusted to pH 1, 3 and 7 using HCl, among other things.

Zur Erhöhung der Konzentration an Simonkolleit schlägt die WO2012/091385A2 vor, die Gewichtsverhältnisse von Al und Mg in der Schutzbeschichtung auf Zn-Basis so einzustellen, dass sich die Ausbildung von Simonkolleit bei einer Korrosion erleichtert. Vorgeschlagen wird, dass bei der Schutzbeschichtung der Quotient von Al zu (Mg+Al) in einen Bereich von 0,38 bis 0,48 liegen soll. Nachteilig verursachen derartige Kompositionsvorschriften allerdings einen vergleichsweise hohen Aufwand, insbesondere wenn Schutzbeschichtungen mit Hilfe eines Schmelztauchverfahrens auf ein Blech aufgetragen werden sollen - die Reproduzierbarkeit des Verfahrens ist also nur schwer zu gewährleisten. Außerdem führen derartige Vorschriften meist lediglich zu einem Kompromiss zwischen einerseits verbessertem Korrosionsverhalten auf der einen und unerwünschten Änderungen mechanischer, chemischer und/oder elektrischer Eigenschaften auf der anderen Seite. Die Verwendbarkeit des auf diese Weise schutzbeschichteten Blechs kann dadurch deutlich eingeschränkt sein.To increase the concentration of Simonkolleit suggests WO2012 / 091385A2 propose to set the weight ratios of Al and Mg in the protective coating based on Zn so that the formation of Simonkolleit is easier in the event of corrosion. It is proposed that the protective coating should have a ratio of Al to (Mg + Al) in a range from 0.38 to 0.48. However, such compositional regulations disadvantageously cause a comparatively high outlay, in particular if protective coatings are to be applied to a metal sheet by means of a hot-dip process - the reproducibility of the process is therefore difficult to ensure. In addition, such regulations mostly only lead to a compromise between improved corrosion behavior on the one hand and undesirable changes in mechanical, chemical and / or electrical properties on the other. The usability of the sheet coated in this way can be significantly restricted.

Zudem zeigen die JP 01127683A , die JP 04165082A und die JP 2011168855A bei Stahlblechen Beschichtungen, die Zn, Mg und/oder Al beinhalten.They also show JP 01127683A , the JP 04165082A and the JP 2011168855A for steel sheets, coatings containing Zn, Mg and / or Al.

Darstellung der ErfindungPresentation of the invention

Die Erfindung hat sich daher die Aufgabe gestellt, ausgehend vom eingangs geschilderten Stand der Technik ein Verfahren zur Oberflächenbehandlung eines mit einer auf Zn-Basis schutzbeschichteten Blechs derart zu verändern, dass die Korrosionsfestigkeit erhöht, deren Schwankungsbreite verringert und dessen Herstellung beschleunigt wird. Zudem soll eine hohe Reproduzierbarkeit des Verfahrens gewährleistet werden und das Verfahren unabhängig von der Zusammensetzung der Schutzbeschichtung auf Zn-Basis anwendbar sein.The invention is therefore based on the task, starting from the prior art described at the outset, of changing a method for surface treatment of a sheet coated with a protective layer based on Zn in such a way that the corrosion resistance is increased, the range of fluctuation is reduced and its production is accelerated. In addition, a high reproducibility of the process should be ensured and the process should be applicable regardless of the composition of the protective coating based on Zn.

Die Erfindung löst die gestellte Aufgabe durch die Verfahrensmerkmale des Anspruchs 1, wobei das schutzbeschichtete Substrat mit der, mit Hilfe einer Säure auf einen pH-Wert im Bereich von 4 bis 6 eingestellten und 1,8 bis 18,5 Gew.-% Chlorid aufweisenden Lösung zur Ausbildung eines gegenüber dem Hydrozinkitanteil erhöhten Simonkolleitanteils in der Korrosionsschutzschicht reagiert. Bevorzugte Ausführungsformen des Verfahrens sind in den Ansprüchen 2 bis 10 definiert.The invention solves the problem set by the process features of claim 1, wherein the protective coated substrate with the, adjusted with the aid of an acid to a pH in the range of 4 to 6 and having 1.8 to 18.5 wt .-% chloride Solution to form an increased proportion of Simonzolleitreact in the corrosion protection layer compared to the hydrozincite. Preferred embodiments of the method are defined in claims 2 to 10.

Reagiert das schutzbeschichtete Substrat mit der, mit Hilfe einer Säure auf einen pH-Wert im Bereich von 4 bis 6 eingestellten und 1,8 bis 18,5 Gew.-% Chlorid aufweisenden Lösung, kann damit eine besonders vorteilhafte Korrosionsschutzschicht auf der Schutzbeschichtung erreicht werden. Diese erfindungsgemäße, insbesondere auch wasserbasierende, Lösung kann nämlich die Ausbildung von Simonkolleit an der behandelten bzw. korrodierten Oberfläche der Schutzbeschichtung erheblich begünstigen. Insbesondere kann die Zusammensetzung der Korrosionsschutzschicht derart in eine Richtung beeinflusst werden, dass sich in dieser stets ein gegenüber dem Hydrozinkitanteil erhöhter Simonkolleitanteil ausbildet. Dadurch kann sicher mit einer hohen Korrosionsbeständigkeit des schutzbeschichteten Substrats gerechnet werden. Zudem kann dieses gerichtete Behandeln bzw. Ankorrodieren der Schutzbeschichtung unabhängig von der Zusammensetzung einer Schutzbeschichtung auf Zn-Basis durchgeführt werden - jegliche Kompositionen sind hinsichtlich ihrer Korrosionsfestigkeit also verbesserbar. Ein universell anwendbares und reproduzierbares Verfahren kann also zur Verfügung gestellt werden, bei dem der Einfluss eines Schmelztauchverfahrens auf Korrosionsfestigkeit bzw. dessen Schwankungsbreite hinsichtlich der Schichtdicke deren Durchgängigkeit und Zusammensetzung erheblich vermindert werden kann.If the protective-coated substrate reacts with the solution which has been adjusted to a pH in the range from 4 to 6 and has from 1.8 to 18.5% by weight of chloride with the aid of an acid, a particularly advantageous corrosion protection layer can be achieved on the protective coating . This solution according to the invention, in particular also water-based, can considerably favor the formation of Simonkolleit on the treated or corroded surface of the protective coating. In particular, the composition of the anticorrosive layer can be influenced in one direction in such a way that an increased proportion of Simoncollegium compared to the hydrozincite fraction. This means that the protective-coated substrate can be expected to be highly resistant to corrosion. In addition, this directional treatment or corrosion of the protective coating can be carried out independently of the composition of a protective coating based on Zn - any compositions can therefore be improved with regard to their corrosion resistance. A universally applicable and reproducible process can therefore be made available in which the influence of a hot-dip process on corrosion resistance or its fluctuation range with regard to the layer thickness, its continuity and composition can be significantly reduced.

Besonders aber kann sich das erfindungsgemäße Verfahren zur Erhöhung der Korrosionsfestigkeit auszeichnen, wenn die Schutzbeschichtung eine Zn-Al-Mg-Basis aufweist, auf welche die Chlorid aufweisende Lösung aufgebracht und dadurch mindestens bereichsweise eine Korrosionsschutzschicht, aufweisend Hydrozinkit, Simonkolleit und Hydrotalcit, ausgebildet wird. Dadurch kann ermöglicht werden, mindestens bereichsweise eine Korrosionsschutzschicht, aufweisend Hydrozinkit, Simonkolleit und Hydrotalcit, auszubilden. Deren gegenüber Korrosion anfälligen und oberflächlichen intermetallischen Phasen können mit Simonkolleit nämlich ergänzt und korrosionsfester werden. Zudem bildete sich dadurch eine vergleichsweise kompakte Oberflächenbeschichtung aus, was wiederum zu einer erhöhten mechanischen Festigkeit der Schutzbeschichtung führen kann. In weiterer Folge kann die dadurch erreichte verbesserte Anbindbarkeit für weitere Schichten, zum Beispiel Lacken oder dergleichen, an dieser Schutzbeschichtung genutzt werden. Hinzu kommt, dass aufgrund des erhöhten Chloridanteils der Lösung die Herstellung der in der Korrosionsbeständigkeit verbesserten Schutzbeschichtung beschleunigt und damit das Verfahren vergleichsweise schnell durchgeführt werden kann.However, the method according to the invention for increasing the corrosion resistance can be distinguished in particular if the protective coating has a Zn-Al-Mg base to which the chloride-containing solution is applied and thereby at least in some areas a corrosion protection layer comprising hydrozincite, simoncollect and hydrotalcite is formed. This can make it possible, at least in certain areas, to form a corrosion protection layer comprising hydrozincite, simoncolleite and hydrotalcite. Their corrosion-prone and superficial intermetallic phases can be supplemented with Simonkolleit and become more corrosion-resistant. This also resulted in a comparatively compact surface coating, which in turn can lead to increased mechanical strength of the protective coating. Subsequently, the improved connectivity achieved in this way can be used for further layers, for example lacquers or the like, on this protective coating. In addition, because of the increased chloride content of the solution, the production of the protective coating, which is improved in corrosion resistance, is accelerated and the process can therefore be carried out comparatively quickly.

Als besonders vorteilhaft hat sich eine Lösung erwiesen, die 5 bis 30 Gew.-% NaCl aufweist. Diese ist nicht nur kostengünstig und einfach herzustellen, sie hat auch positiven verfahrenstechnischen Einfluss. Besonders gut können sich 5 bis 10 Gew.-% NaCl eignen, um für einen für das Verfahren ausreichend hohen Chloridanteil in der Lösung zu sorgen.A solution which has 5 to 30% by weight NaCl has proven to be particularly advantageous. This is not only inexpensive and easy to manufacture, it also has a positive procedural influence. 5 to 10% by weight of NaCl can be particularly suitable in order to ensure a sufficiently high proportion of chloride in the solution for the process.

Wird der pH-Wert der Lösungen mit HCl eingestellt, kann damit nicht nur die Aktivierung der Korrosionsreaktion in Richtung vornehmlicher Ausbildung von Simonkolleit beschleunigt werden, sondern auch die Zusammensetzung der Lösung hinsichtlich der Anzahl Ihrer Komponenten unverändert bleiben. Dies kann sich positiv auf die Reproduzierbarkeit des Verfahrens auswirken.If the pH of the solutions is adjusted with HCl, this not only accelerates the activation of the corrosion reaction in the direction of the primary formation of Simonkolleit, but also the composition of the solution in terms of the number of its components. This can have a positive effect on the reproducibility of the process.

Als besonders vorteilhaft kann sich herausstellen, wenn die, auf die Schutzbeschichtung aufgebrachte Lösung aus Wasser, NaCl und HCl besteht. Selbstverständlich kann diese Lösung auch noch herstellungsbedingt unvermeidliche Verunreinigungen aufweisen. Diese - damit einfach herzustellende - Lösung konnte sich insbesondere bei der Reaktion mit einer Zn-Al-Mg-Schutzbeschichtung als vorteilhaft herausstellen, bei welcher sich ein Anteil an Simonkolleit von über 80% in den behandelten Bereichen der Schutzbeschichtung bildete.It can turn out to be particularly advantageous if the solution applied to the protective coating consists of water, NaCl and HCl. Of course, this solution can also have inevitable impurities due to the manufacturing process. This solution, which was easy to manufacture, was found to be particularly advantageous in the reaction with a Zn-Al-Mg protective coating, in which a proportion of Simonkolleit of over 80% was formed in the treated areas of the protective coating.

Ein vergleichsweise hoher Anteil an Simonkolleit kann sichergestellt werden, indem die Lösung maximal 20 Minuten lang mit der Beschichtung reagiert. Selbst bei dieser relativ kurzen Reaktionszeit kann das erfindungsgemäße Verfahren einen besonders schnellen Ablauf sicherstellen und sich in weiterer Folge auch für industrielle Zwecke eignen.A comparatively high proportion of Simonkolleit can be ensured by the solution reacting with the coating for a maximum of 20 minutes. Even with this relatively short reaction time, the method according to the invention can ensure a particularly fast process and can subsequently also be used for industrial purposes.

Die Reaktionszeit der Lösung mit der Schutzbeschichtung kann noch weiter vermindert werden, wenn das metallische Substrat bei der Reaktion mit der Lösung anodisch aufgeladen wird.The reaction time of the solution with the protective coating can be reduced even further if the metallic substrate is anodically charged during the reaction with the solution.

Wird die Temperatur der Lösung auf einen Bereich von 30 bis 60 Grad Celsius eingestellt, kann die Ausbildung von Simonkolleit begünstigt und damit das Verfahren weiter beschleunigt werden.If the temperature of the solution is adjusted to a range from 30 to 60 degrees Celsius, the formation of Simonkolleit can be favored and the process can be further accelerated.

Besonders auszeichnen kann sich die Erfindung bei Schutzbeschichtungen auf Zn-Basis, die mit Hilfe eines Schmelztauchverfahrens auf das Blech aufgebracht - also auf dem Blech erzeugt - werden. Bekannte Parameterschwankungen des Schmelztauchverfahrens, welche Einfluss auf die Korrosionsfestigkeit der damit ausgebildeten Schutzbeschichtung haben können, sind damit nämlich ausgleichbar. Das erfindungsgemäße Verfahren kann daher besonders reproduzierbar höchsten Korrosionsschutz an Blechen sicherstellen.The invention can be particularly distinguished in the case of protective coatings based on Zn, which are applied to the sheet by means of a hot-dip process, that is to say produced on the sheet. Known parameter fluctuations in the hot-dip process, which can influence the corrosion resistance of the protective coating formed with it, can thus be compensated for. The method according to the invention can therefore ensure the highest level of corrosion protection on metal sheets in a particularly reproducible manner.

Bildet die Reaktion der Lösung mit der Schutzbeschichtung eine Korrosionsschutzschicht mit einer Schichtdicke im Bereich von 150nm bis 1,5µm aus, kann sich eine ausreichend kompakte Reaktionsschicht mit Simonkolleit ergeben, um damit reproduzierbar die Korrosionsbeständigkeit des schutzbeschichteten Substrats zu erhöhen.If the reaction of the solution with the protective coating forms a corrosion protection layer with a layer thickness in the range from 150 nm to 1.5 μm, a result in a sufficiently compact reaction layer with Simonkolleit in order to reproducibly increase the corrosion resistance of the protective-coated substrate.

Die chemische Beständigkeit der Schutzbeschichtung auf Zn-Basis kann weiter erhöht werden, wenn die Reaktion der Lösung mit der Schutzbeschichtung eine Korrosionsschutzschicht mit einem Anteil von mindestens 80%, insbesondere von mindestens 90%, Simonkolleit ausbildet.The chemical resistance of the protective coating based on Zn can be increased further if the reaction of the solution with the protective coating forms a corrosion protection layer with a proportion of at least 80%, in particular at least 90%, of Simonkolleit.

Das erfindungsgemäße Verfahren kann sich insbesondere bei einer Zn-Al-Mg-Schutzbeschichtung auszeichnen, bei der der Quotient von Al / (Al+Mg) im Bereich von 0,5 bis 1,0 liegt, insbesondere wenn der Quotient von Al / (Al+Mg) 0,5 beträgt.The method according to the invention can be distinguished in particular in the case of a Zn-Al-Mg protective coating in which the quotient of Al / (Al + Mg) is in the range from 0.5 to 1.0, in particular if the quotient of Al / (Al + Mg) is 0.5.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Im Folgenden wird die Erfindung beispielsweise anhand von Ausführungsbeispielen näher erläutert:
Zum Nachweis der erzielten verbesserten Korrosionsbeständigkeit wurden zwei mit Zn-Al-Mg beschichtete Stahlbleche erfindungsgemäß mit einer aus NaCl, HCl und Wasser samt unvermeidlichen herstellungsbedingten Verunreinigungen bestehenden Lösung oberflächenbehandelt und mit einem Zn-Al-Mg beschichteten Stahlblech ohne erfindungsgemäßer Oberflächenbehandlung verglichen. Der Quotient von Al / (Al+Mg) der Zn-Al-Mg-Schutzbeschichtung Bereich ist auf 0,5 eingestellt.
The invention is explained in more detail below, for example, using exemplary embodiments:
To demonstrate the improved corrosion resistance achieved, two steel sheets coated with Zn-Al-Mg were surface-treated according to the invention with a solution consisting of NaCl, HCl and water together with inevitable production-related impurities and compared with a Zn-Al-Mg coated steel sheet without surface treatment according to the invention. The quotient of Al / (Al + Mg) of the Zn-Al-Mg protective coating area is set to 0.5.

Die untersuchten schutzbeschichteten Stahlbleche sind in der Tabelle 1 angeführt. Tabelle 1: Übersicht zu den untersuchten schutzbeschichteten Stahlblechen 1, 2, 3 Zusammensetzung der Lösung Simonkolleit Hydrozinkit Hydrotalcit 1 keine Behandlung undefiniert / variabel 2 5% NaCl mit einem pH Wert von 4-5 90% 5% 5% 3 10% NaCl mit einem pH Wert von 5 90% 5% 5% The investigated protective coated steel sheets are listed in Table 1. Table 1: Overview of the investigated protective coated steel sheets 1, 2, 3 Composition of the solution Simonkolleit Hydrozincite Hydrotalcite 1 no treatment undefined / variable 2nd 5% NaCl with a pH of 4-5 90% 5% 5% 3rd 10% NaCl with a pH of 5 90% 5% 5%

Die mit der erfindungsgemäßen Lösung behandelten schutzbeschichteten Bleche zeigten jeweils kompakte Korrosionsschutzschichten mit Schichtdicken im Bereich von 150nm bis 1,5µm.The protective-coated sheets treated with the solution according to the invention each showed compact corrosion-protective layers with layer thicknesses in the range from 150 nm to 1.5 μm.

Eine erhöhte Korrosionsfestigkeit der Zn-Al-Mg-Schutzbeschichtung konnte beim schutzbeschichteten Stahlblech 2 bereits nach 10 Minuten und einer Temperatur der Lösung in der Höhe von 30 Grad Celsius erreicht werden, wobei bei der Reaktion der Lösung mit der Schutzbeschichtung eine anodische Belastung (20V, 50Am-2) angelegt wurde.An increased corrosion resistance of the Zn-Al-Mg protective coating could be achieved in the protective coated steel sheet 2 after only 10 minutes and a temperature of the solution of 30 degrees Celsius, with an anodic load (20V, 50Am -2 ) was created.

Dieselbe erhöhte Korrosionsfestigkeit der Zn-Al-Mg-Schutzbeschichtung konnte beim schutzbeschichteten Stahlblech 3 nach 20 Minuten und einer Temperatur der Lösung in der Höhe von 60 Grad Celsius erreicht werden. Auf eine anodische Belastung der Schutzbeschichtung konnte hierbei verzichtet werden.The same increased corrosion resistance of the Zn-Al-Mg protective coating could be achieved with the protective coated steel sheet 3 after 20 minutes and a solution temperature of 60 degrees Celsius. An anodic loading of the protective coating was not necessary.

Claims (10)

  1. Surface-treating-method for improvement of corrosion resistance of a metallic substrate, more particularly steel sheet, that is equipped with a Zn-based protective coating, according to which a chloride-containing solution is applied to this protective coating and as a result, an anti-corrosion layer containing hydrozincite and simonkolleite is formed, characterized in that the protectively coated substrate reacts with the solution, which is adjusted to a pH value in the range from 4 to 6 with the aid of an acid and contains 1.8 to 18.5 wt.% chloride, in order to form an elevated proportion of simonkolleite relative to the proportion of hydrozincite in the anti-corrosion layer, wherein the solution reacts with the coating for a maximum of 20 minutes and the reaction of the solution with the protective coating forms an anti-corrosion layer with a layer thickness in the range from 150 nm to 1.5 µm.
  2. The method according to claim 1, characterized in that the protective coating has a Zn-AI-Mg base to which the chloride-containing solution is applied and as a result, an anti-corrosion layer containing hydrozincite, simonkolleite, and hydrotalcite forms in at least some areas.
  3. The method according to claim 1 or 2, characterized in that the solution contains 5 to 30 wt.%, more particularly 5 to 10 wt.%, NaCl.
  4. The method according to claim 1, 2, or 3, characterized in that the pH value of the solutions is adjusted using HCl.
  5. The method according to claim 4, characterized in that the solution that is applied to the protective coating is composed of water, NaCl, and HCl.
  6. The method according to one of claims 1 through 5, characterized in that the metallic substrate is anodically charged during the reaction with the solution.
  7. The method according to one of claims 1 through 6, characterized in that the temperature of the solution is adjusted to a range from 30 to 60 degrees Celsius.
  8. The method according to one of claims 1 through 7, characterized in that the Zn-based protective coating is applied to the sheet with the aid of a hot-dip immersion process.
  9. The method according to one of claims 1 through 8, characterized in that the reaction of the solution with the protective coating forms an anti-corrosion layer with a proportion of at least 80%, more particularly at least 90%, simonkolleite.
  10. The method according to one of claims 2 through 9, characterized in that in the Zn-Al-Mg protective coating, the ratio of Al / (Al + Mg) is in the range from 0.5 to 1.0 and preferably is 0.5.
EP14728808.8A 2013-04-29 2014-04-29 Method for surface treatment of a metallic substrate Active EP2992127B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14728808T PL2992127T3 (en) 2013-04-29 2014-04-29 Method for surface treatment of a metallic substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50294/2013A AT514229B1 (en) 2013-04-29 2013-04-29 Process for the surface treatment of a metallic substrate
PCT/AT2014/050110 WO2014176621A1 (en) 2013-04-29 2014-04-29 Method for surface-treating a metallic substrate

Publications (2)

Publication Number Publication Date
EP2992127A1 EP2992127A1 (en) 2016-03-09
EP2992127B1 true EP2992127B1 (en) 2020-07-08

Family

ID=50897308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14728808.8A Active EP2992127B1 (en) 2013-04-29 2014-04-29 Method for surface treatment of a metallic substrate

Country Status (8)

Country Link
US (1) US10011896B2 (en)
EP (1) EP2992127B1 (en)
JP (1) JP6865580B2 (en)
CN (1) CN105378153B (en)
AT (1) AT514229B1 (en)
ES (1) ES2822378T3 (en)
PL (1) PL2992127T3 (en)
WO (1) WO2014176621A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686653B2 (en) * 2016-04-13 2020-04-22 日本製鉄株式会社 Plated steel
DE102018216317A1 (en) * 2018-09-25 2020-03-26 Thyssenkrupp Ag Process for the modification of hot-dip galvanized surfaces
CN109750280A (en) * 2019-03-18 2019-05-14 北京科技大学 A kind of corrosion proof surface treatment method of raising carbon steel
CN110735098A (en) * 2019-10-22 2020-01-31 首钢集团有限公司 blackening-resistant zinc-aluminum-magnesium coated steel plate and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127683A (en) 1987-11-12 1989-05-19 Kobe Steel Ltd Plating material deposited with zn-mg alloy by evaporation having excellent corrosion resistance
JP2654861B2 (en) 1990-10-27 1997-09-17 新日本製鐵株式会社 Method of forming insulation film on grain-oriented electrical steel sheet with excellent workability and heat resistance of iron core
KR100268150B1 (en) * 1997-05-29 2000-10-16 윤종용 Sync-signal regenerating circuit of composite image signal
EP2186928A1 (en) * 2008-11-14 2010-05-19 Enthone, Inc. Method for the post-treatment of metal layers
JP2011168855A (en) * 2010-02-19 2011-09-01 Nisshin Steel Co Ltd Polyvinyl chloride coated steel sheet having excellent end face corrosion resistance
KR20120075235A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Hot dip zn alloy plated steel sheet having excellent anti-corrosion and method for manufacturing the steel sheet using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10011896B2 (en) 2018-07-03
CN105378153A (en) 2016-03-02
US20160083828A1 (en) 2016-03-24
AT514229B1 (en) 2015-02-15
EP2992127A1 (en) 2016-03-09
JP2016519220A (en) 2016-06-30
AT514229A1 (en) 2014-11-15
WO2014176621A1 (en) 2014-11-06
JP6865580B2 (en) 2021-04-28
ES2822378T3 (en) 2021-04-30
PL2992127T3 (en) 2021-02-08
CN105378153B (en) 2018-10-12

Similar Documents

Publication Publication Date Title
EP3019639B1 (en) Method for improving the adherence
EP2992127B1 (en) Method for surface treatment of a metallic substrate
EP1978131B1 (en) Means for manufacturing corrosion protection coats on metal surfaces
EP4253592A2 (en) Hot dip coated steel strip having an improved surface appearance and method for production thereof
EP2474649A1 (en) Method for treating the surface of a substrate with a protective coating
DE102019134298A1 (en) Method for producing a flat steel product with a metallic protective layer based on zinc and a phosphate layer produced on a surface of the metallic protective layer and such a flat steel product
DE60037645T2 (en) SURFACE-TREATED STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF
EP2692524B1 (en) Composite material with a protective layer against corrosion and method for its manufacture
EP3449040B1 (en) Composition for reducing the removal of material by pickling in the pickling of metal surfaces that contain galvanized and/or ungalvanized steel
DE10257737B3 (en) Electrolytic magnesium deposition on a substrate made from sheet metal with a zinc (alloy) coating, used in the automobile industry, using a solvent for the deposition and heat treating the coated substrate
DE102016100245A1 (en) Self-lubricating electrodeposited phosphating coating
EP4045314B1 (en) Method for producing a flat steel product, and method for producing a component therefrom
DE102017214527A1 (en) Process for the coating of hot-flat steel flat products
EP3134497B1 (en) Metal sheet and method for improving the formability of metal sheet
DE3635123C2 (en)
DE102013107011A1 (en) Process for coating long Cu products with a metallic protective layer and a Cu long product provided with a metallic protective layer
EP0943695A1 (en) Wire based on zinc and aluminium and its use in thermal spraying for corrosion protection
DE102020208991A1 (en) Process for producing a hot-dip coated steel sheet and hot-dip coated steel sheet
EP3502311A1 (en) Method for the corrosion protection and cleaning pretreatment of metallic components
DE2528143C3 (en) Cold-rolled enamelling steel sheet
EP2900771B1 (en) Use of a polymeric corrosion inhibitor for treatment of anodized metal surfaces
EP2727720B1 (en) Compound material and method for heat treating the same
DE583349C (en) Process to improve the rust-protecting phosphate coatings on iron objects
WO2018036806A1 (en) USE OF AN ADHESION PROMOTER OBTAINABLE AS THE REACTION PRODUCT OF A DI- OR POLYAMINE WITH α,β-UNSATURATED CARBOXYLIC ACID DERIVATIVES FOR METAL SURFACE TREATMENT
DE102022106615A1 (en) Method for modifying a surface of a hot-dip coated steel sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014014421

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25D0011340000

Ipc: C23C0022530000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 22/06 20060101ALI20190627BHEP

Ipc: C23C 2/26 20060101ALI20190627BHEP

Ipc: C23C 22/00 20060101ALI20190627BHEP

Ipc: C23C 22/53 20060101AFI20190627BHEP

Ipc: C23C 22/05 20060101ALI20190627BHEP

Ipc: C25D 11/34 20060101ALI20190627BHEP

Ipc: C23C 2/06 20060101ALI20190627BHEP

INTG Intention to grant announced

Effective date: 20190723

INTG Intention to grant announced

Effective date: 20190731

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20200122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014421

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014421

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2822378

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1288526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140429

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230419

Year of fee payment: 10

Ref country code: FR

Payment date: 20230425

Year of fee payment: 10

Ref country code: ES

Payment date: 20230503

Year of fee payment: 10

Ref country code: DE

Payment date: 20230427

Year of fee payment: 10

Ref country code: CH

Payment date: 20230502

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230404

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230427

Year of fee payment: 10