EP2991158B1 - Generic channel filter - Google Patents

Generic channel filter Download PDF

Info

Publication number
EP2991158B1
EP2991158B1 EP15002377.8A EP15002377A EP2991158B1 EP 2991158 B1 EP2991158 B1 EP 2991158B1 EP 15002377 A EP15002377 A EP 15002377A EP 2991158 B1 EP2991158 B1 EP 2991158B1
Authority
EP
European Patent Office
Prior art keywords
channel filter
resonator
coupling
adjustment
longitudinal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15002377.8A
Other languages
German (de)
French (fr)
Other versions
EP2991158A1 (en
Inventor
Christian Arnold
Jean Parlebas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesat Spacecom GmbH and Co KG
Original Assignee
Tesat Spacecom GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesat Spacecom GmbH and Co KG filed Critical Tesat Spacecom GmbH and Co KG
Publication of EP2991158A1 publication Critical patent/EP2991158A1/en
Application granted granted Critical
Publication of EP2991158B1 publication Critical patent/EP2991158B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators

Definitions

  • the present invention relates to a channel filter for a communication device or for a data transmission path, in particular for a satellite transmission path, in particular for a satellite radio transmission path
  • the satellite radio transmission path may be, for example, a Ka-band transmission path in a frequency range of 17.7 - 21.2 GHz for the downlink and 27.5-31 GHz for the uplink, or a K or X band implementation in the range around 11 or 7 GHz.
  • Resonators can be used in the form of a passive device as a channel filter in radio transmission links.
  • channel filters usually consist of several coupled resonators.
  • the effectively usable bandwidth is that frequency bandwidth at which a filter behavior around a central frequency is constant or almost constant.
  • Channel filters can be used, for example, in so-called output multiplexers.
  • a typical output multiplexer consists of channel filters connected to a waveguide busbar.
  • An object of the output multiplexer is to combine narrowband high power communication signals on a common waveguide (the so-called busbar).
  • the channel filters and busbar are coordinated in a complex development process. Usually only after completion of this development process, the individual parts for the channel filter, as well as the busbar and possibly required additional parts can be ordered and manufactured.
  • Invar round-waveguide technology which is widely used today, as well as all other available technologies, can accommodate a variety of complex design and development processes, as these devices can be made up of many customized parts.
  • the individual parts usually have to be individually manufactured and procured for each channel filter.
  • adjustment screws can be a fine adjustment of the resonant frequency in the range of a few per thousand of the resonant frequency. The free adjustment of the filter frequency (resonance frequency) is thus not possible.
  • US 2004/051603 A1 describes a cross-coupled dielectric resonator circuit.
  • resonators are relative to one another in one Housing arranged so that adjustability and coupling of the resonators is made possible.
  • US 2013/009728 A1 describes an adjustable resonator filter whose housing is formed by means of recesses in a material and whose recesses are separated from each other by conductive portions.
  • a coupling recess and a coupling space are provided in the housing.
  • an inductive coupling element and an adjustment is provided in the coupling space.
  • US 2013/093539 A1 describes a method of fabricating an RF filter having a plurality of resonator cavities.
  • US 2012/007697 A1 describes a tunable resonator filter consisting of cavity resonators.
  • a coupling opening with a constant width.
  • the coupling strength between the resonators is adjusted by a tuning element which is movably supported at the opposite sides of the coupling opening on the partition wall.
  • US 6,232,853 B1 describes a waveguide filter having a plurality of asymmetric resonators.
  • the waveguide filter has an input and an output with a low-pass filter and a transformer unit.
  • the low pass filter has a plurality of symmetrically corrugated slots, and the transformer unit includes at least one stepped transformer section for matching the filter to an external waveguide.
  • a channel filter for a communication device has a first resonator, a coupling element with a first longitudinal section and a second longitudinal section and a first adjustment element.
  • the coupling element is designed to couple the first resonator at least indirectly to an input or an output of the channel filter, wherein the first longitudinal section in a first direction, which extends transversely to a longitudinal direction of the channel filter, has a smaller width than the second longitudinal section and wherein the first adjustment element is located at least in sections in the first longitudinal section and at least partially in the second longitudinal section.
  • the first adjusting element is movable in a second direction transversely to the first direction and transversely to the longitudinal direction to the center of the coupling element and away therefrom, thereby performing a balancing movement, wherein the second direction is transverse to the first direction.
  • the first longitudinal section and the second longitudinal section extend in a longitudinal direction of the channel filter, wherein the longitudinal direction corresponds to a direction of the signal path from an input to an output of the channel filter.
  • the first longitudinal section is a coupling screen.
  • the second longitudinal section is a waveguide and is connected to the first longitudinal section.
  • the first adjustment element protrudes in the first direction transversely to the longitudinal direction of the coupling element beyond a side surface of the first longitudinal section.
  • the amount of energy coupled by the coupling element is particularly important for filter characteristics such as bandwidth and adaptation. Therefore, it may be advantageous if this is adjustable in the widest possible frequency range.
  • the first adjustment element is used for adjustment of the coupling element.
  • this can substantially replace an upper part of the coupling element and can therefore in particular represent a variably adjustable coupling element.
  • the upper part of the coupling element can be either completely replaced by the balancing element or even in reduced form or partially present.
  • the balancing element can be embodied in one embodiment as a metallic or dielectric screw, wherein the metallic screw reduces the amount of coupling energy and the dielectric screw increases this.
  • the first adjustment element extends in a longitudinal direction of the coupling element at least in sections into the first longitudinal section and into the second longitudinal section. In other words, the first adjustment element is arranged at the transition between the first longitudinal section and the second longitudinal section.
  • the first adjustment element allows a movement transversely to the longitudinal direction of the channel filter, ie towards the center of the coupling element and away.
  • the first longitudinal section is a coupling diaphragm.
  • the coupling diaphragm is designed to couple the first resonator to an adjacent or immediately adjacent resonator.
  • An adjustment movement of the first adjustment element extends transversely to the coupling direction of the coupling diaphragm between the first resonator and the adjacent resonator, the coupling direction usually extending in the direction of the longitudinal direction of the channel filter.
  • the second longitudinal section is a waveguide.
  • the cross section of the waveguide is larger than the cross section of the coupling diaphragm.
  • the circumference of the coupling diaphragm and of the waveguide in a direction orthogonal to the longitudinal direction of the channel filter can also be used.
  • the circumference of the waveguide is larger than the circumference of the coupling diaphragm.
  • the first adjustment element is designed and arranged so that it projects in the first direction transversely to a longitudinal direction of the coupling element over a side surface of the first longitudinal section.
  • the first adjustment element can be arranged such that it projects beyond a single or two side surfaces, in particular over two opposite side surfaces of the first longitudinal section.
  • the first adjustment element may be arranged centrally or off-center (eccentric) with respect to the first longitudinal section. If the first adjustment element is arranged eccentrically, in particular it can only project beyond a single side surface of the first longitudinal section. In the case of an eccentric arrangement of the first adjusting element, this may protrude beyond a side surface, even if its diameter or its edge length are smaller than the width of the first longitudinal section.
  • the first balancing element may be a balancing screw, which is designed substantially cylindrical.
  • the diameter of the adjustment element is greater than the width of the first longitudinal section.
  • the first balancing element is arranged in a longitudinal section, which extends in a longitudinal direction into the second longitudinal section, between two opposite side surfaces of the second longitudinal section.
  • the diameter is smaller than the width of the second longitudinal section and the adjustment screw protrudes beyond any side surface of the second longitudinal section.
  • a coupling angle of the coupling element with the first resonator differs from 0 ° with respect to a longitudinal direction of the channel filter.
  • Coupling at an angle other than 0 ° may also help to achieve a desired coupling value and thus may contribute to matching of the coupling element and adjustment of the operating frequency of the channel filter.
  • the coupling angle between 1 ° and 90 °, more particularly between 1 ° and 45 ° (each in the geometrically positive or negative sense, or counterclockwise or clockwise) between the longitudinal direction of the coupling element and the longitudinal direction of the channel filter amount.
  • the channel filter has a second resonator, which is coupled to the first resonator via the coupling element.
  • the channel filter may include a plurality of resonators coupled to each other via a coupling element.
  • a coupling angle of the coupling element with the second resonator with respect to the differs Longitudinal direction of the channel filter from the coupling angle of the coupling element with the first resonator with respect to the longitudinal direction of the channel filter from.
  • the coupling angles of a coupling element between a first resonator and a second resonator differ from the coupling angles of a coupling element between the second resonator and a third resonator.
  • the first resonator has a second adjustment element, which is designed for a coarse adjustment of the resonant frequency of the first resonator.
  • Coarse adjustment means that the operating frequency can be changed in a frequency range of up to +/- 40%, in particular +/- 10% to 20% of its current value.
  • the second adjustment element can be made possible that a channel filter for different operating frequencies can be used without a redevelopment of a channel filter is necessary.
  • the second adjustment element is arranged so that it projects into an interior of the resonator and can be moved in this interior so that its arrangement in the interior can be changed.
  • the first resonator has a third adjustment element, which is designed for a fine adjustment of the resonant frequency of the first resonator.
  • the third adjustment element is mechanically coupled to the second adjustment element.
  • the third adjustment element is carried along, so that fine adjustment takes place based on the rough adjustment predetermined by the second adjustment element by the third adjustment element.
  • the third adjustment element is movable with respect to the second adjustment element.
  • the channel filter has a short-circuit element which is arranged to bridge at least the second resonator.
  • the short-circuit element can also be referred to as a bridge element, which bridges one or more adjacent resonators.
  • channel filter according to an embodiment of the invention can be described as follows.
  • the channel filter such as an output multiplexer
  • a generic channel filter is independent of the project-related development and design process; the essential filter parts are identical across projects and can be procured in advance and put into storage; quick setup of the individual parts possible; an output multiplexer assembled using such a generic channel filter is adjustable in the entire waveguide band.
  • One aspect of the channel filter is to implement, with the aid of a TE01n implementation, a channel filter for output multiplexer that is as broad as possible in terms of frequency and bandwidth.
  • the adjustability of the frequency is limited in the ideal case only by the noise-free region of the payload, which is approximately 1 GHz in the Ka band.
  • the geometric dimensions such as e.g. the diameter of the resonators can be adjusted.
  • the implementation is independent of the frequency band, a Ka-band implementation at 20 GHz / 30 GHz is just as possible as a Ku or X-band implementation in the range around 11, or 7 GHz.
  • the properties of the resonance mode are used to preset the frequency with the aid of a coarse adjustment plate.
  • the fine adjustment can then be carried out with the help of a fine adjustment screw integrated in the coarse adjustment plate.
  • the adjustment of the coupling can be done for example by means of diaphragm adjustment screws. These screws can be significantly larger than the actual aperture is long or wide. With such diaphragm adjustment screws can effectively reduce the cross-section of the aperture.
  • the overlap area with the waveguide ie the area in which the screw protrudes beyond the aperture
  • the cut off frequency is the frequency above which an electromagnetic wave transports energy and below which only an electromagnetic field can be detected.
  • the resonators can in particular be arranged such that the lateral spacing of the filters on the busbar can be kept constant for different operating frequencies and, moreover, the total length does not exceed a predetermined length. This is partly due to the fact that the maximum total length of the multiplexer is usually limited by spatial specification in the environment of use of the channel filter. An increased distance between the channels can therefore reduce the possible number of channels. On the other hand, the degradation of the filter performance can increase with increasing distance of the channels on the busbar, in particular over the temperature.
  • the resonators are arranged in particular in a row. In this way, a desired channel spacing can be realized on the busbar. Electrically corresponds to this structure of the channel filter of a so-called. Extracted Pole structure, that is, filters can be realized with zero transmission points. A connecting waveguide between the poles may be guided above or below the two pole resonators. It may be either centered or slightly laterally offset with respect to a longitudinal axis or center axis of the channel filter to facilitate accessibility of the balance screws and plates.
  • the coupling diaphragms can either be arranged in a direct line or guided out of the resonator at arbitrary angles, for example for targeted suppression of spurious modes.
  • the coupling diaphragm between the first and second resonators of the busbar may be longer than the remaining coupling diaphragms in order to be able to realize the coupling in an arc. This can lead to the electrically necessary coupling value no longer being reached.
  • a piece of waveguide with an expanded cross-section can be introduced between the short input and output apertures.
  • the waveguide corresponds to the second longitudinal section of the coupling element.
  • the depth of the aperture may be important, as it may depend on the depth of the aperture, whether the aperture acts evaneszent (damping), or allows the propagation of an electromagnetic wave.
  • variable short circuits which can be realized with the help of shorting plates, can be attached.
  • the connecting waveguide can be made, for example, from bolted half shells or aluminum profile.
  • the waveguide can be equipped with a replaceable short-circuit plate on both sides or on one side to increase the adjustment range.
  • more balancing elements can be placed in the form of adjustment screws.
  • the pole resonators may be located either at the filter input or anywhere in the filter.
  • the filter order is easily expandable by adding more resonators at the input or at the output.
  • the addition of further polar resonators is also possible.
  • the filter can be made to reduce the temperature dependence of either temperature stable materials, such as Invar, or from non-temperature stable materials, such as aluminum, where it is equipped with a temperature compensation unit.
  • the channel filter allows for constant mechanical dimensions such. Length and width use for different working frequencies, which can vary greatly. It is a generic channel filter, so that a new development for different operating frequencies and applications can be avoided. During development, it may only be necessary to provide matching data. Identical parts sets for the generic channel filter can be procured in large quantities, as an individual design of the components depending on the operating frequency is not required. A significant acceleration of the development time can be achieved by reducing development effort and eliminating project-dependent design and production time. By mass production, elimination of design and partial development costs, a saving of costs can be made possible.
  • the channel filter allows individual matching with a large adjustment range, so that achievable manufacturing accuracy of generic parts is sufficient and the items do not have to be made in view of the future working frequency.
  • the center frequency of the filter is essentially determined by the resonant frequency of the filter resonators.
  • a second adjustment element in the form of an adjustment plate are used. Such an adjustment plate allows the frequency adjustment in very wide areas.
  • the third adjustment element may comprise metallic or dielectric material.
  • Fig. 1 shows a part of a channel filter 10 with a resonator 100 and a coupling element 200 coupled thereto.
  • the resonator is designed as a cylindrical cavity with two opposite basic or end faces 130, 140.
  • the coupling element 200 is coupled to a lateral surface of the cylindrical cavity.
  • the coupling element 200 has a first longitudinal section 202 and a second longitudinal section 204.
  • a first adjustment element 400 is arranged to extend in a direction transverse to the longitudinal direction 305 of the coupling element 200 into both the first longitudinal section 202 and the second longitudinal section 204, and permits an adjustment movement in the direction of the arrow 412.
  • the first longitudinal section has a side surface 203.
  • the cross-section or base area 405 of the adjustment screw 400 is designed or the adjustment screw 400 is arranged such that the adjustment screw projects beyond the side surface 203 (out of the plane of the drawing in the direction of the viewer, in the direction of the arrow 307, which corresponds to the width of the first coupling element indicates).
  • the adjustment screw also over in the Fig. 1 rear side surface of the first longitudinal portion 202 protrude.
  • the second longitudinal portion 204 is wider in the direction 307 than the first longitudinal portion 202.
  • the adjustment screw 400 is designed and arranged so that it is in the region of the second longitudinal portion 204 between the side surfaces 205A, 205B.
  • the dimensions of the channel filter are frequency dependent.
  • the first longitudinal section 202 may have a width of a few cm, for example between 3 and 5 cm
  • the second longitudinal section 204 may have a width of more than 5 cm, for example between 5 and 12 cm, in particular ca. 9.5 cm.
  • the diameter of the adjustment screw 400 may in one embodiment be greater than the width of the first longitudinal section 202 and smaller than the width of the second longitudinal section 204.
  • Fig. 2 1 shows a resonator 100 with a second balancing element 110 comprising an adjusting plate 114 and a shaft 116 and with a third balancing element 120 designed as a balancing screw, which is arranged in the shaft 116 and can be moved relative to the second balancing element 110 by a rotational movement of the balancing screw 120 ,
  • the second adjustment element 110 can also by a rotational movement of the shaft 116th with respect to the base 130 of the resonator perform the adjustment movement.
  • Both the second adjustment element and the third adjustment element allow a balancing movement.
  • the adjustment plate 114 may be made to have a balancing movement of several cm, e.g. between 1 cm and 4 cm.
  • the adjustment screw 120 may be designed to carry out an adjustment movement of a few tenths of a mm up to a few mm, e.g. between 0.1 mm to 2 mm.
  • the adjustment screw 120 has a smaller cross section than the adjustment plate 114 and the shaft 116.
  • Fig. 3 shows a side view (top) and a top view (bottom) of a channel filter 10 with four resonators 100, wherein each immediately adjacent resonators are coupled together via a coupling element.
  • the channel filter 10 furthermore has a connecting element 500.
  • the width 16 and the length 18 of the channel filter can be kept constant or substantially constant, irrespective of the operating frequency, i. no adjustments of the geometric dimensions of the channel filter depending on a desired operating frequency are required.
  • Fig. 4 shows a channel filter 10 with a filter input 12 and a filter output 14. The longitudinal direction of the channel filter is indicated by a dashed line.
  • a connecting element 500 connects two resonators.
  • Fig. 5 shows a channel filter 10 in a view of the resonator arrangement from above.
  • a waveguide 600 is disposed between the poles and may be for the better Accessibility of the adjustment elements 110, 120 may be laterally offset with respect to a longitudinal axis of the channel filter 10. Alternatively, the waveguide 600 may be arranged centrally.
  • Fig. 6 shows a channel filter 10 with coupling elements 200 coupled to the resonators 100 at different angles 210 with respect to the longitudinal direction of the channel filter.
  • the connecting waveguide 600 is arranged centrally, can also be laterally offset for better accessibility of the balancing elements, as already in Fig. 5 shown.
  • FIG. 12 shows a channel filter 10 with coupling coupling elements 200 coupled to the resonators 100 at different angles 210 with respect to the longitudinal direction of the channel filter and a laterally displaced connecting waveguide 600.
  • the coupling at different angles is implemented as a waveguide structure with enlarged cross section 300 in the middle region to achieve a desired coupling value.
  • the sections 200 and 300 represent the first longitudinal section and the second longitudinal section of the coupling element between two resonators.
  • Fig. 8 shows a channel filter 10, wherein the connecting waveguide 600 with respect to the embodiment in Fig. 7 is displaced in the longitudinal direction, so bridges other resonators.
  • Fig. 9 shows a channel filter 10 and indicates expansion possibilities for higher-circular filters (any number of resonators can be added, these are shown in dashed lines).

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

Gebiet der ErfindungField of the invention

Die vorliegende Erfindung betrifft ein Kanalfilter für eine Kommunikationseinrichtung bzw. für eine Datenübertragungsstrecke, insbesondere für eine Satellitenübertragungsstrecke, insbesondere für eine Satellitenfunkübertragungsstrecke, Bei der Satellitenfunkübertragungsstrecke kann es sich beispielsweise um eine Ka-Band Übertragungsstrecke handeln in einem Frequenzbereich von 17,7 - 21,2 GHz für die Abwärtsstrecke (downlink) und 27,5 - 31 GHz für die Aufwärtsstrecke (uplink) oder um eine Ku- oder X-Band-Implementierung im Bereich um 11 bzw. 7 GHz.The present invention relates to a channel filter for a communication device or for a data transmission path, in particular for a satellite transmission path, in particular for a satellite radio transmission path, The satellite radio transmission path may be, for example, a Ka-band transmission path in a frequency range of 17.7 - 21.2 GHz for the downlink and 27.5-31 GHz for the uplink, or a K or X band implementation in the range around 11 or 7 GHz.

Hintergrund der ErfindungBackground of the invention

Resonatoren können in Form eines passiven Bauelements als Kanalfilter in Funkübertragungsstrecken eingesetzt werden. In der Praxis eingesetzte Kanalfilter bestehen üblicherweise aus mehreren verkoppelten Resonatoren. Mit zunehmender Frequenz der Signalübertragung auf einer Funkstrecke ändern sich dabei die Anforderungen an die Filter, insbesondere was die baulichen und räumlichen Anforderungen einerseits wie auch die Anforderungen an die effektiv nutzbare Bandbreite eines Filters betrifft. Die effektiv nutzbare Bandbreite ist dabei diejenige Frequenzbandbreite, bei der ein Filterverhalten um eine Zentralfrequenz konstant oder nahezu konstant ist.Resonators can be used in the form of a passive device as a channel filter in radio transmission links. In practice used channel filters usually consist of several coupled resonators. As the frequency of the signal transmission on a radio link increases, the requirements for the filters change, in particular as far as the structural and spatial requirements on the one hand and the requirements for the effective usable bandwidth of a filter are concerned. The effectively usable bandwidth is that frequency bandwidth at which a filter behavior around a central frequency is constant or almost constant.

In Abhängigkeit der Resonanzfrequenz eines Filters ist es üblicherweise erforderlich, beispielsweise die geometrischen Abmessungen eines Filters anzupassen.Depending on the resonant frequency of a filter, it is usually necessary to adapt, for example, the geometric dimensions of a filter.

Kanalfilter können beispielsweise in sog. Ausgangsmultiplexern eingesetzt werden. Ein typischer Ausgangsmultiplexer besteht aus Kanalfiltern, die an einer Hohlleitersammelschiene angeschlossen sind. Eine Aufgabe des Ausgangsmultiplexers besteht darin, schmalbandige Hochleistungs-Kommunikationssignale auf einem gemeinsamen Hohlleiter (der sog. Sammelschiene) zu kombinieren. Die Kanalfilter und Sammelschiene werden in einem aufwändigen Entwicklungsprozess aufeinander abgestimmt. Üblicherweise erst nach Beendigung dieses Entwicklungsprozesses können die Einzelteile für die Kanalfilter, sowie die Sammelschiene und evtl. benötigte Zusatzteile bestellt und hergestellt werden.Channel filters can be used, for example, in so-called output multiplexers. A typical output multiplexer consists of channel filters connected to a waveguide busbar. An object of the output multiplexer is to combine narrowband high power communication signals on a common waveguide (the so-called busbar). The channel filters and busbar are coordinated in a complex development process. Usually only after completion of this development process, the individual parts for the channel filter, as well as the busbar and possibly required additional parts can be ordered and manufactured.

Bei der derzeit häufig eingesetzten Invar-Rundhohlleiter-Technologie sowie bei allen anderen verfügbaren Technologien können verschiedene, komplexe Aufbau- und Entwicklungsprozesse einzuhalten sein, da diese Geräte aus vielen maßgeschneiderten Einzelteilen bestehen können. Die Einzelteile müssen üblicherweise für jedes Kanalfilter individuell gefertigt und beschafft werden. Mit Hilfe der bei dieser Technologie vorhandenen Abgleichschrauben kann ein Feinabgleich der Resonanzfrequenz im Bereich von wenigen Promille der Resonanzfrequenz erfolgen. Die freie Einstellung der Filter-Frequenz (Resonanzfrequenz) ist damit jedoch nicht möglich.Invar round-waveguide technology, which is widely used today, as well as all other available technologies, can accommodate a variety of complex design and development processes, as these devices can be made up of many customized parts. The individual parts usually have to be individually manufactured and procured for each channel filter. With the help of existing with this technology adjustment screws can be a fine adjustment of the resonant frequency in the range of a few per thousand of the resonant frequency. The free adjustment of the filter frequency (resonance frequency) is thus not possible.

Bei der häufig für die Temperaturkompensation von Aluminiumfiltern verwendeten TE01n-Mode ist es demgegenüber möglich eine komplette Endwand des Resonators zu verschieben, da diese Moden keine Wandströme von Seiten- zu Endwand benötigen. Dieser Aufbau wird üblicherweise zur Kompensation von Temperatureinflüssen eingesetzt.By contrast, in the TE01n mode frequently used for the temperature compensation of aluminum filters, it is possible to displace a complete end wall of the resonator, since these modes do not require wall currents from side to end wall. This structure is usually used to compensate for temperature influences.

US 2004/051603 A1 beschreibt eine kreuzgekoppelte dielektrische Resonatorschaltung. Dabei sind Resonatoren relativ zueinander in einem Gehäuse so angeordnet, dass Einstellbarkeit und Kopplung der Resonatoren ermöglicht wird. US 2004/051603 A1 describes a cross-coupled dielectric resonator circuit. In this case, resonators are relative to one another in one Housing arranged so that adjustability and coupling of the resonators is made possible.

US 2013/009728 A1 beschreibt ein einstellbares Resonatorfilter, dessen Gehäuse mittels Ausnehmungen in einem Material gebildet ist und dessen Ausnehmungen durch leitende Abschnitte voneinander getrennt sind. In dem Gehäuse sind eine Kopplungsausnehmung und ein Kopplungsraum vorgesehen. In dem Kopplungsraum befindet sich ein induktives Koppelelement und ein Einstellelement. US 2013/009728 A1 describes an adjustable resonator filter whose housing is formed by means of recesses in a material and whose recesses are separated from each other by conductive portions. In the housing, a coupling recess and a coupling space are provided. In the coupling space is an inductive coupling element and an adjustment.

US 2013/093539 A1 beschreibt ein Verfahren zum Herstellen eines RF-Filters, das mehrere Resonatorhohlräume aufweist. US 2013/093539 A1 describes a method of fabricating an RF filter having a plurality of resonator cavities.

US 2012/007697 A1 beschreibt ein abstimmbares Resonatorfilter bestehend aus Hohlraumresonatoren. In einer die Resonatoren auf dem Übertragungsweg des Resonatorfilters trennenden Trennwand befindet sich eine Koppelöffnung mit einer konstanten Breite. Die Kopplungsstärke zwischen den Resonatoren wird durch ein Abstimmelement eingestellt, das an den gegenüberliegenden Seiten der Kopplungsöffnung an der Trennwand bewegbar abgestützt ist. US 2012/007697 A1 describes a tunable resonator filter consisting of cavity resonators. In a separating the resonators on the transmission path of the resonator separating wall is a coupling opening with a constant width. The coupling strength between the resonators is adjusted by a tuning element which is movably supported at the opposite sides of the coupling opening on the partition wall.

US 6,232,853 B1 beschreibt ein Hohlleiterfilter mit einer Mehrzahl von asymmetrischen Resonatoren. Das Hohlleiterfilter weist einen Eingang und einen Ausgang mit einem Tiefpassfilter und einer Transformatoreinheit auf. Das Tiefpassfilter weist eine Vielzahl von symmetrisch gewellten Schlitzen auf und die Transformatoreinheit umfasst mindestens einen gestuften Transformatorabschnitt zum Anpassen des Filters an einen externen Hohlleiter. US 6,232,853 B1 describes a waveguide filter having a plurality of asymmetric resonators. The waveguide filter has an input and an output with a low-pass filter and a transformer unit. The low pass filter has a plurality of symmetrically corrugated slots, and the transformer unit includes at least one stepped transformer section for matching the filter to an external waveguide.

Zusammenfassung der ErfindungSummary of the invention

Es kann als Aufgabe der Erfindung betrachtet werden, ein Kanalfilter anzugeben, dessen Resonanzfrequenz in einem breiten Frequenzband einstellbar ist.It can be regarded as an object of the invention to specify a channel filter whose resonance frequency can be set in a wide frequency band.

Diese Aufgabe wird gelöst durch den Gegenstand des unabhängigen Anspruchs. Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen sowie aus der folgenden Beschreibung.This object is solved by the subject matter of the independent claim. Further embodiments will become apparent from the dependent claims and from the following description.

Gemäß einem ersten Aspekt der Erfindung ist ein Kanalfilter für eine Kommunikationseinrichtung angegeben. Das Kanalfilter weist einen ersten Resonator, ein Kopplungselement mit einem ersten Längsabschnitt und einem zweiten Längsabschnitt sowie ein erstes Abgleichelement auf. Das Kopplungselement ist ausgeführt, den ersten Resonator zumindest mittelbar mit einem Eingang oder einem Ausgang des Kanalfilters zu koppeln, wobei der erste Längsabschnitt in einer ersten Richtung, welche quer zu einer Längsrichtung des Kanalfilters verläuft, eine geringere Breite aufweist als der zweite Längsabschnitt und wobei sich das erste Abgleichelement zumindest abschnittsweise in dem ersten Längsabschnitt und zumindest abschnittsweise in dem zweiten Längsabschnitt befindet. Dabei ist das erste Abgleichelement in einer zweiten Richtung quer zu der ersten Richtung und quer zu der Längsrichtung auf den Mittelpunkt des Kopplungselementes hin und davon weg bewegbar, um hierdurch eine Abgleichbewegung auszuführen, wobei die zweite Richtung quer zu der ersten Richtung verläuft. Der erste Längsabschnitt und der zweite Längsabschnitt erstrecken sich in einer Längsrichtung des Kanalfilters, wobei die Längsrichtung einer Richtung des Signalpfades von einem Eingang zu einem Ausgang des Kanalfilters entspricht. Der erste Längsabschnitt ist eine Kopplungsblende. Der zweite Längsabschnitt ist ein Hohlleiter und ist mit dem ersten Längsabschnitt verbunden. Das erste Abgleichelement ragt in der ersten Richtung quer zu der Längsrichtung des Kopplungselements über eine Seitenfläche des ersten Längsabschnitts hinaus.According to a first aspect of the invention, a channel filter for a communication device is specified. The channel filter has a first resonator, a coupling element with a first longitudinal section and a second longitudinal section and a first adjustment element. The coupling element is designed to couple the first resonator at least indirectly to an input or an output of the channel filter, wherein the first longitudinal section in a first direction, which extends transversely to a longitudinal direction of the channel filter, has a smaller width than the second longitudinal section and wherein the first adjustment element is located at least in sections in the first longitudinal section and at least partially in the second longitudinal section. In this case, the first adjusting element is movable in a second direction transversely to the first direction and transversely to the longitudinal direction to the center of the coupling element and away therefrom, thereby performing a balancing movement, wherein the second direction is transverse to the first direction. The first longitudinal section and the second longitudinal section extend in a longitudinal direction of the channel filter, wherein the longitudinal direction corresponds to a direction of the signal path from an input to an output of the channel filter. The first longitudinal section is a coupling screen. The second longitudinal section is a waveguide and is connected to the first longitudinal section. The first adjustment element protrudes in the first direction transversely to the longitudinal direction of the coupling element beyond a side surface of the first longitudinal section.

Die durch das Kopplungselement gekoppelte Menge von Energie ist insbesondere maßgeblich für Filtereigenschaften wie Bandbreite und Anpassung. Daher kann es vorteilhaft sein, wenn diese in einem möglichst weiten Frequenzbereich einstellbar ist.The amount of energy coupled by the coupling element is particularly important for filter characteristics such as bandwidth and adaptation. Therefore, it may be advantageous if this is adjustable in the widest possible frequency range.

Zum Abgleich des Kopplungselements kommt das erste Abgleichelement zum Einsatz. Dieses kann in einer Ausführungsform einen oberen Teil des Koppelelements im Wesentlichen ersetzen und kann damit insbesondere ein variabel einstellbares Koppelelement darstellen. Der obere Teil des Koppelelements kann durch das Abgleichelement entweder vollständig ersetzt werden oder noch in reduzierter Form bzw. teilweise vorhanden sein. Das Abgleichelement kann in einer Ausführungsform als metallische oder dielektrische Schraube ausgeführt sein, wobei die metallische Schraube die Menge der koppelnden Energie reduziert und die dielektrische Schraube diese erhöht.For adjustment of the coupling element, the first adjustment element is used. In one embodiment, this can substantially replace an upper part of the coupling element and can therefore in particular represent a variably adjustable coupling element. The upper part of the coupling element can be either completely replaced by the balancing element or even in reduced form or partially present. The balancing element can be embodied in one embodiment as a metallic or dielectric screw, wherein the metallic screw reduces the amount of coupling energy and the dielectric screw increases this.

Das erste Abgleichelement erstreckt sich in einer Längsrichtung des Kopplungselementes zumindest abschnittsweise in den ersten Längsabschnitt und in den zweiten Längsabschnitt. In anderen Worten ist das erste Abgleichelement an dem Übergang zwischen dem ersten Längsabschnitt und dem zweiten Längsabschnitt angeordnet.The first adjustment element extends in a longitudinal direction of the coupling element at least in sections into the first longitudinal section and into the second longitudinal section. In other words, the first adjustment element is arranged at the transition between the first longitudinal section and the second longitudinal section.

Das erste Abgleichelement ermöglicht eine Bewegung quer zur Längsrichtung des Kanalfilters, also auf den Mittelpunkt des Kopplungselementes hin und davon weg.The first adjustment element allows a movement transversely to the longitudinal direction of the channel filter, ie towards the center of the coupling element and away.

Gemäß der Erfindung ist der erste Längsabschnitt eine Kopplungsblende.According to the invention, the first longitudinal section is a coupling diaphragm.

Die Kopplungsblende ist ausgeführt, den ersten Resonator mit einem benachbarten bzw. unmittelbar benachbarten Resonator zu koppeln. Eine Abgleichbewegung des ersten Abgleichelements verläuft quer zu der Kopplungsrichtung der Kopplungsblende zwischen dem ersten Resonator und dem benachbarten Resonator, wobei die Kopplungsrichtung üblicherweise in Richtung der Längsrichtung des Kanalfilters verläuft.The coupling diaphragm is designed to couple the first resonator to an adjacent or immediately adjacent resonator. An adjustment movement of the first adjustment element extends transversely to the coupling direction of the coupling diaphragm between the first resonator and the adjacent resonator, the coupling direction usually extending in the direction of the longitudinal direction of the channel filter.

Gemäß der Erfindung ist der zweite Längsabschnitt ein Hohlleiter.According to the invention, the second longitudinal section is a waveguide.

Der Querschnitt des Hohlleiters ist größer als der Querschnitt der Kopplungsblende. Als Maßstab kann auch der Umfang der Kopplungsblende sowie des Hohlleiters in einer Richtung orthogonal zur Längsrichtung des Kanalfilters herangezogen werden. Der Umfang des Hohlleiters ist größer als der Umfang der Kopplungsblende.The cross section of the waveguide is larger than the cross section of the coupling diaphragm. As a standard, the circumference of the coupling diaphragm and of the waveguide in a direction orthogonal to the longitudinal direction of the channel filter can also be used. The circumference of the waveguide is larger than the circumference of the coupling diaphragm.

Gemäß der Erfindung ist das erste Abgleichelement so ausgeführt und angeordnet, dass es in der ersten Richtung quer zu einer Längsrichtung des Kopplungselements über eine Seitenfläche des ersten Längsabschnitts hinausragt.According to the invention, the first adjustment element is designed and arranged so that it projects in the first direction transversely to a longitudinal direction of the coupling element over a side surface of the first longitudinal section.

Dies kann bedeuten, dass die geometrischen Ausmaße wie z.B. der Durchmesser oder zumindest eine Kantenlänge des ersten Abgleichelements größer sind als die Breite des ersten Längsabschnitts. Das erste Abgleichelement kann so angeordnet sein, dass es über eine einzelne oder über zwei Seitenflächen, insbesondere über zwei gegenüberliegende Seitenflächen des ersten Längsabschnitts hinausragt.This may mean that the geometric dimensions, such as the diameter or at least an edge length of the first adjustment element are larger than the Width of the first longitudinal section. The first adjustment element can be arranged such that it projects beyond a single or two side surfaces, in particular over two opposite side surfaces of the first longitudinal section.

Das erste Abgleichelement kann mittig oder außermittig (exzentrisch) mit Bezug zu dem ersten Längsabschnitt angeordnet sein. Ist das erste Abgleichelement exzentrisch angeordnet, kann es insbesondere lediglich über eine einzelne Seitenfläche des ersten Längsabschnitts hinausragen. Im Falle einer exzentrischen Anordnung des ersten Abgleichelements kann dies über eine Seitenfläche hinausragen, auch wenn sein Durchmesser oder seine Kantenlänge kleiner sind als die Breite des ersten Längsabschnitts.The first adjustment element may be arranged centrally or off-center (eccentric) with respect to the first longitudinal section. If the first adjustment element is arranged eccentrically, in particular it can only project beyond a single side surface of the first longitudinal section. In the case of an eccentric arrangement of the first adjusting element, this may protrude beyond a side surface, even if its diameter or its edge length are smaller than the width of the first longitudinal section.

Das erste Abgleichelement kann eine Abgleichschraube sein, welche im Wesentlichen zylindrisch ausgeführt ist. Im Fall der mittigen Anordnung der Abgleichschraube mit Bezug zu dem ersten Längsabschnitt ist der Durchmesser des Abgleichelements größer als die Breite des ersten Längsabschnitts.The first balancing element may be a balancing screw, which is designed substantially cylindrical. In the case of the centering arrangement of the adjustment screw with respect to the first longitudinal section, the diameter of the adjustment element is greater than the width of the first longitudinal section.

Gemäß einer weiteren Ausführungsform der Erfindung ist das erste Abgleichelement in einem Längsabschnitt, den es sich in einer Längsrichtung in den zweiten Längsabschnitt hinein erstreckt, zwischen zwei gegenüberliegenden Seitenflächen des zweiten Längsabschnitts angeordnet.According to a further embodiment of the invention, the first balancing element is arranged in a longitudinal section, which extends in a longitudinal direction into the second longitudinal section, between two opposite side surfaces of the second longitudinal section.

In anderen Worten bedeutet dies, dass nicht das gesamte Abgleichelement zwischen zwei Seitenflächen des zweiten Längsabschnitts angeordnet ist, sondern nur derjenige Teil des Abgleichelements, welcher sich in Längsrichtung des Kopplungselements in dem zweiten Längsabschnitt befindet.In other words, this means that not the entire adjustment element is arranged between two side surfaces of the second longitudinal section, but only that part of the adjustment element which is located in the longitudinal direction of the coupling element in the second longitudinal section.

Im Falle dass das erste Abgleichelement eine Abgleichschraube ist, ist der Durchmesser kleiner als die Breite des zweiten Längsabschnitts und die Abgleichschraube ragt über keine Seitenfläche des zweiten Längsabschnitts hinaus.In the case that the first adjustment element is an adjustment screw, the diameter is smaller than the width of the second longitudinal section and the adjustment screw protrudes beyond any side surface of the second longitudinal section.

Gemäß einer weiteren Ausführungsform der Erfindung weicht ein Kopplungswinkel des Kopplungselements mit dem ersten Resonator mit Bezug zu einer Längsrichtung des Kanalfilters von 0° ab.According to another embodiment of the invention, a coupling angle of the coupling element with the first resonator differs from 0 ° with respect to a longitudinal direction of the channel filter.

Das Koppeln unter einem von 0° abweichenden Winkel kann ebenfalls dazu beitragen, dass ein gewünschter Koppelwert erreicht wird und kann somit zum Abgleich des Kopplungselements und der Anpassung der Arbeitsfrequenz des Kanalfilters beitragen.Coupling at an angle other than 0 ° may also help to achieve a desired coupling value and thus may contribute to matching of the coupling element and adjustment of the operating frequency of the channel filter.

Insbesondere kann der Kopplungswinkel zwischen 1° und 90°, weiter insbesondere zwischen 1° und 45° (jeweils im geometrisch positiven oder negativen Sinn, bzw. gegen den Uhrzeigersinn oder im Uhrzeigersinn) zwischen der Längsrichtung des Kopplungselements und der Längsrichtung des Kanalfilters betragen.In particular, the coupling angle between 1 ° and 90 °, more particularly between 1 ° and 45 ° (each in the geometrically positive or negative sense, or counterclockwise or clockwise) between the longitudinal direction of the coupling element and the longitudinal direction of the channel filter amount.

Gemäß einer weiteren Ausführungsform der Erfindung weist das Kanalfilter einen zweiten Resonator auf, welcher mit dem ersten Resonator über das Kopplungselement gekoppelt ist.According to a further embodiment of the invention, the channel filter has a second resonator, which is coupled to the first resonator via the coupling element.

Das Kanalfilter kann eine Mehrzahl von Resonatoren aufweisen, welche miteinander jeweils über ein Kopplungselement gekoppelt sind.The channel filter may include a plurality of resonators coupled to each other via a coupling element.

Gemäß einer weiteren Ausführungsform der Erfindung weicht ein Kopplungswinkel des Kopplungselements mit dem zweiten Resonator mit Bezug zu der Längsrichtung des Kanalfilters von dem Kopplungswinkel des Kopplungselements mit dem ersten Resonator mit Bezug zu der Längsrichtung des Kanalfilters ab.According to a further embodiment of the invention, a coupling angle of the coupling element with the second resonator with respect to the differs Longitudinal direction of the channel filter from the coupling angle of the coupling element with the first resonator with respect to the longitudinal direction of the channel filter from.

In einer Ausführungsform unterscheiden sich die Kopplungswinkel eines Kopplungselements zwischen einem ersten Resonator und einem zweiten Resonator von den Kopplungswinkeln eines Kopplungselements zwischen dem zweiten Resonator und einem dritten Resonator.In one embodiment, the coupling angles of a coupling element between a first resonator and a second resonator differ from the coupling angles of a coupling element between the second resonator and a third resonator.

Gemäß einer weiteren Ausführungsform der Erfindung weist der erste Resonator ein zweites Abgleichelement auf, welches für eine Grobjustierung der Resonanzfrequenz des ersten Resonators ausgeführt ist.According to a further embodiment of the invention, the first resonator has a second adjustment element, which is designed for a coarse adjustment of the resonant frequency of the first resonator.

Grobjustierung bedeutet dabei, dass die Arbeitsfrequenz in einem Frequenzbereich von bis zu +/- 40%, insbesondere +/- 10% bis 20% ihres aktuellen Wertes verändert werden kann.Coarse adjustment means that the operating frequency can be changed in a frequency range of up to +/- 40%, in particular +/- 10% to 20% of its current value.

Insbesondere durch das zweite Abgleichelement kann ermöglicht werden, dass ein Kanalfilter für verschiedene Arbeitsfrequenzen eingesetzt werden kann, ohne dass eine Neuentwicklung eines Kanalfilters nötig ist.In particular, by the second adjustment element can be made possible that a channel filter for different operating frequencies can be used without a redevelopment of a channel filter is necessary.

Das zweite Abgleichelement ist dabei angeordnet, dass es in einen Innenraum des Resonators hineinragt und in diesem Innenraum so bewegt werden kann, dass seine Anordnung im Innenraum verändert werden kann.The second adjustment element is arranged so that it projects into an interior of the resonator and can be moved in this interior so that its arrangement in the interior can be changed.

Gemäß einer weiteren Ausführungsform der Erfindung weist der erste Resonator ein drittes Abgleichelement auf, welches für eine Feinjustierung der Resonanzfrequenz des ersten Resonators ausgeführt ist.According to a further embodiment of the invention, the first resonator has a third adjustment element, which is designed for a fine adjustment of the resonant frequency of the first resonator.

Durch das Zusammenwirken des zweiten und dritten Abgleichelements können sowohl eine vollständige Veränderung der Arbeitsfrequenz (Grobjustierung) sowie eine Anpassung an beispielsweise Fertigungstoleranzen (Feinjustierung) erfolgen.Through the interaction of the second and third adjustment element, both a complete change in the operating frequency (coarse adjustment) and an adaptation to, for example, manufacturing tolerances (fine adjustment) can take place.

Gemäß einer weiteren Ausführungsform der Erfindung ist das dritte Abgleichelement mechanisch mit dem zweiten Abgleichelement gekoppelt.According to a further embodiment of the invention, the third adjustment element is mechanically coupled to the second adjustment element.

Wenn also das zweite Abgleichelement bewegt wird, wird das dritte Abgleichelement mitgeführt, so dass durch das dritte Abgleichelement ein Feinabgleich basierend auf dem durch das zweite Abgleichelement vorgegebenen Grobabgleich erfolgt.Thus, when the second adjustment element is moved, the third adjustment element is carried along, so that fine adjustment takes place based on the rough adjustment predetermined by the second adjustment element by the third adjustment element.

Gemäß einer weiteren Ausführungsform der Erfindung ist das dritte Abgleichelement mit Bezug zu dem zweiten Abgleichelement bewegbar.According to a further embodiment of the invention, the third adjustment element is movable with respect to the second adjustment element.

In anderen Worten wird eine Abgleichbewegung des dritten Abgleichelements relativ zum zweiten Abgleichelement vorgenommen.In other words, an adjustment movement of the third adjustment element is made relative to the second adjustment element.

Gemäß einer weiteren Ausführungsform der Erfindung weist das Kanalfilter ein Kurzschlusselement auf, welches angeordnet ist, zumindest den zweiten Resonator zu überbrücken.According to a further embodiment of the invention, the channel filter has a short-circuit element which is arranged to bridge at least the second resonator.

Das Kurzschlusselement kann auch als Brückenelement bezeichnet werden, welches einen oder mehrere benachbarte Resonatoren überbrückt.The short-circuit element can also be referred to as a bridge element, which bridges one or more adjacent resonators.

Zusammenfassend kann das Kanalfilter gemäß einer Ausführungsform der Erfindung wie folgt beschrieben werden.In summary, the channel filter according to an embodiment of the invention can be described as follows.

Das Kanalfilter, beispielsweise eines Ausgangsmultiplexers, kann so gestaltet werden, dass die folgenden Punkte erfüllt sind: ein generisches Kanalfilter ist unabhängig vom projektbezogenen Entwicklungs- und Konstruktionsprozess; die wesentlichen Filterteile sind projektübergreifend identisch und können vorab beschafft und auf Lager gelegt werden; schneller Aufbau der Einzelteile möglich; ein unter Verwendung eines solchen generischen Kanalfilters zusammengestellter Ausgangsmultiplexer ist im gesamten Hohlleiterband durch Abgleich einstellbar.The channel filter, such as an output multiplexer, can be designed to meet the following criteria: a generic channel filter is independent of the project-related development and design process; the essential filter parts are identical across projects and can be procured in advance and put into storage; quick setup of the individual parts possible; an output multiplexer assembled using such a generic channel filter is adjustable in the entire waveguide band.

Ein Aspekt des Kanalfilters ist es, mit Hilfe einer TE01n Implementierung ein möglichst breit in Frequenz und Bandbreite einstellbares Kanalfilter für Ausgangsmultiplexer zu realisieren. Die Einstellbarkeit der Frequenz ist im Idealfall nur durch den störmodenfreien Bereich der Nutzmode begrenzt, der im Ka-Band ca. 1 GHz beträgt. Zur Abdeckung eines größeren Frequenzbereiches können jedoch leicht die geometrischen Abmessungen wie z.B. der Durchmesser der Resonatoren angepasst werden. Die Implementierung ist unabhängig vom Frequenzband, eine Ka-Band Implementierung bei 20 GHz/30 GHz ist ebenso möglich wie eine Ku- oder X-Band-Implementierung im Bereich um 11, bzw. 7 GHz.One aspect of the channel filter is to implement, with the aid of a TE01n implementation, a channel filter for output multiplexer that is as broad as possible in terms of frequency and bandwidth. The adjustability of the frequency is limited in the ideal case only by the noise-free region of the payload, which is approximately 1 GHz in the Ka band. However, to cover a wider frequency range, the geometric dimensions such as e.g. the diameter of the resonators can be adjusted. The implementation is independent of the frequency band, a Ka-band implementation at 20 GHz / 30 GHz is just as possible as a Ku or X-band implementation in the range around 11, or 7 GHz.

Die Eigenschaften der Resonanzmode werden genutzt, um mit Hilfe eines Grob-Abgleichtellers die Frequenz voreinzustellen. Mit Hilfe einer im Grob-Abgleichteller integrierten Fein-Abgleichschraube kann dann der Feinabgleich erfolgen.The properties of the resonance mode are used to preset the frequency with the aid of a coarse adjustment plate. The fine adjustment can then be carried out with the help of a fine adjustment screw integrated in the coarse adjustment plate.

Der Abgleich der Kopplung kann beispielsweise mit Hilfe von Blendenabgleichschrauben erfolgen. Diese Schrauben können deutlich größer sein als die eigentliche Blende lang oder breit ist. Mit solchen Blendenabgleichschrauben kann effektiv der Querschnitt der Blende verkleinert werden. Der Überlappungsbereich mit dem Hohlleiter (also der Bereich, in dem die Schraube über die Blende hinausragt) kann so dimensioniert werden, dass er bei der Filterfrequenz oberhalb seiner sog. cut off Frequenz betrieben wird. Die cut off Frequenz ist diejenige Frequenz, oberhalb welcher eine elektromagnetische Welle Energie transportiert und unterhalb welcher lediglich ein elektromagnetisches Feld detektiert werden kann.The adjustment of the coupling can be done for example by means of diaphragm adjustment screws. These screws can be significantly larger than the actual aperture is long or wide. With such diaphragm adjustment screws can effectively reduce the cross-section of the aperture. The overlap area with the waveguide (ie the area in which the screw protrudes beyond the aperture) can be dimensioned so that it is at the filter frequency is operated above its so-called cut-off frequency. The cut off frequency is the frequency above which an electromagnetic wave transports energy and below which only an electromagnetic field can be detected.

Die Resonatoren können insbesondere so angeordnet sein, dass der seitliche Abstand der Filter auf der Sammelschiene für verschiedene Arbeitsfrequenzen konstant gehalten werden kann und darüber hinaus die Gesamtlänge eine vorgegebene Länge nicht übersteigt. Dies ist zum Einen darin begründet, dass die maximale Gesamtlänge des Multiplexers in der Regel durch räumliche Vorgabe in der Verwendungsumgebung des Kanalfilters begrenzt ist. Ein erhöhter Abstand zwischen den Kanälen kann daher die mögliche Kanalzahl reduzieren. Zum Anderen kann sich mit zunehmendem Abstand der Kanäle auf der Sammelschiene die Degradation der Filterleistung erhöhen, insbesondere über der Temperatur.The resonators can in particular be arranged such that the lateral spacing of the filters on the busbar can be kept constant for different operating frequencies and, moreover, the total length does not exceed a predetermined length. This is partly due to the fact that the maximum total length of the multiplexer is usually limited by spatial specification in the environment of use of the channel filter. An increased distance between the channels can therefore reduce the possible number of channels. On the other hand, the degradation of the filter performance can increase with increasing distance of the channels on the busbar, in particular over the temperature.

Die Resonatoren werden insbesondere in einer Reihe angeordnet. Hierdurch kann ein gewünschter Kanalabstand auf der Sammelschiene realisiert werden. Elektrisch entspricht diese Struktur des Kanalfilters einer sog. Extracted Pole Struktur, das heißt, es können Filter mit Transmissionsnullstellen realisiert werden. Ein Verbindungshohlleiter zwischen den Polen kann über bzw. unter den beiden Polresonatoren geführt sein. Er kann entweder mittig geführt werden oder geringfügig seitlich versetzt mit Bezug zu einer Längsachse bzw. Mittelachse des Kanalfilters, um die Zugänglichkeit der Abgleichschrauben- und Teller zu erleichtern.The resonators are arranged in particular in a row. In this way, a desired channel spacing can be realized on the busbar. Electrically corresponds to this structure of the channel filter of a so-called. Extracted Pole structure, that is, filters can be realized with zero transmission points. A connecting waveguide between the poles may be guided above or below the two pole resonators. It may be either centered or slightly laterally offset with respect to a longitudinal axis or center axis of the channel filter to facilitate accessibility of the balance screws and plates.

Die Koppelblenden können entweder in direkter Linie angeordnet sein oder in beliebigen Winkeln aus dem Resonator geführt sein, beispielsweise zur gezielten Unterdrückung von Störmoden. Insbesondere die Koppelblende zwischen dem ersten und zweiten Resonator von der Sammelschiene kann in einer Ausführungsform länger sein als die übrigen Koppelblenden, um die Kopplung in einem Bogen realisieren zu können. Dies kann dazu führen, dass der elektrisch nötige Koppelwert nicht mehr erreicht wird. Um dieses Problem zu lösen, kann zwischen den kurzen Ein- und Auskoppelblenden ein Stück Hohlleiter mit ausgeweitetem Querschnitt eingebracht werden. Der Hohlleiter entspricht dabei dem zweiten Längsabschnitt des Kopplungselements. Insbesondere die Tiefe der Blende kann von Bedeutung sein, da es von der Tiefe der Blende abhängen kann, ob die Blende evaneszent (dämpfend) wirkt, oder die Ausbreitung einer elektromagnetischen Welle erlaubt.The coupling diaphragms can either be arranged in a direct line or guided out of the resonator at arbitrary angles, for example for targeted suppression of spurious modes. In particular, the coupling diaphragm between the In one embodiment, the first and second resonators of the busbar may be longer than the remaining coupling diaphragms in order to be able to realize the coupling in an arc. This can lead to the electrically necessary coupling value no longer being reached. To solve this problem, a piece of waveguide with an expanded cross-section can be introduced between the short input and output apertures. The waveguide corresponds to the second longitudinal section of the coupling element. In particular, the depth of the aperture may be important, as it may depend on the depth of the aperture, whether the aperture acts evaneszent (damping), or allows the propagation of an electromagnetic wave.

Am Verbindungshohlleiter zwischen den extraced poles können optional variable Kurzschlüsse, die mit Hilfe von Kurzschlussplatten realisiert werden können, angebracht werden. Der Verbindungshohlleiter kann beispielsweise aus verschraubten Halbschalen oder aus Aluminiumprofil gefertigt werden. Optional kann der Hohlleiter beidseitig oder einseitig mit einer auswechselbaren Kurzschlussplatte ausgestattet werden, um den Abgleichbereich zu erhöhen. Im Verbindungshohlleiter können außerdem weitere Abgleichelemente in Form von Abgleichschrauben platziert werden.On the connecting waveguide between the extraced poles, optional variable short circuits, which can be realized with the help of shorting plates, can be attached. The connecting waveguide can be made, for example, from bolted half shells or aluminum profile. Optionally, the waveguide can be equipped with a replaceable short-circuit plate on both sides or on one side to increase the adjustment range. In the connecting waveguide also more balancing elements can be placed in the form of adjustment screws.

Die Polresonatoren können entweder am Filtereingang oder an einer beliebigen Stelle im Filter angeordnet sein. Die Filterordnung ist einfach erweiterbar, indem am Eingang oder am Ausgang weitere Resonatoren hinzugefügt werden. Das Hinzufügen weiterer Polresonatoren ist ebenso möglich.The pole resonators may be located either at the filter input or anywhere in the filter. The filter order is easily expandable by adding more resonators at the input or at the output. The addition of further polar resonators is also possible.

Das Filter kann zur Reduktion der Temperaturabhängigkeit entweder aus temperaturstabilen Materialien, wie z.B. Invar, gefertigt werden oder aus nicht temperaturstabilen Materialien, wie z.B. Aluminium, wobei es mit einer Temperaturkompensationseinheit ausgestattet wird.The filter can be made to reduce the temperature dependence of either temperature stable materials, such as Invar, or from non-temperature stable materials, such as aluminum, where it is equipped with a temperature compensation unit.

Eigenschaften des Kanalfilters können wie folgt beschrieben werden.Properties of the channel filter can be described as follows.

Das Kanalfilter ermöglicht bei gleichbleibenden mechanischen Abmessungen wie z.B. Länge und Breite die Verwendung für verschiedene Arbeitsfrequenzen, welche stark voneinander abweichen können. Es handelt sich um ein generisches Kanalfilter, so dass eine Neuentwicklung für verschiedene Arbeitsfrequenzen und Einsatzgebiete vermieden werden kann. Während der Entwicklung kann lediglich das Liefern von Abgleichdaten erforderlich sein. Identische Teilesätze für das generische Kanalfilter können in großen Mengen beschafft werden, da eine individuelle Gestaltung der Bauteile in Abhängigkeit der Arbeitsfrequenz nicht erforderlich ist. Es kann eine deutliche Beschleunigung der Entwicklungszeit erfolgen durch Reduktion von Entwicklungsaufwand und Wegfall von projektabhängiger Konstruktions- und Fertigungszeit. Durch Massenfertigung, Wegfall von Konstruktions- und teilweise Entwicklungskosten kann eine Einsparung von Kosten ermöglicht werden. Das Kanalfilter ermöglicht einen individuellen Abgleich mit einem großen Abgleichbereich, so dass eine erreichbare Fertigungsgenauigkeit generischer Teile ausreichend ist und die Einzelteile nicht in Anbetracht der zukünftigen Arbeitsfrequenz gefertigt werden müssen. Durch die Fertigung hoher Stückzahlen gleicher Teile ergibt sich die Möglichkeit zur Automatisierung des Abgleichs. Durch Standardprozesse und -teile kann sich eine hohe Planungssicherheit ergeben. Bezüglich der Betrachtung thermischer und mechanischer Parameter während der Entwicklung eines Kanalfilters sind generische Analysen mit worst-case Werten möglich. Unabhängig von der Sollfrequenz und der Bandbreite eines Kanalfilters können auf Grund der verschiedenen Abgleichmöglichkeiten gleiche Bauteile verwendet werden.The channel filter allows for constant mechanical dimensions such. Length and width use for different working frequencies, which can vary greatly. It is a generic channel filter, so that a new development for different operating frequencies and applications can be avoided. During development, it may only be necessary to provide matching data. Identical parts sets for the generic channel filter can be procured in large quantities, as an individual design of the components depending on the operating frequency is not required. A significant acceleration of the development time can be achieved by reducing development effort and eliminating project-dependent design and production time. By mass production, elimination of design and partial development costs, a saving of costs can be made possible. The channel filter allows individual matching with a large adjustment range, so that achievable manufacturing accuracy of generic parts is sufficient and the items do not have to be made in view of the future working frequency. The production of high quantities of the same parts gives the possibility of automating the adjustment. Standard processes and parts can provide a high level of planning security. With regard to the consideration of thermal and mechanical parameters during the development of a channel filter, generic analyzes with worst-case values are possible. Regardless of the nominal frequency and the bandwidth of a channel filter, the same components can be used due to the different adjustment options.

Die Mittenfrequenz des Filters wird im Wesentlichen durch die Resonanzfrequenz der Filterresonatoren bestimmt. Zur Grobeinstellung der Resonanzfrequenz kann wie oben beschrieben ein zweites Abgleichelement in Form eines Abgleichtellers zum Einsatz kommen. Ein solcher Abgleichteller erlaubt die Frequenzeinstellung in sehr weiten Bereichen. Ein drittes Abgleichelement in Form einer Schraube, welche einen geringeren Querschnitt oder Durchmesser hat als der Abgleichteller und in der Achse des Tellers angeordnet sein kann, erlaubt weiterhin den Feinabgleich des Filters. Das dritte Abgleichelement kann metallisches oder dielektrisches Material aufweisen.The center frequency of the filter is essentially determined by the resonant frequency of the filter resonators. For coarse adjustment of the resonant frequency can As described above, a second adjustment element in the form of an adjustment plate are used. Such an adjustment plate allows the frequency adjustment in very wide areas. A third adjustment element in the form of a screw, which has a smaller cross-section or diameter than the adjustment plate and can be arranged in the axis of the plate, further allows the fine adjustment of the filter. The third adjustment element may comprise metallic or dielectric material.

Kurze Beschreibung der FigurenBrief description of the figures

Nachfolgend wird anhand der beigefügten Zeichnungen näher auf Ausführungsbeispiele der Erfindung eingegangen. Die Darstellungen sind schematisch und nicht maßstabsgetreu. Gleiche Bezugszeichen beziehen sich auf gleiche oder ähnliche Elemente. Es zeigen:

Fig. 1
eine schematische Darstellung eines Kanalfilters gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 2
eine schematische Darstellung eines Resonators eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Fig. 3
eine schematische Darstellung eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Fig. 4
eine schematische Darstellung eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Fig. 5
eine schematische Darstellung eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Fig. 6
eine schematische Darstellung eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Fig. 7
eine schematische Darstellung eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Fig. 8
eine schematische Darstellung eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Fig. 9
eine schematische Darstellung eines Kanalfilters gemäß einem weiteren Ausführungsbeispiel der Erfindung.
Hereinafter, reference will be made to embodiments of the invention with reference to the accompanying drawings. The illustrations are schematic and not to scale. Like reference numerals refer to the same or similar elements. Show it:
Fig. 1
a schematic representation of a channel filter according to an embodiment of the invention.
Fig. 2
a schematic representation of a resonator of a channel filter according to another embodiment of the invention.
Fig. 3
a schematic representation of a channel filter according to another embodiment of the invention.
Fig. 4
a schematic representation of a channel filter according to another embodiment of the invention.
Fig. 5
a schematic representation of a channel filter according to another embodiment of the invention.
Fig. 6
a schematic representation of a channel filter according to another embodiment of the invention.
Fig. 7
a schematic representation of a channel filter according to another embodiment of the invention.
Fig. 8
a schematic representation of a channel filter according to another embodiment of the invention.
Fig. 9
a schematic representation of a channel filter according to another embodiment of the invention.

Detaillierte Beschreibung von AusführungsbeispielenDetailed description of embodiments

Fig. 1 zeigt einen Teil eines Kanalfilters 10 mit einem Resonator 100 sowie einem hieran gekoppelten Kopplungselement 200. Fig. 1 shows a part of a channel filter 10 with a resonator 100 and a coupling element 200 coupled thereto.

Der Resonator ist als zylindrischer Hohlraum mit zwei gegenüberliegenden Grund- bzw. Stirnflächen 130, 140 ausgeführt. Das Kopplungselement 200 ist mit einer Mantelfläche des zylindrischen Hohlraums gekoppelt.The resonator is designed as a cylindrical cavity with two opposite basic or end faces 130, 140. The coupling element 200 is coupled to a lateral surface of the cylindrical cavity.

Das Kopplungselement 200 weist einen ersten Längsabschnitt 202 und einen zweiten Längsabschnitt 204 auf. Ein erstes Abgleichelement 400 ist so angeordnet, dass es sich in einer Richtung quer zur Längsrichtung 305 des Kopplungselements 200 sowohl in den ersten Längsabschnitt 202 als auch in den zweiten Längsabschnitt 204 erstreckt und eine Abgleichbewegung in Richtung des Pfeils 412 ermöglicht.The coupling element 200 has a first longitudinal section 202 and a second longitudinal section 204. A first adjustment element 400 is arranged to extend in a direction transverse to the longitudinal direction 305 of the coupling element 200 into both the first longitudinal section 202 and the second longitudinal section 204, and permits an adjustment movement in the direction of the arrow 412.

Der erste Längsabschnitt weist eine Seitenfläche 203 auf. Der Querschnitt bzw. die Grundfläche 405 der Abgleichschraube 400 ist so ausgeführt oder die Abgleichschraube 400 so angeordnet, dass die Abgleichschraube über die Seitenfläche 203 hinausragt (aus der Zeichenebene heraus in Richtung des Betrachters, in Richtung des Pfeils 307, welcher die Breite des ersten Kopplungselements anzeigt). In einer Ausführungsform kann die Abgleichschraube auch über die in der Fig. 1 hintere Seitenfläche des ersten Längsabschnittes 202 hinausragen.The first longitudinal section has a side surface 203. The cross-section or base area 405 of the adjustment screw 400 is designed or the adjustment screw 400 is arranged such that the adjustment screw projects beyond the side surface 203 (out of the plane of the drawing in the direction of the viewer, in the direction of the arrow 307, which corresponds to the width of the first coupling element indicates). In one embodiment, the adjustment screw also over in the Fig. 1 rear side surface of the first longitudinal portion 202 protrude.

Der zweite Längsabschnitt 204 ist in Richtung 307 breiter als der erste Längsabschnitt 202. Die Abgleichschraube 400 ist so ausgeführt und angeordnet, dass sie sich im Bereich des zweiten Längsabschnitts 204 zwischen den Seitenflächen 205A, 205B befindet.The second longitudinal portion 204 is wider in the direction 307 than the first longitudinal portion 202. The adjustment screw 400 is designed and arranged so that it is in the region of the second longitudinal portion 204 between the side surfaces 205A, 205B.

Die Ausmaße des Kanalfilters sind frequenzabhängig. Für ein Kanalfilter im Ku-Band kann der erste Längsabschnitt 202 eine Breite von wenigen cm haben, beispielsweise zwischen 3 und 5 cm, und der zweite Längsabschnitt 204 kann eine Breite von über 5 cm haben, beispielsweise zwischen 5 und 12 cm, insbesondere ca. 9,5 cm. Der Durchmesser der Abgleichschraube 400 kann in einem Ausführungsbeispiel größer sein als die Breite des ersten Längsabschnitts 202 und kleiner als die Breite des zweiten Längsabschnitts 204.The dimensions of the channel filter are frequency dependent. For a channel filter in the Ku band, the first longitudinal section 202 may have a width of a few cm, for example between 3 and 5 cm, and the second longitudinal section 204 may have a width of more than 5 cm, for example between 5 and 12 cm, in particular ca. 9.5 cm. The diameter of the adjustment screw 400 may in one embodiment be greater than the width of the first longitudinal section 202 and smaller than the width of the second longitudinal section 204.

Fig. 2 zeigt einen Resonator 100 mit einem zweiten Abgleichelement 110 aufweisend einen Abgleichteller 114 und einen Schaft 116 sowie mit einem dritten Abgleichelement 120 ausgeführt als Abgleichschraube, welche in dem Schaft 116 angeordnet ist und relativ zu dem zweiten Abgleichelement 110 durch eine Drehbewegung der Abgleichschraube 120 bewegt werden kann. Das zweite Abgleichelement 110 kann ebenfalls durch eine Drehbewegung des Schafts 116 mit Bezug zu der Grundfläche 130 des Resonators die Abgleichbewegung ausführen. Fig. 2 1 shows a resonator 100 with a second balancing element 110 comprising an adjusting plate 114 and a shaft 116 and with a third balancing element 120 designed as a balancing screw, which is arranged in the shaft 116 and can be moved relative to the second balancing element 110 by a rotational movement of the balancing screw 120 , The second adjustment element 110 can also by a rotational movement of the shaft 116th with respect to the base 130 of the resonator perform the adjustment movement.

Sowohl das zweite Abgleichelement als auch das dritte Abgleichelement ermöglichen eine Abgleichbewegung.Both the second adjustment element and the third adjustment element allow a balancing movement.

Der Abgleichteller 114 kann ausgeführt sein, eine Abgleichbewegung von mehreren cm, z.B. zwischen 1 cm und 4 cm, auszuführen. Die Abgleichschraube 120 kann ausgeführt sein, eine Abgleichbewegung von wenigen Zehntel mm bis hin zu einigen mm auszuführen, z.B. zwischen 0,1 mm bis zu 2 mm. Die Abgleichschraube 120 weist einen geringeren Querschnitt auf als der Abgleichteller 114 und der Schaft 116.The adjustment plate 114 may be made to have a balancing movement of several cm, e.g. between 1 cm and 4 cm. The adjustment screw 120 may be designed to carry out an adjustment movement of a few tenths of a mm up to a few mm, e.g. between 0.1 mm to 2 mm. The adjustment screw 120 has a smaller cross section than the adjustment plate 114 and the shaft 116.

Fig. 3 zeigt eine Seitenansicht (oben) und eine Draufsicht (unten) auf ein Kanalfilter 10 mit vier Resonatoren 100, wobei jeweils unmittelbar benachbarte Resonatoren über ein Kopplungselement miteinander gekoppelt sind. Das Kanalfilter 10 weist weiterhin ein Verbindungselement 500 auf. Fig. 3 shows a side view (top) and a top view (bottom) of a channel filter 10 with four resonators 100, wherein each immediately adjacent resonators are coupled together via a coupling element. The channel filter 10 furthermore has a connecting element 500.

Die Breite 16 und die Länge 18 des Kanalfilters können unabhängig von der Arbeitsfrequenz konstant oder im Wesentlichen konstant gehalten werden, d.h. es sind keine Anpassungen der geometrischen Ausmaße des Kanalfilters in Abhängigkeit einer gewünschten Arbeitsfrequenz erforderlich.The width 16 and the length 18 of the channel filter can be kept constant or substantially constant, irrespective of the operating frequency, i. no adjustments of the geometric dimensions of the channel filter depending on a desired operating frequency are required.

Fig. 4 zeigt ein Kanalfilter 10 mit einem Filtereingang 12 und einem Filterausgang 14. Die Längsrichtung des Kanalfilters ist mit einer gestrichelten Linie angedeutet. Ein Verbindungselement 500 verbindet zwei Resonatoren. Fig. 4 shows a channel filter 10 with a filter input 12 and a filter output 14. The longitudinal direction of the channel filter is indicated by a dashed line. A connecting element 500 connects two resonators.

Fig. 5 zeigt ein Kanalfilter 10 in einer Ansicht der Resonatoranordnung von oben. Ein Hohlleiter 600 ist zwischen den Polen angeordnet und kann zur besseren Zugänglichkeit der Abgleichelemente 110, 120 mit Bezug zu einer Längsachse des Kanalfilters 10 seitlich versetzt angeordnet sein. Alternativ kann der Hohlleiter 600 mittig angeordnet sein. Fig. 5 shows a channel filter 10 in a view of the resonator arrangement from above. A waveguide 600 is disposed between the poles and may be for the better Accessibility of the adjustment elements 110, 120 may be laterally offset with respect to a longitudinal axis of the channel filter 10. Alternatively, the waveguide 600 may be arranged centrally.

Fig. 6 zeigt ein Kanalfilter 10 mit Kopplungselementen 200, welche mit den Resonatoren 100 unter verschiedenen Winkeln 210 mit Bezug zu der Längsrichtung des Kanalfilters gekoppelt sind. Der Verbindungshohlleiter 600 ist mittig angeordnet, kann zur besseren Zugänglichkeit der Abgleichelemente auch seitlich versetzt sein, wie schon in Fig. 5 gezeigt. Fig. 6 shows a channel filter 10 with coupling elements 200 coupled to the resonators 100 at different angles 210 with respect to the longitudinal direction of the channel filter. The connecting waveguide 600 is arranged centrally, can also be laterally offset for better accessibility of the balancing elements, as already in Fig. 5 shown.

Fig. 7 zeigt ein Kanalfilter 10 mit Kopplung Kopplungselementen 200, welche mit den Resonatoren 100 unter verschiedenen Winkeln 210 mit Bezug zu der Längsrichtung des Kanalfilters gekoppelt sind und einem seitlich versetzten Verbindungshohlleiter 600. Die Kopplung unter verschiedenen Winkeln ist als Hohlleiterstruktur ausgeführt mit vergrößertem Querschnitt 300 im mittleren Bereich, um einen gewünschten Koppelwert zu erreichen. Die Abschnitte 200 und 300 stellen den ersten Längsabschnitt und den zweiten Längsabschnitt des Kopplungselements zwischen zwei Resonatoren dar. Fig. 7 FIG. 12 shows a channel filter 10 with coupling coupling elements 200 coupled to the resonators 100 at different angles 210 with respect to the longitudinal direction of the channel filter and a laterally displaced connecting waveguide 600. The coupling at different angles is implemented as a waveguide structure with enlarged cross section 300 in the middle region to achieve a desired coupling value. The sections 200 and 300 represent the first longitudinal section and the second longitudinal section of the coupling element between two resonators.

Fig. 8 zeigt ein Kanalfilter 10, wobei der Verbindungshohlleiter 600 mit Bezug zu dem Ausführungsbeispiel in Fig. 7 in Längsrichtung verschoben ist, also andere Resonatoren überbrückt. Fig. 8 shows a channel filter 10, wherein the connecting waveguide 600 with respect to the embodiment in Fig. 7 is displaced in the longitudinal direction, so bridges other resonators.

Fig. 9 zeigt ein Kanalfilter 10 und deutet Erweiterungsmöglichkeiten für höherkreisige Filter (beliebige Anzahl von Resonatoren kann hinzugefügt werden, diese sind gestrichelt dargestellt). Fig. 9 shows a channel filter 10 and indicates expansion possibilities for higher-circular filters (any number of resonators can be added, these are shown in dashed lines).

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Kanalfilterchannel filter
1212
Eingangentrance
1414
Ausgangexit
1616
Breitewidth
1818
Längelength
100100
Resonatorresonator
110110
zweites Abgleichelementsecond adjustment element
114114
TellerPlate
116116
Schaftshaft
120120
drittes Abgleichelementthird adjustment element
130130
erste Flächefirst surface
140140
zweite Flächesecond surface
200200
Kopplungsblendecoupling iris
202202
erster Längsabschnittfirst longitudinal section
203, 205203, 205
Seitenflächeside surface
204204
zweiter Längsabschnittsecond longitudinal section
210210
Kopplungswinkelcoupling angle
300300
Hohlleiterwaveguide
305305
Längsrichtunglongitudinal direction
307307
Breitewidth
400400
erstes Abgleichelementfirst adjustment element
405405
Grundflächefootprint
412412
Abgleichbewegungbalance motion
500500
Verbindungselementconnecting element
600600
KurzschlusselementShort-circuit element

Claims (9)

  1. Channel filter (10) for a communication device, comprising:
    a first resonator (100);
    a coupling element (200) with a first longitudinal portion (202) and a second longitudinal portion (204), wherein the first longitudinal portion (202) and the second longitudinal portion (204) extend in a longitudinal direction (305) of the channel filter (10), wherein the longitudinal direction (305) corresponds to a direction of the signal path from an input (12) to an output (14) of the channel filter (10); and
    a first tuning element (400), which comprises a cylindrical tuning screw (400);
    wherein the first longitudinal portion (202) is a coupling iris;
    wherein the second longitudinal portion (204) is a waveguide (300) and is connected to the first longitudinal portion;
    wherein the coupling element (200) is designed to couple the first resonator (100) at least indirectly to the input (12) or the output (14) of the channel filter (10);
    wherein the first longitudinal portion (202) has a smaller width in a first direction (307) than the second longitudinal portion (204), wherein the first direction (307) runs transversely in relation to the longitudinal direction (305) ;
    wherein the first tuning element (400) is at least partially in the first longitudinal portion (202) and at least partially in the second longitudinal portion (204) ;
    wherein the first tuning element (400) is movable in a second direction (412) transverse to the first direction (307) and transverse to the longitudinal direction (305) towards and away from the centre point of the coupling element, in order thereby to carry out a tuning movement;
    characterized in that the tuning screw (400) protrudes in the first direction (307) transverse to the longitudinal direction (305) of the coupling element (200) beyond a side surface (203) of the first longitudinal portion.
  2. Channel filter (10) according to Claim 1,
    wherein the first tuning element (400) is arranged in a longitudinal portion which it extends in the longitudinal direction (305) into the second longitudinal portion (204), between two opposite side surfaces (205A, 205B) of the second longitudinal portion (204).
  3. Channel filter (10) according to one of the preceding claims,
    wherein a coupling angle (210) of the coupling element with the first resonator deviates by 0° with respect to the longitudinal direction (305) of the channel filter (10) .
  4. Channel filter (10) according to one of the preceding claims,
    comprising a second resonator, which is coupled to the first resonator via the coupling element.
  5. Channel filter (10) according to one of the preceding claims,
    wherein the first resonator (100) comprises a second tuning element (110), which is designed for a coarse adjustment of the resonant frequency of the first resonator.
  6. Channel filter (10) according to Claim 5,
    wherein the first resonator (100) comprises a third tuning element (120), which is designed for a fine adjustment of the resonant frequency of the first resonator.
  7. Channel filter (10) according to Claim 6,
    wherein the third tuning element (120) is mechanically coupled to the second tuning element (110).
  8. Channel filter (10) according to Claim 6 or 7,
    wherein the third tuning element (120) is movable with respect to the second tuning element (110).
  9. Channel filter (10) according to one of Claims 4 to 8,
    also comprising a shorting element (600), which is arranged to bridge at least the second resonator.
EP15002377.8A 2014-08-27 2015-08-10 Generic channel filter Active EP2991158B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014012752.4A DE102014012752A1 (en) 2014-08-27 2014-08-27 Generic channel filter

Publications (2)

Publication Number Publication Date
EP2991158A1 EP2991158A1 (en) 2016-03-02
EP2991158B1 true EP2991158B1 (en) 2019-03-20

Family

ID=53836351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15002377.8A Active EP2991158B1 (en) 2014-08-27 2015-08-10 Generic channel filter

Country Status (4)

Country Link
US (1) US9887443B2 (en)
EP (1) EP2991158B1 (en)
CA (1) CA2901836A1 (en)
DE (1) DE102014012752A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017100714A1 (en) 2017-01-16 2018-07-19 Tesat-Spacecom Gmbh & Co. Kg Frequency adjustable channel filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232853B1 (en) * 1999-03-12 2001-05-15 Com Dev Limited Waveguide filter having asymmetrically corrugated resonators
US20120007697A1 (en) * 2010-07-07 2012-01-12 Powerwave Finland Oy Resonator filter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2080126A5 (en) 1970-02-24 1971-11-12 Thomson Csf
US4251787A (en) * 1979-03-19 1981-02-17 Hughes Aircraft Company Adjustable coupling cavity filter
JP3019750B2 (en) * 1995-08-21 2000-03-13 株式会社村田製作所 Dielectric resonator device
US7057480B2 (en) * 2002-09-17 2006-06-06 M/A-Com, Inc. Cross-coupled dielectric resonator circuit
CN101040403A (en) * 2004-09-09 2007-09-19 费尔特尼克控股有限公司 Multiband filter
JP4137904B2 (en) 2005-03-25 2008-08-20 富士通株式会社 Communication control device
FI123439B (en) * 2011-07-06 2013-04-30 Powerwave Finland Oy Adjustable resonator filter and method for adjusting the connection between resonator cavities
FI125953B (en) * 2011-10-18 2016-04-29 Tongyo Technology Oy Method of manufacturing an RF filter and an RF filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232853B1 (en) * 1999-03-12 2001-05-15 Com Dev Limited Waveguide filter having asymmetrically corrugated resonators
US20120007697A1 (en) * 2010-07-07 2012-01-12 Powerwave Finland Oy Resonator filter

Also Published As

Publication number Publication date
US20160064790A1 (en) 2016-03-03
DE102014012752A1 (en) 2016-03-03
US9887443B2 (en) 2018-02-06
EP2991158A1 (en) 2016-03-02
CA2901836A1 (en) 2016-02-27

Similar Documents

Publication Publication Date Title
DE818384C (en) Filter for the transmission of a band in waveguides of guided electrical micro waves
DE69031881T2 (en) Bandpass filter with several stages connected in parallel
DE69033490T2 (en) Ceramic band filter
DE2849299C2 (en) Device for combining the powers of a number of signal sources
EP3089260B1 (en) Multiplex filter having dielectric substrates for the transmission of tm modes in a transversal direction
EP2912714B1 (en) Tunable high frequency filter
DE2726797A1 (en) MICROWAVE BAND FILTER
DE2726799A1 (en) FREQUENCY CROSSOVER
DE3784686T2 (en) SUPPLY DEVICE OF A SATELLITE ANTENNA.
DE102015009221A1 (en) Improved dual-band tunable bandpass filter
DE69732201T2 (en) Dielectric resonator in TM mode and dielectric filter in TM mode and duplexer with the resonator
DE2841754A1 (en) MICROWAVE FILTER
DE2928346C2 (en) Electrical filter made up of coaxial resonators
EP3096394B1 (en) High frequency filter consisting of dielectric substrates for the transmission of tm modes in transversal direction
DE68917373T2 (en) Magnetically tunable bandpass filter.
DE60038079T2 (en) Dielectric resonance device, dielectric filter, assembled dielectric filter device, dielectric duplexer and communication device
EP2991158B1 (en) Generic channel filter
DE69822081T2 (en) Dielectric filter, dielectric duplexer and communication device
DE69715035T2 (en) microwave
EP1266423B1 (en) Cavity resonator having an adjustable resonance frequency
EP1812986B1 (en) High frequency filter
DE102012020576B4 (en) Microwave filter with adjustable bandwidth
WO2016184965A1 (en) Bandpass filter comprising a cavity resonator and method for operating, adjusting or producing a bandpass filter of this type
DE102013018484B4 (en) Dielectrically filled resonator for 30GHz Imux applications
DE69018313T2 (en) Transceiver diplexer for circular polarization.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160810

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180625

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 5/04 20060101ALI20181012BHEP

Ipc: H01P 7/06 20060101ALN20181012BHEP

Ipc: H01P 1/208 20060101AFI20181012BHEP

INTG Intention to grant announced

Effective date: 20181029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008377

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1111447

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008377

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

26N No opposition filed

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190810

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190810

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150810

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1111447

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 9

Ref country code: DE

Payment date: 20230821

Year of fee payment: 9