EP2987568B1 - Hot press forming device for coated steel and hot press forming method using same - Google Patents
Hot press forming device for coated steel and hot press forming method using same Download PDFInfo
- Publication number
- EP2987568B1 EP2987568B1 EP13882172.3A EP13882172A EP2987568B1 EP 2987568 B1 EP2987568 B1 EP 2987568B1 EP 13882172 A EP13882172 A EP 13882172A EP 2987568 B1 EP2987568 B1 EP 2987568B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blank
- hpf
- hot press
- cam
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 50
- 229910000831 Steel Inorganic materials 0.000 title claims description 26
- 239000010959 steel Substances 0.000 title claims description 26
- 238000001816 cooling Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/16—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/06—Stamping using rigid devices or tools having relatively-movable die parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/208—Deep-drawing by heating the blank or deep-drawing associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/02—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
- B21D53/04—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/34—Heating or cooling presses or parts thereof
Definitions
- high-strength materials are difficult to form into desired shapes because of problems such as spring back and difficulty in maintaining dimensions, and thus the use of high-strength materials is limited.
- HPF hot press forming
- Patent Document 1 has proposed a method of forming an aluminous coating layer on a steel sheet, the aluminous coating layer withstanding severe environments of a heating furnace, suppressing the oxidation of the steel sheet, and forming a corrosion resistant aluminum (Al) passive film on the steel sheet.
- Patent Document 1 US Patent No.: 6,296,805
- US 2012/067098 A1 discloses a method performed by a power press machine composed of a concave die, a convex die with two shoulders and two depressors separately beside the convex die.
- the method includes the steps of: a) placing a high-strength steel (HSS) on the convex die and under the concave die; b) moving the depressors to have two opposite side portions of the HSS clamped between the concave die and the depressors; c) moving the convex die to press the HSS and keeping the side portions immovable; d) forming two steps adjacent to the side portions by the shoulders; and e) cutting off the steps with the side portions.
- HSS high-strength steel
- JP 2009 101421 discloses a device for forming a pressed article comprising: a lower die having a female type, an upper die having a male type, a cushion pin which holds the material to be formed, a plate hold-down device, a cam driver which moves in response to the upper die, a cam slider which has a notch formed at its inside end to grip an unformed part of the article to be formed and presses the article in the direction of the center of pressure with the cam driver.
- aspects of the present disclosure may provide a hot press forming (HPF) device for performing a HPF process on coated steel, particularly zinc (Zn)-coated steel while reducing the formation of microcracks in a formed product and imparting uniform properties to the formed product, and a HPF method using the HPF device.
- HPF hot press forming
- a hot press forming (HPF) device for forming coated steel according to claim 1 is provided.
- HPF method for forming coated steel according to claim 4 is provided.
- coated steel such as zinc (Zn)-coated steel
- HPF hot press forming
- the formation of micro cracks in formed products may be reduced, and the formed products may have a high degree of formability such as bendability.
- formed products having high quality may be produced, and particularly, shaped portions of the formed products may have uniform properties.
- the inventors have found that if coated steel, particularly zinc (Zn)-coated steel, is subjected to a hot press forming (HPF) process, formed parts (formed products) have micro cracks (very small cracks or micro cracks), and the properties of the formed products are not uniform because of non-uniform cooling at shaped portions of the formed products. Thus, the inventors have conducted research to solve these problems.
- HPF hot press forming
- FIG. 1 is a schematic view illustrating a HPF process of the related art. As illustrated in FIG. 1 , in a HPF process, a heated blank 10 is placed between an upper die 11 and a lower die 12 and is then pressed using the upper and lower dies to produce a formed product 13.
- FIG. 2 illustrates a surface of a shaped portion of coated steel after the coated steel is processed by a HPF method of the related art as illustrated in FIG. 1 .
- formed products 13 made of coated steel through a HPF process of the related art had micro cracks in shaped portions of the formed products 13.
- FIG. 3 results of the analysis are illustrated in FIG. 3 .
- the formed product 13 produced using a HPF device of the related art had an excessive amount of plastic deformation at the shaped portion of the formed product 13, and micro cracks were formed in the shaped portion.
- micro cracks were formed in a wall of the shaped portion, especially at a lower end portion of the wall of the shaped portion because of concentrated deformation on the lower end portion.
- the design shape of the formed product 13 may be modified to reduce deformation.
- the thickness of the blank is reduced at a shaped portion of the blank, and a narrow gap is formed between the blank and the upper and lower dies.
- the inventors have invented a HPF device configured to prevent the generation of micro cracks in formed products and impart uniform properties to formed products, and a HPF method using the HPF device.
- the HPF device of the present disclosure includes: an upper die and a lower die configured to constrain a portion of a blank; and a cam configured to deform a non-constrained portion of the blank to form a shaped portion.
- the cam forms a shaped portion while moving in a direction different from directions in which the upper and lower dies move.
- FIG. 4 is a schematic view illustrating an exemplary HPF device 20 according to an exemplary embodiment of the present disclosure.
- the HPF device 20 of the exemplary embodiment of the present disclosure includes upper 21 and lower 22 dies, and cams 23 between the upper 21 and lower 22 dies.
- An HPF device of the related art such as that illustrated in FIG. 1 includes no cam, and when a blank is pressed using the HPF device of the related art, upper and lower dies of the HPF device are used to constrain the blank.
- the upper 21 and lower 22 dies constrain a portion of the blank 24, and a non-constrained portion of the blank 24 is formed using the cams 23 to form a shaped portion.
- the cams 23 move in horizontal directions independent of the upper 21 and lower 22 dies moving in vertical directions, in order to form a shaped portion.
- the plastic deformation of the shaped portion is distributed by the cams 23. That is, as illustrated in FIG. 4 , when a blank 24 is pressed into a desired shape using the HPF device 20 of the exemplary embodiment of the present disclosure, the upper 21 and lower 22 dies constrain and shape a portion of the blank 24, and the cams 23 move to shape another portion of the blank 24 not constrained by the upper 21 and lower 22 dies.
- the cams 23 are provided in addition to the upper 21 and lower 22 dies.
- FIG. 5 illustrates plastic strain in a formed product 25 manufactured using the HPF device 20 illustrated in FIG. 4 , the plastic strain being measured by analysis on forming.
- the plastic deformation of a shaped portion of the formed product 25 produced using the HPF device 20 of the exemplary embodiments of the present disclosure is markedly reduced. Therefore, the formation of micro cracks may be markedly reduced in products manufactured using the HPF device 20 of the exemplary embodiment of the present disclosure.
- FIG. 6 Another exemplary HPF device 30 is illustrated in FIG. 6 according to another exemplary embodiment of the present disclosure.
- cams 33 are provided separate from upper 31 and lower 32 dies.
- the upper 31 and lower 32 dies constrain a blank 34 to fix the blank 34, and forming of the blank 34 is performed substantially by the cams 33. That is, the upper 31 and lower 32 dies fix the blank 34, and the cams 33 form the blank 34 while moving at predetermined angles.
- FIG. 7(b) illustrates plastic strain in a formed product 35 manufactured using the HPF device 30 illustrated in FIG. 6 , the plastic strain being measured by analysis on forming.
- FIG. 7(a) illustrates plastic strain in a formed product produced by a method of the related art. Referring to FIGS. 7(a) and 7(b) , the plastic strain in the formed product 35 ( FIG. 7(b) ) produced by the HPF device 30 of the other exemplary embodiment of the present disclosure is much lower than the plastic strain in the formed product ( FIG. 7(a) ) produced by the related-art method.
- FIG. 8(a) illustrates a surface of a shaped portion of the formed product 35 manufactured using the HPF device 30 illustrated in FIG. 6
- FIG. 8(b) illustrates a surface of a shaped portion of a formed product 50 manufactured using a HPF device of the related art.
- the formed product 35 manufactured using the HPF device 30 of the other exemplary embodiment of the present disclosure does not have a large micro crack developed to base steel.
- a large micro crack 51 is formed in the base steel of the formed product 50.
- an exemplary embodiment of the present disclosure provides a HPF method for forming coated steel.
- the HPF method will be described in detail.
- a prepared blank is heated and formed in a HPF device.
- upper 21, 31 and lower 22, 32 dies of the HPF device 20, 30 are used to constrain a portion of the blank 24, 34, and cams 23, 33 of the HPF device 20, 30 are used to form a non-constrained portion of the blank 24, 34 to form a shaped portion.
- the upper 21and lower 22 dies of the HPF device 20 are used to constrain and form a portion of the blank 24, and the cams 23 of the HPF device 20 are used to form a non-constrained portion of the blank 24 while moving to the non-constrained portion of the blank 24 to complete forming.
- the cams 23 of the HPF device 20 are used to form a non-constrained portion of the blank 24 while moving to the non-constrained portion of the blank 24 to complete forming.
- the cams 33 form a portion of the blank 34 while being moved.
- a HPF method of the related art as shown in FIG. 1 , when a portion of a blank 10 is formed, the portion of the blank 10 continuously undergoes plastic deformation due to friction. Therefore, the portion has a large amount of plastic deformation after the forming, and thus micro cracks may be formed in the shaped portion. As a result, formed products having poor bendability and formability may be manufactured. Moreover, a shaped portion having undergone continuous deformation may have a more reduced thickness than the other portion. In this case, when the blank 10 is cooled, since the shaped portion is not in uniform contact with the dies, the shaped portion may not be uniformly cooled, and thus may have non-uniform properties.
- the portion when a portion of the blank 24, 34 is formed, the portion does not continuously undergo plastic deformation, thereby preventing the formation of micro cracks in the portion and a decrease in the thickness of the portion.
- the cams 23, 33 push the portion against the dies 21, 22, 31, 32, the portion and the dies 21, 22, 31, 32 may be reliably brought into contact with each other, and after the blank 24, 34 is cooled, the portion may have uniform properties.
- the blank 24, 34 may be uniformly heated to have the same temperature, or may be heated to a relatively high temperature in some region and a relatively low temperature in the other region in order to produce a multi-strength formed product.
- the entire region of the blank 24, 34 may be heated to a temperature equal to or higher than an A3 temperature of the blank 24, 34, or the blank 24, 34 may be heated to a temperature equal to or higher than the A3 temperature in a predetermined region and to a temperature equal to or lower than an A1 temperature of the blank 24, 34 in another region.
- the entire region of a product formed by the HPF method may have a high degree of strength
- a multi-strength product may be formed by the HPF method.
- the multi-strength product may have a relatively high degree of strength in a region heated to a relatively high temperature and a relatively low degree of strength in a region heated to a relatively low temperature.
- any heating method may be used. That is, any method used in the related art to heat steel may be used.
- the blank 24, 34 may be heated in the atmosphere of a heating furnace or using an induction heating device.
- the blank 24, 34 is cooled.
- the blank 24, 34 may be indirectly cooled by cooling the dies of the HPF device 20, 30.
- cooling of the blank 24, 34 is not limited thereto.
- cooling conditions generally used in an HPF method of the related art may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Heat Treatment Of Articles (AREA)
Description
- The present disclosure relates to a hot press forming (HPF) device and an HPF method using the HPF device, and more particularly, to an HPF device and method for forming coated steel according to the preambles of
claims 1 and 4 respectively. - Recently, automobile manufacturers have increased the use of high-strength materials in order to manufacture eco-friendly, fuel-saving, light automotive parts satisfying social needs. However, high-strength materials are difficult to form into desired shapes because of problems such as spring back and difficulty in maintaining dimensions, and thus the use of high-strength materials is limited.
- These problems related with formability may be solved by manufacturing high-strength parts in a way of forming high-strength materials into desired shapes at high temperatures guaranteeing good formability, and rapidly cooling the formed high-strength materials in dies. This method is called "hot press forming (HPF)." Parts having a degree of strength equal to or greater than 1500 MPa may be manufactured by the HPF method.
- In a HPF process of the related art, steel blanks are heated to 900°C or higher and are then pressed. However, when steel blanks are heated, scale may form on the surfaces of the steel blanks due to oxidation. Therefore, after the HPF process, additional processes such as a shot blasting process may be performed to remove scale from formed products. In addition, the corrosion resistance of products manufactured by the HPF method is inferior to that of coated products.
- To address these problems, Patent Document 1 has proposed a method of forming an aluminous coating layer on a steel sheet, the aluminous coating layer withstanding severe environments of a heating furnace, suppressing the oxidation of the steel sheet, and forming a corrosion resistant aluminum (Al) passive film on the steel sheet.
- However, although such Al-coated materials have a high degree of resistance to high temperatures, the corrosion resistance of the Al-coated materials is inferior to the corrosion resistance of materials coated with zinc (Zn) by a sacrificial anode method, and the manufacturing costs of the Al-coated materials are high. Therefore, there has been increasing interest in methods of using Zn-coated materials.
- However, if Zn-coated materials are heated to a high temperature and are then formed into parts, micro cracks having a size of about 10 µm to 30 µm may be formed in walls of the parts, thereby deteriorating the properties of the parts such as bendability. Therefore, the application of Zn-coated materials is limited.
- (Patent Document 1)
US Patent No.: 6,296,805 -
US 2012/067098 A1 discloses a method performed by a power press machine composed of a concave die, a convex die with two shoulders and two depressors separately beside the convex die. The method includes the steps of: a) placing a high-strength steel (HSS) on the convex die and under the concave die; b) moving the depressors to have two opposite side portions of the HSS clamped between the concave die and the depressors; c) moving the convex die to press the HSS and keeping the side portions immovable; d) forming two steps adjacent to the side portions by the shoulders; and e) cutting off the steps with the side portions. -
JP 2009 101421 - Aspects of the present disclosure may provide a hot press forming (HPF) device for performing a HPF process on coated steel, particularly zinc (Zn)-coated steel while reducing the formation of microcracks in a formed product and imparting uniform properties to the formed product, and a HPF method using the HPF device.
- According to an aspect of the present disclosure, a hot press forming (HPF) device for forming coated steel according to claim 1 is provided. According to another aspect of the present disclosure, a HPF method for forming coated steel according to
claim 4 is provided. - According to the present disclosure, when coated steel such as zinc (Zn)-coated steel is processed through a hot press forming (HPF) process, the formation of micro cracks in formed products may be reduced, and the formed products may have a high degree of formability such as bendability. In addition, formed products having high quality may be produced, and particularly, shaped portions of the formed products may have uniform properties.
-
-
FIG. 1 is a schematic view illustrating a hot press forming (HPF) device and method of the related art. -
FIG. 2 is a view illustrating a shaped portion of a formed product manufactured by a HPF method of the related art. -
FIG. 3 is a schematic view illustrating plastic strain in the formed product manufactured by the HPF method of the related art. -
FIG. 4 is a schematic view illustrating an exemplary HPF device and method according to an exemplary embodiment of the present disclosure. -
FIG. 5 is a schematic view illustrating plastic strain in a formed product manufactured according to the exemplary embodiment of the present disclosure. -
FIG. 6 is a schematic view illustrating an exemplary HPF device and method according to another exemplary embodiment of the present disclosure. -
FIG. 7(a) is a schematic view illustrating plastic strain in a formed product manufactured by a method of the related art, andFIG. 7(b) is a schematic view illustrating plastic strain in a formed product manufactured according to the other exemplary embodiment of the present disclosure. -
FIG. 8(a) is an image of a shaped portion of a formed product manufactured by a method of the related art, andFIG. 8(b) is an image of a shaped portion of the formed product manufactured according to the other exemplary embodiment of the present disclosure. - The inventors have found that if coated steel, particularly zinc (Zn)-coated steel, is subjected to a hot press forming (HPF) process, formed parts (formed products) have micro cracks (very small cracks or micro cracks), and the properties of the formed products are not uniform because of non-uniform cooling at shaped portions of the formed products. Thus, the inventors have conducted research to solve these problems.
- Exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. However, the accompanying drawings are for illustrative purposes only and are not intended to limit the scope of the present invention.
-
FIG. 1 is a schematic view illustrating a HPF process of the related art. As illustrated inFIG. 1 , in a HPF process, a heated blank 10 is placed between an upper die 11 and alower die 12 and is then pressed using the upper and lower dies to produce a formedproduct 13. -
FIG. 2 illustrates a surface of a shaped portion of coated steel after the coated steel is processed by a HPF method of the related art as illustrated inFIG. 1 . As illustrated inFIG. 2 , formedproducts 13 made of coated steel through a HPF process of the related art had micro cracks in shaped portions of the formedproducts 13. - To analyze reasons for this, plastic strain in a formed product illustrated in
FIG. 2 was analyzed, and results of the analysis are illustrated inFIG. 3 . As illustrated inFIG. 3 , the formedproduct 13 produced using a HPF device of the related art had an excessive amount of plastic deformation at the shaped portion of the formedproduct 13, and micro cracks were formed in the shaped portion. - In detail, micro cracks were formed in a wall of the shaped portion, especially at a lower end portion of the wall of the shaped portion because of concentrated deformation on the lower end portion. The design shape of the formed
product 13 may be modified to reduce deformation. However, it may not be easy to modify the design shape of the formedproduct 13 because of limitations to the change of design. Therefore, the inventors have invented a method of using a cam for reducing deformation and micro cracks. - In addition, when a blank is pressed between upper and lower dies, the thickness of the blank is reduced at a shaped portion of the blank, and a narrow gap is formed between the blank and the upper and lower dies. As a result, when the blank is cooled in the dies after the blank is pressed, the blank is not uniformly cooled, and thus properties of the shaped portion of the blank are deteriorated.
- Therefore, the inventors have invented a HPF device configured to prevent the generation of micro cracks in formed products and impart uniform properties to formed products, and a HPF method using the HPF device.
- First, the HPF device of the present disclosure will be described in detail.
- The HPF device of the present disclosure includes: an upper die and a lower die configured to constrain a portion of a blank; and a cam configured to deform a non-constrained portion of the blank to form a shaped portion.
- The cam forms a shaped portion while moving in a direction different from directions in which the upper and lower dies move.
-
FIG. 4 is a schematic view illustrating anexemplary HPF device 20 according to an exemplary embodiment of the present disclosure. As shown inFIG. 4 , theHPF device 20 of the exemplary embodiment of the present disclosure includes upper 21 and lower 22 dies, andcams 23 between the upper 21 and lower 22 dies. An HPF device of the related art such as that illustrated inFIG. 1 includes no cam, and when a blank is pressed using the HPF device of the related art, upper and lower dies of the HPF device are used to constrain the blank. - However, when a blank 24 is pressed using the
HPF device 20 of the exemplary embodiment of the present disclosure, the upper 21 and lower 22 dies constrain a portion of the blank 24, and a non-constrained portion of the blank 24 is formed using thecams 23 to form a shaped portion. In theHPF device 20 illustrated inFIG. 4 , thecams 23 move in horizontal directions independent of the upper 21 and lower 22 dies moving in vertical directions, in order to form a shaped portion. - When the shaped portion is formed, the plastic deformation of the shaped portion is distributed by the
cams 23. That is, as illustrated inFIG. 4 , when a blank 24 is pressed into a desired shape using theHPF device 20 of the exemplary embodiment of the present disclosure, the upper 21 and lower 22 dies constrain and shape a portion of the blank 24, and thecams 23 move to shape another portion of the blank 24 not constrained by the upper 21 and lower 22 dies. - In the
HPF device 20 illustrated inFIG. 4 , thecams 23 are provided in addition to the upper 21 and lower 22 dies. -
FIG. 5 illustrates plastic strain in a formedproduct 25 manufactured using theHPF device 20 illustrated inFIG. 4 , the plastic strain being measured by analysis on forming. When the results shown inFIG. 5 are compared with the results shown inFIG. 3 , the plastic deformation of a shaped portion of the formedproduct 25 produced using theHPF device 20 of the exemplary embodiments of the present disclosure is markedly reduced. Therefore, the formation of micro cracks may be markedly reduced in products manufactured using theHPF device 20 of the exemplary embodiment of the present disclosure. - Another
exemplary HPF device 30 is illustrated inFIG. 6 according to another exemplary embodiment of the present disclosure. In theHPF device 30 illustrated inFIG. 6 ,cams 33 are provided separate from upper 31 and lower 32 dies. - In the
HPF device 30 illustrated inFIG. 6 , the upper 31 and lower 32 dies constrain a blank 34 to fix the blank 34, and forming of the blank 34 is performed substantially by thecams 33. That is, the upper 31 and lower 32 dies fix the blank 34, and thecams 33 form the blank 34 while moving at predetermined angles. -
FIG. 7(b) illustrates plastic strain in a formedproduct 35 manufactured using theHPF device 30 illustrated inFIG. 6 , the plastic strain being measured by analysis on forming.FIG. 7(a) illustrates plastic strain in a formed product produced by a method of the related art. Referring toFIGS. 7(a) and 7(b) , the plastic strain in the formed product 35 (FIG. 7(b) ) produced by theHPF device 30 of the other exemplary embodiment of the present disclosure is much lower than the plastic strain in the formed product (FIG. 7(a) ) produced by the related-art method. - In addition,
FIG. 8(a) illustrates a surface of a shaped portion of the formedproduct 35 manufactured using theHPF device 30 illustrated inFIG. 6 , andFIG. 8(b) illustrates a surface of a shaped portion of a formedproduct 50 manufactured using a HPF device of the related art. Referring toFIG. 8(a) , the formedproduct 35 manufactured using theHPF device 30 of the other exemplary embodiment of the present disclosure does not have a large micro crack developed to base steel. However, referring toFIG. 8(a) , a largemicro crack 51 is formed in the base steel of the formedproduct 50. - In addition, an exemplary embodiment of the present disclosure provides a HPF method for forming coated steel. Hereinafter, the HPF method will be described in detail.
- According to the HPF method of the exemplary embodiment of the present disclosure, a prepared blank is heated and formed in a HPF device.
- As illustrated in
FIG. 4 andFIG. 6 , upper 21, 31 and lower 22, 32 dies of theHPF device cams HPF device - In the example illustrated in
FIG. 4 , the upper 21and lower 22 dies of theHPF device 20 are used to constrain and form a portion of the blank 24, and thecams 23 of theHPF device 20 are used to form a non-constrained portion of the blank 24 while moving to the non-constrained portion of the blank 24 to complete forming. Unlike this, in the example illustrated inFIG. 6 , although theupper die 31 constrains thelower die 32, the upper 31 and lower 32 dies are not involved in forming, and thecams 33 form a portion of the blank 34 while being moved. - According to a HPF method of the related art as shown in
FIG. 1 , when a portion of a blank 10 is formed, the portion of the blank 10 continuously undergoes plastic deformation due to friction. Therefore, the portion has a large amount of plastic deformation after the forming, and thus micro cracks may be formed in the shaped portion. As a result, formed products having poor bendability and formability may be manufactured. Moreover, a shaped portion having undergone continuous deformation may have a more reduced thickness than the other portion. In this case, when the blank 10 is cooled, since the shaped portion is not in uniform contact with the dies, the shaped portion may not be uniformly cooled, and thus may have non-uniform properties. - However, according to the HPF method of the exemplary embodiment of the present disclosure, as illustrated in
FIGS. 4 and6 , when a portion of the blank 24, 34 is formed, the portion does not continuously undergo plastic deformation, thereby preventing the formation of micro cracks in the portion and a decrease in the thickness of the portion. In addition, since thecams - Meanwhile, the blank 24, 34 may be uniformly heated to have the same temperature, or may be heated to a relatively high temperature in some region and a relatively low temperature in the other region in order to produce a multi-strength formed product.
- In detail, the entire region of the blank 24, 34 may be heated to a temperature equal to or higher than an A3 temperature of the blank 24, 34, or the blank 24, 34 may be heated to a temperature equal to or higher than the A3 temperature in a predetermined region and to a temperature equal to or lower than an A1 temperature of the blank 24, 34 in another region.
- In the former case, the entire region of a product formed by the HPF method may have a high degree of strength, and in the latter case, a multi-strength product may be formed by the HPF method. The multi-strength product may have a relatively high degree of strength in a region heated to a relatively high temperature and a relatively low degree of strength in a region heated to a relatively low temperature.
- In the above, any heating method may be used. That is, any method used in the related art to heat steel may be used. For example, the blank 24, 34 may be heated in the atmosphere of a heating furnace or using an induction heating device.
- After the blank is completely formed, the blank 24, 34 is cooled. For example, the blank 24, 34 may be indirectly cooled by cooling the dies of the
HPF device
Claims (7)
- A hot press forming (HPF) device (20) for forming coated steel, the HPF device (20) comprising an upper die (21) and a lower die (22),
characterised in that the upper (21) and lower dies (22) constrain a portion of a blank (24), and the HPF device (20) further comprises a cam (23) configured to form another portion of the blank (24) not constrained by the upper (21) and lower dies (22) in order to form a shaped portion, wherein the cam (23) in use is movable in a direction different from directions in which the upper (21) and lower dies (22) are capable of being moved. - The HPF device (20) of claim 1, wherein the cam (23) is disposed between the upper (21) and lower dies (22).
- The HPF device (20) of claim 1, wherein the cam (23) is separate from a portion of the upper die (21) or the lower die (22) .
- A hot press forming (HPF) method for forming coated steel, the HPF method comprising:heating a blank (24);forming the heated blank (24) using a HPF device (20); andcooling the formed blank (24),characterised in that in the forming of the heated blank (24), a portion of the heated blank (24) is constrained by upper (21) and lower dies (22) of the HPF device (20), and another portion of the heated blank (24) not constrained by the upper (21) and lower dies (22) is formed by a cam (23) in order to form a shaped portion, wherein in the forming of the heated blank (24), the cam (23) is moved in a direction different from directions in which the upper (21) and lower dies (22) are moved.
- The HPF method of claim 4, wherein the cam (23) is disposed between the upper (21) and lower dies (22).
- The HPF method of claim 4, wherein the cam (23) is separate from a portion of the upper die (21) or the lower die (22) .
- The HPF method of claim 4, wherein in the heating of the blank (24), the blank (24) is entirely heated to a temperature equal to or higher than an A3 temperature of the blank (24), or the blank (24) is heated to a temperature equal to or higher than the A3 temperature of the blank (24) in a predetermined region and to a temperature equal to or lower than an A1 temperature of the blank (24) in another region.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130043485A KR101482395B1 (en) | 2013-04-19 | 2013-04-19 | Hot-press forming apparatus of coated steel and hot-press forming process using the same |
PCT/KR2013/012110 WO2014171610A1 (en) | 2013-04-19 | 2013-12-24 | Hot press forming device for coated steel and hot press forming method using same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2987568A1 EP2987568A1 (en) | 2016-02-24 |
EP2987568A4 EP2987568A4 (en) | 2016-05-18 |
EP2987568B1 true EP2987568B1 (en) | 2018-08-01 |
Family
ID=51731524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13882172.3A Active EP2987568B1 (en) | 2013-04-19 | 2013-12-24 | Hot press forming device for coated steel and hot press forming method using same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160082496A1 (en) |
EP (1) | EP2987568B1 (en) |
JP (1) | JP6106804B2 (en) |
KR (1) | KR101482395B1 (en) |
CN (1) | CN105307793A (en) |
WO (1) | WO2014171610A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6780943B2 (en) * | 2015-03-30 | 2020-11-04 | 株式会社ワイテック | Hot press forming equipment |
KR102240850B1 (en) * | 2020-07-10 | 2021-04-16 | 주식회사 포스코 | Manufacturing method of hot fress formed part having excellent productivity, weldability and formability |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3194200A (en) * | 1962-10-19 | 1965-07-13 | Parsons Corp | Process of manufacturing rocker arm |
US3479979A (en) * | 1967-11-16 | 1969-11-25 | Aluminum Co Of America | Metal forming |
US3866471A (en) * | 1973-12-03 | 1975-02-18 | Kaller Die & Tool Company | Progressive die |
US4114417A (en) * | 1977-06-27 | 1978-09-19 | Schmelzer Corporation | Method and apparatus for making metal parts |
IT1239511B (en) * | 1990-03-30 | 1993-11-03 | Videocolor Spa | METHOD OF FORMING A SHADOW MASK FOR A TUBE OF REPRODUCTION OF COLOR IMAGES |
US6032504A (en) * | 1997-10-16 | 2000-03-07 | Cosma International Inc. | Draw stamping die for stamping body panels for motor vehicles |
FR2780984B1 (en) | 1998-07-09 | 2001-06-22 | Lorraine Laminage | COATED HOT AND COLD STEEL SHEET HAVING VERY HIGH RESISTANCE AFTER HEAT TREATMENT |
WO2004103601A1 (en) * | 1999-07-22 | 2004-12-02 | Jiro Iwaya | Press-formed body and press-forming method |
JP3685961B2 (en) * | 1999-08-23 | 2005-08-24 | 本田技研工業株式会社 | Molding press |
JP2009023000A (en) * | 2002-09-11 | 2009-02-05 | Kobe Steel Ltd | Mold for press forming of metal plate and press forming method for metal plate |
CN100471595C (en) * | 2004-07-15 | 2009-03-25 | 新日本制铁株式会社 | Hot pressing method for high strength member using hot pressed parts of steel sheet |
JP4746914B2 (en) * | 2005-05-19 | 2011-08-10 | トヨタ車体株式会社 | Press method and press mold |
JP4787548B2 (en) * | 2005-06-07 | 2011-10-05 | 株式会社アミノ | Thin plate forming method and apparatus |
JP2007268608A (en) * | 2006-03-08 | 2007-10-18 | Kobe Steel Ltd | Press-forming method of aluminum alloy sheet and press device |
US7765848B2 (en) * | 2006-04-14 | 2010-08-03 | Honda Motor Co., Ltd. | Press working method and press working apparatus |
DE102006040893B3 (en) * | 2006-08-31 | 2008-01-10 | Benteler Automobiltechnik Gmbh | Sheet component making process for motor vehicle involves deforming sheets in mold parts and using pressing tool |
US20090155615A1 (en) * | 2007-12-18 | 2009-06-18 | Gm Global Technology Operations, Inc. | Designed orientation for welded automotive structural components made of press hardened steel |
WO2009131233A1 (en) * | 2008-04-22 | 2009-10-29 | 新日本製鐵株式会社 | Plated steel sheet and method of hot-pressing plated steel sheet |
US8857237B2 (en) * | 2008-11-27 | 2014-10-14 | Yong-Wah Chien | Method for forming high-strength steel into a C-shape |
JP2009101421A (en) | 2008-12-27 | 2009-05-14 | Press Kogyo Co Ltd | Method and device for forming pressed article beyond its stretch rate |
US8230713B2 (en) * | 2008-12-30 | 2012-07-31 | Usamp | Elevated temperature forming die apparatus |
JP6010730B2 (en) * | 2009-05-29 | 2016-10-19 | 日産自動車株式会社 | High-strength molded article by high ductility die quench and method for producing the same |
KR101171450B1 (en) * | 2009-12-29 | 2012-08-06 | 주식회사 포스코 | Method for hot press forming of coated steel and hot press formed prodicts using the same |
JP5549921B2 (en) * | 2010-02-23 | 2014-07-16 | 新日鐵住金株式会社 | Manufacturing method of hot pressed parts and hot pressed parts |
KR20110130980A (en) * | 2010-05-28 | 2011-12-06 | 현대제철 주식회사 | Molding apparatus for partial heating |
KR101033361B1 (en) * | 2010-06-30 | 2011-05-09 | 현대하이스코 주식회사 | Hot press forming method |
JP4883240B1 (en) * | 2010-08-04 | 2012-02-22 | Jfeスチール株式会社 | Steel sheet for hot press and method for producing hot press member using the same |
JP2012051005A (en) * | 2010-09-01 | 2012-03-15 | Sumitomo Metal Ind Ltd | Press molding device and method of manufacturing press molded product |
CN104690137B (en) * | 2011-01-14 | 2017-05-24 | 株式会社神户制钢所 | Press forming method for steel plate |
JP5817479B2 (en) * | 2011-03-10 | 2015-11-18 | Jfeスチール株式会社 | Manufacturing method of hot press member |
DE102011108912A1 (en) * | 2011-07-28 | 2013-01-31 | Volkswagen Aktiengesellschaft | Segmented press hardening tool |
KR20130015633A (en) * | 2011-08-04 | 2013-02-14 | 부산대학교 산학협력단 | Hot press forming die using local softening of press formed part method of for reducing shearing load |
JP5766064B2 (en) * | 2011-08-12 | 2015-08-19 | 株式会社Ihiエアロスペース | Die manufacturing method and hot press apparatus equipped with a die |
JP5790350B2 (en) * | 2011-09-09 | 2015-10-07 | Jfeスチール株式会社 | Press molding apparatus and press molding method |
US9132464B2 (en) * | 2012-06-12 | 2015-09-15 | Martinrea Industries, Inc. | Method for hot stamping metal |
KR101588740B1 (en) * | 2014-06-18 | 2016-02-12 | 현대자동차 주식회사 | Device and method for hot stamping |
-
2013
- 2013-04-19 KR KR20130043485A patent/KR101482395B1/en active IP Right Grant
- 2013-12-24 WO PCT/KR2013/012110 patent/WO2014171610A1/en active Application Filing
- 2013-12-24 US US14/785,301 patent/US20160082496A1/en not_active Abandoned
- 2013-12-24 EP EP13882172.3A patent/EP2987568B1/en active Active
- 2013-12-24 JP JP2016508851A patent/JP6106804B2/en active Active
- 2013-12-24 CN CN201380077548.XA patent/CN105307793A/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20160082496A1 (en) | 2016-03-24 |
JP6106804B2 (en) | 2017-04-05 |
CN105307793A (en) | 2016-02-03 |
EP2987568A4 (en) | 2016-05-18 |
EP2987568A1 (en) | 2016-02-24 |
KR101482395B1 (en) | 2015-01-13 |
WO2014171610A1 (en) | 2014-10-23 |
KR20140125562A (en) | 2014-10-29 |
JP2016518256A (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5765496B2 (en) | Press molding method and manufacturing method of press molded parts | |
KR101870932B1 (en) | Process and installation for producing a component from sheet magnesium | |
CN110586756B (en) | Hot stamping forming process for preparing vehicle driving pulley execution cylinder | |
KR102043343B1 (en) | Panel shaped article and its manufacturing method | |
KR101940165B1 (en) | Press-molding method and method for producing press-molded component | |
CN102963100B (en) | Manufacturing method for titanium and titanium alloy products by coating and forming | |
WO2013061480A1 (en) | Hot press molding method, article molded by hot press molding, and mold for hot pressing | |
JP5266676B2 (en) | Warm forming method and molded product produced by the warm forming method | |
EP2987568B1 (en) | Hot press forming device for coated steel and hot press forming method using same | |
RU2710401C1 (en) | Hot forming method and hot forming system | |
Maeno et al. | Hot stamping of titanium alloy sheets into U shape with concave bottom and joggle using resistance heating | |
CN104209407A (en) | Automotive chassis stamping die | |
Mori et al. | Deep drawability and bendability in hot stamping of ultra-high strength steel parts | |
JP5942606B2 (en) | Warm press molding method and molding die having groove shape on the mold surface used therefor | |
CN114888198A (en) | Hot stamping forming process and stamping die | |
JP2018024016A (en) | Manufacturing method of hot press molding | |
KR101505272B1 (en) | Hot stamping device and method | |
JP4441183B2 (en) | Residual stress reduction method for metal sheet products | |
JP2008246555A (en) | Blank for press forming and press forming method | |
JP2013013906A (en) | Hot press forming method, and hot press forming device | |
WO2012043834A1 (en) | Press formed article and production method for same | |
KR101665808B1 (en) | Molding Apparatus | |
Zheng et al. | An experimental investigation for macro-textured tool in hot stamping | |
CN110560577A (en) | magnesium alloy part and preparation method thereof | |
JP6018469B2 (en) | Stainless steel foil warm working method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013041404 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B21D0037160000 Ipc: B21D0022200000 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20160414 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21D 22/06 20060101ALI20160408BHEP Ipc: B21D 22/02 20060101ALI20160408BHEP Ipc: B21D 22/20 20060101AFI20160408BHEP |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20171220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180522 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1023700 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013041404 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1023700 Country of ref document: AT Kind code of ref document: T Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181201 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181101 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181101 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181102 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013041404 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190503 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181224 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181224 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131224 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180801 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602013041404 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG-SI, KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602013041404 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG- SI, KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602013041404 Country of ref document: DE Owner name: POSCO HOLDINGS INC., KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: POSCO HOLDINGS INC.; KR Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF LEGAL ENTITY; FORMER OWNER NAME: POSCO Effective date: 20221026 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: POSCO CO., LTD; KO Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: POSCO Effective date: 20221109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602013041404 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG-SI, KR Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602013041404 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG- SI, KR Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230921 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230920 Year of fee payment: 11 |