EP2978311B1 - Biocide formulation and method for treating water - Google Patents

Biocide formulation and method for treating water Download PDF

Info

Publication number
EP2978311B1
EP2978311B1 EP14720169.3A EP14720169A EP2978311B1 EP 2978311 B1 EP2978311 B1 EP 2978311B1 EP 14720169 A EP14720169 A EP 14720169A EP 2978311 B1 EP2978311 B1 EP 2978311B1
Authority
EP
European Patent Office
Prior art keywords
biocide
formulation
water
units
biocide formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14720169.3A
Other languages
German (de)
French (fr)
Other versions
EP2978311A1 (en
Inventor
Marko Kolari
Jukka Rautiainen
Hans-Peter Hentze
Hanna-Leena Alakomi
Pirkko Forssell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kemira Oyj
Original Assignee
Kemira Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemira Oyj filed Critical Kemira Oyj
Priority to PL14720169T priority Critical patent/PL2978311T3/en
Publication of EP2978311A1 publication Critical patent/EP2978311A1/en
Application granted granted Critical
Publication of EP2978311B1 publication Critical patent/EP2978311B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/34Nitriles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone

Definitions

  • the present invention relates to a biocide formulation comprising a biocide in a micelle. More particularly the micelle comprises a block copolymer and a quaternary ammonium stabilizing compound.
  • the present invention also relates to method for controlling biofilms by eliminating and/or preventing microorganisms in an aqueous environment
  • a biofilm is an aggregate of microorganisms in which cells adhere to each other on a surface. These adherent cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS).
  • EPS extracellular polymeric substance
  • Biofilm EPS which is also referred to as slime, is a polymeric conglomeration generally comprising extracellular polysaccharides, DNA and proteins. Biofilms may form on living or non-living surfaces and can be prevalent in natural, industrial and hospital aqueous settings.
  • the microbial cells growing in a biofilm are generally physiologically distinct from planktonic cells of the same organism, which, by contrast, are single-cells that may float or swim in a liquid medium.
  • Formation of a biofilm begins with the attachment of free-floating microorganisms to a surface. These first colonists adhere to the surface initially through weak, reversible adhesion via van der Waals forces. If the colonists are not immediately separated from the surface, they can anchor themselves more permanently using cell adhesion structures such as pili. Some species are not able to attach to a surface on their own but are often able to anchor themselves to the EPS matrix or directly to earlier colonists. It is during this colonization that the cells are able to communicate via quorum sensing using signals such as AHL compounds. Once colonization has begun, the biofilm grows through a combination of cell division and recruitment. The final stage of biofilm formation is known as development, and is the stage in which the biofilm is established and may only change in shape and size. The development of a biofilm may allow for an aggregate cell colony (or colonies) to be increasingly resistant to antimicrobial agents.
  • Biofilms contribute in many problems in aqueous industrial systems, especially in recirculating systems such as paper machines or cooling systems.
  • the build-up of biofilms can cause problems such as unscheduled down-time of the machinery due to cleaning, clogging of pipelines or valves or spray nozzles, poor heat transfer, high energy consumption, corrosion, increased maintenance expenditures, shortened system life, higher operating costs etc.
  • a biocide is an antimicrobial chemical substance which can deter, render harmless, or exert a controlling effect on any harmful organism. Biocides are commonly used in industry. An antimicrobial biocide may be further classified e.g. as a germicide, an antibacterial, an antiviral, an antifungal, an antiprotozoal or an antiparasite.
  • biocides were originally developed for the control of planktonic bacteria. At the generally used low concentrations these biocides are not very effective against biofilms. The sheath or matrix formed by EPS-producing microorganisms make them to tolerate higher dosages of most of the common biocides. Using higher doses of the biocides may be economically unfeasible or may cause other problems, such as corrosion of the equipment. Also, because biocides are intended to kill living organisms, lifting dosages of biocidal products would also increase risks for health of the personnel working with that particular water-intensive process.
  • biocide formulations described in prior art employ more or less amphiphilic dispersants which fulfill two main functions: a) the wettability of the biofilm for reduction of the biofilm layer (biowettants), or b) the delay and prevention of biofilm growth on surfaces (biostabilizer).
  • lipid-based bilayer formulations such as liposomes ( WO 2010/107533 ) or oil-in-water emulsions of biocides for controlling industrial biofouling ( US 6 096 225 ).
  • US 5 312 841 discloses formulations of water based microemulsions of bis(trichloromethyl)-sulfone (BTCMS), non-ionic surfactant and cationic quaternary ammonium halide surfactant useful as a biocide.
  • BTCMS bis(trichloromethyl)-sulfone
  • non-ionic surfactant non-ionic surfactant
  • cationic quaternary ammonium halide surfactant useful as a biocide.
  • biocides and biocide formulations which can be used against biofilms on surfaces. They should be able to be targeted against the biofilms and also be able to penetrate the biofilm and kill the biofilm organisms. Such biocides should be effective also at low doses.
  • the present invention targets to more effective biofilm control by novel biocidal formulations, wherein the biocide solubilization and micelle formation by block copolymers is combined with surface adsorption and membrane permeabilization properties.
  • biocide solubilization and micelle formation by block copolymers is combined with surface adsorption and membrane permeabilization properties.
  • self-assembled mixed micelles are formed, which contain in addition to biocide(s) and block copolymers also membrane permeabilizers and/or cationic polyelectrolytes for improved surface adsorption. This enables a step-change in performance (by factor of about 10), especially when compared to a solvent-based formulation.
  • the present invention also provides a biocide formulation comprising a biocide in a micelle.
  • the micelle comprises a block copolymer which is a nonionic triblock copolymer composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene ox-ide)), and a quaternary ammonium stabilizing compound, and the biocide in said formulation is 2,2-dibromo-3-nitrilopropionamide (DBNPA) .
  • DBNPA 2,2-dibromo-3-nitrilopropionamide
  • the present disclosure also provides a biocide formulation comprising a biocide in a micelle, wherein the micelle comprises a block copolymer having a biocide-solubilizing part and a water-soluble part, and a quaternary ammonium compound which stabilizes the micelle, and also possibly improves the permeabilization properties of the formulation.
  • the present invention also provides a method for controlling biofilms by eliminating and/or preventing microorganisms in an aqueous environment, comprising providing the biocide formulation according to the present invention, and dosing said biocide formulation to the aqueous environment.
  • the present invention has advantages over the state-of-the-art by employing additional additives to boost the biocidal performance, i.e. by additional membrane permeabilizers and by improved surface adsorption (e.g. with cationic polyelectrolytes) and enabling thereby step-change performances by synergistic effects.
  • additional additives to boost the biocidal performance
  • the biocidal performance was shown to be good also in hard water and fiber suspensions.
  • biocides may be targeted to biofilms on surfaces.
  • the formulations have sufficient shelf-life. Further, they can be pumped with common industrial chemical pumps.
  • the present disclosure provides a targeted release of a biocide onto a biofilm surface in an aqueous environment, enabling improved microbe control.
  • the biocide solubilization and micelle formation by block copolymers is combined with surface adsorption and membrane permeabilization properties.
  • One example describes the solubilization of a biocide with low water-solubility (e.g. DBNPA) within a mixed-micelle formed by a) a block copolymer comprising a biocide-solubilizing and a water-soluble block, and b) an additional stabilizer (e.g. DDAC) and/or c) an additional cationic polyelectrolyte (e.g. PDADMAC or PEI) improving surface adsorption and retention of the formulation at surfaces.
  • a biocide with low water-solubility e.g. DBNPA
  • DDAC additional stabilizer
  • an additional cationic polyelectrolyte e.g. PDADMAC or PEI
  • the mixed micelles are formed by block copolymers, quaternary ammonium stabilizers and optionally additional cationic polyelectrolytes.
  • the function of the latter is to improve the retention of the biocidal, self-assembled aggregates at surfaces (e.g. steel). In this way the treated surface shows a longer protection time and less microbial contamination even if dosing the biocidal formulation in a non-continuous manner ("shock dosing") meaning that the aqueous phase may at some time point be free of any biocide residuals.
  • Additional additives of the formulation may include also defoamers, deaerators, rheological modifiers, biocide stabilizers or other process chemicals.
  • the present disclosure provides a biocide formulation comprising a biocide (or a mixture of biocides) in a micelle, wherein the micelle comprises a block copolymer having a biocide-solubilizing part and a water-soluble part, and a quaternary-ammonium stabilizing compound.
  • the formulations may contain other ingredients, such as stabilizing agents of the active ingredients and residual or trace amounts of other agents, such as salts, citrate, preservative agents, solvents etc.
  • Micelles are aggregates of amphiphilic molecules dispersed in a liquid medium.
  • a typical micelle in aqueous solution is an aggregate, which hydrophilic moieties are in contact with surrounding solvent, sequestering the hydrophobic moieties in the micelle's center.
  • the micellar phase formation occurs by packing the hydrophobic molecular entities in a fashion, which generates interfacial curvature. In this way spherical, cylindrical or disc like discrete aggregates are formed.
  • Normal phase micelles oil-in-water micelle
  • Inverse micelles have the head groups at the center with the tails extending out (water-in-oil micelle).
  • Micelles are typically approximately spherical in shape. Other micellar phases, including shapes such as ellipsoids, cylinders, and bilayers, are also possible.
  • the shape and size of a micelle is a function of the molecular geometry of its surfactant molecules and solution conditions such as surfactant concentration, temperature, pH, and ionic strength.
  • the process of forming micelles is known as micellisation and forms part of the phase behavior of many lipids and other amphiphilic molecules according to their polymorphism.
  • Micelles in lipid-water systems are further discussed for example by J. M. Seddon and R. H. Templer in "Polymorphism of Lipid-Water Systems", from the Handbook of Biological Physics, Vol. 1, ed. R. Lipowsky, and E. Sackmann. (c) 1995, Elsevier Science B.V. ISBN 0-444-81975-4 .
  • Micelles form spontaneously in water, and this spontaneous aggregation is due to the amphiphilic nature of the micelle forming molecules.
  • the attractive interaction of their hydrophobic entities is the basis of their aggregation.
  • the hydrophobic tails are not sequestered from water, the result is the formation of an organized cage around the hydrophobic tail and the entropy change is unfavorable.
  • the amphiphilic molecules form micelles, the hydrophobic tails interact with each other and this interaction releases water from the hydrophobic tails, leading to a favorable increase in entropy. Due to the spontaneous formation of the micelles, the simplest way to prepare the biocide formulation of the invention is to mix the ingredients and let the micelles form.
  • Micelles only form when the concentration of surfactant is greater than the critical micelle concentration (CMC).
  • the surfactant is any surface active material that can part the surface upon entering.
  • the CMC is the concentration above surfactant when micelles will form spontaneously. The higher the concentration, the more micelles there are.
  • Micelle formation also depends on the Krafft temperature. This temperature is when surfactants will form micelles. If the temperature is below the Krafft temperature, then there is no spontaneous formation of micelles. As the temperature increases, the surfactant will turn into a soluble form and will be able to form micelles from a crystalline state.
  • the size of the micelles useful in the present invention may be in the range of about 5-30 nm, such as about 5-20 nm, for example 5-15 nm. Generally the average size of the micelles is about 10 nm.
  • Such micelles may also be called nanoparticles or nanospheres, which generally refer to roughly spherical shaped units that self-assemble under the appropriate conditions from an amphiphilic material so that the core is hydrophobic and the corona is hydrophilic.
  • the micelles may be in a form of a nanoemulsion or nanosuspensions in the aqueous solution. Such nanoemulsions may be capable of crossing biological barriers, such as microbial membranes. Possible pathways include for example phagocytosis, pinocytosis and endocytosis.
  • the biocide may be any suitable biocide (antimicrobial agent) able to kill the microorganisms, such as the biofilm-forming microorganisms.
  • the biocide is present as a mixture of two or more different biocides.
  • the biocide may be soluble to water, or it may have low solubility to water or it may even be non-water-soluble. It is advantageous that the biocide does not react with compounds of the micelle, and the formulation as whole is stable.
  • the biocide formulation contains at least 2% (w/w) of the biocide (antimicrobial agent). In one embodiment the biocide formulation contains about 5-50% (w/w) of the biocide.
  • the biocide formulation contains about 10-25% (w/w) of the biocide. In one embodiment the biocide formulation contains about 15-25% (w/w) of the biocide. In one embodiment the biocide formulation contains about 13-17% (w/w) of the biocide. In one specific embodiment the biocide formulation contains about 15% (w/w) of the biocide.
  • water insoluble or a compound having "low water solubility", as used herein, refers to compounds having low, including very low water solubility.
  • the low solubility may be for example a solubility of at about 1 gram per 100 grams of water, such as about 10 grams per 100 grams of water, or about 50 grams per 100 grams of water.
  • the biocides may be generally divided into two categorical groups: oxidizing and non-oxidizing (or conventional) biocides.
  • the non-oxidizing biocides include biocides such as DNBPA, glutaraldehyde, isothiazolones etc.
  • suitable biocides for use in the formulations of the disclosure includes non-oxidizing biocides.
  • the biocides may also be divided into groups by function mechanisms.
  • the electrophiles include oxidants, such as halogens and peroxy compounds, and electrophiles, such as formaldehyde, formaldehyde-releasers, isothiazolones, Bronopol and Cu, Hg and Ag.
  • the membrane active biocides include lytic biocides, such as quats, biguanides, phenols and alcohols, and protonophores, such as parabens, weak acids and pyrithiones.
  • non-oxidizing biocides examples include glutaraldehyde, 2,2-dibromo-3-nitrilopropionamide (DBNPA), 2-bromo-2-nitropropane-1,3-diol (Bronopol), 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), 2-methyl-4-isothiazolin-3-one (MIT), a mixture of CMIT and MIT, 1,2-dibromo-2,4-dicyanobutane, bis(trichloromethyl)sulfone, 2-bromo-2-nitrostyrene, 4,5-dichloro-1,2-dithiol-3-one, 2-n-octyl-4-isothiazolin-3-one, 1,2-benzisothiazolin-3-one, ortho-phthalaldehyde, guanidines, biguanidines, pyrithiones, carbamates, 3-iodopropynyl-N-but
  • Preferred non-oxidizing biocides include glutaraldehyde; 2,2-dibromo-3-nitrilopropionamide (DBNPA); 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT); 2-methyl-4-isothiazolin-3-one (MIT); a mixture of CMIT and MIT; carbamates; and phosphonium salts such as tetrakis hydroxymethyl phosphonium sulfate (THPS), 3,5-dimethyl-1,3,5-thiadiazinane-2-thione (Dazomet), 2-(thiocyanomethylthio) benzothiazole, methylene bisthiocyanate (MBT), and combinations thereof.
  • THPS tetrakis hydroxymethyl phosphonium sulfate
  • Dazomet 3,5-dimethyl-1,3,5-thiadiazinane-2-thione
  • MTT methylene bisthiocyanate
  • the non-oxidizing biocides are selected from the group consisting of glutaraldehyde, 2,2-dibromo-3-nitrilopropionamide (DBNPA), 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), 2-methyl-4-isothiazolin-3-one (MIT), and a mixture of CMIT and MIT.
  • DBNPA 2,2-dibromo-3-nitrilopropionamide
  • CMIT 5-chloro-2-methyl-4-isothiazolin-3-one
  • MIT 2-methyl-4-isothiazolin-3-one
  • MIT 2-methyl-4-isothiazolin-3-one
  • oxidizing biocides include chlorine, alkali and alkaline earth hypochlorite salts, hypochlorous acid, chlorinated isocyanurates, bromine, alkali and alkaline earth hypobromite salts, hypobromous acid, bromine chloride, chlorine dioxide, ozone, hydrogen peroxide, peroxy compounds, such as peracetic acid, performic acid, percarbonate or persulfate salts, halogenated hydantoins, e.g., monohalodimethylhydantoins such as monochlorodimethylhydantoin, or dihalodimethylhydantoins such as chlorobromodimethylhydantoin, monochloramines, monobromamines, dihaloamines, trihaloamines, active halogen compounds reacted with other nitrogenous compounds such as urea, and combinations thereof.
  • halogenated hydantoins e.g., monohalodimethylhy
  • non-oxidizing biocides being used in the pulp and paper making processes include 2-bromo-2-nitropropane-1,3-diol, 5-chloro-2-methyl-4-isothiazolin-3-one, DBNPA, n-octyl-isothiazolin-3-one, MBT, quaternary ammonium compounds, THPS and glutaraldehyde.
  • the biocide is 2,2-dibromo-2-cyanoacetamide (also called as 2,2-dibromo-3-nitrilopropionamide or dibromonitrilopropionamide, DBNPA), which is a white crystalline powder having melting point of 124.5°C, water solubility about 15000 mg/l at 20°C and vapor pressure 9.00 E-4 mm of Hg at 20°C.
  • DBNPA hydrolyzes easily under both acidic and alkaline conditions. Although DBNPA is compatible with many chemical classes, including oxidizing agents, it will react readily with nucleophilic agents and sulfur-containing reducing agents. DBNPA is a non-oxidizing biocide and it is not a bromine release biocide.
  • DBNPA does act similar to the typical halogen biocides.
  • the reaction of DBNPA with sulfur-containing nucleophiles common to microorganisms, such as glutathione or cysteine, is the basis of its mode of antimicrobial action. Unlike other thiol-reactive biocides, its action is such that thiol-based amino acids, such as cysteine, are oxidized beyond the formation of disulfide species. This reaction irreversibly disrupts the function of cell-surface components, interrupting transport across cell membranes, and inhibiting key biological functions.
  • the micelle comprises a block copolymer having a biocide-solubilizing part (or moiety) and a water-soluble part (or moiety).
  • the biocide-solubilizing part may be a fat-soluble part or a non-water-soluble part.
  • Poloxamers in general may be used (available for example by trade names Pluronic or Kolliphor). Poloxamers are nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). In some cases the block copolymer may also be called a solubilizer.
  • the block copolymer is poly(ethylene oxide) - poly(propylene oxide) (PEO-PPO) block copolymer. The content of the block copolymer in the formulation may be from 15 to 50% (w/w).
  • the content of the block copolymer in the formulation may be in the range of about 15-30% (w/w), such as about 20-25% (w/w). Especially at low or moderate storage temperatures ( ⁇ 30 °C) it is convenient to use a lower amount of the block copolymer, and yet an enhanced efficacy compared to the solvent based system is obtained.
  • the content of the block copolymer in the formulation is higher, preferably from 30 to 50 % (w/w), especially when enhanced temperature (>30 °C) stability is required. More preferably the content of the block copolymer is from 30 to 45 % (w/w), most preferably from 34 to 40 % (w/w), providing excellent stability and clearly enhanced efficacy. The upper limit of the range is restricted in order to optimize the cost of the polymer.
  • the quaternary ammonium stabilizing compound may show also permeabilizing properties, and thus it may have a dualeffect.
  • the quaternary ammonium stabilizing compound may be selected for example from n-alkyl dimethyl benzyl ammonium chloride, alkenyl dimethylethyl ammonium chloride, didecyl dimethyl ammonium chloride (or N,N-didecyl-N,N-dimethyl ammonium chloride, DDAC, available for example by trade name Bardac-22) and dimethyl dioctadecyl ammonium bromide (DDAB).
  • DDAB dimethyl dioctadecyl ammonium bromide
  • the content of the quaternary ammonium stabilizing compound in the formulation may be in the range of about 5-30% (w/w), such as about 5-10% (w/w).
  • the biocide formulation may further comprise a membrane permeabilizer such as cationic polyelectrolytes or chelating agents.
  • a membrane permeabilizer such as cationic polyelectrolytes or chelating agents.
  • the cationic polyelectrolyte is selected from poly(diallyldimethylammonium chloride) (PDADMAC) and polyethyleneimine (PEI, available for example by trade name Retaminol®), polyetheramines (for example polyether diamine or polyether triamine, available for example by trade name Jeffamine), or polyamines, such as spermidine and spermine.
  • the content of the cationic polyelectrolyte membrane permeabilizer in the formulation may be in the range of 0.5-5% (w/w).
  • the membrane permeabilizer is present in the biocide formulation of the present invention, it should not be the same compound as the quaternary ammonium stabilizing compound.
  • the chelating agents are selected from the group comprising polyaminopolycarboxylic acids such as TTHA (triethylenetetramine-N,N,N',N",N"',N"'-hexa acetic acid, EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), HEDTA (N-(hydroxyethyl)-ethylenediaminetriacetic acid), EDDS (ethylenediaminedisuccinic acid); polyaminopolymethylene phosphonic acids such as DTPMPA (diethylenetriamine- pentakis methylenephosphonic acid), TTHMPA (triethylenetriamine- heksakis methylenephosphonic acid), EDTMPA (ethylenediaminetetra(methylene phosphonic acid); and AES (N-bis[2-(1,2-dicarboxy-ethoxy)ethyl]aspartic acid).
  • TTHA triethylenetetramine-N
  • PolyDADMAC Polydiallyldimethylammonium chloride
  • DADMAC diallyldimethylammonium chloride
  • the molecular weight of polyDADMAC is typically in the range of hundreds of thousands of grams per mole, and even up to a million for some products.
  • PolyDADMAC is usually delivered as a liquid concentrate having a solids level in the range of 10 to 50%. It is a high charge density cationic polymer.
  • Polyethyleneimine is a cationic polymer, which can be linear containing all secondary amines, or branched containing primary, secondary or tertiary amino groups.
  • the membrane permeabilizer may also be a surfactant.
  • Surfactants are usually organic compounds that are amphiphilic, meaning they contain both hydrophobic groups (their tails) and hydrophilic groups (their heads). Therefore, a surfactant contains both a water-insoluble (or oil soluble) component and a water-soluble component. Surfactants will diffuse in water and adsorb at interfaces between air and water or at the interface between oil and water, in the case where water is mixed with oil.
  • the insoluble hydrophobic group may extend out of the bulk water phase, into the air or into the oil phase, while the water soluble head group remains in the water phase. This alignment of surfactants at the surface modifies the surface properties of water at the water/air or water/oil interface.
  • the biocide formulation further comprises a defoamer.
  • Defoamer defoaming agent
  • Defoamer is a substance generally used to reduce foaming due to gases, nitrogenous materials or proteins, which may interfere with processing.
  • General examples of defoamers include long chain fatty alcohols, organic phosphates, silicone fluid etc.
  • the biocide formulation contains about 15-23% (w/w) of the biocide, such as DBNPA, about 15-25% (w/w) of the block copolymer, such as poloxamer, about 5-30% (w/w) of the quaternary ammonium stabilizing compound, such as DDAC.
  • the biocide formulation may further contain 1-5% (w/w) of membrane permeabilizer.
  • the biocide formulation further contains a small amount of citrate, such as about 0.2% (w/w), which may stabilize the active ingredients.
  • the biocide formulation contains about 15% (w/w) of DBNPA as the biocide, about 15-25% (w/w) of PEO-PPO as the block copolymer, and about 20-30% (w/w) of DDAC as the quaternary ammonium stabilizing compound.
  • the percentages used herein generally refer to the total content of the biocide formulation as a whole, unless otherwise indicated.
  • the formulation may be present as an emulsion or emulsion concentrate, which may contain water in the range of 40-50% (w/w) of the total content of the emulsion.
  • emulsion or emulsion concentrate may contain water in the range of 40-50% (w/w) of the total content of the emulsion.
  • the addition of the cationic or another water-soluble polymer leads to the formation of a water-in-water emulsion, comprising the micellar solution of the biocides.
  • the biocide formulation is present as a two-component formulation comprising a first component comprising the membrane permeabilizer and a second component comprising the biocide, the block copolymer and the quaternary ammonium stabilizing compound.
  • the second component is generally present as a mixture of the ingredients.
  • the first component and/or the second component may contain also further ingredients, such as stabilizing agents of the active ingredients and residual or trace amounts of other agents, such as salts, citrate, preservative agents, solvents etc.
  • the first component and the second component are arranged to be combined to obtain the final biocide formulation prior adding or dosing to the aqueous environment.
  • the present disclosure also provides a method for targeting a biocide onto a biofilm surface in an aqueous environment, comprising providing the biocide formulation, and contacting said biofilm surface with said biocide formulation.
  • the surface may be for example a plastic, ceramic, or a metal surface, such as steel, stainless steel, or copper surface. Generally the colonization by biofilm bacteria is greatest on plastic surfaces and least on copper surfaces.
  • the targeting may also include controlled release and/or delivery of the biocide leading to improved uptake of the biocide to the microbe by membrane permeabilization.
  • the present disclosure also provides methods for treating water, comprising providing said biocide formulation, and adding or dosing said biocide formulation to the water.
  • the methods aim for eliminating and/or preventing biofilm formation on surfaces to clean and/or remove the forming or already formed slimes or biofilms.
  • Dosing generally refers to adding or feeding chemicals in quantities into a process fluid continuously or at intervals to give sufficient time for the chemical to react or show the results.
  • biocide formulation as used in the methods described herein may be added or dosed to the water to be treated in biostatic or biocidal amounts.
  • Biostatic amount refers to an amount sufficient to at least inhibit the activity and/or growth of the microbes or the biofilm.
  • Biocidal amount refers to more effective activity, such as to an amount capable of killing most or all of the microbes.
  • the present invention also provides a method for controlling biofilms by eliminating microorganisms and/or preventing the growth thereof in an aqueous environment, comprising providing the biocide formulation, and adding or dosing said biocide formulation to the aqueous environment.
  • aqueous environment refers to a water system, such as an industrial water system, containing aqueous solution.
  • the eliminating and/or preventing refer to any biostatic or biocidal effect, such as killing, reducing, removing, or inhibiting the growth of, or inactivating or cleaning the biofilm.
  • the elimination may be total or partial.
  • the prevention refers to any preventive eliminating action which reduces or inhibits the growth of the microorganisms and thereby totally or partially prevents the formation of the biofilm.
  • the present disclosure also provides the use of said biocide formulation for controlling (for example eliminating, inactivating and/or preventing) biofilms or microorganisms in aqueous processes.
  • the microorganisms are in a form of a biofilm. This results in a synergy in controlling of attached microorganism (biofilms) on surfaces.
  • the present disclosure also provides the use of additional cationic polyelectrolytes for retention of the biocidal formulation (e.g. micelles) at surfaces (e.g. steel surfaces of a pipeline or tank for process water) and thereby gaining a prolonged protection.
  • additional cationic polyelectrolytes for retention of the biocidal formulation (e.g. micelles) at surfaces (e.g. steel surfaces of a pipeline or tank for process water) and thereby gaining a prolonged protection.
  • Aqueous solution refers to any solution containing water.
  • Said aqueous solution is generally any solution containing sufficient amount of water phase to be used in the current application.
  • Said aqueous solution may be for example water, surface water, ground water, waste water, industrial water, industrial raw water, sludge or solids suspension, pulp suspension or any other suitable aqueous solution.
  • the aqueous environment may be an industrial process, such as a water treatment process.
  • the industrial process may be selected from processes such as wood pulp, paper, board, industrial wastewater treatment, oil drilling, machine tool industry, oils cutting tools, hydraulics, etc. and the equipment used in such processes.
  • the application target may be for example any industrial water system, which generally means an engineered recirculating water system, such as papermaking system, cooling water systems (e.g.
  • cooling towers open and closed loop cooling units
  • industrial raw water systems drinking water distribution systems, sanitizing drinking water system, oil production or recovery systems (oil field water system, drilling fluids), fuel storage system, metal working systems, heat exchangers, reactors, equipment used for storing and handling liquids, boilers and related steam generating units, radiators, flash evaporating units, refrigeration units, reverse osmosis equipment, gas scrubbing units, blast furnaces, sugar evaporating units, steam power plants, geothermal units, nuclear cooling units, water treatment units, pool recirculating units, mining circuits, closed loop heating units, machining fluids used in operations such as for example drilling, boring, milling, reaming, drawing, broaching, turning, cutting, sewing, grinding, thread cutting, shaping, spinning and rolling, hydraulic fluids, cooling fluids, and the like.
  • the biocide formulation may be added to the circulating water of a pulp, paper or cardboard machine.
  • the biocide formulation is added or dosed to a pulp and/or paper processing system.
  • the formulation may be generally utilized throughout the system to minimize and to prevent biofilm formation on the system surfaces.
  • the formulation may be added at almost any point in the system to generally maintain microbe control throughout the system. In certain examples the formulation is added in the short water loop of the system.
  • suitable adding points are large storage towers for process water (circulating water towers, filtrate water towers), clear or cloudy filtrate storage tanks, pulpers or process streams upstream/downstream of the pulpers, broke system or process streams upstream/downstream of vessels therein, couch pit process streams upstream/downstream of the couch pit, water recovery section, wire pit process streams upstream/downstream of the pit, paper machine blend chest process streams upstream/downstream of the chest, and shower water tank process streams upstream/downstream of the tank.
  • the formulation is added or dosed to industrial raw water, which is generally incoming water which may be untreated or clarified natural water originated from surface waters, such as rivers or lakes.
  • the formulation of the invention may be added as a solid, such as dry powder, or in a liquid form to the liquid or water to be treated. It may be dosed continuously or periodically as a batch process. Examples of suitable concentrations to be used in the processes are about 0.3-50 ppm, more particularly 0.35-10 ppm, such as 1-5 ppm. In batch process the formulation may be fed for about 3-45 minutes each about 6-24 times a day, or for example for about 10-30 minutes for about 12-24 times a day.
  • the present invention provides a synergistic biocidal effect between micellar delivery and membrane permeabilization, enabling the reduction of cut - off dosage values (i.e. zero viability of planktonic and biofilm cells) by a factor of 1-20, preferably in the range of 4-10.
  • Biofilm-forming bacteria strains of Deinococcus, Meiothermus and Pseudoxanthomonas genus
  • Biofilm-forming bacteria strains of Deinococcus, Meiothermus and Pseudoxanthomonas genus
  • 1 ml of this microbial suspension was used for inoculating sterile R2A agar plates covered by sterile filter papers.
  • the test organisms were grown on these agar plates covered with filter papers for 1 d.
  • Round stainless steel coupons were mounted on filter paper and incubated for 6 d at +50°C. During this incubation biofilms were formed on the steel coupons.
  • the reference biocide was a commercial DBNPA-containing product (R20V). It was compared to different novel formulations, all having DBNPA as the biocidal active agent in them. All dosages are shown as the dosage of biocidal active agent DBNPA (mg/l, ppm).
  • DBNPA biocidal active agent
  • the novel micellar formulations (PD16-01 to PD16-07) started to show a strong effect against planktonic and biofilm cells already at dosage level of 1 ppm or less (ppm's on basis of the DBNPA content).
  • the novel formulations were thus capable of improving biofilm control performance up to ten times.
  • All novel formulations were having DBNPA content of 25% but with varying Pluronic F68 content (from 20% to 30%) and varying Bardac-22 content (from 10% to 30%).
  • the best performing formulation PD16-06 contained 25% of DBNPA, 20% of Pluronic and 20% of Bardac-22. The results demonstrated that these novel formulations have a clear benefit in form of increased biofilm inactivation/killing.
  • PD22-02 (“Pluronic”) had no clear killing effect, demonstrating that the PEO-PPO block copolymer alone was not effective.
  • PD22-03 (“DBNPA+DDAC”) mixture did not solubilize and could not be tested.
  • PD22-04 (“PEI”) had no clear killing effect, demonstrating that the cationic PEI polymer alone was not effective.
  • PD22-05 (“DDAC+Pluronic”) showed only a very small killing effect (about 0.5 log reduction in bacterial amounts) demonstrating that the PEO-PPO block copolymer with quaternary ammonium compound, but without DBNPA was not really effective.
  • PD22-06 (“R20V+DDAC”) showed that free DBNPA with high relative dose of quaternary ammonium compound DDAC was having a clear biocidal effect. However, higher dosage was required compared to the composition according this invention ("GMC", PD22-01). In addition the “GMC” was relatively better in biofilm killing/inactivation.
  • composition of the present invention has killing performance beyond the individual components of the composition. It was also observed that the "CMC" formulation showed storage stability of at least 18 weeks without any phase separations or color changes.
  • Biofilm killing/inactivation tests were conducted with micellar Pluronic+DBNPA formulations, all with 9% DBNPA content, but with a varying DDAC content. The killing efficacy was measured.
  • a membrane permeabilization study was executed with the known "NPN uptake method" ( Hancock & Wong. AAC. Vol.26, No.1:48-52. July, 1984 ; Alakomi et al., Weakening Effect of Cell Permeabilizers on Gram-Negative Bacteria Causing Biodeterioration, Appl Environ Microbiol. 2006 July; 72(7): 4695-4703 ) using cells of Pseudomonas aeruginosa bacteria as model organism.
  • Biocidal compositions were initially homogeneous and colorless; phase formation and/or yellowish color were regarded as poor stability. Stability and compositions of the formulations are shown in Table 2.
  • Table 2 shows that biocidal compositions with low ( ⁇ 30%) block copolymer and low ( ⁇ 10%) DDAC content, but with high (> 40%) water content, suffered stability problems, especially at +45 °C storage. On the contrary, excellent stability was obtained with those compositions containing high (> 30%) block copolymer and high (> 10%) DDAC, but low ( ⁇ 40%) water concentration.
  • Figure 4 shows that biocidal killing efficacy of PD 46-03 ( ⁇ 30% block copolymer) at 0,5 ppm, and both PD 47-01 and PD 47-02 (> 30% block copolymer content) at 0,5 ppm were remarkably better than of Fennosan R20 (a solvent based DBNPA product) at 5 ppm.

Description

    Field of the invention
  • The present invention relates to a biocide formulation comprising a biocide in a micelle. More particularly the micelle comprises a block copolymer and a quaternary ammonium stabilizing compound. The present invention also relates to method for controlling biofilms by eliminating and/or preventing microorganisms in an aqueous environment
  • Background
  • Water-intensive processes, such as papermaking and cooling water processes, are offering a fertile environment for microbiological growth. Therefore biocidal treatments are often necessary in various water-intensive processes. A review of paper machine microbiology and common biocides is presented in Chapter 6: Paper machine microbiology, pp. 181-198, by Marko Kolari, in Handbook of Papermaking chemistry 2007, Raimo Alen (Ed.), Finnish Paper Engineers' Association, Helsinki, Finland. The target of biocidal treatments in industry is not always a complete sterilization of process water, but a contribution for finding a stable, dynamic balance in keeping of microbial growth on an acceptable level in cost-efficient manner. The prior art relates to a wide variety of biocides in different kind of applications within water-intensive industries, paper industry being one of the biggest. Commonly used techniques are described for example in US7285224 and US6429181 . It has been estimated that a part of the biocide applications within water-intensive industries are currently using technologies that could be replaced if more effective biofilm-control technology based on targeted biocides could be found.
  • A biofilm is an aggregate of microorganisms in which cells adhere to each other on a surface. These adherent cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS). Biofilm EPS, which is also referred to as slime, is a polymeric conglomeration generally comprising extracellular polysaccharides, DNA and proteins. Biofilms may form on living or non-living surfaces and can be prevalent in natural, industrial and hospital aqueous settings. The microbial cells growing in a biofilm are generally physiologically distinct from planktonic cells of the same organism, which, by contrast, are single-cells that may float or swim in a liquid medium.
  • Formation of a biofilm begins with the attachment of free-floating microorganisms to a surface. These first colonists adhere to the surface initially through weak, reversible adhesion via van der Waals forces. If the colonists are not immediately separated from the surface, they can anchor themselves more permanently using cell adhesion structures such as pili. Some species are not able to attach to a surface on their own but are often able to anchor themselves to the EPS matrix or directly to earlier colonists. It is during this colonization that the cells are able to communicate via quorum sensing using signals such as AHL compounds. Once colonization has begun, the biofilm grows through a combination of cell division and recruitment. The final stage of biofilm formation is known as development, and is the stage in which the biofilm is established and may only change in shape and size. The development of a biofilm may allow for an aggregate cell colony (or colonies) to be increasingly resistant to antimicrobial agents.
  • Biofilms contribute in many problems in aqueous industrial systems, especially in recirculating systems such as paper machines or cooling systems. The build-up of biofilms can cause problems such as unscheduled down-time of the machinery due to cleaning, clogging of pipelines or valves or spray nozzles, poor heat transfer, high energy consumption, corrosion, increased maintenance expenditures, shortened system life, higher operating costs etc.
  • A biocide is an antimicrobial chemical substance which can deter, render harmless, or exert a controlling effect on any harmful organism. Biocides are commonly used in industry. An antimicrobial biocide may be further classified e.g. as a germicide, an antibacterial, an antiviral, an antifungal, an antiprotozoal or an antiparasite.
  • Most of the current biocides were originally developed for the control of planktonic bacteria. At the generally used low concentrations these biocides are not very effective against biofilms. The sheath or matrix formed by EPS-producing microorganisms make them to tolerate higher dosages of most of the common biocides. Using higher doses of the biocides may be economically unfeasible or may cause other problems, such as corrosion of the equipment. Also, because biocides are intended to kill living organisms, lifting dosages of biocidal products would also increase risks for health of the personnel working with that particular water-intensive process.
  • Some biocide formulations described in prior art employ more or less amphiphilic dispersants which fulfill two main functions: a) the wettability of the biofilm for reduction of the biofilm layer (biowettants), or b) the delay and prevention of biofilm growth on surfaces (biostabilizer).
  • Alternative technologies described in prior art do include, for example, lipid-based bilayer formulations such as liposomes ( WO 2010/107533 ) or oil-in-water emulsions of biocides for controlling industrial biofouling ( US 6 096 225 ). US 5 312 841 discloses formulations of water based microemulsions of bis(trichloromethyl)-sulfone (BTCMS), non-ionic surfactant and cationic quaternary ammonium halide surfactant useful as a biocide.
  • There is a need for better biocides and biocide formulations which can be used against biofilms on surfaces. They should be able to be targeted against the biofilms and also be able to penetrate the biofilm and kill the biofilm organisms. Such biocides should be effective also at low doses.
  • Summary of the invention
  • The present invention targets to more effective biofilm control by novel biocidal formulations, wherein the biocide solubilization and micelle formation by block copolymers is combined with surface adsorption and membrane permeabilization properties. For this purpose self-assembled mixed micelles are formed, which contain in addition to biocide(s) and block copolymers also membrane permeabilizers and/or cationic polyelectrolytes for improved surface adsorption. This enables a step-change in performance (by factor of about 10), especially when compared to a solvent-based formulation.
  • The present invention also provides a biocide formulation comprising a biocide in a micelle. According to the invention the micelle comprises a block copolymer which is a nonionic triblock copolymer composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene ox-ide)), and a quaternary ammonium stabilizing compound, and the biocide in said formulation is 2,2-dibromo-3-nitrilopropionamide (DBNPA) .
  • The present disclosure also provides a biocide formulation comprising a biocide in a micelle, wherein the micelle comprises a block copolymer having a biocide-solubilizing part and a water-soluble part, and a quaternary ammonium compound which stabilizes the micelle, and also possibly improves the permeabilization properties of the formulation.
    The present invention also provides a method for controlling biofilms by eliminating and/or preventing microorganisms in an aqueous environment, comprising providing the biocide formulation according to the present invention, and dosing said biocide formulation to the aqueous environment.
  • The present invention has advantages over the state-of-the-art by employing additional additives to boost the biocidal performance, i.e. by additional membrane permeabilizers and by improved surface adsorption (e.g. with cationic polyelectrolytes) and enabling thereby step-change performances by synergistic effects. The biocidal performance was shown to be good also in hard water and fiber suspensions.
  • It is an advantage of the disclosure that it presents a surprising synergistic biocidal effect between micellar delivery and membrane permeabilization, enabling the reduction of cut-off dosage values (zero viability of planktonic and biofilm cells) even by a factor of 4-20. The biocides can penetrate the biofilm and attack the microorganisms in the biofilm matrix. Despite the potentially higher cost of the formulation compared to known product formulations of the prior art, the cost-performance can be potentially increased by a factor of 2-10. At the same time the use of less biocide improves the environmental impact and reduces health risks for workers exposed to biocides, making this a more sustainable technology.
  • It is an advantage of the present invention that the biocides may be targeted to biofilms on surfaces.
  • It is another advantage of the present invention that it can be realized with existing production technology and on basis of commercially available raw materials.
  • It is another advantage of the present invention that the formulations have sufficient shelf-life. Further, they can be pumped with common industrial chemical pumps.
  • Brief description of the figures
    • Figure 1 shows results of biofilm inactivation/killing experiment comparing commercial DBNPA-containing biocide (R20V) to novel formulations according to the invention (PD16-01 to PD16-07). All concentrations are indicated as mg/l (ppm) of DBNPA.
    • Figure 2 shows results of biofilm inactivation/killing experiment comparing commercial DBNPA-containing biocide (R20V) to novel formulation according to the invention (PD22-01) and other formulations.
    • Figure 3 shows plot of results from two tests, showing bacterial viability results for Pluronic+DBNPA formulations with a varying DDAC concentration (Biofilm killing/inactivation test), versus membrane permeabilization (NPN uptake test) of the similar formulations without DBNPA.
    Detailed description
  • The present disclosure provides a targeted release of a biocide onto a biofilm surface in an aqueous environment, enabling improved microbe control. In the novel formulation, the biocide solubilization and micelle formation by block copolymers is combined with surface adsorption and membrane permeabilization properties.
  • One example describes the solubilization of a biocide with low water-solubility (e.g. DBNPA) within a mixed-micelle formed by a) a block copolymer comprising a biocide-solubilizing and a water-soluble block, and b) an additional stabilizer (e.g. DDAC) and/or c) an additional cationic polyelectrolyte (e.g. PDADMAC or PEI) improving surface adsorption and retention of the formulation at surfaces.
  • In one example the mixed micelles are formed by block copolymers, quaternary ammonium stabilizers and optionally additional cationic polyelectrolytes. The function of the latter is to improve the retention of the biocidal, self-assembled aggregates at surfaces (e.g. steel). In this way the treated surface shows a longer protection time and less microbial contamination even if dosing the biocidal formulation in a non-continuous manner ("shock dosing") meaning that the aqueous phase may at some time point be free of any biocide residuals. Additional additives of the formulation may include also defoamers, deaerators, rheological modifiers, biocide stabilizers or other process chemicals.
  • The present disclosure provides a biocide formulation comprising a biocide (or a mixture of biocides) in a micelle, wherein the micelle comprises a block copolymer having a biocide-solubilizing part and a water-soluble part, and a quaternary-ammonium stabilizing compound. In addition to these active ingredients the formulations may contain other ingredients, such as stabilizing agents of the active ingredients and residual or trace amounts of other agents, such as salts, citrate, preservative agents, solvents etc.
  • Micelles are aggregates of amphiphilic molecules dispersed in a liquid medium. A typical micelle in aqueous solution is an aggregate, which hydrophilic moieties are in contact with surrounding solvent, sequestering the hydrophobic moieties in the micelle's center. The micellar phase formation occurs by packing the hydrophobic molecular entities in a fashion, which generates interfacial curvature. In this way spherical, cylindrical or disc like discrete aggregates are formed. Normal phase micelles (oil-in-water micelle) have the hydrophobic moieties in the center of the micelle and the hydrophilic groups at the micellar interface. Inverse micelles have the head groups at the center with the tails extending out (water-in-oil micelle). Micelles are typically approximately spherical in shape. Other micellar phases, including shapes such as ellipsoids, cylinders, and bilayers, are also possible. The shape and size of a micelle is a function of the molecular geometry of its surfactant molecules and solution conditions such as surfactant concentration, temperature, pH, and ionic strength. The process of forming micelles is known as micellisation and forms part of the phase behavior of many lipids and other amphiphilic molecules according to their polymorphism. Micelles in lipid-water systems are further discussed for example by J. M. Seddon and R. H. Templer in "Polymorphism of Lipid-Water Systems", from the Handbook of Biological Physics, Vol. 1, ed. R. Lipowsky, and E. Sackmann. (c) 1995, Elsevier Science B.V. ISBN 0-444-81975-4.
  • Micelles form spontaneously in water, and this spontaneous aggregation is due to the amphiphilic nature of the micelle forming molecules. The attractive interaction of their hydrophobic entities is the basis of their aggregation. When the hydrophobic tails are not sequestered from water, the result is the formation of an organized cage around the hydrophobic tail and the entropy change is unfavorable. However, when the amphiphilic molecules form micelles, the hydrophobic tails interact with each other and this interaction releases water from the hydrophobic tails, leading to a favorable increase in entropy. Due to the spontaneous formation of the micelles, the simplest way to prepare the biocide formulation of the invention is to mix the ingredients and let the micelles form.
  • Micelles only form when the concentration of surfactant is greater than the critical micelle concentration (CMC). The surfactant is any surface active material that can part the surface upon entering. The CMC is the concentration above surfactant when micelles will form spontaneously. The higher the concentration, the more micelles there are. Micelle formation also depends on the Krafft temperature. This temperature is when surfactants will form micelles. If the temperature is below the Krafft temperature, then there is no spontaneous formation of micelles. As the temperature increases, the surfactant will turn into a soluble form and will be able to form micelles from a crystalline state.
  • The size of the micelles useful in the present invention may be in the range of about 5-30 nm, such as about 5-20 nm, for example 5-15 nm. Generally the average size of the micelles is about 10 nm. Such micelles may also be called nanoparticles or nanospheres, which generally refer to roughly spherical shaped units that self-assemble under the appropriate conditions from an amphiphilic material so that the core is hydrophobic and the corona is hydrophilic. The micelles may be in a form of a nanoemulsion or nanosuspensions in the aqueous solution. Such nanoemulsions may be capable of crossing biological barriers, such as microbial membranes. Possible pathways include for example phagocytosis, pinocytosis and endocytosis.
  • The biocide may be any suitable biocide (antimicrobial agent) able to kill the microorganisms, such as the biofilm-forming microorganisms. In one embodiment the biocide is present as a mixture of two or more different biocides. The biocide may be soluble to water, or it may have low solubility to water or it may even be non-water-soluble. It is advantageous that the biocide does not react with compounds of the micelle, and the formulation as whole is stable. Generally the biocide formulation contains at least 2% (w/w) of the biocide (antimicrobial agent). In one embodiment the biocide formulation contains about 5-50% (w/w) of the biocide. In one embodiment the biocide formulation contains about 10-25% (w/w) of the biocide. In one embodiment the biocide formulation contains about 15-25% (w/w) of the biocide. In one embodiment the biocide formulation contains about 13-17% (w/w) of the biocide. In one specific embodiment the biocide formulation contains about 15% (w/w) of the biocide.
  • The terms "water insoluble" or a compound having "low water solubility", as used herein, refers to compounds having low, including very low water solubility. The low solubility may be for example a solubility of at about 1 gram per 100 grams of water, such as about 10 grams per 100 grams of water, or about 50 grams per 100 grams of water.
  • The biocides may be generally divided into two categorical groups: oxidizing and non-oxidizing (or conventional) biocides. The non-oxidizing biocides include biocides such as DNBPA, glutaraldehyde, isothiazolones etc. One example of suitable biocides for use in the formulations of the disclosure includes non-oxidizing biocides. The biocides may also be divided into groups by function mechanisms. The electrophiles include oxidants, such as halogens and peroxy compounds, and electrophiles, such as formaldehyde, formaldehyde-releasers, isothiazolones, Bronopol and Cu, Hg and Ag. The membrane active biocides include lytic biocides, such as quats, biguanides, phenols and alcohols, and protonophores, such as parabens, weak acids and pyrithiones.
  • Examples of non-oxidizing biocides include glutaraldehyde, 2,2-dibromo-3-nitrilopropionamide (DBNPA), 2-bromo-2-nitropropane-1,3-diol (Bronopol), 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), 2-methyl-4-isothiazolin-3-one (MIT), a mixture of CMIT and MIT, 1,2-dibromo-2,4-dicyanobutane, bis(trichloromethyl)sulfone, 2-bromo-2-nitrostyrene, 4,5-dichloro-1,2-dithiol-3-one, 2-n-octyl-4-isothiazolin-3-one, 1,2-benzisothiazolin-3-one, ortho-phthalaldehyde, guanidines, biguanidines, pyrithiones, carbamates, 3-iodopropynyl-N-butylcarbamate, phosphonium salts such as tetrakis hydroxymethyl phosphonium sulfate (THPS), 3,5-dimethyl-1,3,5-thiadiazinane-2-thione (Dazomet), 2-(thiocyanomethylthio) benzothiazole, methylene bisthiocyanate (MBT), and combinations thereof.
  • Preferred non-oxidizing biocides include glutaraldehyde; 2,2-dibromo-3-nitrilopropionamide (DBNPA); 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT); 2-methyl-4-isothiazolin-3-one (MIT); a mixture of CMIT and MIT; carbamates; and phosphonium salts such as tetrakis hydroxymethyl phosphonium sulfate (THPS), 3,5-dimethyl-1,3,5-thiadiazinane-2-thione (Dazomet), 2-(thiocyanomethylthio) benzothiazole, methylene bisthiocyanate (MBT), and combinations thereof. The advantage in using these biocides is in that they are commonly used within the pulp and paper industry, and their behavior is well known.
  • In one embodiment the non-oxidizing biocides are selected from the group consisting of glutaraldehyde, 2,2-dibromo-3-nitrilopropionamide (DBNPA), 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), 2-methyl-4-isothiazolin-3-one (MIT), and a mixture of CMIT and MIT. These biocides have a favourable speed of kill and they provide a preferred mode of action. Moreover, the required amounts are reasonably low thus rendering the costs affordable.
  • Examples of oxidizing biocides include chlorine, alkali and alkaline earth hypochlorite salts, hypochlorous acid, chlorinated isocyanurates, bromine, alkali and alkaline earth hypobromite salts, hypobromous acid, bromine chloride, chlorine dioxide, ozone, hydrogen peroxide, peroxy compounds, such as peracetic acid, performic acid, percarbonate or persulfate salts, halogenated hydantoins, e.g., monohalodimethylhydantoins such as monochlorodimethylhydantoin, or dihalodimethylhydantoins such as chlorobromodimethylhydantoin, monochloramines, monobromamines, dihaloamines, trihaloamines, active halogen compounds reacted with other nitrogenous compounds such as urea, and combinations thereof.
  • Most common types of non-oxidizing biocides being used in the pulp and paper making processes include 2-bromo-2-nitropropane-1,3-diol, 5-chloro-2-methyl-4-isothiazolin-3-one, DBNPA, n-octyl-isothiazolin-3-one, MBT, quaternary ammonium compounds, THPS and glutaraldehyde.
  • In one embodiment the biocide is 2,2-dibromo-2-cyanoacetamide (also called as 2,2-dibromo-3-nitrilopropionamide or dibromonitrilopropionamide, DBNPA), which is a white crystalline powder having melting point of 124.5°C, water solubility about 15000 mg/l at 20°C and vapor pressure 9.00 E-4 mm of Hg at 20°C. DBNPA hydrolyzes easily under both acidic and alkaline conditions. Although DBNPA is compatible with many chemical classes, including oxidizing agents, it will react readily with nucleophilic agents and sulfur-containing reducing agents. DBNPA is a non-oxidizing biocide and it is not a bromine release biocide. DBNPA does act similar to the typical halogen biocides. The reaction of DBNPA with sulfur-containing nucleophiles common to microorganisms, such as glutathione or cysteine, is the basis of its mode of antimicrobial action. Unlike other thiol-reactive biocides, its action is such that thiol-based amino acids, such as cysteine, are oxidized beyond the formation of disulfide species. This reaction irreversibly disrupts the function of cell-surface components, interrupting transport across cell membranes, and inhibiting key biological functions.
  • The micelle comprises a block copolymer having a biocide-solubilizing part (or moiety) and a water-soluble part (or moiety). The biocide-solubilizing part may be a fat-soluble part or a non-water-soluble part. Poloxamers in general may be used (available for example by trade names Pluronic or Kolliphor). Poloxamers are nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)). In some cases the block copolymer may also be called a solubilizer. In one embodiment the block copolymer is poly(ethylene oxide) - poly(propylene oxide) (PEO-PPO) block copolymer. The content of the block copolymer in the formulation may be from 15 to 50% (w/w).
  • In one embodiment the content of the block copolymer in the formulation may be in the range of about 15-30% (w/w), such as about 20-25% (w/w). Especially at low or moderate storage temperatures (<30 °C) it is convenient to use a lower amount of the block copolymer, and yet an enhanced efficacy compared to the solvent based system is obtained.
  • In another embodiment the content of the block copolymer in the formulation is higher, preferably from 30 to 50 % (w/w), especially when enhanced temperature (>30 °C) stability is required. More preferably the content of the block copolymer is from 30 to 45 % (w/w), most preferably from 34 to 40 % (w/w), providing excellent stability and clearly enhanced efficacy. The upper limit of the range is restricted in order to optimize the cost of the polymer.
  • The quaternary ammonium stabilizing compound (or "stabilizer") may be for example a quaternary ammonium cation, also known as quats. They are positively charged polyatomic ions of the structure NR4 +, R being an alkyl group or an aryl group. Unlike the ammonium ion (NH4 +) and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds (called quaternary amines in oilfield parlance) are salts of quaternary ammonium cations with an anion.
  • In one embodiment of the present invention, the quaternary ammonium stabilizing compound may show also permeabilizing properties, and thus it may have a dualeffect.
  • The quaternary ammonium stabilizing compound may be selected for example from n-alkyl dimethyl benzyl ammonium chloride, alkenyl dimethylethyl ammonium chloride, didecyl dimethyl ammonium chloride (or N,N-didecyl-N,N-dimethyl ammonium chloride, DDAC, available for example by trade name Bardac-22) and dimethyl dioctadecyl ammonium bromide (DDAB).
  • The content of the quaternary ammonium stabilizing compound in the formulation may be in the range of about 5-30% (w/w), such as about 5-10% (w/w).
  • The biocide formulation may further comprise a membrane permeabilizer such as cationic polyelectrolytes or chelating agents. In one embodiment the cationic polyelectrolyte is selected from poly(diallyldimethylammonium chloride) (PDADMAC) and polyethyleneimine (PEI, available for example by trade name Retaminol®), polyetheramines (for example polyether diamine or polyether triamine, available for example by trade name Jeffamine), or polyamines, such as spermidine and spermine. The content of the cationic polyelectrolyte membrane permeabilizer in the formulation may be in the range of 0.5-5% (w/w).
  • Provided that the membrane permeabilizer is present in the biocide formulation of the present invention, it should not be the same compound as the quaternary ammonium stabilizing compound.
  • In one embodiment the chelating agents are selected from the group comprising polyaminopolycarboxylic acids such as TTHA (triethylenetetramine-N,N,N',N",N"',N"'-hexa acetic acid, EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), HEDTA (N-(hydroxyethyl)-ethylenediaminetriacetic acid), EDDS (ethylenediaminedisuccinic acid); polyaminopolymethylene phosphonic acids such as DTPMPA (diethylenetriamine- pentakis methylenephosphonic acid), TTHMPA (triethylenetriamine- heksakis methylenephosphonic acid), EDTMPA (ethylenediaminetetra(methylene phosphonic acid); and AES (N-bis[2-(1,2-dicarboxy-ethoxy)ethyl]aspartic acid). Most preferably the chelating agent is DTPA.
  • Polydiallyldimethylammonium chloride (polyDADMAC or polyDDA) is a homopolymer of diallyldimethylammonium chloride (DADMAC). The molecular weight of polyDADMAC is typically in the range of hundreds of thousands of grams per mole, and even up to a million for some products. PolyDADMAC is usually delivered as a liquid concentrate having a solids level in the range of 10 to 50%. It is a high charge density cationic polymer.
  • Polyethyleneimine is a cationic polymer, which can be linear containing all secondary amines, or branched containing primary, secondary or tertiary amino groups.
  • The membrane permeabilizer may also be a surfactant. Surfactants are usually organic compounds that are amphiphilic, meaning they contain both hydrophobic groups (their tails) and hydrophilic groups (their heads). Therefore, a surfactant contains both a water-insoluble (or oil soluble) component and a water-soluble component. Surfactants will diffuse in water and adsorb at interfaces between air and water or at the interface between oil and water, in the case where water is mixed with oil. The insoluble hydrophobic group may extend out of the bulk water phase, into the air or into the oil phase, while the water soluble head group remains in the water phase. This alignment of surfactants at the surface modifies the surface properties of water at the water/air or water/oil interface.
  • In one embodiment the biocide formulation further comprises a defoamer. Defoamer (defoaming agent) is a substance generally used to reduce foaming due to gases, nitrogenous materials or proteins, which may interfere with processing. General examples of defoamers include long chain fatty alcohols, organic phosphates, silicone fluid etc.
  • In one embodiment the biocide formulation contains about 15-23% (w/w) of the biocide, such as DBNPA, about 15-25% (w/w) of the block copolymer, such as poloxamer, about 5-30% (w/w) of the quaternary ammonium stabilizing compound, such as DDAC. Optionally the biocide formulation may further contain 1-5% (w/w) of membrane permeabilizer. In one embodiment the biocide formulation further contains a small amount of citrate, such as about 0.2% (w/w), which may stabilize the active ingredients. In one specific embodiment the biocide formulation contains about 15% (w/w) of DBNPA as the biocide, about 15-25% (w/w) of PEO-PPO as the block copolymer, and about 20-30% (w/w) of DDAC as the quaternary ammonium stabilizing compound. The percentages used herein generally refer to the total content of the biocide formulation as a whole, unless otherwise indicated.
  • The formulation may be present as an emulsion or emulsion concentrate, which may contain water in the range of 40-50% (w/w) of the total content of the emulsion. In one example the addition of the cationic or another water-soluble polymer leads to the formation of a water-in-water emulsion, comprising the micellar solution of the biocides.
  • In one embodiment the biocide formulation is present as a two-component formulation comprising a first component comprising the membrane permeabilizer and a second component comprising the biocide, the block copolymer and the quaternary ammonium stabilizing compound. The second component is generally present as a mixture of the ingredients. The first component and/or the second component may contain also further ingredients, such as stabilizing agents of the active ingredients and residual or trace amounts of other agents, such as salts, citrate, preservative agents, solvents etc. The first component and the second component are arranged to be combined to obtain the final biocide formulation prior adding or dosing to the aqueous environment.
  • The present disclosure also provides a method for targeting a biocide onto a biofilm surface in an aqueous environment, comprising providing the biocide formulation, and contacting said biofilm surface with said biocide formulation. The surface may be for example a plastic, ceramic, or a metal surface, such as steel, stainless steel, or copper surface. Generally the colonization by biofilm bacteria is greatest on plastic surfaces and least on copper surfaces. The targeting may also include controlled release and/or delivery of the biocide leading to improved uptake of the biocide to the microbe by membrane permeabilization.
  • The present disclosure also provides methods for treating water, comprising providing said biocide formulation, and adding or dosing said biocide formulation to the water. The methods aim for eliminating and/or preventing biofilm formation on surfaces to clean and/or remove the forming or already formed slimes or biofilms. "Dosing" generally refers to adding or feeding chemicals in quantities into a process fluid continuously or at intervals to give sufficient time for the chemical to react or show the results.
  • The biocide formulation as used in the methods described herein may be added or dosed to the water to be treated in biostatic or biocidal amounts. Biostatic amount refers to an amount sufficient to at least inhibit the activity and/or growth of the microbes or the biofilm. Biocidal amount refers to more effective activity, such as to an amount capable of killing most or all of the microbes.
  • The present invention also provides a method for controlling biofilms by eliminating microorganisms and/or preventing the growth thereof in an aqueous environment, comprising providing the biocide formulation, and adding or dosing said biocide formulation to the aqueous environment. The "aqueous environment" as used herein refers to a water system, such as an industrial water system, containing aqueous solution. The eliminating and/or preventing refer to any biostatic or biocidal effect, such as killing, reducing, removing, or inhibiting the growth of, or inactivating or cleaning the biofilm. The elimination may be total or partial. The prevention refers to any preventive eliminating action which reduces or inhibits the growth of the microorganisms and thereby totally or partially prevents the formation of the biofilm.
  • The present disclosure also provides the use of said biocide formulation for controlling (for example eliminating, inactivating and/or preventing) biofilms or microorganisms in aqueous processes. In one embodiment the microorganisms are in a form of a biofilm. This results in a synergy in controlling of attached microorganism (biofilms) on surfaces.
  • The present disclosure also provides the use of additional cationic polyelectrolytes for retention of the biocidal formulation (e.g. micelles) at surfaces (e.g. steel surfaces of a pipeline or tank for process water) and thereby gaining a prolonged protection.
  • "Aqueous solution" as used herein refers to any solution containing water. Said aqueous solution is generally any solution containing sufficient amount of water phase to be used in the current application. Said aqueous solution may be for example water, surface water, ground water, waste water, industrial water, industrial raw water, sludge or solids suspension, pulp suspension or any other suitable aqueous solution.
  • The aqueous environment may be an industrial process, such as a water treatment process. The industrial process may be selected from processes such as wood pulp, paper, board, industrial wastewater treatment, oil drilling, machine tool industry, oils cutting tools, hydraulics, etc. and the equipment used in such processes. The application target may be for example any industrial water system, which generally means an engineered recirculating water system, such as papermaking system, cooling water systems (e.g. cooling towers, open and closed loop cooling units), industrial raw water systems, drinking water distribution systems, sanitizing drinking water system, oil production or recovery systems (oil field water system, drilling fluids), fuel storage system, metal working systems, heat exchangers, reactors, equipment used for storing and handling liquids, boilers and related steam generating units, radiators, flash evaporating units, refrigeration units, reverse osmosis equipment, gas scrubbing units, blast furnaces, sugar evaporating units, steam power plants, geothermal units, nuclear cooling units, water treatment units, pool recirculating units, mining circuits, closed loop heating units, machining fluids used in operations such as for example drilling, boring, milling, reaming, drawing, broaching, turning, cutting, sewing, grinding, thread cutting, shaping, spinning and rolling, hydraulic fluids, cooling fluids, and the like.
  • The biocide formulation may be added to the circulating water of a pulp, paper or cardboard machine. In one example the biocide formulation is added or dosed to a pulp and/or paper processing system. The formulation may be generally utilized throughout the system to minimize and to prevent biofilm formation on the system surfaces. The formulation may be added at almost any point in the system to generally maintain microbe control throughout the system. In certain examples the formulation is added in the short water loop of the system. Other examples of suitable adding points are large storage towers for process water (circulating water towers, filtrate water towers), clear or cloudy filtrate storage tanks, pulpers or process streams upstream/downstream of the pulpers, broke system or process streams upstream/downstream of vessels therein, couch pit process streams upstream/downstream of the couch pit, water recovery section, wire pit process streams upstream/downstream of the pit, paper machine blend chest process streams upstream/downstream of the chest, and shower water tank process streams upstream/downstream of the tank.
  • In one embodiment the formulation is added or dosed to industrial raw water, which is generally incoming water which may be untreated or clarified natural water originated from surface waters, such as rivers or lakes.
  • The formulation of the invention may be added as a solid, such as dry powder, or in a liquid form to the liquid or water to be treated. It may be dosed continuously or periodically as a batch process. Examples of suitable concentrations to be used in the processes are about 0.3-50 ppm, more particularly 0.35-10 ppm, such as 1-5 ppm. In batch process the formulation may be fed for about 3-45 minutes each about 6-24 times a day, or for example for about 10-30 minutes for about 12-24 times a day.
  • Favourably, the present invention provides a synergistic biocidal effect between micellar delivery and membrane permeabilization, enabling the reduction of cut - off dosage values (i.e. zero viability of planktonic and biofilm cells) by a factor of 1-20, preferably in the range of 4-10.
  • Despite the potentially higher cost of the formulation compared to current product formulations the cost-performance can be potentially increased by a factor of 2-10. At the same time the use of less biocide improves the environmental impact and makes this a more sustainable technology.
  • Next the invention will be described in detail with reference to the following nonlimiting examples.
  • Examples
  • All biofilm inactivation/killing experiments shown in this document were conducted by following a same test method that is described herein: Biofilm-forming bacteria (strains of Deinococcus, Meiothermus and Pseudoxanthomonas genus) were grown at +50°C in commercial R2 liquid growth media. 1 ml of this microbial suspension was used for inoculating sterile R2A agar plates covered by sterile filter papers. The test organisms were grown on these agar plates covered with filter papers for 1 d. Round stainless steel coupons were mounted on filter paper and incubated for 6 d at +50°C. During this incubation biofilms were formed on the steel coupons. Each coupon was detached from filter paper and inserted into test chamber, each filled with 100 ml of municipal tap water adjusted at pH 8 and to +50°C. Biocide formulations were applied to each chamber according to test plan, always with three replicate chambers. Chambers without any biocide and chambers with a commercial reference biocide were always included. At the end of the exposure period efficacies of the tested biocide formulations were quantified by making bacterial cultivations with standard plate count methods from the chamber liquid (= performance against planktonic, free-floating cells) and from stainless steel surfaces by swabbing samples (= performance against biofilm).
  • Experiments shown herein used as a commercial reference biocide a Fennosan R20V product (Kemira, Finland). It is a 20% solution of free DBNPA in polyethylene glycol as solvent. In the new biocide formulations shown herein, the name "Pluronic" followed with different numbers is referring to different grades of PEO-PPO block copolymers from BASF GmbH. "Bardac-22" refers to a DDAC product from Lonza Inc. "Retaminol" is a commercial tradename for a PEI, polyethyleneimine product (Kemira).
  • Example 1: Comparison of different biocide compositions
  • This study was performed for comparing the biocidal performance of different biocidal compositions against bacterial cells in biofilm and in liquid. The reference biocide was a commercial DBNPA-containing product (R20V). It was compared to different novel formulations, all having DBNPA as the biocidal active agent in them. All dosages are shown as the dosage of biocidal active agent DBNPA (mg/l, ppm). The biofilm test was executed as explained above. Results in Figure 1 show that 10 ppm of DBNPA showed good killing efficacy of planktonic cells when dosed in the form of R20V product (= free DBNPA). However, at this dosage the efficacy against biofilm was not as strong. The novel micellar formulations (PD16-01 to PD16-07) started to show a strong effect against planktonic and biofilm cells already at dosage level of 1 ppm or less (ppm's on basis of the DBNPA content). The novel formulations were thus capable of improving biofilm control performance up to ten times. All novel formulations were having DBNPA content of 25% but with varying Pluronic F68 content (from 20% to 30%) and varying Bardac-22 content (from 10% to 30%). The best performing formulation PD16-06 contained 25% of DBNPA, 20% of Pluronic and 20% of Bardac-22. The results demonstrated that these novel formulations have a clear benefit in form of increased biofilm inactivation/killing.
  • Example 2: Comparison of different biocide compositions
  • This study was performed for two reasons. Firstly, to evaluate the impact of PEI addition on the performance of the novel biocide formulations. Secondly, mixtures were prepared to evaluate the relative impact of different components. The compositions are shown in Table 1. Table 1. Sample series PD-22.
    Sample code Fennosan R20 Pluronic F68 Milli-Q water (+ citric acid) DBNPA Bardac-22 (50% DDAC) Retaminol "Name" of the composition:
    PD22-01 1.88 g (18.8%) 3.07 g (30.7%) 2.5 g (25%) 2.25 g (25%) 0.3 g (3%) GMC
    PD22-02 1.88 g (18.8%) 8.12 g (81.2%) Pluronic
    PD22-03 5.25 g (52.5%) 2.5 g (25%) 2.25 g (22.5%) DDAC+DBNPA (1
    PD22-04 9.7 g (97%) 0.3 g (3%) PEI
    PD22-05 1.88 g (18.8%) 5.87 g (58.7 %) 2.25 g (22.5%) DDAC+Pluronic
    PD22-06 7.75 g (77.5%) 2.25 g (22.5%) R20+DDAC
    1) Incomplete solubilization of DBNPA when mixed with DDAC was observed and it was excluded from the biofilm test.
  • The biofilm test was executed as explained above. Results in Figure 2 show that 5 ppm of DBNPA had very weak killing efficacy and 10 ppm of DBNPA was needed for a strong killing efficacy, when DBNPA was dosed in the form of R20V product (= free DBNPA). Formulation PD22-01 ("GMC") showed a very strong killing efficacy at 0.5 ppm and yielded total sterilization at 1.0 ppm dosage. This demonstrates that the micellar DBNPA formulation with stabilizing quaternary ammonium compound and PEI as permeabilizer component was highly effective. This composition according to invention was showing over ten times efficacy improvement when compared to R20V reference. PD22-02 ("Pluronic") had no clear killing effect, demonstrating that the PEO-PPO block copolymer alone was not effective. PD22-03 ("DBNPA+DDAC") mixture did not solubilize and could not be tested. PD22-04 ("PEI") had no clear killing effect, demonstrating that the cationic PEI polymer alone was not effective. PD22-05 ("DDAC+Pluronic") showed only a very small killing effect (about 0.5 log reduction in bacterial amounts) demonstrating that the PEO-PPO block copolymer with quaternary ammonium compound, but without DBNPA was not really effective. PD22-06 ("R20V+DDAC") showed that free DBNPA with high relative dose of quaternary ammonium compound DDAC was having a clear biocidal effect. However, higher dosage was required compared to the composition according this invention ("GMC", PD22-01). In addition the "GMC" was relatively better in biofilm killing/inactivation.
  • These results demonstrate that the composition of the present invention has killing performance beyond the individual components of the composition. It was also observed that the "CMC" formulation showed storage stability of at least 18 weeks without any phase separations or color changes.
  • Example 3: Permeabilization study
  • Biofilm killing/inactivation tests were conducted with micellar Pluronic+DBNPA formulations, all with 9% DBNPA content, but with a varying DDAC content. The killing efficacy was measured. In addition, a membrane permeabilization study was executed with the known "NPN uptake method" (Hancock & Wong. AAC. Vol.26, No.1:48-52. July, 1984; Alakomi et al., Weakening Effect of Cell Permeabilizers on Gram-Negative Bacteria Causing Biodeterioration, Appl Environ Microbiol. 2006 July; 72(7): 4695-4703) using cells of Pseudomonas aeruginosa bacteria as model organism. In this method fluorescence is measured after 1-N-phenylnaphthylamine (NPN) uptake due to membrane permeabilization. The membrane permeabilizing effect of the quaternary ammonium compound DDAC was studied by using similar formulations as in the biofilm killing test but excluding the DBNPA. Figure 3 shows the plotted results from these two studies. Those DDAC-containing formulations that gave the strongest response regarding NPN uptake (strongest permeabilization) gave also the best synergistic amplification of DBNPA's biocidal activity when used for making of the micellar Pluronic+DBNPA+DDAC formulations. One of the best performing compositions contained DBNPA 9%, Pluronic 27%, DDAC 4.5% and PEI 2.3% (PD24-01). The biocidal activity increased strongly along the membrane permeabilizing properties of the formulations, confirming that the quaternary ammonium compound as a part of the micellar Pluronic+DBNPA formulation provides the inventive composition with improved killing efficacy.
  • Example 4: Comparison of stability and biocidal efficacy of different biocide compositions
  • This study was performed in order to compare stability and killing efficacy of different biocidal compositions. Stability was visually followed at +25 °C and +45 °C, for five weeks.
  • Biocidal compositions were initially homogeneous and colorless; phase formation and/or yellowish color were regarded as poor stability. Stability and compositions of the formulations are shown in Table 2.
  • The biocidal killing efficacy of the formulations was analyzed by using the above mentioned test method. Results are shown in Figure 4. Table 2. Compositions and stability of sample series PD 46, PD 47 and PD 48
    Sample code Fennosan R20 Block copolymer * Milli-Q water (+ citric acid) DBNPA DDAC Stability at +25°C Stability at +45°C
    PD 47-01 40 % 29 % 20 % 11 % > 35 d > 35 d
    PD 47-02 34 % 36 % 20 % 10 % 19 d 9 d
    PD 46-03 28 % 42 % 20 % 8 % 7 d 1d
    PD 48-01 26 % 46 % 20 % 8 % 7 d < 1d
    PD 48-03 24 % 49 % 20 % 7 % 7 d < 1d
    PD 48-05 23 % 50 % 20 % 7 % 7 d < 1d
    R20 100 % > 35 d > 35 d
    *block copolymer was Pluronic L35, L64, PE6800 or PE3500
  • Table 2 shows that biocidal compositions with low (< 30%) block copolymer and low (< 10%) DDAC content, but with high (> 40%) water content, suffered stability problems, especially at +45 °C storage. On the contrary, excellent stability was obtained with those compositions containing high (> 30%) block copolymer and high (> 10%) DDAC, but low (< 40%) water concentration.
  • Figure 4 shows that biocidal killing efficacy of PD 46-03 (< 30% block copolymer) at 0,5 ppm, and both PD 47-01 and PD 47-02 (> 30% block copolymer content) at 0,5 ppm were remarkably better than of Fennosan R20 (a solvent based DBNPA product) at 5 ppm.
  • Obtained results thus indicate that all tested novel micellar biocide compositions with over 20 % block copolymer composition were more effective than solvent-based DBNPA (Fennosan R20). Moreover, all formulations showed several days of stability at +25 °C. Increased temperature stability was obtained with high (>30 %) block copolymer, high (> 10%) DDAC and low (< 40%) water content. This is beneficial for certain industrial applications.

Claims (14)

  1. A biocide formulation comprising a biocide in a micelle, characterized in that the micelle comprises
    ▪ a block copolymer which is a nonionic triblock copolymer composed of a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)) , and
    ▪ a quaternary ammonium stabilizing compound, and
    ▪ wherein the biocide is 2,2-dibromo-3-nitrilopropionamide (DBNPA).
  2. The biocide formulation of claim 1, characterized in that it further comprises a membrane permeabilizer.
  3. The biocide formulation of any of the preceding claims, characterized in that the quaternary ammonium stabilizing compound is selected from n-alkyl di-methyl benzyl ammonium chloride, alkenyl dimethylethyl ammonium chloride, didecyl-dimethylammonium chloride (DDAC) and dimethyldioctadecylammonium bromide (DDAB).
  4. The biocide formulation of any of the preceding claims, characterized in that the membrane permeabilizer comprises a cationic polyelectrolyte, which is preferably selected from poly(diallyldimethylammonium chloride) (PDADMAC), polyethyleneimine (PEI), polyetheramines and polyamines.
  5. The biocide formulation of any of the preceding claims, characterized in that the membrane permeabilizer comprises a chelating agent.
  6. The biocide formulation of any of the preceding claims, characterized in that it contains about 10-25% (w/w) of the biocide.
  7. The biocide formulation of any of the preceding claims, characterized in that it contains from 15 to 50% (w/w) of the block copolymer, preferably from 30 to 50% (w/w).
  8. The biocide formulation of any of the preceding claims, characterized in that it contains about 5-30% (w/w) of the quaternary ammonium stabilizing com-pound.
  9. The biocide formulation of any of the claims 2-8, characterized in that it is present as a two-component formulation comprising a first component comprising the membrane permeabilizer and a second component comprising the biocide, the block copolymer and the quaternary ammonium stabilizing compound.
  10. A method for controlling biofilms by eliminating and/or preventing microorganisms in an aqueous environment, characterized in that the method compris-es providing the biocide formulation of any of the preceding claims, and dosing said biocide formulation to the aqueous environment.
  11. The method of claim 10, characterized in that the aqueous environment is an industrial water system.
  12. The method of claim 11, characterized in that the industrial water system is selected from papermaking system, cooling water systems such as cooling towers, open and closed loop cooling units, industrial raw water systems, drinking water distribution systems, sanitizing drinking water system, oil production or recovery systems such as oil field water system, drilling fluids, fuel storage system, metal working systems, heat exchangers, reactors, equipment used for storing and handling liquids, boilers and related steam generating units, radiators, flash evaporating units, refrigeration units, reverse osmosis equipment, gas scrubbing units, blast furnaces, sugar evaporating units, steam power plants, geothermal units, nuclear cooling units, water treatment units, pool recirculating units, mining circuits, closed loop heating units, machining fluids used in operations such as for example drilling, boring, milling, reaming, drawing, broaching, turning, cutting, sewing, grinding, thread cutting, shaping, spinning and rolling, hydraulic fluids, and cooling fluids.
  13. The method of claim 11, characterized in that the industrial water system is selected from circulating water of a pulp, paper or cardboard machine, and industrial raw water.
  14. The method of any of the claims 11-13, characterized in that the biocide formulation is dosed to a concentration of 0.3-50 ppm, preferably 1-5 ppm.
EP14720169.3A 2013-03-25 2014-03-25 Biocide formulation and method for treating water Active EP2978311B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14720169T PL2978311T3 (en) 2013-03-25 2014-03-25 Biocide formulation and method for treating water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20135287 2013-03-25
PCT/FI2014/050216 WO2014154946A1 (en) 2013-03-25 2014-03-25 Biocide formulation and method for treating water

Publications (2)

Publication Number Publication Date
EP2978311A1 EP2978311A1 (en) 2016-02-03
EP2978311B1 true EP2978311B1 (en) 2020-06-10

Family

ID=50624604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14720169.3A Active EP2978311B1 (en) 2013-03-25 2014-03-25 Biocide formulation and method for treating water

Country Status (12)

Country Link
US (1) US10912296B2 (en)
EP (1) EP2978311B1 (en)
JP (1) JP6501311B2 (en)
KR (1) KR102148971B1 (en)
CN (2) CN112655707A (en)
BR (1) BR112015024770B8 (en)
CA (1) CA2898842C (en)
ES (1) ES2805369T3 (en)
PL (1) PL2978311T3 (en)
RU (1) RU2667076C2 (en)
WO (1) WO2014154946A1 (en)
ZA (1) ZA201507915B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2861300T3 (en) * 2012-02-20 2021-10-06 Basf Se Enhancement of the antimicrobial activity of biocides with polymers
DE102015100756A1 (en) * 2015-01-20 2016-07-21 FAUDI Aviation GmbH A method for preventing and / or destroying microbial growth in a storage for a liquid hydrocarbon, method for preventing and / or destroying microbial growth in a storage for a liquid hydrocarbon, storage for a liquid hydrocarbon
JP6728382B2 (en) 2015-12-16 2020-07-22 エコラブ ユーエスエイ インク Peroxyformic acid composition for membrane filtration purification
US20170223953A1 (en) * 2016-02-05 2017-08-10 Dow Global Technologies Llc Microbicidal composition
US9781928B2 (en) * 2016-02-05 2017-10-10 Dow Global Technologies Llc Microbicidal composition
US9781927B2 (en) * 2016-02-05 2017-10-10 Dow Global Technologies Llc Microbicidal composition
WO2017155894A1 (en) 2016-03-07 2017-09-14 Cfgenome, Llc Noninvasive molecular controls
US10377792B2 (en) * 2016-03-16 2019-08-13 The Texas A&M University System Moisture displacement and simultaneous migration of surface-functionalized algae from water to an extraction solvent using ionic polyelectrolytes
EP4147574A1 (en) * 2016-04-15 2023-03-15 Ecolab USA Inc. Performic acid biofilm prevention for industrial co2 scrubbers
US11071301B2 (en) 2016-10-21 2021-07-27 Ecolab Usa Inc. Anti-microbial agent to control biomass accumulation in SO2 scrubbers
WO2018111341A1 (en) 2016-12-15 2018-06-21 Ecolab Usa Inc. Peroxyformic acid compositions for membrane filtration cleaning in energy services
FI128324B (en) * 2017-06-21 2020-03-31 Kemira Oyj Method for manufacturing a fibrous web
US10640699B2 (en) * 2017-10-03 2020-05-05 Italmatch Chemicals Gb Limited Treatment of circulating water systems including well treatment fluids for oil and gas applications
WO2019079107A1 (en) * 2017-10-18 2019-04-25 Solenis Technologies, L.P. Compositions exhibiting synergy in biofilm control
PL3807221T3 (en) * 2018-06-13 2023-06-26 A.Y. Laboratories Ltd. System and method for monitoring process water treated with a biocide using an oxygen sensor
JP7222513B2 (en) * 2018-07-18 2023-02-15 株式会社ニイタカ HARD SURFACE DETERGENT COMPOSITION, METHOD FOR ELIMINATING MICROORGANISMS OR BACTERIA CLAGGEMENTS, METHOD FOR PREVENTING PRODUCTION OF BACTERIA CLAGUE IN WASHING MACHINE, METHOD FOR CLEANING ARTICLES HAVING HARD SURFACES WITH WASHING MACHINE, AND DISINFECTANT
CN109761348B (en) * 2019-02-28 2021-09-17 北京工业大学 Method for improving matrix impact resistance of anaerobic ammonium oxidation particles
EP3711486A1 (en) * 2019-03-19 2020-09-23 Rhodia Operations Biocidal compositions including a phosphonium quaternary cationic surfactant and methods for using same
US20220323626A1 (en) * 2019-06-14 2022-10-13 Collidion, Inc. Compositions, Kits, Methods and Uses for Preventing Microbial Growth
CN112586498A (en) * 2020-12-18 2021-04-02 湖南幻影三陆零科技有限公司 Compound disinfectant, composition containing disinfectant and application of composition
CA3217711A1 (en) * 2021-04-23 2022-10-27 Solugen, Inc. Improved biocide compositions
EP4284903A1 (en) * 2021-08-24 2023-12-06 Dow Global Technologies LLC Metal working fluids biocide
WO2023229624A1 (en) * 2022-05-26 2023-11-30 Transdermal Delivery Solutions Corp. (D.B.A. Hypospray Pharma) Transdermal insulin formulations and methods of use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045206A (en) * 1990-04-23 1992-01-09 Kao Corp Antibacterial disinfectant agent composition
US5312841A (en) * 1992-06-15 1994-05-17 Betz Paperchem, Inc. Water based biocide

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL98352A (en) 1991-06-03 1995-10-31 Bromine Compounds Ltd Process and compositions for the disinfection of water
JP2861951B2 (en) 1996-07-19 1999-02-24 日本電気株式会社 Drive circuit for liquid crystal display
WO2000002449A1 (en) 1998-07-09 2000-01-20 Rhodia Chimie Process for the biocidal treatment of surfaces
US6096225A (en) 1998-09-11 2000-08-01 Nalco Chemical Company Method of controlling biofouling in aqueous media using antimicrobial emulsions
CN1193132C (en) 2000-01-31 2005-03-16 伦萨公司 Partially halogenated hydantions in production of paper
JP2005035900A (en) 2003-07-16 2005-02-10 Hakuto Co Ltd Emulsion type microbicidal composition
WO2006038019A1 (en) * 2004-10-09 2006-04-13 Enviroquest Group Limited Non-ionic surfactant aggregates
CN1836508A (en) * 2005-03-25 2006-09-27 黄雅钦 Novel compound o-Phthalaldehyde microemusion sterilization composition
DE102006015090B4 (en) * 2006-03-31 2008-03-13 Advanced Micro Devices, Inc., Sunnyvale Method for producing different embedded deformation layers in transistors
RU2333773C1 (en) * 2007-06-29 2008-09-20 Автономная некоммерческая организация "Институт нанотехнологий Международного фонда конверсии" Biocide solution and method for obtaining same
CA2754820A1 (en) 2009-03-20 2010-09-23 General Electric Company Biodelivery systems
JP5210360B2 (en) * 2009-07-30 2013-06-12 ローム アンド ハース カンパニー Synergistic microbicidal composition
US8242176B2 (en) 2009-09-09 2012-08-14 Howard Martin Biocidal aldehyde composition for oil and gas extraction
US9113625B2 (en) * 2009-09-30 2015-08-25 Cjb Industries, Inc. Adjuvant for agricultural chemicals
CN103153290B (en) * 2010-10-11 2018-01-16 普渡研究基金会 Contribute to the anti-microbial agents of wound healing
WO2013007811A1 (en) 2011-07-14 2013-01-17 Lonza Inc. Method for mic control in oil field applications (oil and gas pipeline systems)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045206A (en) * 1990-04-23 1992-01-09 Kao Corp Antibacterial disinfectant agent composition
US5312841A (en) * 1992-06-15 1994-05-17 Betz Paperchem, Inc. Water based biocide

Also Published As

Publication number Publication date
PL2978311T3 (en) 2021-01-11
BR112015024770B1 (en) 2020-08-18
ES2805369T3 (en) 2021-02-11
BR112015024770A2 (en) 2017-07-18
KR102148971B1 (en) 2020-08-28
US10912296B2 (en) 2021-02-09
RU2015126922A (en) 2017-04-27
CN112655707A (en) 2021-04-16
JP6501311B2 (en) 2019-04-17
WO2014154946A1 (en) 2014-10-02
CA2898842C (en) 2021-03-16
EP2978311A1 (en) 2016-02-03
BR112015024770B8 (en) 2021-02-09
KR20150135291A (en) 2015-12-02
US20150351389A1 (en) 2015-12-10
RU2667076C2 (en) 2018-09-14
CN105050397A (en) 2015-11-11
CA2898842A1 (en) 2014-10-02
JP2016519089A (en) 2016-06-30
ZA201507915B (en) 2019-01-30

Similar Documents

Publication Publication Date Title
EP2978311B1 (en) Biocide formulation and method for treating water
US20150351383A1 (en) Biocide composition and method for treating water
US7824557B2 (en) Method for controlling microbial biofilm in aqueous systems
EP2079308B1 (en) Method for preventing growth of microorganisms, and a combination for the prevention of microbial growth
RU2499387C2 (en) Synergetic antimicrobial composition
AU2013231824B2 (en) Biocidal compositions and their use in the control of microorganisms in aqueous and water containing systems
US20150157024A1 (en) Biocidal aldehyde composition for water management
KR20150127228A (en) Synergistic combinations of monochlorourea and modified monochloroureas
AU2018344135B2 (en) Treatment of circulating water systems including well treatment fluids for oil and gas applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KEMIRA OYJ

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014066456

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A01N0025300000

Ipc: C02F0001500000

RIC1 Information provided on ipc code assigned before grant

Ipc: A01N 37/34 20060101ALI20191119BHEP

Ipc: A01N 25/30 20060101ALI20191119BHEP

Ipc: C02F 1/50 20060101AFI20191119BHEP

Ipc: A01N 33/12 20060101ALI20191119BHEP

Ipc: A01N 25/04 20060101ALI20191119BHEP

Ipc: A01N 37/30 20060101ALI20191119BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1279045

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014066456

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1279045

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2805369

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014066456

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210325

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210325

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 10

Ref country code: FI

Payment date: 20230321

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230314

Year of fee payment: 10

Ref country code: PL

Payment date: 20230321

Year of fee payment: 10

Ref country code: GB

Payment date: 20230322

Year of fee payment: 10

Ref country code: DE

Payment date: 20230321

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230529

Year of fee payment: 10