EP2976630A1 - Sensor for detecting a gas content - Google Patents

Sensor for detecting a gas content

Info

Publication number
EP2976630A1
EP2976630A1 EP14717685.3A EP14717685A EP2976630A1 EP 2976630 A1 EP2976630 A1 EP 2976630A1 EP 14717685 A EP14717685 A EP 14717685A EP 2976630 A1 EP2976630 A1 EP 2976630A1
Authority
EP
European Patent Office
Prior art keywords
sensor
sensor body
inlet
electrode chamber
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14717685.3A
Other languages
German (de)
French (fr)
Inventor
Johannes Ante
Philippe Grass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2976630A1 publication Critical patent/EP2976630A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen

Definitions

  • the invention relates to a sensor for detecting a gas content in an environment of the sensor.
  • Such sensors can be used as SauerstoffSenso ⁇ ren.
  • Such oxygen sensors are formed, for example, based on YSZ ceramic. They have a sensor element which is heated in operation to a temperature of up to 800 ° C. In an unfavorable case, if an ignitable gas oxygen mixture reaches the sensor, it could be ignited by too hot temperatures.
  • the task of the invention is based is to provide a sensor that contributes to a Popeiströ ⁇ mendes air-fuel mixture is not ignited.
  • the invention is characterized by a sensor for detecting a gas content in an environment of the sensor.
  • the sensor comprises a sensor body and an electrode chamber which is formed in the sensor body. Furthermore, it comprises a first heating element which is embedded in the sensor body, by means of which a predetermined area around the electrode chamber can be heated to a predetermined operating temperature.
  • the sensor body comprises a longitudinal axis of the sensor body and an inlet channel in the sensor body, which is coupled to the electrode chamber and having an inlet at the surface of the sensor body, wherein the A ⁇ let such in the sensor body formed so that the Inlet during operation of the sensor at the predetermined Be ⁇ operating temperature, is axially spaced from the electrode chamber that the sensor body in a predetermined region around the inlet on its surface has a maximum temperature which is less than or equal to a predetermined temperature threshold, at is the guarantee that a blowby at the inlet BeerkraftStoffge ⁇ mixture will not be ignited.
  • the given operating temperature is a temperature between 600 ° C and 850 ° C.
  • the predetermined area around the inlet is, for example, an area where gas can flow past.
  • the temperature threshold value is for example set such that a front beiströmendes ⁇ air-fuel mixture will not be ignited. As a result, it can be achieved that the sensor is used in an area in which it can come into contact with an air-fuel mixture. Since the inlet is in a range having a maximum temperature, the un ⁇ ter is the temperature threshold value, an air-fuel mixture will not ignite ⁇ . As a result, an ignition safety of the sensor is given.
  • the inlet has, for example, an axial distance to the electrode chamber, which corresponds to at least 40% of the total axial length of the sensor body.
  • the predetermined temperature threshold is less than 300 ° C.
  • 300 ° C corresponds to, for example, an ignition temperature of an air force ⁇ material mixture.
  • the senor comprises a thermal insulation sleeve on the sensor body which extends at least axially in the direction of the longitudinal axis over the region of the electrode chamber and which has a predetermined Been part of the sensor body of passing air force ⁇ fuel mixture isolated.
  • the senor is very ignition-proof, since, if appropriate, no too hot surface of the sensor body can come into contact with the air-fuel mixture.
  • the predetermined part for example, the part of the sensor body that can come into contact with crizströmenden before ⁇ air-fuel mixture / or the part of the sensor body whose surface has a maximum temperature that lies above the lenwert Temperaturschwel ⁇ .
  • the senor has a second heating element which is embedded in the sensor body and by means of which a predetermined area around the inlet channel can be heated to a predetermined temperature.
  • the predetermined temperature corresponds to a temperature, for example, by means of the pollutants from the inlet channel ver ⁇ can be burnt, whereby the inlet channel can be set free again. It is important to ensure that the second heating element is only put into operation if it is ensured that no air-fuel mixture can reach the sensor at the moment.
  • the senor comprises a substantially parallel to the longitudinal axis duri ⁇ fende side surface, wherein the inlet is formed on the side surface.
  • FIG. 1 shows a sensor for detecting a gas content
  • Figure 2 shows another embodiment of the sensor for detecting a gas content
  • FIG 3 shows the sensor for detecting the gas content in a further view.
  • the sensor S for detecting a gas content in an environment of the sensor S.
  • the sensor S is re insbesonde- as an oxygen sensor performed, which can detect an oxygen ⁇ content in the vicinity of the sensor S.
  • the sensor S comprises a sensor body SK.
  • the sensor body SK comprises, for example, a substrate made of yttrium-stabilized zirconium oxide YSZ (FIG. 3).
  • YSZ yttrium-stabilized zirconium oxide
  • an electrode chamber EK is formed in the sensor body SK.
  • a first heating element HEI is embedded in the sensor body SK, by means of which a predetermined area BB1 can be heated around the electrode chamber EK to a predetermined operating temperature.
  • the predetermined operating temperature is for example between 600 ° C and 850 ° C or approximately at 700 ° C. Furthermore, the sensor S to a longitudinal axis L and substantially perpendicular to the longitudinal axis L Stirnflä ⁇ surface SF of the sensor body SK.
  • the sensor body SK an inlet channel EAK, which is coupled to the electrode chamber EK and has an inlet EA in the surface of the sensor body SK ⁇ , wherein the inlet EA in the embodiment of Figure 1 on the end face SF of the sensor body SK currentlybil ⁇ det is.
  • the inlet EA is formed on a side surface SE of the sensor body SK, which is substantially parallel to the longitudinal axis L.
  • the inlet EA is formed in each case in such a way in the sensor body SK from ⁇ that the inlet EA is spaced axially during operation of the sensor S with the predetermined operating temperature, in such a way from the electrode chamber EK, that the sensor body SK in a predetermined area around the inlet EA to its surface has a maximum temperature which is less than or equal to a predetermined temperature threshold value, in which ensures that a passing ⁇ at the inlet EA flowing air-fuel mixture will not be ignited.
  • a diffusion barrier DB is formed, through which oxygen can diffuse into the electrode chamber EK.
  • FIG. 3 shows a further view of the sensor S.
  • the electrode chamber EK is a first electrode P- connected, which can also be referred to as a cathode.
  • a solid electrolyte layer is formed which is formed, for example, by Yttrium-stabilized zirconium oxide YSZ.
  • the sensor S further includes a plurality of contacts K (see Fi gur ⁇ 1 and 2), for example for driving Thompsonele ⁇ elements and for applying a voltage for the operation of the sensor S. Furthermore, the sensor S has a holder H (see FIGS. 1 and 2), which can also serve to dissipate heat.
  • the holder H is for this purpose, for example made of aluminum out ⁇ forms and fixed by means of adhesive on the sensor body SK. In the following, the mode of operation of the sensor S will be described.
  • a voltage difference of, for example, 0.8 V is applied between the first electrode P and the second electrode P +.
  • the oxygen atoms diffuse as dop ⁇ pelt negatively charged ions into the substrate of the sensor body SK, wherein the required electrons are supplied from the electrically conductive cathode to the ionization of the oxygen atoms.
  • the differential diffusion limit current is measured. This current is dependent on the partial pressure of oxygen in the case of an oxygen-containing measuring gas.
  • the oxygen ions are converted back to oxygen atoms at the anode and dif ⁇ substantiate through the anode back to the oxygen-containing To ⁇ nosti.
  • the sensor body SK is heated by means of the first heating element HEI in the be ⁇ heated area BB1 of the electrode chamber EK to a predetermined operating temperature, for example, between 600 ° C to 850 ° C.
  • the sensor S on the insulation sleeve IH which is a predetermined part of the sensor body SK isolated from passing air-fuel mixture. This allows the sensor S is very requisite level of safety, since any no to hot surface of the sensor body SK air force may ⁇ material mixture into contact.
  • the predetermined part is for example the part of the sensor body SK, which can come into contact with passing air-fuel mixture and / or the part of the sensor body SK whose surface has a maximum temperature which is above the temperature threshold.
  • the insulating sleeve IH has, for example, ceramic fibers and / or metal fibers.
  • the ceramic fibers and / or metal fibers are arranged, for example, in a metal sleeve.
  • the ceramic fibers and / or metal fibers are spaced from the metal sleeve by an air gap.
  • the sensor S may include a second heating element HE2, which is embedded in the sensor body SK and by means of which a predetermined range BB2 around the inlet channel EAK to a predetermined temperature can be heated, which ⁇ play, corresponds to at a temperature of means of the harmful ⁇ materials the inlet duct EAK can be burned, whereby the inlet channel EAK can be freed again.

Abstract

The invention relates to a sensor (S) for detecting a gas content in the environment of the sensor (S). The sensor (S) comprises a sensor body (SK), an electrode chamber (EK), a first heating element (HE1), and a longitudinal axis (L). Furthermore, the sensor (S) comprises an inlet channel (EAK) in the sensor body (SK), which is coupled to the electrode chamber (EK) and which has an inlet (EA) at the surface of the sensor body (SK), wherein the inlet channel (EAK) is formed in the sensor body (SK) in such a way that, during operation of the sensor (S) at the specified operating temperature, the inlet (EA) is axially spaced from the electrode chamber (EK) in such a way that the sensor body (SK) has a maximum temperature at the surface of the sensor body in a specified region around the inlet (EA) that is less than or equal to a specified temperature threshold value for which it is ensured that an air-fuel mixture flowing past the inlet (EA) will not be ignited.

Description

Beschreibung description
Sensor zur Erfassung eines Gasgehalts Sensor for detecting a gas content
Die Erfindung betrifft einen Sensor zur Erfassung eines Gas- gehalts in einer Umgebung des Sensors. The invention relates to a sensor for detecting a gas content in an environment of the sensor.
Für den Ansaugtrakt von Verbrennungsmotoren wie Otto- oder Dieselmotoren können derartige Sensoren als SauerstoffSenso¬ ren verwendet werden. Derartige SauerstoffSensoren sind beispielsweise auf Basis von YSZ-Keramik ausgebildet. Sie weisen ein Sensorelement auf, welches in Betrieb auf eine Temperatur von bis zu 800 °C erhitzt wird. In einem ungünstigen Fall, falls ein zündfähiges Gassauerstoffgemisch an den Sensor gelangt, könnte dieses von zu heißen Temperaturen entzündet werden . Die Aufgabe die der Erfindung zugrunde liegt, ist es einen Sensor zu schaffen, der dazu beiträgt, dass ein vorbeiströ¬ mendes LuftkraftStoffgemisch nicht entzündet wird. For the intake of internal combustion engines such as gasoline or diesel engines, such sensors can be used as SauerstoffSenso ¬ ren. Such oxygen sensors are formed, for example, based on YSZ ceramic. They have a sensor element which is heated in operation to a temperature of up to 800 ° C. In an unfavorable case, if an ignitable gas oxygen mixture reaches the sensor, it could be ignited by too hot temperatures. The task of the invention is based is to provide a sensor that contributes to a vorbeiströ ¬ mendes air-fuel mixture is not ignited.
Die Aufgabe wird gelöst durch die Merkmale des unabhängigen Patentanspruchs. Vorteilhafte Ausgestaltungen sind durch die Unteransprüche gekennzeichnet. The object is solved by the features of the independent claim. Advantageous embodiments are characterized by the subclaims.
Die Erfindung zeichnet sich aus durch einen Sensor zur Erfassung eines Gasgehaltes in einer Umgebung des Sensors. Der Sensor umfasst einen Sensorkörper sowie eine Elektrodenkammer, die in dem Sensorkörper ausgebildet ist. Des Weiteren umfasst er ein erstes Heizelement, das in dem Sensorkörper eingebettet ist, mittels dessen ein vorgegebener Bereich um die Elektrodenkammer auf eine vorgegebene Betriebstemperatur beheizbar ist. Des Weiteren umfasst er eine Längsachse des Sensorkörpers und einen Einlasskanal in dem Sensorkörper, der mit der Elektrodenkammer gekoppelt ist und der einen Einlass an der Oberfläche des Sensorkörpers aufweist, wobei der Ein¬ lass derart in dem Sensorkörper ausgebildet ist, dass der Einlass bei Betrieb des Sensors mit der vorgegebenen Be¬ triebstemperatur, derart von der Elektrodenkammer axial beabstandet ist, dass der Sensorkörper in einem vorgegebenen Bereich um den Einlass an seiner Oberfläche eine maximale Temperatur aufweist, die kleiner oder gleich einem vorgegebe- nen Temperaturschwellenwert ist, bei dem gewährleistet ist, dass ein an dem Einlass vorbeiströmendes LuftkraftStoffge¬ misch nicht entzündet wird. The invention is characterized by a sensor for detecting a gas content in an environment of the sensor. The sensor comprises a sensor body and an electrode chamber which is formed in the sensor body. Furthermore, it comprises a first heating element which is embedded in the sensor body, by means of which a predetermined area around the electrode chamber can be heated to a predetermined operating temperature. Furthermore, it comprises a longitudinal axis of the sensor body and an inlet channel in the sensor body, which is coupled to the electrode chamber and having an inlet at the surface of the sensor body, wherein the A ¬ let such in the sensor body formed so that the Inlet during operation of the sensor at the predetermined Be ¬ operating temperature, is axially spaced from the electrode chamber that the sensor body in a predetermined region around the inlet on its surface has a maximum temperature which is less than or equal to a predetermined temperature threshold, at is the guarantee that a blowby at the inlet LuftkraftStoffge ¬ mixture will not be ignited.
Bei der vorgegebenen Betriebstemperatur handelt es sich beispielsweise um eine Temperatur zwischen 600 °C und 850 °C. Der vorgegebene Bereich um den Einlass ist beispielsweise ein Bereich an dem Gas vorbeiströmen kann. Der Temperaturschwellenwert ist beispielsweise derart vorgegeben, dass ein vor¬ beiströmendes LuftkraftStoffgemisch nicht entzündet wird. Hierdurch kann erreicht werden, dass der Sensor in einem Bereich eingesetzt wird, in dem er mit einem Luftkraftstoffge- misch in Verbindung kommen kann. Da der Einlass in einem Bereich ist, welcher eine maximale Temperatur aufweist, die un¬ ter dem Temperaturschwellenwert liegt, wird ein Luftkraft¬ stoffgemisch nicht entzündet. Hierdurch ist eine Zündsicherheit des Sensors gegeben. Der Einlass weist beispielsweise einen axialen Abstand zu der Elektrodenkammer auf, der mindestens 40 % der axialen Gesamtlänge des Sensorkörpers entspricht. For example, the given operating temperature is a temperature between 600 ° C and 850 ° C. The predetermined area around the inlet is, for example, an area where gas can flow past. The temperature threshold value is for example set such that a front beiströmendes ¬ air-fuel mixture will not be ignited. As a result, it can be achieved that the sensor is used in an area in which it can come into contact with an air-fuel mixture. Since the inlet is in a range having a maximum temperature, the un ¬ ter is the temperature threshold value, an air-fuel mixture will not ignite ¬. As a result, an ignition safety of the sensor is given. The inlet has, for example, an axial distance to the electrode chamber, which corresponds to at least 40% of the total axial length of the sensor body.
Gemäß einer vorteilhaften Ausgestaltung ist der vorgegebene Temperaturschwellenwert kleiner als 300 °C. 300 °C entspricht beispielsweise einer Entzündungstemperatur eines Luftkraft¬ stoffgemisches . According to an advantageous embodiment, the predetermined temperature threshold is less than 300 ° C. 300 ° C corresponds to, for example, an ignition temperature of an air force ¬ material mixture.
Gemäß einer weiteren vorteilhaften Ausgestaltung umfasst der Sensor eine thermische Isolationshülse auf dem Sensorkörper, die sich mindestens axial in Richtung der Längsachse über den Bereich der Elektrodenkammer erstreckt und die einen vorgege- benen Teil des Sensorkörpers von vorbeiströmenden Luftkraft¬ stoffgemisch isoliert. According to a further advantageous embodiment, the sensor comprises a thermal insulation sleeve on the sensor body which extends at least axially in the direction of the longitudinal axis over the region of the electrode chamber and which has a predetermined Been part of the sensor body of passing air force ¬ fuel mixture isolated.
Hierdurch ist der Sensor sehr zündsicher, da gegebenenfalls keine zu heiße Oberfläche des Sensorkörpers mit Luftkraft- stoffgemisch in Berührung kommen kann. Der vorgegebene Teil ist beispielsweise der Teil des Sensorkörpers, der mit vor¬ beiströmenden Luftkraftstoffgemisch in Berührung kommen kann und/oder der Teil des Sensorkörpers dessen Oberfläche eine maximale Temperatur aufweist die über dem Temperaturschwel¬ lenwert liegt. As a result, the sensor is very ignition-proof, since, if appropriate, no too hot surface of the sensor body can come into contact with the air-fuel mixture. The predetermined part, for example, the part of the sensor body that can come into contact with beiströmenden before ¬ air-fuel mixture / or the part of the sensor body whose surface has a maximum temperature that lies above the lenwert Temperaturschwel ¬.
Gemäß einer weiteren vorteilhaften Ausgestaltung weist der Sensor ein zweites Heizelement auf, das in dem Sensorkörper eingebettet ist und mittels dessen ein vorgegebener Bereich um den Einlasskanal auf eine vorgegebene Temperatur beheizbar ist . According to a further advantageous embodiment, the sensor has a second heating element which is embedded in the sensor body and by means of which a predetermined area around the inlet channel can be heated to a predetermined temperature.
Die vorgegebene Temperatur entspricht beispielsweise einer Temperatur mittels der Schadstoffe aus dem Einlasskanal ver¬ brannt werden können, wodurch der Einlasskanal wieder freigemacht werden kann. Hierbei ist darauf zu achten, dass das zweite Heizelement nur in Betrieb genommen wird, wenn sicher- gestellt ist, dass im Moment kein Luftkraftstoffgemisch an den Sensor gelangen kann. The predetermined temperature corresponds to a temperature, for example, by means of the pollutants from the inlet channel ver ¬ can be burnt, whereby the inlet channel can be set free again. It is important to ensure that the second heating element is only put into operation if it is ensured that no air-fuel mixture can reach the sensor at the moment.
Gemäß einer weiteren vorteilhaften Ausgestaltung umfasst der Sensor eine im Wesentlichen parallel zur Längsachse verlau¬ fende Seitenfläche, wobei der Einlass an der Seitenfläche ausgebildet ist. Hierdurch ist eine einfache Realisierung des Sensors möglich. According to a further advantageous embodiment, the sensor comprises a substantially parallel to the longitudinal axis duri ¬ fende side surface, wherein the inlet is formed on the side surface. As a result, a simple realization of the sensor is possible.
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen näher erläutert. Es zeigen: Figur 1 ein Sensor zur Erfassung eines Gasgehalts, Figur 2 ein weiteres Ausführungsbeispiel des Sensors zum Erfassen eines Gasgehalts und Embodiments of the invention are explained in more detail below with reference to the schematic drawings. 1 shows a sensor for detecting a gas content, Figure 2 shows another embodiment of the sensor for detecting a gas content and
Figur 3 der Sensor zur Erfassung des Gasgehalts in einer weiteren Ansicht. 3 shows the sensor for detecting the gas content in a further view.
Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet. Elements of the same construction or function are identified across the figures with the same reference numerals.
Figur 1 zeigt einen Sensor S zur Erfassung eines Gasgehalts in einer Umgebung des Sensors S. Der Sensor S ist insbesonde- re als ein Sauerstoffsensor ausgeführt, der einen Sauerstoff¬ gehalt in der Umgebung des Sensors S feststellen kann. Der Sensor S umfasst einen Sensorkörper SK. Der Sensorkörper SK umfasst beispielsweise ein Substrat aus Yttrium-stabilisier- tem Zirkonoxid YSZ (Figur 3) . In dem Sensorkörper SK ist eine Elektrodenkammer EK ausgebildet. In dem Sensorkörper SK ist des Weiteren ein erstes Heizelement HEI eingebettet, mittels dessen ein vorgegebener Bereich BB1 um die Elektrodenkammer EK auf eine vorgegebene Betriebstemperatur beheizbar ist. Die vorgegebene Betriebstemperatur liegt beispielsweise zwischen 600 °C und 850 °C beziehungsweise ungefähr bei 700 °C. Des Weiteren weist der Sensor S eine Längsachse L und eine im Wesentlichen senkrecht zur Längsachse L verlaufende Stirnflä¬ che SF des Sensorkörpers SK auf. 1 shows a sensor S for detecting a gas content in an environment of the sensor S. The sensor S is re insbesonde- as an oxygen sensor performed, which can detect an oxygen ¬ content in the vicinity of the sensor S. The sensor S comprises a sensor body SK. The sensor body SK comprises, for example, a substrate made of yttrium-stabilized zirconium oxide YSZ (FIG. 3). In the sensor body SK, an electrode chamber EK is formed. In addition, a first heating element HEI is embedded in the sensor body SK, by means of which a predetermined area BB1 can be heated around the electrode chamber EK to a predetermined operating temperature. The predetermined operating temperature is for example between 600 ° C and 850 ° C or approximately at 700 ° C. Furthermore, the sensor S to a longitudinal axis L and substantially perpendicular to the longitudinal axis L Stirnflä ¬ surface SF of the sensor body SK.
Außerdem weist der Sensorkörper SK einen Einlasskanal EAK auf, der mit der Elektrodenkammer EK gekoppelt ist und der einen Einlass EA in der Oberfläche des Sensorkörpers SK auf¬ weist, wobei der Einlass EA in dem Ausführungsbeispiel der Figur 1 an der Stirnfläche SF des Sensorkörpers SK ausgebil¬ det ist. In addition, the sensor body SK an inlet channel EAK, which is coupled to the electrode chamber EK and has an inlet EA in the surface of the sensor body SK ¬ , wherein the inlet EA in the embodiment of Figure 1 on the end face SF of the sensor body SK ausgebil ¬ det is.
In dem Ausführungsbeispiel der Figur 2 ist der Einlass EA an einer Seitenfläche SE des Sensorkörpers SK ausgebildet, die im Wesentlichen parallel zur Längsachse L verläuft. Der Einlass EA ist jeweils derart in dem Sensorkörper SK aus¬ gebildet, dass der Einlass EA bei Betrieb des Sensors S mit der vorgegebenen Betriebstemperatur, derart von der Elektrodenkammer EK axial beabstandet ist, dass der Sensorkörper SK in einem vorgegebenen Bereich um den Einlass EA an seiner Oberfläche eine maximale Temperatur aufweist, die kleiner oder gleich einem vorgegebenen Temperaturschwellenwert ist, bei dem gewährleistet ist, dass ein an dem Einlass EA vorbei¬ strömendes LuftkraftStoffgemisch nicht entzündet wird. Zwischen dem Einlass EA und der Elektrodenkammer EK ist eine Diffusionsbarriere DB ausgebildet, durch die Sauerstoff in die Elektrodenkammer EK eindiffundieren kann. In the embodiment of Figure 2, the inlet EA is formed on a side surface SE of the sensor body SK, which is substantially parallel to the longitudinal axis L. The inlet EA is formed in each case in such a way in the sensor body SK from ¬ that the inlet EA is spaced axially during operation of the sensor S with the predetermined operating temperature, in such a way from the electrode chamber EK, that the sensor body SK in a predetermined area around the inlet EA to its surface has a maximum temperature which is less than or equal to a predetermined temperature threshold value, in which ensures that a passing ¬ at the inlet EA flowing air-fuel mixture will not be ignited. Between the inlet EA and the electrode chamber EK, a diffusion barrier DB is formed, through which oxygen can diffuse into the electrode chamber EK.
Des Weiteren weist der Sensor S eine thermische Isolations¬ hülse IH auf, die auf dem Sensorkörper SK ausgebildet ist und die sich mindestens axial in Richtung der Längsachse L über den Bereich der Elektrodenkammer EK erstreckt. Die Isolationshülse IH kann beispielsweise auch die Stirnfläche SF des Sensorkörpers SK abdecken, wie in dem Ausführungsbeispiel der Figur 2. Figur 3 zeigt eine weitere Ansicht des Sensors S. Figur 3 verdeutlicht den schichtweisen Aufbau des Sensors S. Mit der Elektrodenkammer EK ist eine erste Elektrode P- verbunden, die auch als Kathode bezeichnet werden kann. Zwischen der ersten Elektrode P- und einer zweiten Elektrode P+, die auch als Anode bezeichnet werden kann, ist eine Festkörperelektro- lytschicht ausgebildet, welche beispielsweise mittels Yttri- um-stabilisierten Zirkonoxids YSZ ausgebildet ist. Furthermore, the sensor S on a thermal insulation ¬ IH sleeve, which is formed on the sensor body SK and which extends at least axially in the direction of the longitudinal axis L over the area of the electrode chamber EK. The insulating sleeve IH can, for example, also cover the end face SF of the sensor body SK, as in the embodiment of FIG. 2. FIG. 3 shows a further view of the sensor S. FIG. 3 illustrates the layered structure of the sensor S. The electrode chamber EK is a first electrode P- connected, which can also be referred to as a cathode. Between the first electrode P and a second electrode P +, which can also be referred to as anode, a solid electrolyte layer is formed which is formed, for example, by Yttrium-stabilized zirconium oxide YSZ.
Der Sensor S weist des Weiteren mehrere Kontakte K (siehe Fi¬ gur 1 und 2) auf, beispielsweise zum Ansteuern von Heizele¬ menten und zum Anlegen einer Spannung für den Betrieb des Sensors S. Des Weiteren weist der Sensor S einen Halter H auf (siehe Figur 1 und 2), der auch zum Abtransport von Wärme dienen kann. Der Halter H ist hierfür beispielsweise aus Aluminium ausge¬ bildet und mittels Kleber auf dem Sensorkörper SK befestigt. Im Folgenden wird die Funktionsweise des Sensors S beschrie¬ ben . The sensor S further includes a plurality of contacts K (see Fi gur ¬ 1 and 2), for example for driving Heizele ¬ elements and for applying a voltage for the operation of the sensor S. Furthermore, the sensor S has a holder H (see FIGS. 1 and 2), which can also serve to dissipate heat. The holder H is for this purpose, for example made of aluminum out ¬ forms and fixed by means of adhesive on the sensor body SK. In the following, the mode of operation of the sensor S will be described.
Zum Erfassen des Gasgehalts der Umgebung des Sensors S wird zwischen der ersten Elektrode P- und der zweiten Elektrode P+ eine Spannungsdifferenz von beispielsweise 0,8 V angelegt. Wenn unter der Kathode der Sauerstoffgehalt zu 0 eingestellt wird und der Sensor S in eine sauerstoffhaltige Umgebung ein¬ gebracht wird, diffundieren aufgrund des Konzentrat ionsunter- schieds beziehungsweise des Partialdrucksunterschieds zwi¬ schen der Umgebung und dem Bereich unter der Kathode, in der nahezu kein Sauerstoff vorhanden ist, Sauerstoffatome durch die Diffusionsbarriere DB und die Kathode in das Substrat des Sensorkörpers SK. Die Sauerstoffatome diffundieren als dop¬ pelt negativ geladene Ionen in das Substrat des Sensorkörpers SK, wobei die zur Ionisierung der Sauerstoffatome erforderliche Elektronen von der elektrisch leitfähigen Kathode geliefert werden. Bei einer zwischen den Elektroden angelegten Spannung wird der Differenzdiffusionsgrenzstrom gemessen. Dieser Strom ist bei einem sauerstoffhaltigen Messgas vom Sauerstoffpartialdruck abhängig. An der Anode werden die Sauerstoffionen wieder in Sauerstoffatome umgewandelt und dif¬ fundieren durch die Anode wieder in die sauerstoffhaltige Um¬ gebung. Für eine ausreichende Ionenleitfähigkeit benötigt der Sensorkörper SK eine erhöhte Temperatur. Daher wird der Sensorkörper SK mittels des ersten Heizelements HEI in dem be¬ heizbaren Bereich BB1 der Elektrodenkammer EK auf eine vorgegebene Betriebstemperatur beispielsweise zwischen 600 °C bis 850 °C beheizt. For detecting the gas content of the surroundings of the sensor S, a voltage difference of, for example, 0.8 V is applied between the first electrode P and the second electrode P +. When it is set in the cathode of the oxygen content to 0, and the sensor S is placed a ¬ in an oxygen-containing ambient, diffuse due to the concentrate ionsunter- difference or the Partialdrucksunterschieds Zvi ¬ rule the environment and the area under the cathode, in which almost no oxygen is present, oxygen atoms through the diffusion barrier DB and the cathode in the substrate of the sensor body SK. The oxygen atoms diffuse as dop ¬ pelt negatively charged ions into the substrate of the sensor body SK, wherein the required electrons are supplied from the electrically conductive cathode to the ionization of the oxygen atoms. At a voltage applied between the electrodes, the differential diffusion limit current is measured. This current is dependent on the partial pressure of oxygen in the case of an oxygen-containing measuring gas. The oxygen ions are converted back to oxygen atoms at the anode and dif ¬ substantiate through the anode back to the oxygen-containing To ¬ gebung. For a sufficient ionic conductivity of the sensor body SK requires an elevated temperature. Therefore, the sensor body SK is heated by means of the first heating element HEI in the be ¬ heated area BB1 of the electrode chamber EK to a predetermined operating temperature, for example, between 600 ° C to 850 ° C.
Zur thermischen Isolation weist der Sensor S die Isolations hülse IH auf, die einen vorgegebenen Teil des Sensorkörpers SK von vorbeiströmenden LuftkraftStoffgemisch isoliert. Hierdurch ist der Sensor S sehr zündsicher, da gegebenenfalls keine zu heiße Oberfläche des Sensorkörpers SK mit Luftkraft¬ stoffgemisch in Berührung kommen kann. Der vorgegebene Teil ist beispielsweise der Teil des Sensorkörpers SK, der mit vorbeiströmenden LuftkraftStoffgemisch in Berührung kommen kann und/oder der Teil des Sensorkörpers SK dessen Oberfläche eine maximale Temperatur aufweist, die über dem Temperaturschwellenwert liegt. For thermal insulation, the sensor S on the insulation sleeve IH, which is a predetermined part of the sensor body SK isolated from passing air-fuel mixture. This allows the sensor S is very requisite level of safety, since any no to hot surface of the sensor body SK air force may ¬ material mixture into contact. The predetermined part is for example the part of the sensor body SK, which can come into contact with passing air-fuel mixture and / or the part of the sensor body SK whose surface has a maximum temperature which is above the temperature threshold.
Die Isolationshülse IH weist beispielsweise Keramikfasern und/oder Metallfasern auf. Die Keramikfasern und/oder Metallfasern sind beispielsweise in einer Metallhülse angeordnet. Alternativ oder zusätzlich sind die Keramikfasern und/oder Metallfasern von der Metallhülse durch einen Luftspalt beabstandet . Zusätzlich kann der Sensor S ein zweites Heizelement HE2 aufweisen, das in dem Sensorkörper SK eingebettet ist und mittels dessen ein vorgegebener Bereich BB2 um den Einlasskanal EAK auf eine vorgegebene Temperatur beheizbar ist, die bei¬ spielsweise einer Temperatur entspricht, mittels der Schad¬ stoffe aus dem Einlasskanal EAK verbrannt werden können, wo- durch der Einlasskanal EAK wieder freigemacht werden kann. The insulating sleeve IH has, for example, ceramic fibers and / or metal fibers. The ceramic fibers and / or metal fibers are arranged, for example, in a metal sleeve. Alternatively or additionally, the ceramic fibers and / or metal fibers are spaced from the metal sleeve by an air gap. Additionally, the sensor S may include a second heating element HE2, which is embedded in the sensor body SK and by means of which a predetermined range BB2 around the inlet channel EAK to a predetermined temperature can be heated, which ¬ play, corresponds to at a temperature of means of the harmful ¬ materials the inlet duct EAK can be burned, whereby the inlet channel EAK can be freed again.
Hierbei ist darauf zu achten, dass das zweite Heizelement HE2 nur in Betrieb genommen wird, wenn sichergestellt ist, dass im Moment kein LuftkraftStoffgemisch an den Sensor S gelangen kann . It is important to ensure that the second heating element HE2 is only put into operation, if it is ensured that at the moment no air-fuel mixture can reach the sensor S.

Claims

Sensor (S) zur Erfassung eines Gasgehalts in einer Umgebung des Sensors (S), umfassend: A sensor (S) for detecting a gas content in an environment of the sensor (S), comprising:
- einen Sensorkörper (SK),  a sensor body (SK),
- eine Elektrodenkammer (EK) , die in dem Sensorkörper (SK) ausgebildet ist,  an electrode chamber (EK) which is formed in the sensor body (SK),
- ein erstes Heizelement (HEI), das in dem Sensorkörper (SK) eingebettet ist, mittels dessen ein vorgegebener Bereich (BB1) um die Elektrodenkammer (EK) auf eine vorgegebene Betriebstemperatur beheizbar ist,  a first heating element (HEI) embedded in the sensor body (SK), by means of which a predetermined region (BB1) can be heated around the electrode chamber (EK) to a predetermined operating temperature,
- eine Längsachse (L) des Sensorkörpers (SK),  a longitudinal axis (L) of the sensor body (SK),
- einen Einlasskanal (EAK) in dem Sensorkörper (SK), der mit der Elektrodenkammer (EK) gekoppelt ist und der einen Einlass (EA) an der Oberfläche des Sensorkörpers (SK) aufweist, wobei der Einlasskanal (EAK) derart in dem Sensorkörper (SK) ausgebildet ist, dass der Einlass (EA) bei Betrieb des Sensors (S) mit der vorgege¬ benen Betriebstemperatur, derart von der Elektrodenkammer (EK) axial beabstandet ist, dass der Sensorkör¬ per (SK) in einem vorgegebenen Bereich um den Einlass (EA) an seiner Oberfläche eine maximale Temperatur aufweist, die kleiner oder gleich einem vorgegebenen Temperaturschwellenwert ist, bei dem gewährleistet ist, dass ein an den Einlass (EA) vorbeiströmendes LuftkraftStoffgemisch nicht entzündet wird. an inlet channel (EAK) in the sensor body (SK), which is coupled to the electrode chamber (EK) and which has an inlet (EA) on the surface of the sensor body (SK), the inlet channel (EAK) in the sensor body (EAK) SK) is formed such that the inlet (EA) (with operation of the sensor S) with the specified differently surrounded operating temperature, in such a way (by the electrode chamber EK) is axially spaced that the Sensorkör ¬ by (SK) in a predetermined region around the Inlet (EA) at its surface has a maximum temperature which is less than or equal to a predetermined temperature threshold, in which it is ensured that a flowing past the inlet (EA) Luftkraftoffoffgemisch is not ignited.
Sensor (S) nach Anspruch 1, bei dem der vorgegebene Temperaturschwellenwert kleiner als 300 °C ist. A sensor (S) according to claim 1, wherein the predetermined temperature threshold is less than 300 ° C.
Sensor (S) nach Anspruch 1 oder 2, umfassend eine thermische Isolationshülse (IH) auf dem Sensorkörper (SK), die sich mindestens axial in Richtung einer Längsachse (L) über den Bereich der Elektrodenkammer (EK) erstreckt und die einen vorgegebenen Teil des Sensorkörpers (SK) von vorbeiströmenden LuftkraftStoffgemisch isoliert. Sensor (S) nach Anspruch 1 oder 2, umfassend ein zweites Heizelement (HE2), das in dem Sensorkörper (SK) eingebettet ist, mittels dessen ein vorgegebener Bereich (BB2) um den Einlasskanal (EAK) auf eine vorgegebene Temperatur beheizbar ist. Sensor (S) according to claim 1 or 2, comprising a thermal insulation sleeve (IH) on the sensor body (SK) which extends at least axially in the direction of a longitudinal axis (L) over the region of the electrode chamber (EK) and which comprises a predetermined part of Sensor body (SK) isolated from passing air-fuel mixture. Sensor (S) according to claim 1 or 2, comprising a second heating element (HE2), which is embedded in the sensor body (SK), by means of which a predetermined area (BB2) around the inlet channel (EAK) can be heated to a predetermined temperature.
Sensor (S) nach einem der vorstehenden Ansprüche, umfassend eine im Wesentlichen parallel zur Längsachse (L) verlaufende Seitenfläche (SF), wobei der Einlass (EA) in der Seitenfläche (SF) ausgebildet ist. Sensor (S) according to one of the preceding claims, comprising a substantially parallel to the longitudinal axis (L) extending side surface (SF), wherein the inlet (EA) in the side surface (SF) is formed.
EP14717685.3A 2013-03-20 2014-03-19 Sensor for detecting a gas content Withdrawn EP2976630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013204914.5A DE102013204914A1 (en) 2013-03-20 2013-03-20 Sensor for detecting a gas content
PCT/EP2014/055521 WO2014147135A1 (en) 2013-03-20 2014-03-19 Sensor for detecting a gas content

Publications (1)

Publication Number Publication Date
EP2976630A1 true EP2976630A1 (en) 2016-01-27

Family

ID=50489062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14717685.3A Withdrawn EP2976630A1 (en) 2013-03-20 2014-03-19 Sensor for detecting a gas content

Country Status (5)

Country Link
US (1) US20160274054A1 (en)
EP (1) EP2976630A1 (en)
DE (1) DE102013204914A1 (en)
TW (1) TW201447295A (en)
WO (1) WO2014147135A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123837B2 (en) * 2019-03-15 2022-08-23 日本特殊陶業株式会社 gas sensor
DE102021202200A1 (en) 2021-03-08 2022-04-21 Vitesco Technologies GmbH Apparatus and method for minimizing damage to a sensor for a vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239664A (en) * 1984-05-14 1985-11-28 Nissan Motor Co Ltd Heating apparatus of oxygen sensor
JPS6293653A (en) * 1985-10-18 1987-04-30 Ngk Insulators Ltd Heating sensor
JP2505459B2 (en) * 1987-01-27 1996-06-12 日本碍子株式会社 Adjustment method of oxygen concentration measuring device
DE3728618C1 (en) * 1987-08-27 1988-03-10 Bosch Gmbh Robert Sensor element for limit current sensors for determining the lambda value of gas mixtures
JP3705994B2 (en) * 1999-05-13 2005-10-12 株式会社日本自動車部品総合研究所 Hydrogen sensor, battery overcharge / overdischarge detection device, and fuel cell hydrogen leak detection device
DE10052005C2 (en) * 2000-10-20 2002-11-21 Bosch Gmbh Robert Sensor for gases
JP2004157111A (en) * 2002-10-17 2004-06-03 Denso Corp Air-fuel ratio sensor
DE102004031770A1 (en) * 2004-07-01 2006-01-26 Robert Bosch Gmbh Sensor unit for determining physical parameter of test gas, especially oxygen content of internal combustion engine exhaust gas, has section for fixing protective device to end of solid electrolyte sensor
DE102004054014A1 (en) * 2004-11-09 2006-05-11 Robert Bosch Gmbh ceramic component
US7887685B2 (en) * 2005-07-14 2011-02-15 Caterpillar Inc. Multilayer gas sensor having dual heating zones
DE102006014248A1 (en) * 2006-03-28 2007-10-04 Robert Bosch Gmbh Sensor unit e.g. wideband oxygen sensor, for determining oxygen content in exhaust gas of internal combustion engine, has heater with insulation that surrounds heating unit, where heating unit exhibits meandering profile
DE102008044374A1 (en) * 2008-12-05 2010-06-17 Robert Bosch Gmbh Sensor element for e.g. determining nitrogen oxide content in exhaust gas from internal combustion engine, has one electrochemical cells designed as electrochemical pump cell, and outer pump electrode exposed to measuring gas
JP5322965B2 (en) * 2010-02-02 2013-10-23 日本碍子株式会社 Gas sensor and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014147135A1 *

Also Published As

Publication number Publication date
TW201447295A (en) 2014-12-16
WO2014147135A1 (en) 2014-09-25
DE102013204914A1 (en) 2014-09-25
US20160274054A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
EP2600130B1 (en) Pressure measurement device and pressure measuring method for a turbomachinery
DE102015114091A1 (en) Gas sensor element and gas sensor
DE102013210979B4 (en) Gas sensor
DE112015000421T5 (en) Gas sensor element
DE102017003283A1 (en) Device for determining the deterioration for a gas sensor element
EP2976630A1 (en) Sensor for detecting a gas content
DE112016004588T5 (en) gas sensor
EP2106543A1 (en) Sensor element with suppressed rich gas reaction
EP3394605B1 (en) Sensor element for detecting at least one property of a measuring gas in a measuring gas chamber
DE102015201047A1 (en) Gas sensor element and gas sensor
DE102015101399B4 (en) Gas sensor element and gas sensor
DE112016001244T5 (en) Gas sensor element
DE102016224410B4 (en) Sensor for use in an exhaust stream of an internal combustion engine and method for producing the same
DE102005051194A1 (en) Sensor for measuring the concentration of a gas component in a gas mixture
DE102014206247A1 (en) Sensor for detecting at least one property of a sample gas in a sample gas space and method for manufacturing
DE19929771B4 (en) oxygen sensor
DE112017002435T5 (en) gas sensor
DE102009055041B4 (en) Method for quickly achieving operational readiness of a heatable exhaust gas probe
DE19534918A1 (en) Sensor for measuring gas concentrations
DE112016005780T5 (en) gas sensor
DE10200052A1 (en) Layer-type sensor element for determining physical characteristics of gas, comprises measurement unit, heating unit, and heater supply lines
DE102013226667A1 (en) Spark plug with seal made of a non-conductive material
DE102013204943A1 (en) Sensor for detecting a gas content
DE102008041837B4 (en) Gas sensor for detecting a gas concentration using a solid electrolyte component
WO2014206648A1 (en) Sensor element for detecting at least one property of a measurement gas in a measurement gas chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160518