EP2975247A1 - Fuel injection control apparatus of internal combustion engine - Google Patents
Fuel injection control apparatus of internal combustion engine Download PDFInfo
- Publication number
- EP2975247A1 EP2975247A1 EP15177136.7A EP15177136A EP2975247A1 EP 2975247 A1 EP2975247 A1 EP 2975247A1 EP 15177136 A EP15177136 A EP 15177136A EP 2975247 A1 EP2975247 A1 EP 2975247A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- fuel injection
- injection valve
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 327
- 238000002347 injection Methods 0.000 title claims abstract description 325
- 239000007924 injection Substances 0.000 title claims abstract description 325
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 58
- 230000006835 compression Effects 0.000 claims description 12
- 238000007906 compression Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- 239000002828 fuel tank Substances 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3094—Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3836—Controlling the fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
- F02M63/0275—Arrangement of common rails
- F02M63/0285—Arrangement of common rails having more than one common rail
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/04—Injectors peculiar thereto
- F02M69/042—Positioning of injectors with respect to engine, e.g. in the air intake conduit
- F02M69/046—Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0602—Fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/31—Control of the fuel pressure
Definitions
- This invention relates to a fuel injection control apparatus of an internal combustion engine, which is equipped with an intake passage injection valve (first fuel injection valve) for injecting fuel into an intake passage, and a cylinder injection valve (second fuel injection valve) for injecting fuel directly into a combustion chamber.
- first fuel injection valve for injecting fuel into an intake passage
- second fuel injection valve for injecting fuel directly into a combustion chamber
- engines loaded on vehicles, such as automobiles, is one equipped with an intake passage injection valve for injecting fuel into an intake passage, and a cylinder injection valve for injecting fuel directly into a combustion chamber. Fuel injections from the intake passage injection valve and the cylinder injection valve are controlled, as appropriate, by a fuel injection control apparatus installed in the engine.
- the fuel injection control apparatus of the engine selectively performs injection by the intake passage injection valve and injection by the cylinder injection valve, for example, in accordance with the load region of the engine.
- a fuel injection control apparatus designed to inject fuel only from the intake passage injection valve for injecting fuel into the intake passage when the operating state of the engine is in a low rotation, low load operating region, and to inject fuel from each of the cylinder injection valve and the intake passage injection valve when the operating state of the engine is in a high rotation, high load operating region (see Patent Document 1).
- the cylinder injection valve injects fuel directly into the combustion chamber.
- the pressure of fuel (fuel pressure) to be supplied to the cylinder injection valve needs to be rendered relatively high.
- the engine equipped with the intake passage injection valve and the cylinder injection valve has a high pressure supply pump capable of supplying fuel at a higher pressure than the pressure of fuel to be supplied to the intake passage injection valve, and is adapted to supply fuel to the cylinder injection valve at a predetermined pressure via this high pressure supply pump.
- some high pressure supply pumps have been configured to be capable of changing output in a plurality of stages and supplying fuel to the cylinder injection valve at different pressures.
- the present invention has been accomplished in the light of the above-described circumstances. It is an object of this invention to provide a fuel injection control apparatus of an internal combustion engine which can control the amount of fuel, which is injected from a cylinder injection valve (second fuel injection valve), with high accuracy even when its amount is small, regardless of the operating state of the internal combustion engine.
- a fuel injection control apparatus of an internal combustion engine which can control the amount of fuel, which is injected from a cylinder injection valve (second fuel injection valve), with high accuracy even when its amount is small, regardless of the operating state of the internal combustion engine.
- a first aspect of the present invention for solving the above problems is a fuel injection control apparatus of an internal combustion engine, including: a first fuel injection valve for injecting fuel into an intake passage of the internal combustion engine; a second fuel injection valve for directly injecting fuel into a combustion chamber of the internal combustion engine; and a high pressure supply pump for supplying fuel to the second fuel injection valve so as to impart a predetermined fuel pressure higher than the fuel pressure of the first fuel injection valve,
- the fuel injection control apparatus comprising: fuel injection control means which controls fuel injections from the first fuel injection valve and the second fuel injection valve in accordance with the operating state of the internal combustion engine to change an injection form; and fuel pressure adjustment means which controls the working state of the high pressure supply pump in accordance with the injection form to adjust the fuel pressure of the second fuel injection valve and, when the injection form has been changed by the fuel injection control means, adjusts the working state of the high pressure supply pump such that the amount of fuel injection from the second fuel injection valve stabilizes, before changing the working state of the high pressure supply pump in accordance with the injection form.
- a second aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the first aspect, wherein the fuel pressure adjustment means maintains the working state of the high pressure supply pump for a predetermined period of time before changing the working state of the high pressure supply pump in accordance with the injection form, when the injection form has been changed by the fuel injection control means.
- a third aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the second aspect, wherein the fuel pressure adjustment means maintains the working state of the high pressure supply pump until the operating state of the internal combustion engine becomes a steady state, as the predetermined period of time.
- a fourth aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to any one of the first to third aspects, wherein the fuel injection control means allows only the first fuel injection valve to inject fuel when the operating state of the internal combustion engine is in a first operating region defined by the rotation number and load of the internal combustion engine, or allows each of the first fuel injection valve and the second fuel injection valve to inject fuel when the operating state of the internal combustion engine is in a second operating region exceeding the first operating region; and the fuel pressure adjustment means adjusts the working state of the high pressure supply pump such that the amount of fuel injection from the second fuel injection valve stabilizes, when the operating state shifts from the first operating region to the second operating region.
- a fifth aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the fourth aspect, wherein the high pressure supply pump is adapted to be capable of adjusting the fuel pressure in a plurality of stages in accordance with the operating state of the internal combustion engine; and the fuel pressure adjustment means adjusts the working state of the high pressure supply pump such that the fuel pressure selected from the plurality of stages becomes a fuel pressure at which the amount of fuel injection from the second fuel injection valve stabilizes, when the operating state of the internal combustion engine shifts from the first operating region to the second operating region.
- a sixth aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the fifth aspect, wherein the fuel pressure adjustment means maintains the working state of the high pressure supply pump such that the fuel pressure of the second fuel injection valve is a fuel pressure at the lowest stage.
- a seventh aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to any one of the fourth to sixth aspects, wherein the fuel injection control means allows the first fuel injection valve to inject fuel in an exhaust stroke, and also allows the second fuel injection valve to additionally inject fuel in an amount, which compensates for fuel injection from the first fuel injection valve in the exhaust stroke, in at least one of an intake stroke and a compression stroke, when the operating state of the internal combustion engine shifts to the second operating region.
- the working state of the high pressure supply pump is controlled to adj ust the fuel pressure of the cylinder injection valve (second fuel injection valve).
- the amount of fuel injection from the cylinder injection valve can be controlled with high accuracy, regardless of the injection form. Even if a relative small amount of fuel is injected from the cylinder injection valve, for example, the amount of fuel injection can be controlled highly accurately.
- Fig. 1 is a view showing the schematic configuration of the engine according to the present invention.
- the engine 10 shown in Fig. 1 is a manifold fuel injection (multi-point injection) multi-cylinder engine, for example, an in-line 4-cylinder 4-stroke engine, and has four cylinders 12 installed in parallel in an engine body 11.
- a spark plug is arranged, and an intake port and an exhaust port are provided, although they are not shown.
- the engine body 11 is equipped with an intake manifold 13 connected to the intake port, and an exhaust manifold 14 connected to the exhaust port.
- the engine body 11 is also provided with intake passage injection valves (first fuel injection valves) 15 for injecting fuel into an intake passage, for example, near the intake port, of the engine 10, and cylinder injection valves (second fuel injection valves) 16 for directly injecting fuel into each cylinder (combustion chamber) of the engine 10.
- first fuel injection valves first fuel injection valves
- second fuel injection valves second fuel injection valves
- the intake passage injection valve 15 is connected to a low pressure supply pump 18 via a low pressure delivery pipe 17.
- the low pressure supply pump 18 is disposed, for example, within a fuel tank 19. Fuel within the fuel tank 19 is supplied to the low pressure delivery pipe 17 by the low pressure supply pump 18, and supplied to the intake passage injection valve 15 via the low pressure delivery pipe 17.
- the cylinder injection valve 16 is connected to a high pressure supply pump 21 via a high pressure delivery pipe 20.
- the high pressure supply pump 21 is connected to the low pressure supply pump 18 via the low pressure delivery pipe 17. That is, the low pressure delivery pipe 17 led out from the fuel tank 19 is divided into two branches, one of the branches being connected to the intake passage injection valves 15, and the other branch being connected to the high pressure supply pump 21.
- the fuel within the fuel tank 19 is supplied to the intake passage injection valve 15 and, at the same time, to the high pressure supply pump 21, by the low pressure supply pump 18 via the low pressure delivery pipe 17 as mentioned above.
- the high pressure supply pump 21 is adapted to be capable of supplying the fuel, which has been supplied via the low pressure delivery pipe 17, to the high pressure delivery pipe 20 at a higher pressure. That is, the high pressure supply pump 21 is adapted to be capable of supplying fuel to the cylinder injection valve 16 at a higher fuel pressure than the pressure of fuel to be supplied to the intake passage injection valve 15 (fuel pressure of the intake passage injection valve 15).
- the high pressure supply pump 21 can also adjust the fuel pressure of the cylinder injection valve 16 in a plurality of stages. In the present embodiment, the high pressure supply pump 21 can adjust the fuel pressure of the cylinder injection valve 16 in two stages, i.e. , to the first fuel pressure (e.g. , a value of the order of 10 MPa) and the second fuel pressure higher than the first fuel pressure (e.g., a value of the order of 20 MPa), in accordance with the operating state of the engine 10, as will be described in detail later.
- the first fuel pressure e.g. , a value of the order of 10
- An intake pipe (intake passage) 22 connected to the intake manifold 13 is provided with a throttle valve 23, and also has a throttle position sensor (TPS) 24 for detecting the valve opening of the throttle valve 23. Further, an air flow sensor 25 for detecting the amount of intake air is provided upstream of the throttle valve 23.
- TPS throttle position sensor
- an air flow sensor 25 for detecting the amount of intake air is provided upstream of the throttle valve 23.
- An O 2 sensor 28 for detecting the O 2 concentration of an exhaust gas after passage through the catalyst is provided on the outlet side of the three-way catalyst27.
- a linear air-fuel ratio sensor (LAFS) 29 for detecting the air-fuel ratio of an exhaust gas (exhaust air-fuel ratio) before passage through the catalyst is provided on the inlet side of the three-way catalyst 27.
- LAFS linear air-fuel ratio sensor
- the engine 10 also has an electronic control unit (ECU) 40, and the ECU 40 includes an input-output device, a storage device for storing a control program, a control map, etc., a central processing unit, timers, and counters. Based on information from various sensors, the ECU 40 exercises the integrated control of the engine 10. To the ECU 40, various sensors, including the above-mentioned throttle position sensor (TPS) 24, air flow sensor 25, O 2 sensor 28, and LAFS 29 as well as a crank angle sensor are connected. The ECU 40 exercises various types of control based on detection information from these sensors.
- TPS throttle position sensor
- O 2 sensor 28 air flow sensor
- LAFS 29 as well as a crank angle sensor
- the fuel injection control apparatus of an internal combustion engine is constituted by the above-described ECU and, as will be described below, controls, as appropriate, the amounts of fuel injected from the intake passage injection valve 15 and the cylinder injection valve 16 in accordance with the operating state of the engine 10.
- the ECU 40 has a fuel control unit 50 as a fuel injection control apparatus of an internal combustion engine, and the fuel control unit 50 has an operating state detection means(device) 51, a fuel injection control means (device) 52, and a fuel pressure adjustment means(device) 53.
- the operating state detection means 51 detects the operating state of the engine 10 based on information from the above-mentioned various sensors, for example, changes in the load and rotation number (rotational speed) of the engine 10.
- the operating state detection means 51 refers to a predetermined operating region map or the like (see Fig. 2 ), and determines which operating region the operating state of the engine 10 is in, and also determines whether the operating state of the engine 10 is a steady state, or a transient state during vehicle acceleration or the like.
- the operating region map is preset based on the rotation number and load of the engine 10, for example, as shown in Fig. 2 .
- the operating state of the engine 10 is set in two forms, a first operating region D1 which is an operating region on a low rotation low load side, and a second operating region D2 which is an operating region on a high rotation high load side as compared with the first operating region D1.
- the fuel injection control means 52 selects a fuel injection mode (injection form) in accordance with the operating state of the engine 10, namely, the detection results of the operating state detection means 51, to control, as appropriate, the amounts of fuel to be injected from the intake passage injection valve 15 and the cylinder injection valve 16.
- the fuel injection control means 52 functions as follows: If the operating state of the engine 10 is in the first operating region D1, the fuel injection control means 52 selects and executes the mode of injecting fuel only from the intake passage injection valves 15 (hereinafter referred to as "MPI injection mode").
- the fuel injection control means 52 selects and executes the mode of injecting fuel from the intake passage injection valves 15 and the cylinder injection valves 16 at a predetermined injection amount ratio (hereinafter referred to as "MPI+DI injection mode").
- the injection amount ratio between the intake passage injection valves 15 and the cylinder injection valves 16 is preset and, with the present embodiment, the injection amount ratio between the intake passage injection valves 15 and the cylinder injection valves 16 has been set, in principle, at a constant value. If the operating state of the engine 10 is a steady state, changes in the fuel amount required for one combustion cycle (required fuel amount) are minimal. Thus, the injection amount of the intake passage injection valve 15 and the injection amount of the cylinder injection valve 16 are at the above preset ratio.
- the required fuel amount changes (increases), as appropriate, in accordance with a change in the operating state of the engine 10. For example, if the operating state of the engine 10 shifts from the first operating region D1 to the second operating region D2, as indicated by an arrow in Fig. 2 , the required fuel amount changes (increases), as appropriate.
- the fuel injection control means 52 switches the fuel injection mode from the "MPI injection mode" to the "MPI+DI injection mode", and also allows the cylinder injection valve 16 to perform additional injection at a predetermined timing, thereby adjusting, as appropriate, the amount of fuel injected from the cylinder injection valve 16.
- the injection amount of the intake passage injection valve 15 and the injection amount of the cylinder injection valve 16 may slightly deviate from the above ratio.
- a plurality of injection patterns have been set, and the fuel injection control means 52 makes a selection from among them, as appropriate, in accordance with the operating state of the engine 10.
- An example of the injection patterns for fuel from the intake passage injection valve 15 and the cylinder injection valve 16 will be described by reference to Figs. 3A, 3B and Fig. 4 .
- the timing of fuel injection from the intake passage injection valve 15 (timing of valve opening) is set at an exhaust stroke.
- the timing of fuel injection from the cylinder injection valve 16 is set at an intake stroke, as shown in Fig. 3A , if the operating state of the engine 10 is a steady state. If the operating state of the engine 10 is a steady state, moreover, the injection form is fixed. If the operating state of the engine 10 is a transient state, on the other hand, for example, if the operating state of the engine 10 shifts from the first operating region D1 to the second operating region D2, the timing of fuel injection from the cylinder injection valve 16 is set at an intake stroke and a first half of a compression stroke, as shown in Fig. 3B . That is, additional injection from the cylinder injection valve 16 is executed in the first half of the compression stroke. Additional injection need not necessarily be performed in the compression stroke, but may be performed in the intake stroke.
- the fuel injection control means 52 computes the valve-opening periods (pulse widths) of the intake passage injection valve 15 and the cylinder injection valve 16 based on predetermined conditions such as the amount of intake air before each stroke. Since the engine 10 according to the present embodiment is a 4-cylinder 4-stroke engine, a phase difference of 180 degrees in the crank angle in the respective cylinders coincides with the cycle of each stroke (exhaust stroke, intake stroke, compression stroke, expansion stroke) of the combustion cycle. Thus, the fuel injection amount in each stroke is computed based on the amount of intake air immediately before each stroke. In the present embodiment, the amount of intake air is detected with the air flow sensor 25, but can be obtained by computation based on the intake pressure, intake temperature or the like.
- a fuel amount Q1 to be injected from the intake passage injection valve 15 and a fuel amount Q2 to be injected from the cylinder injection valve 16 are computed, for example, based on an intake air amount A1 at a timing T1 after the expansion stroke (immediately before the exhaust stroke).
- a first task is to compute a required fuel amount Qa1 from the intake air amount A1 at the timing T1.
- the required fuel amount refers to the amount of fuel necessary for one combustion cycle (the sum of the injection amount of the intake passage injection valve 15 and the injection amount of the cylinder injection valve 16).
- the fuel amount Q1 to be injected from the intake passage injection valve 15 and the fuel amount Q2 to be injected from the cylinder injection valve 16 are computed based on the required fuel amount Qa1 and the aforementioned injection amount ratio between the intake passage injection valve 15 and the cylinder injection valve 16. Concretely, if the injection amount ratio between the intake passage injection valve 15 and the cylinder injection valve 16 is A:B, the fuel amount Q1 to be injected from the intake passage injection valve 15 is calculated from the required fuel amount Qa1 x A/(A+B), while the fuel amount Q2 to be injected from the cylinder injection valve 16 is calculated from the required fuel amount Qa1 x B/(A+B).
- the fuel injection control means 52 opens the intake passage injection valve 15 for a predetermined valve-opening period so that the fuel amount Q1 is achieved in the exhaust stroke. If the operating state of the engine 10 is a steady state, moreover, the fuel injection control means 52 opens the cylinder injection valve 16 for a predetermined valve-opening period so that the fuel amount Q2 is obtained in the intake stroke (see Fig. 3A ).
- a required fuel amount Qa2 is computed based on an intake air amount A2 at a timing T2 after the exhaust stroke (immediately before the intake stroke).
- the fuel amount Q1 injected from the intake passage injection valve 15 in the exhaust stroke is subtracted from the required fuel amount Qa2 to obtain a fuel amount Q2' to be injected from the cylinder injection valve 16 in the intake stroke (see Fig. 4 ).
- the fuel injection control means 52 opens the cylinder injection valve 16 for a predetermined valve-opening period so that the fuel amount Q2' is achieved in the intake stroke ( Fig. 3B ). This procedure compensates for an increase in the required fuel amount associated with a change in the operating state of the engine 10 between the timings T1 and T2.
- a required fuel amount Qa3 is further computed based on an intake air amount A3 at a timing T3 after the intake stroke (immediately before the compression stroke).
- the fuel amount Q1 injected in the exhaust stroke and the fuel amount Q2' injected in the intake stroke are subtracted from the required fuel amount Qa3 to obtain a fuel amount Q3 to be additionally injected in a first half of the compression stroke.
- the additional fuel amount Q3 is an increase in the required fuel amount associated with a change in the operating state of the engine 10 between the timings T2 and T3.
- the fuel injection control means 52 opens the cylinder injection valve 16 for a predetermined valve-opening period so that the additional fuel amount Q3 is injected in the first half of the compression stroke (see Fig. 3B ). That is, the increase in the required fuel amount in the intake stroke is supplemented with injection from the cylinder injection valve 16 in the first half of the compression stroke. In this manner, a series of fuel injections in one combustion cycle is completed.
- Thevalve-openingperiods (pulse widths) of the intake passage injection valve 15 and the cylinder injection valve 16 are computed based on the fuel amounts determined by the above computations, as well as the pressures of fuel (fuel pressures) to be supplied to the intake passage injection valve 15 and the cylinder injection valve 16.
- the intake passage injection valve 15 is supplied with fuel at a nearly constant pressure by the low pressure supply pump 18. If the fuel amount is constant, therefore, the valve-opening period of the intake passage injection valve 15 is also constant.
- the cylinder injection valve 16 is supplied by the high pressure supply pump 21 with fuel at a predetermined pressure which is higher than the fuel pressure of the intake passage injection valve 15 and which is conformed to the operating state of the engine 10.
- fuel is supplied to the cylinder injection valve 16 in such a manner as to reach a first fuel pressure or a second fuel pressure.
- the valve-opening period of the cylinder injection valve 16 changes, as appropriate, according to a change in the fuel pressure, even when the amount of fuel injected is constant.
- Such a fuel pressure of the cylinder injection valve 16 is adjusted, as appropriate, by the fuel pressure adjustment means 53.
- the fuel pressure adjustment means 53 controls the working state of the high pressure supply pump 21 in accordance with the operating state of the engine 10, namely, the detection results of the operating state detection means 51, to adjust the fuel pressure of the cylinder injection valve 16. Concretely, the fuel pressure adjustment means 53 controls the working state of the high pressure supply pump 21 such that the fuel pressure of the cylinder injection valve 16 becomes the first fuel pressure, if the operating state of the engine 10 is in the first operating region D1, namely, if the "MPI injection mode" is selected.
- the fuel pressure adjustment means 53 controls the working state of the high pressure supply pump 21 such that the fuel pressure of the cylinder injection valve 16 becomes the second fuel pressure.
- the first fuel pressure is set to be higher than the fuel pressure of the intake passage injection valve 15.
- the first fuel pressure is not restricted if it is a fuel pressure enabling fuel to be directly injected from the cylinder injection valve 16 into the combustion chamber.
- the first fuel pressure can be equal to the fuel pressure of the intake passage injection valve 15.
- the fuel pressure adjustment means 53 adjusts the working state of the high pressure supply pump 21 such that the amount of fuel injection from the cylinder injection valve 16 stabilizes, before changing the working state of the high pressure supply pump 21 in accordance with the injection form (injection form).
- the fuel pressure adj ustment means 53 maintains the working state of the high pressure supply pump 21 for a predetermined period so that the amount of fuel injection from the cylinder injection valve 16 stabilizes.
- the fuel injection control means 52 switches the fuel injection mode from the "MPI injection mode" to the "MPI+DI injection mode".
- the fuel pressure adjustment means 53 maintains the working state of the high pressure supply pump 21 to hold the fuel pressure of the cylinder injection valve 16 at the first fuel pressure. Then, if the state where the operating state of the engine 10 is in the second operating region D2 persists for a predetermined period or longer and the injection form is fixed, the fuel pressure adjustment means 53 changes the working state of the high pressure supply pump 21 to turn the fuel pressure of the cylinder injection valve 16 into the second fuel pressure.
- the amount of fuel injected from the cylinder injection valve 16 can be controlled highly accurately, regardless of the operating state of the engine 10.
- the fuel injection valve has an injection accuracy (linearity) stabilized by making its valve-opening time (pulse width) a predetermined time or longer.
- the valve-opening time of the fuel injection valve By controlling the valve-opening time of the fuel injection valve in such a region where the linearity stabilizes, the fuel injection amount can be controlled highly accurately.
- the predetermined time tends to lengthen as the fuel pressure increases. As shown in Fig. 5 , for example, when the fuel pressure of the fuel injection valve is P1, the linearity stabilizes in a region where the valve-opening time is Ta or longer (the region is indicated by a heavy line in the drawing).
- the injection amount per unit time is larger than when the fuel pressure is P1, but the stability of linearity appears in a region where the valve-opening time is Tb (>Ta) or longer.
- the injection amount per unit time is larger than when the fuel pressure is P2, but the stability of linearity appears in a region where the valve-opening time is Tc (>Tb) or longer.
- the higher the fuel pressure of the cylinder injection valve 16 the more fuel can be injected in a shorter time.
- the fuel pressure of the cylinder injection valve 16 is increased simultaneously with the shift.
- the amount of fuel injection from the cylinder injection valve 16 is rendered easier to increase in accordance with an increase in the required fuel amount.
- the fuel pressure of the cylinder injection valve 16 is raised simultaneously with the shift, there is a possibility that a tiny fuel injection amount cannot be controlled highly accurately.
- the aforementioned additional injection from the cylinder injection valve 16 involves a relatively small fuel injection amount, and thus its fuel injection amount may fail to be controlled with high accuracy.
- the working state of the high pressure supply pump 21 is maintained for a predetermined period, and the fuel pressure of the cylinder injection valve 16 is held relatively low, for example, whereby the valve-opening period becomes longer than in a usual practice.
- the valve-opening period (pulse width) of the cylinder injection valve 16 can be controlled in a region where the linearity becomes stable. Hence, even when a relatively small amount of fuel is injected from the cylinder injection valve 16, the fuel injection amount can be controlled with high accuracy.
- the above predetermined period during which the working state of the high pressure supply pump is maintained may be determined, as appropriate, but is preferably longer than a period until the operating state of the engine 10 becomes a steady state, that is, a period during which additional injection from the cylinder injection valve 16 is executed.
- a period until the operating state of the engine 10 becomes a steady state that is, a period during which additional injection from the cylinder injection valve 16 is executed.
- the high pressure supply pump can adjust the fuel pressure in two stages, i.e., the first fuel pressure and the second fuel pressure.
- the high pressure supply pump may be configured to be capable of adjusting the fuel pressure in three or more stages. In this case as well, when the operating state of the engine shifts from the first operating region to the second operating region, the working state of the high pressure supply pump is maintained for a predetermined period, whereby the fuel injection amount of the cylinder injection valve can be controlled with high accuracy.
- the working state of the high pressure supply pump is preferably adjusted such that a fuel pressure selected by the fuel pressure adjustment means from among fuel pressures at a plurality of stages is a fuel pressure stabilizing the fuel injection amount from the cylinder injection valve. Furthermore, it is preferred that the working state of the highpressure supply pump be maintained for a predetermined period so that the fuel pressure of the cylinder injection valve becomes the fuel pressure at the lowest stage. By so doing, the valve-opening period can be rendered longer, whereby the fuel injection amount of the cylinder injection valve can be controlled with high accuracy as mentioned above.
- additional injection is executed from the cylinder injection valve in the first half of the compression stroke, but the timing of additional injection is not limited to the first half of the compression stroke. For example, it is permissible to carry out additional injection in the intake stroke.
- the four-cylinder engine is illustrated to describe the present invention.
- the fuel injection control apparatus of the present invention can be adopted, for example, in a 3-cylindr or 6-cylinder engine. It is necessary to set the timing of computation of the fuel injection amount, as appropriate, in accordance with the number of the cylinders. No matter what the number of the cylinders is, the fuel injection amount can be controlled highly accurately, regardless of the operating state of the engine, as stated above.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
- This invention relates to a fuel injection control apparatus of an internal combustion engine, which is equipped with an intake passage injection valve (first fuel injection valve) for injecting fuel into an intake passage, and a cylinder injection valve (second fuel injection valve) for injecting fuel directly into a combustion chamber.
- Among internal combustion engines (may hereinafter be referred to as "engines") loaded on vehicles, such as automobiles, is one equipped with an intake passage injection valve for injecting fuel into an intake passage, and a cylinder injection valve for injecting fuel directly into a combustion chamber. Fuel injections from the intake passage injection valve and the cylinder injection valve are controlled, as appropriate, by a fuel injection control apparatus installed in the engine.
- The fuel injection control apparatus of the engine selectively performs injection by the intake passage injection valve and injection by the cylinder injection valve, for example, in accordance with the load region of the engine. Concretely, there is a fuel injection control apparatus designed to inject fuel only from the intake passage injection valve for injecting fuel into the intake passage when the operating state of the engine is in a low rotation, low load operating region, and to inject fuel from each of the cylinder injection valve and the intake passage injection valve when the operating state of the engine is in a high rotation, high load operating region (see Patent Document 1).
-
- [Patent Document 1]
JP-A-2014-62553 - As mentioned above, the cylinder injection valve injects fuel directly into the combustion chamber. Depending on the timing of injection, therefore, the pressure of fuel (fuel pressure) to be supplied to the cylinder injection valve needs to be rendered relatively high. For this purpose, the engine equipped with the intake passage injection valve and the cylinder injection valve has a high pressure supply pump capable of supplying fuel at a higher pressure than the pressure of fuel to be supplied to the intake passage injection valve, and is adapted to supply fuel to the cylinder injection valve at a predetermined pressure via this high pressure supply pump. In recent years, some high pressure supply pumps have been configured to be capable of changing output in a plurality of stages and supplying fuel to the cylinder injection valve at different pressures.
- Increases in the fuel pressure of the cylinder injection valve, however, pose the problem of difficulty in controlling the injection amount with high accuracy when injecting a small amount of fuel from the cylinder injection valve.
- The present invention has been accomplished in the light of the above-described circumstances. It is an object of this invention to provide a fuel injection control apparatus of an internal combustion engine which can control the amount of fuel, which is injected from a cylinder injection valve (second fuel injection valve), with high accuracy even when its amount is small, regardless of the operating state of the internal combustion engine.
- A first aspect of the present invention for solving the above problems is a fuel injection control apparatus of an internal combustion engine, including: a first fuel injection valve for injecting fuel into an intake passage of the internal combustion engine; a second fuel injection valve for directly injecting fuel into a combustion chamber of the internal combustion engine; and a high pressure supply pump for supplying fuel to the second fuel injection valve so as to impart a predetermined fuel pressure higher than the fuel pressure of the first fuel injection valve, the fuel injection control apparatus comprising: fuel injection control means which controls fuel injections from the first fuel injection valve and the second fuel injection valve in accordance with the operating state of the internal combustion engine to change an injection form; and fuel pressure adjustment means which controls the working state of the high pressure supply pump in accordance with the injection form to adjust the fuel pressure of the second fuel injection valve and, when the injection form has been changed by the fuel injection control means, adjusts the working state of the high pressure supply pump such that the amount of fuel injection from the second fuel injection valve stabilizes, before changing the working state of the high pressure supply pump in accordance with the injection form.
- A second aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the first aspect, wherein the fuel pressure adjustment means maintains the working state of the high pressure supply pump for a predetermined period of time before changing the working state of the high pressure supply pump in accordance with the injection form, when the injection form has been changed by the fuel injection control means.
- A third aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the second aspect, wherein the fuel pressure adjustment means maintains the working state of the high pressure supply pump until the operating state of the internal combustion engine becomes a steady state, as the predetermined period of time.
- A fourth aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to any one of the first to third aspects, wherein the fuel injection control means allows only the first fuel injection valve to inject fuel when the operating state of the internal combustion engine is in a first operating region defined by the rotation number and load of the internal combustion engine, or allows each of the first fuel injection valve and the second fuel injection valve to inject fuel when the operating state of the internal combustion engine is in a second operating region exceeding the first operating region; and the fuel pressure adjustment means adjusts the working state of the high pressure supply pump such that the amount of fuel injection from the second fuel injection valve stabilizes, when the operating state shifts from the first operating region to the second operating region.
- A fifth aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the fourth aspect, wherein the high pressure supply pump is adapted to be capable of adjusting the fuel pressure in a plurality of stages in accordance with the operating state of the internal combustion engine; and the fuel pressure adjustment means adjusts the working state of the high pressure supply pump such that the fuel pressure selected from the plurality of stages becomes a fuel pressure at which the amount of fuel injection from the second fuel injection valve stabilizes, when the operating state of the internal combustion engine shifts from the first operating region to the second operating region.
- A sixth aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to the fifth aspect, wherein the fuel pressure adjustment means maintains the working state of the high pressure supply pump such that the fuel pressure of the second fuel injection valve is a fuel pressure at the lowest stage.
- A seventh aspect of the present invention is the fuel injection control apparatus of an internal combustion engine according to any one of the fourth to sixth aspects, wherein the fuel injection control means allows the first fuel injection valve to inject fuel in an exhaust stroke, and also allows the second fuel injection valve to additionally inject fuel in an amount, which compensates for fuel injection from the first fuel injection valve in the exhaust stroke, in at least one of an intake stroke and a compression stroke, when the operating state of the internal combustion engine shifts to the second operating region.
- According to the present invention, the working state of the high pressure supply pump is controlled to adj ust the fuel pressure of the cylinder injection valve (second fuel injection valve). By so doing, the amount of fuel injection from the cylinder injection valve can be controlled with high accuracy, regardless of the injection form. Even if a relative small amount of fuel is injected from the cylinder injection valve, for example, the amount of fuel injection can be controlled highly accurately.
-
- [
Fig. 1 ] is a schematic view showing the entire configuration of an engine according to an embodiment of the present invention. - [
Fig. 2 ] is a view showing an example of a map defining the operating regions of the engine. - [
Figs. 3A, 3B ] are views illustrating an example of fuel injection patterns and methods for computing fuel injection amounts. - [
Fig. 4 ] is a view illustrating an example of methods for computing the fuel injection amounts. - [
Fig. 5 ] is a view showing the relationship between the valve opening time and the injection amount for the fuel injection valve at different fuel pressures. - An embodiment of the present invention will be described in detail with reference to the accompanying drawings.
- First of all, an explanation will be offered for the entire configuration of an
engine 10 according to the embodiment of the present invention.Fig. 1 is a view showing the schematic configuration of the engine according to the present invention. - The
engine 10 shown inFig. 1 is a manifold fuel injection (multi-point injection) multi-cylinder engine, for example, an in-line 4-cylinder 4-stroke engine, and has fourcylinders 12 installed in parallel in anengine body 11. In each cylinder (combustion chamber) 12, a spark plug is arranged, and an intake port and an exhaust port are provided, although they are not shown. Theengine body 11 is equipped with anintake manifold 13 connected to the intake port, and anexhaust manifold 14 connected to the exhaust port. - The
engine body 11 is also provided with intake passage injection valves (first fuel injection valves) 15 for injecting fuel into an intake passage, for example, near the intake port, of theengine 10, and cylinder injection valves (second fuel injection valves) 16 for directly injecting fuel into each cylinder (combustion chamber) of theengine 10. - The intake
passage injection valve 15 is connected to a lowpressure supply pump 18 via a lowpressure delivery pipe 17. The lowpressure supply pump 18 is disposed, for example, within afuel tank 19. Fuel within thefuel tank 19 is supplied to the lowpressure delivery pipe 17 by the lowpressure supply pump 18, and supplied to the intakepassage injection valve 15 via the lowpressure delivery pipe 17. - The
cylinder injection valve 16 is connected to a highpressure supply pump 21 via a highpressure delivery pipe 20. The highpressure supply pump 21 is connected to the lowpressure supply pump 18 via the lowpressure delivery pipe 17. That is, the lowpressure delivery pipe 17 led out from thefuel tank 19 is divided into two branches, one of the branches being connected to the intakepassage injection valves 15, and the other branch being connected to the highpressure supply pump 21. The fuel within thefuel tank 19 is supplied to the intakepassage injection valve 15 and, at the same time, to the highpressure supply pump 21, by the lowpressure supply pump 18 via the lowpressure delivery pipe 17 as mentioned above. - The high
pressure supply pump 21 is adapted to be capable of supplying the fuel, which has been supplied via the lowpressure delivery pipe 17, to the highpressure delivery pipe 20 at a higher pressure. That is, the highpressure supply pump 21 is adapted to be capable of supplying fuel to thecylinder injection valve 16 at a higher fuel pressure than the pressure of fuel to be supplied to the intake passage injection valve 15 (fuel pressure of the intake passage injection valve 15). The highpressure supply pump 21 can also adjust the fuel pressure of thecylinder injection valve 16 in a plurality of stages. In the present embodiment, the highpressure supply pump 21 can adjust the fuel pressure of thecylinder injection valve 16 in two stages, i.e. , to the first fuel pressure (e.g. , a value of the order of 10 MPa) and the second fuel pressure higher than the first fuel pressure (e.g., a value of the order of 20 MPa), in accordance with the operating state of theengine 10, as will be described in detail later. - As the low
pressure supply pump 18 and the highpressure supply pump 21, existing pumps may be adopted, and their configurations are not restricted. - An intake pipe (intake passage) 22 connected to the
intake manifold 13 is provided with athrottle valve 23, and also has a throttle position sensor (TPS) 24 for detecting the valve opening of thethrottle valve 23. Further, anair flow sensor 25 for detecting the amount of intake air is provided upstream of thethrottle valve 23. In an exhaust pipe (exhaust passage) 26 connected to theexhaust manifold 14, a three-way catalyst 27, a catalyst for exhaust purification, is interposed. An O2 sensor 28 for detecting the O2 concentration of an exhaust gas after passage through the catalyst is provided on the outlet side of the three-way catalyst27. A linear air-fuel ratio sensor (LAFS) 29 for detecting the air-fuel ratio of an exhaust gas (exhaust air-fuel ratio) before passage through the catalyst is provided on the inlet side of the three-way catalyst 27. - The
engine 10 also has an electronic control unit (ECU) 40, and theECU 40 includes an input-output device, a storage device for storing a control program, a control map, etc., a central processing unit, timers, and counters. Based on information from various sensors, theECU 40 exercises the integrated control of theengine 10. To theECU 40, various sensors, including the above-mentioned throttle position sensor (TPS) 24,air flow sensor 25, O2 sensor 28, and LAFS 29 as well as a crank angle sensor are connected. TheECU 40 exercises various types of control based on detection information from these sensors. - The fuel injection control apparatus of an internal combustion engine according to the present invention is constituted by the above-described ECU and, as will be described below, controls, as appropriate, the amounts of fuel injected from the intake
passage injection valve 15 and thecylinder injection valve 16 in accordance with the operating state of theengine 10. - The
ECU 40 has afuel control unit 50 as a fuel injection control apparatus of an internal combustion engine, and thefuel control unit 50 has an operating state detection means(device) 51, a fuel injection control means (device) 52, and a fuel pressure adjustment means(device) 53. - The operating state detection means 51 detects the operating state of the
engine 10 based on information from the above-mentioned various sensors, for example, changes in the load and rotation number (rotational speed) of theengine 10. In the present embodiment, for example, the operating state detection means 51 refers to a predetermined operating region map or the like (seeFig. 2 ), and determines which operating region the operating state of theengine 10 is in, and also determines whether the operating state of theengine 10 is a steady state, or a transient state during vehicle acceleration or the like. - The operating region map is preset based on the rotation number and load of the
engine 10, for example, as shown inFig. 2 . In this example, the operating state of theengine 10 is set in two forms, a first operating region D1 which is an operating region on a low rotation low load side, and a second operating region D2 which is an operating region on a high rotation high load side as compared with the first operating region D1. - The fuel injection control means 52 selects a fuel injection mode (injection form) in accordance with the operating state of the
engine 10, namely, the detection results of the operating state detection means 51, to control, as appropriate, the amounts of fuel to be injected from the intakepassage injection valve 15 and thecylinder injection valve 16. In the present embodiment, for example, when the operating state of theengine 10 is a steady state, the fuel injection control means 52 functions as follows: If the operating state of theengine 10 is in the first operating region D1, the fuel injection control means 52 selects and executes the mode of injecting fuel only from the intake passage injection valves 15 (hereinafter referred to as "MPI injection mode"). If the operating state of theengine 10 is in the second operating region D2, the fuel injection control means 52 selects and executes the mode of injecting fuel from the intakepassage injection valves 15 and thecylinder injection valves 16 at a predetermined injection amount ratio (hereinafter referred to as "MPI+DI injection mode"). - In the "MPI+DI injection mode", the injection amount ratio between the intake
passage injection valves 15 and thecylinder injection valves 16 is preset and, with the present embodiment, the injection amount ratio between the intakepassage injection valves 15 and thecylinder injection valves 16 has been set, in principle, at a constant value. If the operating state of theengine 10 is a steady state, changes in the fuel amount required for one combustion cycle (required fuel amount) are minimal. Thus, the injection amount of the intakepassage injection valve 15 and the injection amount of thecylinder injection valve 16 are at the above preset ratio. - If the operating state of the
engine 10 is a transient state, the required fuel amount changes (increases), as appropriate, in accordance with a change in the operating state of theengine 10. For example, if the operating state of theengine 10 shifts from the first operating region D1 to the second operating region D2, as indicated by an arrow inFig. 2 , the required fuel amount changes (increases), as appropriate. In response to this change in the operating state of theengine 10, therefore, the fuel injection control means 52 switches the fuel injection mode from the "MPI injection mode" to the "MPI+DI injection mode", and also allows thecylinder injection valve 16 to perform additional injection at a predetermined timing, thereby adjusting, as appropriate, the amount of fuel injected from thecylinder injection valve 16. In this case, the injection amount of the intakepassage injection valve 15 and the injection amount of thecylinder injection valve 16 may slightly deviate from the above ratio. - In connection with the timings of fuel injections from the intake
passage injection valve 15 and thecylinder injection valve 16 in the "MPI+DI injection mode", a plurality of injection patterns have been set, and the fuel injection control means 52 makes a selection from among them, as appropriate, in accordance with the operating state of theengine 10. An example of the injection patterns for fuel from the intakepassage injection valve 15 and thecylinder injection valve 16 will be described by reference toFigs. 3A, 3B andFig. 4 . - In the example shown in
Figs. 3A, 3B , the timing of fuel injection from the intake passage injection valve 15 (timing of valve opening) is set at an exhaust stroke. The timing of fuel injection from thecylinder injection valve 16 is set at an intake stroke, as shown inFig. 3A , if the operating state of theengine 10 is a steady state. If the operating state of theengine 10 is a steady state, moreover, the injection form is fixed. If the operating state of theengine 10 is a transient state, on the other hand, for example, if the operating state of theengine 10 shifts from the first operating region D1 to the second operating region D2, the timing of fuel injection from thecylinder injection valve 16 is set at an intake stroke and a first half of a compression stroke, as shown inFig. 3B . That is, additional injection from thecylinder injection valve 16 is executed in the first half of the compression stroke. Additional injection need not necessarily be performed in the compression stroke, but may be performed in the intake stroke. - Further, the fuel injection control means 52 computes the valve-opening periods (pulse widths) of the intake
passage injection valve 15 and thecylinder injection valve 16 based on predetermined conditions such as the amount of intake air before each stroke. Since theengine 10 according to the present embodiment is a 4-cylinder 4-stroke engine, a phase difference of 180 degrees in the crank angle in the respective cylinders coincides with the cycle of each stroke (exhaust stroke, intake stroke, compression stroke, expansion stroke) of the combustion cycle. Thus, the fuel injection amount in each stroke is computed based on the amount of intake air immediately before each stroke. In the present embodiment, the amount of intake air is detected with theair flow sensor 25, but can be obtained by computation based on the intake pressure, intake temperature or the like. - In the present embodiment, a fuel amount Q1 to be injected from the intake
passage injection valve 15 and a fuel amount Q2 to be injected from thecylinder injection valve 16 are computed, for example, based on an intake air amount A1 at a timing T1 after the expansion stroke (immediately before the exhaust stroke). Concretely, as shown inFigs. 3A, 3B and4 , a first task is to compute a required fuel amount Qa1 from the intake air amount A1 at the timing T1. The required fuel amount refers to the amount of fuel necessary for one combustion cycle (the sum of the injection amount of the intakepassage injection valve 15 and the injection amount of the cylinder injection valve 16). - The fuel amount Q1 to be injected from the intake
passage injection valve 15 and the fuel amount Q2 to be injected from thecylinder injection valve 16 are computed based on the required fuel amount Qa1 and the aforementioned injection amount ratio between the intakepassage injection valve 15 and thecylinder injection valve 16. Concretely, if the injection amount ratio between the intakepassage injection valve 15 and thecylinder injection valve 16 is A:B, the fuel amount Q1 to be injected from the intakepassage injection valve 15 is calculated from the required fuel amount Qa1 x A/(A+B), while the fuel amount Q2 to be injected from thecylinder injection valve 16 is calculated from the required fuel amount Qa1 x B/(A+B). The fuel injection control means 52 opens the intakepassage injection valve 15 for a predetermined valve-opening period so that the fuel amount Q1 is achieved in the exhaust stroke. If the operating state of theengine 10 is a steady state, moreover, the fuel injection control means 52 opens thecylinder injection valve 16 for a predetermined valve-opening period so that the fuel amount Q2 is obtained in the intake stroke (seeFig. 3A ). - If the operating state of the
engine 10 is a transient state, for example, if the operating state of theengine 10 shifts from the first operating region D1 to the second operating region D2, a required fuel amount Qa2 is computed based on an intake air amount A2 at a timing T2 after the exhaust stroke (immediately before the intake stroke). The fuel amount Q1 injected from the intakepassage injection valve 15 in the exhaust stroke is subtracted from the required fuel amount Qa2 to obtain a fuel amount Q2' to be injected from thecylinder injection valve 16 in the intake stroke (seeFig. 4 ). The fuel injection control means 52 opens thecylinder injection valve 16 for a predetermined valve-opening period so that the fuel amount Q2' is achieved in the intake stroke (Fig. 3B ). This procedure compensates for an increase in the required fuel amount associated with a change in the operating state of theengine 10 between the timings T1 and T2. - If the operating state of the
engine 10 shifts from the first operating region D1 to the second operating region D2, a required fuel amount Qa3 is further computed based on an intake air amount A3 at a timing T3 after the intake stroke (immediately before the compression stroke). The fuel amount Q1 injected in the exhaust stroke and the fuel amount Q2' injected in the intake stroke are subtracted from the required fuel amount Qa3 to obtain a fuel amount Q3 to be additionally injected in a first half of the compression stroke. In other words, the additional fuel amount Q3 is an increase in the required fuel amount associated with a change in the operating state of theengine 10 between the timings T2 and T3. - The fuel injection control means 52 opens the
cylinder injection valve 16 for a predetermined valve-opening period so that the additional fuel amount Q3 is injected in the first half of the compression stroke (seeFig. 3B ). That is, the increase in the required fuel amount in the intake stroke is supplemented with injection from thecylinder injection valve 16 in the first half of the compression stroke. In this manner, a series of fuel injections in one combustion cycle is completed. - Thevalve-openingperiods (pulse widths) of the intake
passage injection valve 15 and thecylinder injection valve 16 are computed based on the fuel amounts determined by the above computations, as well as the pressures of fuel (fuel pressures) to be supplied to the intakepassage injection valve 15 and thecylinder injection valve 16. The intakepassage injection valve 15 is supplied with fuel at a nearly constant pressure by the lowpressure supply pump 18. If the fuel amount is constant, therefore, the valve-opening period of the intakepassage injection valve 15 is also constant. - On the other hand, the
cylinder injection valve 16 is supplied by the highpressure supply pump 21 with fuel at a predetermined pressure which is higher than the fuel pressure of the intakepassage injection valve 15 and which is conformed to the operating state of theengine 10. In the present embodiment, fuel is supplied to thecylinder injection valve 16 in such a manner as to reach a first fuel pressure or a second fuel pressure. Thus, the valve-opening period of thecylinder injection valve 16 changes, as appropriate, according to a change in the fuel pressure, even when the amount of fuel injected is constant. Such a fuel pressure of thecylinder injection valve 16 is adjusted, as appropriate, by the fuel pressure adjustment means 53. - The fuel pressure adjustment means 53 controls the working state of the high
pressure supply pump 21 in accordance with the operating state of theengine 10, namely, the detection results of the operating state detection means 51, to adjust the fuel pressure of thecylinder injection valve 16. Concretely, the fuel pressure adjustment means 53 controls the working state of the highpressure supply pump 21 such that the fuel pressure of thecylinder injection valve 16 becomes the first fuel pressure, if the operating state of theengine 10 is in the first operating region D1, namely, if the "MPI injection mode" is selected. If the operating state of theengine 10 is in the second operating region D2, namely, if the "MPI+DI injection mode" is selected, the fuel pressure adjustment means 53 controls the working state of the highpressure supply pump 21 such that the fuel pressure of thecylinder injection valve 16 becomes the second fuel pressure. - In the present embodiment, the first fuel pressure is set to be higher than the fuel pressure of the intake
passage injection valve 15. However, the first fuel pressure is not restricted if it is a fuel pressure enabling fuel to be directly injected from thecylinder injection valve 16 into the combustion chamber. For example, the first fuel pressure can be equal to the fuel pressure of the intakepassage injection valve 15. - Further, if the operating state of the
engine 10 shifts from the first operating region D1 to the second operating region D2, the fuel pressure adjustment means 53 adjusts the working state of the highpressure supply pump 21 such that the amount of fuel injection from thecylinder injection valve 16 stabilizes, before changing the working state of the highpressure supply pump 21 in accordance with the injection form (injection form). In the present embodiment, for example, the fuel pressure adj ustment means 53 maintains the working state of the highpressure supply pump 21 for a predetermined period so that the amount of fuel injection from thecylinder injection valve 16 stabilizes. Concretely, if the operating state of theengine 10 shifts from the first operating region D1 to the second operating region D2, the fuel injection control means 52 switches the fuel injection mode from the "MPI injection mode" to the "MPI+DI injection mode". At this stage, however, the fuel pressure adjustment means 53 maintains the working state of the highpressure supply pump 21 to hold the fuel pressure of thecylinder injection valve 16 at the first fuel pressure. Then, if the state where the operating state of theengine 10 is in the second operating region D2 persists for a predetermined period or longer and the injection form is fixed, the fuel pressure adjustment means 53 changes the working state of the highpressure supply pump 21 to turn the fuel pressure of thecylinder injection valve 16 into the second fuel pressure. - By so controlling the fuel pressure of the
cylinder injection valve 16, the amount of fuel injected from thecylinder injection valve 16 can be controlled highly accurately, regardless of the operating state of theengine 10. - Generally, the fuel injection valve has an injection accuracy (linearity) stabilized by making its valve-opening time (pulse width) a predetermined time or longer. By controlling the valve-opening time of the fuel injection valve in such a region where the linearity stabilizes, the fuel injection amount can be controlled highly accurately. The predetermined time tends to lengthen as the fuel pressure increases. As shown in
Fig. 5 , for example, when the fuel pressure of the fuel injection valve is P1, the linearity stabilizes in a region where the valve-opening time is Ta or longer (the region is indicated by a heavy line in the drawing). When the fuel pressure of the fuel injection valve is P2 (>P1), on the other hand, the injection amount per unit time is larger than when the fuel pressure is P1, but the stability of linearity appears in a region where the valve-opening time is Tb (>Ta) or longer. When the fuel pressure of the fuel injection valve is P3 (>P2), moreover, the injection amount per unit time is larger than when the fuel pressure is P2, but the stability of linearity appears in a region where the valve-opening time is Tc (>Tb) or longer. - As these findings demonstrate, the higher the fuel pressure of the
cylinder injection valve 16, the more fuel can be injected in a shorter time. Thus, when the operating state of theengine 10 shifts from the first operating region D1 to the second operating region D2, the fuel pressure of thecylinder injection valve 16 is increased simultaneously with the shift. By so doing, the amount of fuel injection from thecylinder injection valve 16 is rendered easier to increase in accordance with an increase in the required fuel amount. If, when the operating state of theengine 10 shifts from the first operating region D1 to the second operating region D2, the fuel pressure of thecylinder injection valve 16 is raised simultaneously with the shift, there is a possibility that a tiny fuel injection amount cannot be controlled highly accurately. For example, the aforementioned additional injection from thecylinder injection valve 16 involves a relatively small fuel injection amount, and thus its fuel injection amount may fail to be controlled with high accuracy. - However, when the operating state of the
engine 10 shifts from the first operating region D1 to the second operating region D2, the working state of the highpressure supply pump 21 is maintained for a predetermined period, and the fuel pressure of thecylinder injection valve 16 is held relatively low, for example, whereby the valve-opening period becomes longer than in a usual practice. Thus, the valve-opening period (pulse width) of thecylinder injection valve 16 can be controlled in a region where the linearity becomes stable. Hence, even when a relatively small amount of fuel is injected from thecylinder injection valve 16, the fuel injection amount can be controlled with high accuracy. - The above predetermined period during which the working state of the high pressure supply pump is maintained may be determined, as appropriate, but is preferably longer than a period until the operating state of the
engine 10 becomes a steady state, that is, a period during which additional injection from thecylinder injection valve 16 is executed. By this measure, the amount of fuel injection from thecylinder injection valve 16 can be controlled more reliably with high accuracy. - One embodiment of the present invention has been described above, but the present invention is in no way limited to this embodiment.
- In the above embodiment, for example, the explanations have been offered for the feature that the high pressure supply pump can adjust the fuel pressure in two stages, i.e., the first fuel pressure and the second fuel pressure. However, the high pressure supply pump may be configured to be capable of adjusting the fuel pressure in three or more stages. In this case as well, when the operating state of the engine shifts from the first operating region to the second operating region, the working state of the high pressure supply pump is maintained for a predetermined period, whereby the fuel injection amount of the cylinder injection valve can be controlled with high accuracy.
- If the high pressure supply pump can adjust the fuel pressure in three or more stages, when the operating state of the engine shifts from the first operating region to the second operating region, the working state of the high pressure supply pump is preferably adjusted such that a fuel pressure selected by the fuel pressure adjustment means from among fuel pressures at a plurality of stages is a fuel pressure stabilizing the fuel injection amount from the cylinder injection valve. Furthermore, it is preferred that the working state of the highpressure supply pump be maintained for a predetermined period so that the fuel pressure of the cylinder injection valve becomes the fuel pressure at the lowest stage. By so doing, the valve-opening period can be rendered longer, whereby the fuel injection amount of the cylinder injection valve can be controlled with high accuracy as mentioned above.
- In the above embodiment, moreover, additional injection is executed from the cylinder injection valve in the first half of the compression stroke, but the timing of additional injection is not limited to the first half of the compression stroke. For example, it is permissible to carry out additional injection in the intake stroke.
- In the above-described embodiment, the four-cylinder engine is illustrated to describe the present invention. However, the fuel injection control apparatus of the present invention can be adopted, for example, in a 3-cylindr or 6-cylinder engine. It is necessary to set the timing of computation of the fuel injection amount, as appropriate, in accordance with the number of the cylinders. No matter what the number of the cylinders is, the fuel injection amount can be controlled highly accurately, regardless of the operating state of the engine, as stated above.
-
- 10
- Engine (internal combustion engine)
- 11
- Engine body
- 12
- Cylinder (combustion chamber)
- 13
- Intake manifold
- 14
- Exhaust manifold
- 15
- Intake passage injection valve (first fuel injection valve)
- 16
- Cylinder injection valve (second fuel injection valve)
- 17
- Low pressure delivery pipe
- 18
- Low pressure supply pump
- 19
- Fuel tank
- 20
- High pressure delivery pipe
- 21
- High pressure supply pump
- 22
- Intake pipe (intake passage)
- 23
- Throttle valve
- 24
- Throttle position sensor (TPS)
- 25
- Air flow sensor
- 26
- Exhaust pipe (exhaust passage)
- 27
- Three-way catalyst
- 28
- O2 sensor
- 29
- Linear air-fuel ratio sensor (LAFS)
- 40
- ECU
Claims (7)
- A fuel injection control apparatus of an internal combustion engine, including:a first fuel injection valve for injecting fuel into an intake passage of the internal combustion engine;a second fuel injection valve for directly injecting fuel into a combustion chamber of the internal combustion engine; anda high pressure supply pump for supplying fuel to the second fuel injection valve so as to impart a predetermined fuel pressure higher than a fuel pressure of the first fuel injection valve,the fuel injection control apparatus comprising:fuel injection control means controlling fuel injections from the first fuel injection valve and the second fuel injection valve in accordance with an operating state of the internal combustion engine to change an injection form; andfuel pressure adjustment means controlling a working state of the high pressure supply pump in accordance with the injection form to adjust the fuel pressure of the second fuel injection valve and, when the injection form has been changed by the fuel injection control means, adjusts the working state of the high pressure supply pump such that an amount of fuel injection from the second fuel injection valve stabilizes, before changing the working state of the high pressure supply pump in accordance with the injection form.
- The fuel injection control apparatus of an internal combustion engine according to claim 1, wherein
the fuel pressure adjustment means maintains the working state of the high pressure supply pump for a predetermined period of time before changing the working state of the high pressure supply pump in accordance with the injection form, when the injection form has been changed by the fuel injection control means. - The fuel injection control apparatus of an internal combustion engine according to claim 2, wherein
the fuelpressure adj ustment means maintains the working state of the high pressure supply pump until the operating state of the internal combustion engine becomes a steady state, as the predetermined period of time. - The fuel injection control apparatus of an internal combustion engine according to any one of claims 1 to 3, wherein
the fuel injection control means allows only the first fuel injection valve to inject fuel when the operating state of the internal combustion engine is in a first operating region defined by a rotation number and load of the internal combustion engine, or allows each of the first fuel injection valve and the second fuel injection valve to inject fuel when the operating state of the internal combustion engine is in a second operating region exceeding the first operating region; and
the fuel pressure adjustment means adjusts the working state of the high pressure supply pump such that the amount of fuel injection from the second fuel injection valve stabilizes, when the operating state shifts from the first operating region to the second operating region. - The fuel injection control apparatus of an internal combustion engine according to claim 4, wherein
the high pressure supply pump is adapted to be capable of adjusting the fuel pressure in a plurality of stages in accordance with the operating state of the internal combustion engine; and
the fuel pressure adjustment means adjusts the working state of the highpressure supplypump such that the fuel pressure selected from the plurality of stages becomes a fuel pressure at which the amount of fuel injection from the second fuel injection valve stabilizes, when the operating state of the internal combustion engine shifts from the first operating region to the second operating region. - The fuel injection control apparatus of an internal combustion engine according to claim 5, wherein
the fuel pressure adjustment means maintains the working state of the high pressure supply pump such that the fuel pressure of the second fuel injection valve is a fuel pressure at a lowest stage. - The fuel injection control apparatus of an internal combustion engine according to any one of claims 4 to 6, wherein
the fuel injection control means allows the first fuel injection valve to inject fuel in an exhaust stroke, and also allows the second fuel injection valve to additionally inject fuel in an amount, which compensates for fuel injection from the first fuel injection valve in the exhaust stroke, in at least one of an intake stroke and a compression stroke, when the operating state of the internal combustion engine shifts to the second operating region.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014147123A JP6525128B2 (en) | 2014-07-17 | 2014-07-17 | Fuel injection control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2975247A1 true EP2975247A1 (en) | 2016-01-20 |
EP2975247B1 EP2975247B1 (en) | 2019-05-29 |
Family
ID=53716363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15177136.7A Active EP2975247B1 (en) | 2014-07-17 | 2015-07-16 | Fuel injection control apparatus of internal combustion engine |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2975247B1 (en) |
JP (1) | JP6525128B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060005812A1 (en) * | 2004-07-08 | 2006-01-12 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control apparatus for internal combustion engine |
WO2006038428A1 (en) * | 2004-10-07 | 2006-04-13 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus for internal combustion engine |
US20060207563A1 (en) * | 2005-03-18 | 2006-09-21 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus for internal combustion engine |
JP2014062553A (en) | 2014-01-15 | 2014-04-10 | Mitsubishi Motors Corp | Fuel injection device of internal combustion engine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024852A (en) * | 2008-07-15 | 2010-02-04 | Toyota Motor Corp | Fuel supply device for internal combustion engine |
-
2014
- 2014-07-17 JP JP2014147123A patent/JP6525128B2/en active Active
-
2015
- 2015-07-16 EP EP15177136.7A patent/EP2975247B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060005812A1 (en) * | 2004-07-08 | 2006-01-12 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control apparatus for internal combustion engine |
WO2006038428A1 (en) * | 2004-10-07 | 2006-04-13 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus for internal combustion engine |
US20060207563A1 (en) * | 2005-03-18 | 2006-09-21 | Toyota Jidosha Kabushiki Kaisha | Fuel supply apparatus for internal combustion engine |
JP2014062553A (en) | 2014-01-15 | 2014-04-10 | Mitsubishi Motors Corp | Fuel injection device of internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP6525128B2 (en) | 2019-06-05 |
JP2016023568A (en) | 2016-02-08 |
EP2975247B1 (en) | 2019-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10450991B2 (en) | Fuel injection control apparatus of internal combustion engine | |
US20090056675A1 (en) | System and Method to Compensate for Variable Fuel Injector Characterization in a Direct Injection System | |
US10054098B2 (en) | Ignition timing control device for internal combustion engine | |
EP2975249B1 (en) | Fuel injection control apparatus of internal combustion engine | |
JP6090112B2 (en) | Control device for internal combustion engine | |
EP1437498B1 (en) | 4−STROKE ENGINE CONTROL DEVICE AND CONTROL METHOD | |
US9920701B2 (en) | Control device for internal combustion engine | |
JP2017160916A (en) | Control device of internal combustion engine | |
US6983646B2 (en) | Atmospheric pressure detection device of four-stroke engine and method of detecting atmospheric pressure | |
US20130046453A1 (en) | System and method for controlling multiple fuel systems | |
EP2975247B1 (en) | Fuel injection control apparatus of internal combustion engine | |
US9932923B2 (en) | Abnormality determination apparatus | |
JP6489298B2 (en) | Fuel injection control device for internal combustion engine | |
JP5647927B2 (en) | Fuel injection control device | |
JP2007231872A (en) | Control device for internal combustion engine | |
EP2884085B1 (en) | Fuel injection control apparatus of engine | |
JP6331016B2 (en) | Fuel injection control device for internal combustion engine | |
JP2008121441A (en) | Control device of internal combustion engine | |
GB2404997A (en) | Control of fuel injector supply timing | |
JP2009203826A (en) | Fuel injection control device for internal combustion engine | |
JP2010281250A (en) | Fuel injection control device | |
JP2012132336A (en) | Fuel injection control system for internal combustion engine | |
EP2594767A1 (en) | Apparatus for controlling internal combustion engine | |
JP2017203417A (en) | Fuel injection device for engine | |
JP2013142338A (en) | Internal combustion engine control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150817 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180322 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181210 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1138410 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015031049 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190930 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190829 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190829 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190830 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1138410 Country of ref document: AT Kind code of ref document: T Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015031049 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
26N | No opposition filed |
Effective date: 20200303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190716 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240611 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240529 Year of fee payment: 10 |