EP2971466B1 - Ensemble robinet-vanne comprenant un element de support - Google Patents

Ensemble robinet-vanne comprenant un element de support Download PDF

Info

Publication number
EP2971466B1
EP2971466B1 EP14719585.3A EP14719585A EP2971466B1 EP 2971466 B1 EP2971466 B1 EP 2971466B1 EP 14719585 A EP14719585 A EP 14719585A EP 2971466 B1 EP2971466 B1 EP 2971466B1
Authority
EP
European Patent Office
Prior art keywords
bore
gate
seat
sealing
gate element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14719585.3A
Other languages
German (de)
English (en)
Other versions
EP2971466A2 (fr
Inventor
Steve Malone
Harold Brian Skeels
Bob HOULGRAVE
John Lawson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMC Technologies Inc
Original Assignee
FMC Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Technologies Inc filed Critical FMC Technologies Inc
Publication of EP2971466A2 publication Critical patent/EP2971466A2/fr
Application granted granted Critical
Publication of EP2971466B1 publication Critical patent/EP2971466B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/06Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/08Cutting or deforming pipes to control fluid flow
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/06Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
    • E21B33/061Ram-type blow-out preventers, e.g. with pivoting rams
    • E21B33/062Ram-type blow-out preventers, e.g. with pivoting rams with sliding rams
    • E21B33/063Ram-type blow-out preventers, e.g. with pivoting rams with sliding rams for shearing drill pipes

Definitions

  • the invention concerns gate valve assembly having a through bore adapted for fluid communication with a well bore and prepared for receiving an elongated member, as well as a method for shearing of an elongated member and moving the gate element into closing position.
  • An elongated member as used in the application described herein includes well related tubular formed elongated members such as a tubing, coiled tubing, drill pipes used in work over, drilling, completion, production or intervention operations.
  • the elongated member may also be a wire line or the actual tools to be used when carrying out well related operations.
  • BOP Blow Out Preventer
  • LRP lower riser package
  • BOP arrangements normally have a combined operation mode where cutting the tubing or the wire employed in the well first takes place with one element, for instance a ram arrangement, and thereafter closing the well to ensure a sealed closure to avoid fluid leakage of well fluid with another element in the BOP stack.
  • a cutting gate valve arrangement may be used, wherein cutting devices for the cutting of a tubing or a wire line may be included in the gate valve arrangement for shearing of the tubing/wire line prior to closing and sealing the well bore.
  • a gate valve arrangement may be provided in various ways.
  • the gate valve arrangement may include one gate valve or plural gate valves. Further the gate valve may comprise a single gate element or plural gate elements for closing the gate valve.
  • the cutting tool of the gate valve is formed at a front edge of the movable gate element of the gate valve, thereby the closing of the gate valve follows after the cutting of the tube has taken place.
  • this solution it is necessary to make sure that the actual cutting is to be carried out properly and to ensure that the cut parts of the tubing are properly separated and removed from the closing area of the gate valve before the closing of the gate valve takes place. If not, there is a risk that the cut parts of the tubular or wire line will be stuck during the closing of the gate element, in which case there is no proper closing of the gate valve and not a satisfactory closing of the well.
  • U.S. Patent No. 6,601,650 discloses a valve assembly with gate valves each arranged with a cutting edge at a front portion of the gate element. This publication describes the arrangement of providing the area close to the gate valve opening with inclined surfaces for moving the sheared pipe parts away from the gate valve before closing the gate valve.
  • U.S. Patent No. 8,353,338 shows two gate valves each with a moveable gate element provided with a cutting edge.
  • the two gate valves are arranged at each side of the pipe to be sheared and positioned displaced relative to each other seen in the axial direction of the pipe.
  • U.S. Patent No. 6454015 discloses a gate valve having downstream shear and seal capabilities in which the gate will stroke far enough to cover the downstream seat interface, and has a single shearing surface for shearing of a wireline.
  • U.S. Patent No. 6,244,336 discloses double shearing rams designed for use in a standard ram-type blowout preventer used in oil and gas drilling and workover operations.
  • An objective of the invention is to provide a gate valve arrangement obtaining an efficient shearing of the elongated member. In some circumstances it is necessary to ensure that the efficient shearing of the elongated member is completed before the closing and sealing of the gate valve arrangement is carried out.
  • Another objective of the invention is to provide a gate valve arrangement with a compact construction, reliable working principles and a simple operation. It has been desirable to provide a gate valve arrangement ensuring that the cutting operations has been carried out efficiently before the closing of the gate valve is conducted to avoid the problems as described above.
  • Another objective is to ensure the integrity of the sealing functions of the gate valve.
  • a gate valve assembly in accordance with the invention has a through bore which is adapted for fluid communication with a well bore and is prepared for receiving an elongated member.
  • the gate valve assembly comprises a gate element which is movably arranged in a gate valve housing, wherein the gate element has a gate bore arranged for receiving the elongated member.
  • a cutting tool is arranged in the gate bore.
  • the gate valve assembly is arranged with first and second seats for the movably arranged gate element, wherein at least one of the first and second seats is arranged to provide sealing contact with a sealing surface of the gate element.
  • the first seat may be provided as a cutting seat to be employed when cutting the elongated member.
  • the first seat may then be arranged in sliding or sealing contact with the gate element or a combination of sliding and sealing contact with the gate element.
  • the second seat may then be arranged to provide sealing contact with a sealing surface of the gate element.
  • the gate valve assembly further comprises a support member which is located adjacent the cutting tool.
  • the support member defines an opening for receiving the elongated member.
  • the opening encompasses the through bore and an expanded opening portion which is open to the through bore in the axial direction of the through bore.
  • a reduced section of the support member defines the expanded opening portion.
  • the opening has a decreasing radius along the reduced section in the axial direction of the support member toward a contact surface area arranged at an end portion of the support member adjacent the cutting tool, wherein the radius of the opening at the location of the contact surface area corresponds essentially to the radius of the through bore.
  • the support member has a contact surface area arranged at the smallest radius of the opening. The contact surface area is prepared for engagement with the elongated member and provides a counteracting area interacting with the cutting surface when shearing the elongated member.
  • the reduced section of the support element may be provided as a rectilinear inclined surface extending along a portion of the circumference of the opening of the support element.
  • the contact area in accordance with the invention provides for a restricted engagement between a surface of the elongated member and an opposing surface of the contact area.
  • This restricted engagement area provides for a high concentration of forces at this area and a locally occurring constriction in the elongated member, thereby obtaining suitable conditions for conducting a satisfying shearing of the elongated member.
  • the support member may be included in the first seat having an engagement surface arranged for contact with a first surface of the gate element.
  • the first seat may comprise a cutting seat wherein the engagement surface may be arranged as a sliding contact surface.
  • the first surface of the gate element may then be arranged as a sliding surface.
  • the engagement surface may provide sealing in engagement with the first surface.
  • the cutting tool may be arranged in the gate bore.
  • the gate bore may encompass the through bore for receiving the elongated member and an expanded opening portion which may be open to the through bore in the axial direction of the through bore.
  • a reduced section of the gate element defines the expanded opening portion, and the gate bore may have a decreasing radius along the reduced section in the axial direction of the gate element toward the cutting tool, which may be arranged at an end portion of the gate element member adjacent the support member.
  • the radius of the gate bore at the location of the cutting tool corresponds essentially to the radius of the through bore.
  • the gate valve assembly may be arranged so that the sheared elongated member parts are removed from the gate element before closing. This effect is obtained due to the increase in radius of the expanded opening portion of the first seat and/or the gate bore.
  • the expanded opening portion of either the gate bore or the opening of the support member, or both, may in one aspect be defined by a surface which may be rectilinear or stepwise inclined. When conducting the shearing the inclined configuration of the opening of the first seat and/or the gate bore assists in moving the sheared elongated member parts away from the gate element when moving this into the closing position.
  • the opening of the support member may be arranged as a portion of the gate bore.
  • a transverse recess may be arranged in the gate bore for the positioning of the cutting tool.
  • the cutting tool may be provided as a separate tool which may be movably arranged in the transverse recess to conduct the shearing.
  • the gate bore may be arranged with an expanded opening portion extending all along the circumference of the gate bore so that the inclined stepwise or rectilinear surface may be provided all the way around the gate bore circumference.
  • both sides of the gate bore axially at each sides of the transverse recess may be arranged with an expanded opening portion extending all along the circumference of the gate bore.
  • the gate valve assembly may comprise a second seat having a seal surface provided for sealing contact with a sealing surface of the gate element.
  • a temporary seal surface protection element may be provided to protect the seal surface of the second seat. This may be the case when the second seat has a dimension so that a portion of the seal surface of the second seat would be exposed to the well fluid when the gate element is in the open position. The temporary seal surface protection element may then be provided so that the seal surface of the second seat is protected when the gate element is open. For the shearing of the elongated member, the temporary seal surface protection element may need to be removed from the gate bore in order to be able to conduct the shearing of the elongated member.
  • the temporary seal surface protection may have a configuration which fills in the gate bore so that the inner radius of a portion of the gate bore corresponds to or is smaller than an inner radius of the second seat, thereby providing protection for the seal surface of the second seat.
  • a releasable connection may be provided between the gate element in the gate bore area and the temporary seal surface protection element. The releasable connection may be used to remove the temporary seal surface protection element. For instance, the releasable connection may be provided for release when the elongated member is positioned in contact with the elongated member.
  • the temporary seal surface protection element may be provided in a destroyable material which disintegrates or is easily destroyable, for instance a brittle material, which may be removed before conducting the shearing of the elongated member.
  • the temporary seal surface protection element may be destroyed by the elongated member received in the through bore.
  • the gate valve housing may be provided with a support surface for accommodation of the second seat in the gate valve housing.
  • an arrangement for sealing may be provided.
  • the gate valve assembly may be provided with additional sealing providing means. By this arrangement additional sealing forces may be provided between the sealing surface of the gate element and the seal surface of the second seat.
  • the gate valve assembly may be arranged with an activation arrangement for the activation of the additional sealing providing means.
  • an additional sealing force is provided in the seal surface of the second seat, thereby tightening the sealing contact with the gate element.
  • the sealing surface of the gate element may comprise an initial portion and an activating portion.
  • the second seat may be arranged in sealing contact with the initial portion of the sealing surface of the gate element when the gate element is in an open position. Further, in a closed position of the gate element, the second seat may be arranged in sealing contact with the activating portion of the sealing surface.
  • the activating portion of the sealing surface may be positioned offset (axially closer) to the support surface which accommodates the second seat than the initial portion of the sealing surface.
  • the support surface may be provided in the gate valve housing.
  • the gate element may be provided with an enlarged portion, wherein the outline of the enlarged portion may comprise the activation portion, and wherein the initial portion of the sealing surface comprises a portion of the standard outline of the gate element which is not enlarged.
  • an initial portion of the sealing surface of the gate element may be connected to the activation portion of the sealing surface by a transfer surface.
  • This arrangement provides for the smooth transfer of the sealing surface of the gate element in engagement with the seal surface of the second seat and a gradual preparation of the activation of the additional sealing providing means.
  • the additional sealing providing means may be provided as compressible elements with a certain rigidity which in a compressed state provided a sealing force to the second seat.
  • the compressible elements may comprise elements having elastic features, such as for instance spring means.
  • the spring means may in accordance with this aspect have an initial mode where the second seat is in contact with the initial portion of the sealing surface, and where the spring means may have an unloaded condition or is compressed to some degree.
  • the transfer surface may serve as means for the gradual compression of the spring means in preparation for positioning the activation portion of the sealing surface in engagement with the seal surface of the second seat. When the second seat is in contact with the activating portion of the sealing surface , the spring means is caused to compress.
  • the additional sealing providing means may be provided by other means than compressible elements.
  • the gate valve assembly may be provided with actuating means in order to move the movable gate between the open and closed position and carry out the shearing.
  • the actuating means comprises a first actuator arranged for providing a pulling force and a second actuator arranged for providing a pushing force.
  • the valve housing may have a first support surface for the first seat which provides a bore for the first seat.
  • the support surface may be arranged in connection with a first inner surface, for instance provided as a continuation of the first support surface.
  • the first inner surface may be arranged in the valve housing angled relative to the axial axis of the through bore, wherein the first inner surface approaches the through bore in the axial direction away from the bore for the first seat.
  • the first inner surface of the valve housing may be arranged to define a first enlarged opening portion of the through bore.
  • the first enlarged opening portion of the through bore may be arranged facing the expanded opening portion of the opening of the support member.
  • the support surface for the second seat in the valve housing may be provided with a bore for the second seat.
  • the bore for the second seat may have a radius larger than the radius of the through bore, wherein a minimum inner radius of the second seat corresponds to or is larger than the maximum radius of the gate bore.
  • the support surface for the second seat surface may be arranged in connection with a second inner surface provided in the valve housing and arranged angled relative to the axial axis of the through bore approaching the through bore in the axial direction away from the bore for the second seat.
  • the second inner surface of the valve housing may be arranged to define a second enlarged opening portion of the through bore.
  • the second inner surface of the through bore may be formed as an annular inclined surface.
  • first or the second seats may be provided as annular elements.
  • An axial axis of the first and/or second seats coincides essentially with the axial axis of the through bore.
  • the second seat may be a bidirectional sealing element when the gate element is closed.
  • the invention also includes a method for shearing an elongated member arranged in a through bore of a gate valve arrangement comprising a movable gate element for closing the through bore, wherein the through bore is adapted for fluid communication with a well bore and is provided with an elongated member.
  • the method comprises the following steps:
  • the method may comprise, when moving the gate element into the closing position, carrying out the following steps:
  • Figure 1 shows a first embodiment of a gate valve assembly 1 arranged with a through bore 2 for receiving an elongated member (not shown).
  • a movable gate element 3 has a gate bore 4 for receiving the elongated member and arranged with a cutting tool 16.
  • the minimum opening of the gate bore 4 is essentially equal to the through bore 2.
  • a first seat 5 may be provided as a cutting seat and has an engagement surface 7 arranged in sliding contact with a first surface 8 of one side the gate element 3.
  • a second seat 10 has a seal surface 11 arranged in sealing contact with a sealing surface 12 at the other side of the gate element 3. It is possible to provide the first seat 5 so that the engagement surface 7 provides a seal surface in sealing contact with the first surface of the gate element, in which event the first surface will then act as a sealing surface.
  • the first seat 5 is arranged as a support member with an opening 14 encompassing the through bore 2 and an expanded opening portion 40 which is open to the through bore 2 in the axial direction of the through bore 2.
  • the expanded opening portion 40 is provided by a reduced section 41 of the first seat 5.
  • the reduced section 41 is shown with an inclined surface 42 in figure 1 and extends along a portion of the circumference of the opening 14.
  • the opening 14 has a decreasing radius R along the reduced section 41 in the axial direction of the first seat 5 toward a contact surface area 15 arranged at an end portion of the first seat 5 adjacent the cutting tool 16.
  • the radius of the opening 14 of the first seat 5 adjacent the gate element 3 corresponds essentially to the radius of the through bore 2.
  • the gate bore 4 encompasses the through bore 2 and an expanded opening portion 50 which is open to the through bore 2 in the axial direction of the through bore.
  • the expanded opening portion 50 is provided by a reduced section 51 of the gate element 3.
  • the reduced section 51 is shown with an inclined surface 52 in figure 1 and extends along a portion of the circumference of the gate bore 4.
  • the gate bore has a decreasing radius R along the reduced section in the axial direction of the gate element 3 toward the cutting tool 16.
  • the radius of the gate bore 4 at the location of the cutting tool 16 corresponds essentially to the radius of the through bore 2.
  • the elongated member When shearing of the elongated member is to take place, the elongated member is pushed by the cutting tool 16 until it engages the contact surface area 15, and the cutting tool then cuts the elongated member by moving the gate element 3 in a direction transverse to the through bore 2.
  • the contact surface area 15 is located at a tip portion of the first seat 5, so that the contact surface area 15 protrudes relative to the neighboring portions of the first seat 5.
  • the contact surface area 15 provides a counteracting area interacting with the cutting tool 16 and provides for a local concentration of shearing forces to take place when shearing the elongated member.
  • the sheared parts of the elongated member are forced away from both sides of the gate element 3 when the gate element is moved into the closing position.
  • a valve housing 35 has a support surface 60 for the first seat 5 which provides a bore for the first seat.
  • a first inner surface 62 is provided in the valve housing continuing form the inclined surface 42 and arranged at an angle relative to the axial axis A of the through bore 2. The first inner surface 62 approaches the through bore 2 in the axial direction away from bore for the first seat.
  • the first inner surface 62 provides a cut out such as a first enlarged opening portion 63 in the through bore 2 facing the expanded opening portion 40 of the first seat 5.
  • the cut out provides a similar increase in the radius of the through bore as the inclined surface 42.
  • Two actuators are arranged for moving the gate element.
  • a first actuator 20 moves the gate element 3 with a pulling force and a second actuator 21 moves the gate element with a pushing force.
  • the actuators 20, 21 may be operated simultaneously. Alternatively, only one actuator may be provided for either pushing or pulling the gate valve for the shearing and closing of the gate valve.
  • the second seat 10 is arranged on a support surface 24 arranged in the gate valve housing 35 with additional sealing-providing means, such as for instance a spring element 23 and a sealing element 22 as shown in figure 1 , or other means capable of preloading.
  • the sealing surface 12 of the gate element 3 facing the second seat 10 has an initial portion 25 in contact with the seal surface 11 of the second seat 10 when the gate element is in the open position as shown in figure 1 .
  • the initial portion 25 of the sealing surface 12 is connected to a transfer surface 26 which is connected to an activation portion 27.
  • the activation portion 27 is positioned offset/axially closer to the support surface 24 than the initial portion 25 of the sealing surface 12 of the gate element.
  • the activation portion 27 may be provided as an enlarged portion of the gate element.
  • the second seat 10 When moving the gate element 3 into the closing position, the initial portion 25 of the sealing surface 12 is moved in contact with the seal surface 11 of the second seat 10.
  • the second seat 10 also has a transfer portion 30 shaped to interact with the transfer surface 26.
  • the transfer surface 26 moves along the seal surface 11 of the second seat 10, thereby bringing the activation portion 27 of the sealing surface 12 into contact with the seal surface 11.
  • the contact between the activation portion 27 of the sealing surface 12 and the seal surface 11 of the second seat 10 causes compression of the spring element 23, thereby providing additional sealing force to the sealing between the second seat 10 and the sealing surface 12 of the gate element 3.
  • the contact surface 7 of the first seat 5 is protected from well fluid since it is covered by the body of the gate element 3 when the gate element is in the shown open position.
  • the seal surface of the 11 of the second seat 10 is protected form well fluid since the inner radius of the second seat is larger than the largest radius of the gate bore 4 as seen in figure 1 .
  • the support surface 24 for the second seat 10 is arranged as a bore for the second seat.
  • a second inner surface 62' is provided in the valve housing 35 and is formed as an annular inclined surface and arranged at an angle relative to the axial axis of the through bore 2 approaching the through bore in the axial direction away from the support surface 24, thereby defining a second enlarged opening portion 64 of the through bore 2.
  • the first and second seats are shown as annular elements.
  • the second seat 10 is a bidirectional sealing element when the gate element 3 is closed.
  • Figure 2 shows a second embodiment of the gate valve assembly 1.
  • the first seat 5 and the second seat 10 have some configurations which may differ from the configurations shown in figure 1 , but the overall components and the working principles for shearing the elongated member described in connection with figure 1 are the same.
  • the gate element 3 is in figure 2 shown partly moved from its open position to a closed position.
  • the elongated member 80 to be cut is indicated in the drawing in abutment between the first seat 5 and the gate element 3.
  • a temporary seal surface protection element 31 is arranged for protection of the seal surface 11 of the second seat 10 before the shearing of the elongated element is to take place.
  • the temporary seal surface protection element 31 is arranged to be removed from the gate valve or possibly destroyed prior to the shearing of the elongated member.
  • the protection element 31 may be provided as a brittle material which is easy to destroy. Another possibility is to provide the protection element 31 with a connection to the gate element 3 which is easily disconnected so that the protection element 31 is released from the gate element when it comes in contact with the elongated member 80 as the gate element is moved from its open position.
  • the seal surface protection element 31 has a configuration which fills in the gate bore so that the inner radius of the gate bore corresponds to or is smaller than the inner radius of the second seat 10, thereby protecting the seal surface 11 when the gate element 3 is in the open position.
  • the seal surface protection element 31 also has a shape which provides a fully open through bore through the valve assembly 1 when the gate element 3 is in an open position.
  • the protection element 31 and the gate element 3 with the cutting tool 16 may also be configured such that there are no protruding parts into the through bore 2 of the valve assembly in an open position of the gate element. When gate element 3 is moved from the open position, the protection element 31 and the gate element are so configured that the protection element is the first to interact with the elongated member 80, if present in the through bore 2.
  • This interaction initiates a removal of the protection element 31, either by releasing it from the gate element 3 or destroying it.
  • the connection between the gate element 3 and the protection element 31, or the protection element itself, may also be arranged such that the protection element is not released from the gate element when the gate element is in an open position.
  • the cutting tool 16 of the gate element 3 will interact with the elongated member, cutting it, during further closing of the gate element.
  • the protection element 31 provides a possibility to arrange the gate element with an inclined surface 17 relative to an axial axis of the through bore, extending from the cutting tool 16 and into the gate element, thereby providing an expanded gate bore 4 of the gate element 3 compared with the through bore 2.
  • this arrangement ensures the protection of the seal surface of the second seat 10, as the protection element 31 provides an additional sealing surface 51 working initially with the sealing surface 12 of the gate element, and at the same time being able to provide the second seat 10 with an inner radius essentially corresponding to the radius of the through bore 2 of the gate valve arrangement.
  • Figure 3 shows a third embodiment of the invention, in which the cutting tool 46 is movably arranged in a transverse recess 32 in the gate element 3 opening into the gate bore 4.
  • the cutting tool 46 is arranged to be separately moveable relative to the gate element 3.
  • the gate bore 4 has an inclined surface 77 providing the gate bore 4 with a varying radius in the axial direction of the gate bore.
  • the support member is arranged in the gate element 3 with the opening 44 encompassing the through bore 2 for receiving the elongated member and an expanded opening portion 70 which is open to the through bore 2 in the axial direction of the through bore.
  • a reduced section 75 of the support member has an inclined surface 71, 72 which defines the expanded opening portion 70.
  • the opening 44 has a decreasing radius along the reduced section in the axial direction of the support member toward a contact surface area 45 arranged at an end portion of the support member adjacent the cutting tool 46 at both sides of the transverse recess 32.
  • the radius of the opening 44 at the location of the contact surface area 45 corresponds essentially to the radius of the through bore 2.
  • the contact surface area 45 is configured for engagement with the elongated member.
  • the support member has inclined surfaces 71, 72 arranged on the opposite sides of the transverse recess 32 seen in the axial direction of the through bore 2.
  • the elongated member When preparing for the shearing of the elongated member, the elongated member will be pushed towards the contact surface area 45.
  • the cutting tool 46 will be moved in the transvers recess 32, and the elongated member will engage the contact surface area 45 while the cutting tool is moved in a direction transverse to the through bore 2 for the shearing to take place.
  • the contact surface area 45 located at the protruding portion of the support member provides a counteracting area interacting with the cutting tool 46 and provides for a local concentration of shearing forces to take place when shearing the elongated member.
  • the support member as shown in figure 3 is arranged as a part of the gate element 3.
  • the inclined surfaces 71, 72 of the support member and the inclined surface 77 of the gate element are arranged to expand the gate bore 4 all around the circumference of the gate bore on both sides of the transverse recess 32.
  • First and second seats 5, 10 are arranged at opposite sides of the gate element 3. At least one of the first and second seats 5, 10 is arranged to provide sealing contact with a sealing surface of the gate element 3 or contact with a first surface of the gate element.
  • the seats are provided with an inner radius corresponding to the maximum radius of the gate bore 4 of the gate element 3. The maximum radius of the gate bore 4 is larger than the radius of the through bore 2 of the valve assembly.
  • the valve housing 35 is also provided with cut outs 47 to provide a transition from the larger radius of the opening of the first and second seats 5, 10 to the through bore 2 of the valve assembly at the side of the first and second seats facing away from the gate element 3.
  • the gate element 3 and the first and second seats 5, 10 are arranged such that the sealing/engagement surfaces of the first and second seats are covered by the gate element in an open position of the gate element.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sliding Valves (AREA)
  • Details Of Valves (AREA)

Claims (15)

  1. Ensemble vanne-porte (1) comportant un alésage traversant (2) adapté pour une communication fluidique avec un trou de forage et configuré pour recevoir un organe allongé (80), l'ensemble vanne-porte (1) comprenant :
    un élément de porte (3) qui est agencé de façon amovible dans un logement de vanne-porte (35), dans lequel l'élément de porte (3) comporte un alésage de porte (4) agencé pour recevoir l'organe allongé (80), et dans lequel un outil de coupe est agencé dans l'alésage de porte (4) ;
    des premier et second sièges (5, 10) pour l'élément de porte mobile (3), dans lequel au moins l'un des premier et second sièges (5, 10) est agencé pour fournir un contact d'étanchement avec une surface d'étanchement (12) de l'élément de porte (3) ;
    un organe de support comprenant une ouverture (44) englobant l'alésage traversant (2) et caractérisé par une portion d'ouverture expansée (40) qui débouche sur l'alésage traversant (2) dans la direction axiale de l'alésage traversant (2), dans lequel une section réduite (41) de l'organe de support définit la portion d'ouverture expansée (50), dans lequel l'ouverture (14) comporte un rayon R décroissant le long de la section réduite dans la direction axiale de l'organe de support vers une superficie de contact (15) agencée au niveau d'une portion d'extrémité de l'organe de support adjacente à l'outil de coupe (16), et dans lequel le rayon de l'ouverture (14) correspond essentiellement au rayon de l'alésage traversant (2) ;
    dans lequel la superficie de contact (15) est configurée pour un enclenchement avec l'organe allongé (80) et fournit une aire de contre-balancement interagissant avec l'outil de coupe (16) pendant un cisaillement de l'organe allongé.
  2. Ensemble vanne-porte (1) selon la revendication 1, dans lequel l'organe de support est inclus dans le premier siège (5) comportant une surface d'enclenchement (7) fournie pour contact avec une première surface (8) de l'élément de porte (3).
  3. Ensemble vanne-porte (1) selon la revendication 1 ou 2, dans lequel l'outil de coupe (46) est agencé dans l'alésage de porte (4), dans lequel l'alésage de porte (4) englobe l'alésage traversant (2) pour recevoir l'organe allongé (80) et une portion d'ouverture expansée (50) qui débouche sur l'alésage traversant (2) dans la direction axiale de l'alésage traversant (2), dans lequel une section réduite (51) de l'élément de porte (3) définit la portion d'ouverture expansée, dans lequel l'alésage de porte (4) comporte un rayon R décroissant le long de la section réduite dans la direction axiale de l'élément de porte (3) vers l'outil de coupe (16) agencé au niveau d'une portion d'extrémité de l'élément de porte (3) adjacente à l'organe de support, et dans lequel le rayon de l'alésage de porte (4) à l'emplacement de l'outil de coupe (16) correspond essentiellement au rayon de l'alésage traversant (2).
  4. Ensemble vanne-porte (1) selon la revendication 1, dans lequel l'organe de support est inclus dans l'élément de porte (3), et dans lequel l'ouverture de l'organe de support est une portion de l'alésage de porte (4) et un évidement transversal (32) est agencé dans l'élément de porte (3) pour positionner l'outil de coupe (16).
  5. Ensemble vanne-porte (1) selon la revendication 3, dans lequel la section réduite de l'élément de porte (3) est fournie sous forme de surface inclinée rectiligne s'étendant le long d'une portion de la circonférence de l'alésage de porte (4).
  6. Ensemble vanne-porte (1) selon l'une des revendications précédentes, dans lequel un élément de protection de surface forme joint temporaire (31) est agencé pour un enlèvement avant le cisaillement de l'organe allongé (80), dans lequel l'élément de protection de surface formant joint (31) comporte une configuration remplissant l'alésage de porte (4) pour que le rayon de l'alésage de porte (4) corresponde à ou soit plus petit qu'un rayon interne du second siège (10) pour protection de la surface formant joint (11) du second siège (10).
  7. Ensemble vanne-porte (1) selon l'une des revendications précédentes, dans lequel le second siège (10) est pourvu de moyens de fourniture d'étanchement additionnels (23, 22).
  8. Ensemble vanne-porte (1) selon la revendication 7, comprenant un agencement d'activation pour l'activation du moyen de fourniture d'étanchement additionnel (23, 22) dans la position fermée de l'élément de porte (3).
  9. Ensemble vanne-porte (1) selon la revendication 8, dans lequel l'agencement d'activation comprend une portion d'activation de la surface d'étanchement (12), dans lequel le second siège (10) est agencé en contact d'étanchement avec une portion initiale (25) de la surface d'étanchement (12) de l'élément de porte (3) dans une position ouverte de l'élément de porte (3), et dans lequel dans une position fermée de l'élément de porte (3), le second siège (10) est en contact d'étanchement avec une portion d'activation (27) de la surface d'étanchement (12).
  10. Ensemble vanne-porte (1) selon la revendication 9, dans lequel la portion d'activation (27) de la surface d'étanchement (12) est positionnée décalée plus près d'une surface de support (24) pour le second siège (10) fournie dans le logement de vanne-porte (35) que la portion initiale (25) de la surface d'étanchement (12).
  11. Ensemble vanne-porte (1) selon l'une des revendications 9 à 10, dans lequel le moyen de fourniture d'étanchement additionnel (23, 22) comprend un moyen de ressort (23) qui a un mode initial lorsque le second siège (10) est en contact avec la portion initiale (25) de la surface d'étanchement (12), et un mode comprimé lorsque le second siège (10) est en contact avec la portion d'activation (27) de la surface d'étanchement (12).
  12. Ensemble vanne-porte (1) selon l'une des revendications précédentes, dans lequel l'élément de porte mobile (3) est pourvu d'un premier actionneur (20) agencé pour fournir une force de traction et un second actionneur (21) agencé pour fournir une force de poussée.
  13. Ensemble vanne-porte (1) selon l'une des revendications précédentes, dans lequel le logement de vanne (35) a une surface de support (60) pour le premier siège (5) fournissant un alésage pour le premier siège (5), dans lequel la surface de support (60) est agencée en relation avec une première surface interne (62) fournie dans le logement de vanne et inclinée par rapport à l'axe axial A de l'alésage traversant (2), et dans lequel la première surface interne (62) s'approche de l'alésage traversant (2) dans la direction axiale en éloignement de l'alésage pour le premier siège (5).
  14. Procédé de cisaillement d'un organe allongé (80) agencé dans un alésage traversant (2) d'un agencement de vanne-porte comprenant un élément de porte mobile (3) pour fermer l'alésage traversant (2), dans lequel l'alésage traversant (2) est adapté pour une communication fluidique avec un trou de forage, caractérisé en ce que le procédé comprend les étapes de :
    agencement de l'organe allongé (80) à travers une ouverture (14) dans un organe de support situé adjacent à un outil de coupe (16) qui est agencé dans un alésage de porte (4) de l'élément de porte mobile (3), dans lequel l'ouverture (14) englobe l'alésage traversant (2) et une portion d'ouverture expansée (40) qui débouche sur l'alésage traversant (2) dans la direction axiale de l'alésage traversant (2), et dans lequel une section réduite (41) de l'organe de support définit la portion d'ouverture expansée (40) ;
    le déplacement de l'outil de coupe (16) et l'agencement de l'organe allongé (80) en contact avec une superficie de contact (15) de l'organe de support, dans lequel l'ouverture (14) a un rayon décroissant le long de la section réduite dans la direction axiale de l'organe de support vers la superficie de contact (15) agencée au niveau d'une portion d'extrémité de l'organe de support, et dans lequel le rayon de l'ouverture à l'emplacement de la superficie de contact correspond essentiellement au rayon de l'alésage traversant (2) ;
    la réalisation du cisaillement de l'organe allongé (80) par l'outil de coupe (16), employant ainsi l'effet de contre-balancement de la superficie de contact (15) en enclenchement avec l'organe allongé (80) et fournissant ainsi une concentration locale de forces de cisaillement ; et
    la fermeture de l'alésage traversant (2) par déplacement de l'élément de porte mobile (3) en position de fermeture.
  15. Procédé selon la revendication 14, comprenant en outre la réalisation des étapes suivantes lors du déplacement de l'élément de porte (3) en position de fermeture :
    le déplacement de l'élément de porte (3) d'une position initiale où une portion initiale (25) d'une surface d'étanchement (12) de l'élément de porte (3) est en contact d'étanchement avec un second siège (10) agencé avec un moyen de fourniture d'étanchement additionnel (23, 22) ;
    le déplacement de l'élément de porte (3) de la position initiale pour qu'une portion de transfert prolongeant la portion initiale (25) de la surface d'étanchement (12) soit agencée en contact avec le second siège (10) et l'initiation d'un étanchement additionnel de la surface d'étanchement (12) ; et
    le déplacement plus encore de l'élément de porte (3) pour qu'une portion d'activation (27) de la surface d'étanchement prolongeant la portion de transfert soit en contact avec le second siège (10), activant ainsi totalement le moyen de fourniture d'étanchement additionnel et fournissant une force d'étanchement accrue entre la surface d'étanchement de l'élément de porte (3) et le second siège (10).
EP14719585.3A 2013-03-15 2014-03-14 Ensemble robinet-vanne comprenant un element de support Not-in-force EP2971466B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361793698P 2013-03-15 2013-03-15
PCT/US2014/028695 WO2014144332A2 (fr) 2013-03-15 2014-03-14 Ensemble robinet-vanne comprenant un element de support

Publications (2)

Publication Number Publication Date
EP2971466A2 EP2971466A2 (fr) 2016-01-20
EP2971466B1 true EP2971466B1 (fr) 2017-01-04

Family

ID=52016285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14719585.3A Not-in-force EP2971466B1 (fr) 2013-03-15 2014-03-14 Ensemble robinet-vanne comprenant un element de support

Country Status (3)

Country Link
US (1) US20160032676A1 (fr)
EP (1) EP2971466B1 (fr)
WO (1) WO2014144332A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533667B2 (en) * 2015-04-24 2020-01-14 Cameron International Corporation Shearing gate valve system
US10161531B2 (en) 2015-08-04 2018-12-25 Plattco Corporation Dust and abrasive materials gate valve with an angled valve seat
WO2021045985A1 (fr) * 2019-09-04 2021-03-11 Kinetic Pressure Control, Ltd. Dispositifs de coupe à poussoir à cisaillement cinétique pour appareil de commande de puits

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215749A (en) * 1979-02-05 1980-08-05 Acf Industries, Incorporated Gate valve for shearing workover lines to permit shutting in of a well
US4519575A (en) * 1984-04-20 1985-05-28 Ava International Corporation Valves and valve actuators
US4612983A (en) * 1985-10-15 1986-09-23 Gray Tool Company Shear type gate valve
US4997162A (en) * 1989-07-21 1991-03-05 Cooper Industries, Inc. Shearing gate valve
US6454015B1 (en) * 1999-07-15 2002-09-24 Abb Vetco Gray Inc. Shearing gate valve
US6244336B1 (en) * 2000-03-07 2001-06-12 Cooper Cameron Corporation Double shearing rams for ram type blowout preventer
US7367396B2 (en) * 2006-04-25 2008-05-06 Varco I/P, Inc. Blowout preventers and methods of use
US8567490B2 (en) * 2009-06-19 2013-10-29 National Oilwell Varco, L.P. Shear seal blowout preventer
US20140061522A1 (en) * 2012-09-05 2014-03-06 Vetco Gray Inc. Valve Actuator with Degressive Characteristic Spring
US9249643B2 (en) * 2013-03-15 2016-02-02 National Oilwell Varco, L.P. Blowout preventer with wedge ram assembly and method of using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014144332A2 (fr) 2014-09-18
WO2014144332A3 (fr) 2015-02-26
US20160032676A1 (en) 2016-02-04
EP2971466A2 (fr) 2016-01-20

Similar Documents

Publication Publication Date Title
US10119354B2 (en) Well emergency separation tool for use in separating a tubular element
US7533727B2 (en) Oil well completion tool having severable tubing string barrier disc
EP2588708B1 (fr) Dispositif de commande de trou de forage
EP2971467B1 (fr) Ensemble robinet-vanne comprenant une vanne de cisaillement
WO2017065964A1 (fr) Bloc d'obturation de puits à mâchoires de sécurité à cisaillement avec élément de mise en prise
EP3545166B1 (fr) Robinet-vanne
EP2971466B1 (fr) Ensemble robinet-vanne comprenant un element de support
US9200493B1 (en) Apparatus for the shearing of pipe through the use of shape charges
CN107002477B (zh) 用于在紧急情况下的提取井的阀组件和控制方法
WO2017040198A1 (fr) Bloc opturateur de puits à mâchoire cisaillante
EP2971465B1 (fr) Ensemble clapet-obturateur comprenant un ensemble d'étanchéi
US11613955B2 (en) Shear ram with vertical shear control
US20230366286A1 (en) Valve and method for closing extraction wells under emergency conditions
US20240110456A1 (en) Non-sealing casing shear rams
EP3533966A1 (fr) Lame de cisaillement améliorée
EA046301B1 (ru) Задвижка и способ закрытия добывающей скважины в аварийных условиях

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150930

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160811

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 859432

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014006067

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20170104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 859432

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014006067

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170314

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104