EP2960725A1 - Oscillating system for a clock movement with anchor escapement - Google Patents
Oscillating system for a clock movement with anchor escapement Download PDFInfo
- Publication number
- EP2960725A1 EP2960725A1 EP14173905.2A EP14173905A EP2960725A1 EP 2960725 A1 EP2960725 A1 EP 2960725A1 EP 14173905 A EP14173905 A EP 14173905A EP 2960725 A1 EP2960725 A1 EP 2960725A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bar
- anchor
- cap
- oscillating system
- movement according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/06—Free escapements
- G04B15/08—Lever escapements
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/045—Oscillators acting by spring tension with oscillating blade springs
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/14—Component parts or constructional details, e.g. construction of the lever or the escape wheel
Definitions
- the present invention relates to an oscillating system for watch movement with anchor escapement, the oscillating system comprising a mechanical resonator comprising at least one flexible bar held by one end, said proximal end, and arranged to oscillate in a plane around a position of balance, the anchor being arranged to pivot about an axis perpendicular to the plane in which the flexible bar is arranged to oscillate, and the other end of the flexible bar, said distal end, carrying first connecting means arranged for s articulate with second joining means integral with the anchor, so that the anchor pivots alternately in concert with the oscillations of the bar.
- the patent document CH 442'153 proposes to realize improved regulator devices which comprise, on the one hand, a mechanical oscillator-regulator, for example a tuning fork mounted on a base, and secondly, an elastic member whose one end is fixed on one base, while the other end has a lift for cooperating with the toothing of the escape wheel of a movement of watchmaking whose speed is regulated by the oscillator-regulator.
- a mechanical oscillator-regulator for example a tuning fork mounted on a base
- an elastic member whose one end is fixed on one base, while the other end has a lift for cooperating with the toothing of the escape wheel of a movement of watchmaking whose speed is regulated by the oscillator-regulator.
- the patent document EP 2 574 994 describes an oscillating system for free escapement clock movement as defined in the introduction.
- the anchor has a fork having two teeth
- the distal end of the flexible bar carries two pegs spaced from each other and arranged to oscillate transversely to the axis of the bar and to cooperate alternately and respectively with the two teeth of the fork so as to rotate the anchor.
- the implementation of this known oscillating system presents certain difficulties. Indeed, to allow the mechanical exhaust to work well, it is necessary that the flexible bar can oscillate with sufficient energy. However, a high oscillation energy implies oscillations of relatively large amplitude and therefore including a relatively high oscillation speed at the ankles.
- An object of the present invention is to overcome the disadvantages of the prior art just mentioned.
- the invention achieves this goal by providing an oscillating system for an escape clock movement.
- anchor which conforms to the definition given in the introduction.
- This oscillating system is further characterized in that the flexible bar carries a rigid cap attached to the distal end, the first connecting means being fixed on the rigid cap at a predetermined location whose position is such that, when the bar is in the equilibrium position, a first segment connecting the determined location to the pivot axis of the anchor and a second segment connecting the determined location to a reference point form between them an angle ⁇ of between 150 ° and 180 °; where said reference point is the center of inertia of a straight section of the bar whose position is determined so that the length of the portion of the bar between the reference point and the distal end is equal to the quotient the value of the arrow at a given moment, when the bar is not in the equilibrium position, on the value at the same time of the derivative of the deformation of the bar
- the reference point of the bar is itself defined according to the invention as the point of the bar for which the length of the portion of the bar between the reference point and the distal end is equal to the quotient of the value of the arrow at a given time, when the bar is not in the equilibrium position, on the value at the same time of the derivative of the deformation of the bar evaluated at the distal end of the bar. It should be noted that the invention is not limited to an oscillating system in which the flexible bar has a particular shape. This is the reason for the distance between the distal end and the reference point of the bar is expressed in the very general terms above.
- the oscillation movement of the rigid cap driven by the flexible bar thus corresponds to an alternating rotational movement around the virtual center.
- the amplitude and speed of the oscillations of a given point of the cap are proportional to a distance separating this given point from the virtual center.
- the distance separating the virtual center of the joint is less than the distance separating the virtual center from the distal end of the flexible bar. It will be understood that under these conditions, the speed of the oscillations at the articulation between the cap and the anchor is advantageously reduced.
- the oscillating system of the invention comprises a mechanical resonator which comprises at least one flexible bar held by one end.
- the second end of the bar is free, and the bar is arranged to oscillate in a plane around an equilibrium position.
- the figure 4 is a schematic diagram illustrating the elastic deformation of a flexible bar recessed.
- the flexible bar of length L is represented by a single line referenced 3.
- Line 3 is the average fiber. It is an imaginary curve passing through the centers of inertia G of all the straight (transversal) sections of the bar (we can specify that the average fiber corresponds to the neutral fiber in the case where the straight sections have a profile symmetrical).
- the dashed line referenced 5 on the figure 4 is the undeformed average line. It will therefore be understood that, when the bar is in its equilibrium position, the curve 3 is superimposed on the average line 5.
- the flexural deformations of the bar can be quantified by a function called "the deformed" ⁇ (x).
- the Deformed ⁇ (x) is defined as the displacement of the center of inertia G of a cross-section located at a distance "x" from the point of embedding of the bar (o ⁇ x ⁇ L). This displacement is measured perpendicularly to the average line 5. Moreover, when the deformations of the bar are weak, the deformed ⁇ (x) is proportional to the force (referenced F) which causes the bending. The value of the deformation at the free end of the bar is called “arrow" (denoted f). Under the same conditions of small deformations, it can also be considered that the straight sections of the bar remain straight and perpendicular to the neutral fiber during the deformation.
- a rigid cap is attached to the free end of the bar.
- the cap moves parallel to the plane of oscillation of the bar integrally with its free end.
- the classical kinematics teaches us that at each instant when the bar oscillates, it is possible to identify an instantaneous center of rotation (CIR) around which the rigid cap is rotating without translation.
- the CIR is the point of the headdress whose speed is zero.
- the theory also teaches us that the CIR is at the intersection between the perpendiculars to the velocity vectors of each point of the cap.
- the figure 1 attached is a schematic plan view of an oscillating system according to a first embodiment of the invention. It is possible to see in the figure a flexible bar 11 secured by one of its ends, called the proximal end, of a fixed support 13. The other end of the bar, called the distal end, bears a rigid cap 15 which is large in size. comparison with the flexible bar.
- the bar 11, the support 13 and the cap 15 are made of material and extend in the same plane.
- These three elements are preferably made by micromachining of a crystalline silicon wafer. It will be understood, however, that these elements do not necessarily come from material according to the invention, and that in general, these elements could be made of any other suitable material known to those skilled in the art. For example quartz, glass, ceramics or amorphous metals. In addition, the skilled person could use a method other than micromachining.
- the cap 15 has a shape that is almost symmetrical with respect to the axis of the undeformed bar. In addition, the cap is almost double the length of the bar 11. It can be seen in the cap a head portion 15a which extends in the extension of the bar and two side portions 15b and 15c which extend back symmetrically. on either side of the axis of the bar.
- the shape of the cap 15 is preferably chosen so that its center of inertia is in the immediate vicinity of the distal end of the bar 11.
- an escape wheel 18 which cooperates with an anchor 17 mounted on a pivot 19.
- the anchor 17 is provided with a rod 21 which ends with a fork 23.
- the side part 15c of the cap wears a peg 25 arranged to cooperate with the fork 23.
- the peg and the fork constitute the first and the second joining means according to the invention.
- the pin and the fork are arranged to cooperate to form an articulation connecting the cap 15 to the anchor 17.
- the pivot 19 of the anchor and the articulation between the ankle and the fork are on the same line which is perpendicular to the bar 11 in its rest position.
- the figure 1 is a plan view. It will thus be understood that in the absence of information concerning the elevation of the elements shown, the anchor 17 and the flexible bar 11 may be located, or together in the plane of oscillation of the bar (the plane of the sheet of the drawing of the figure 1 ), or at different heights. However, even in the second alternative, the articulation is contained in the rod plane which is a plane perpendicular to the plane in which the rod oscillates (perpendicular to the drawing sheet). Whatever the variant of the embodiment of the figure 1 the rod plane is perpendicular to the axis of the bar 11 in the rest position, and the trace of the rod plane on the plane of the sheet is a line perpendicular to the bar.
- the figure 2 is a schematic plan view of an oscillating system according to a second embodiment of the invention.
- the elements that are common to the oscillating systems according to the first and second embodiments are designated by the same reference numerals on the figure 2 and on the figure 1 .
- the cap 115 does not have exactly the same shape as the cap 15. It is nevertheless verified that the distance between the virtual center (the reference point 27) and the articulation is the same on the figure 2 that on the figure 1 .
- the rod plane containing the pivot 19 and the joint intersects the axis of the bar 11 at the location of the reference point 27 obliquely (with an angle of about 45 ° in the illustrated example).
- the figure 3 is a schematic plan view of an oscillating system according to a third embodiment of the invention.
- the mechanical resonator is constituted by a tuning fork referenced 10.
- the tuning fork comprises two parallel bars 11a and 11b which are connected by one of their ends, called the proximal end, to a bar cross link 12.
- the connecting bar is itself connected in the middle to a fixed support 13.
- Each of the two bars carries a cap (referenced 15) which is identical to the cap illustrated in FIG. figure 1 .
- one of the two caps (the one on the right in the illustrated variant) is connected via an ankle 25 and a fork 23 to the anchor 17.
- each bar 11a, 11b can be considered in isolation to determine the resonance frequency.
- a benefit associated with the symmetry of the tuning fork 10 is that it favors some well-defined vibration modes having a high quality factor.
- the Figure 5A is a more detailed plan representation of an oscillating system according to a fourth embodiment of the invention.
- the mechanical resonator is constituted by a tuning fork (referenced 110).
- the tuning fork 110 comprises two parallel bars 111a and 111b of constant section and which are connected to each other by a connecting bar 112 which extends transversely between the proximal ends of the two bars.
- the connecting bar 112 is itself connected in the middle to a fixing arm 113.
- the distal end of the bar 111 has a cap 114, and that of the bar 111 b carries a cap 116. It can be seen in the figure that the caps are large in comparison with the bars of the tuning fork.
- the whole formed by the tuning fork 110 and the caps 114 and 116 has an axis of symmetry which, in the example shown, coincides with the attachment arm 113.
- the caps 114 and 116 are designed so that their center of inertia is at immediate proximity of the distal end of the bar (respectively 111a and 111b) to which they are attached.
- the tuning fork 110, the attachment arm 113 and the caps 114 and 116 are made of material and extend in the same plane. These four elements are preferably made by micromachining a monocrystalline silicon wafer.
- an escape wheel 118 with 90 teeth cooperates with an anchor 117 mounted on a pivot 119.
- the anchor 117 is provided with a rod 121 which ends with an apple 123.
- the cap 114 (the one on the right ) has a notch 125 arranged to receive the apple 123.
- the notch and the apple are shown in more detail in the Figure 5B .
- the notch and the apple cooperate to form an articulation connecting the cap 114 to the anchor 117.
- the articulation between the apple and the notch preferably has a certain clearance.
- the apple could have a diameter of 200 ⁇ m and the width of the notch could be 240 ⁇ m.
- the first and second joining means according to the invention could be designed to be coupled magnetically or electrostatically to each other (possibly even without any mechanical contact).
- the distance between the virtual center (or equivalently the reference point 27) and the articulation corresponds approximately to 2/5 of the distance between the virtual center and the distal end of the bar 111 a.
- the amplitude and the speed of the oscillations at the joint correspond to about 40% of the amplitude and the speed of the oscillations of the distal end of the bar 111a.
- the escape wheel 118 shown on the figure 5 has 90 teeth, which corresponds to an unusually high number of teeth.
- a high number of teeth is an advantageous characteristic.
- the tuning fork 110 is designed to oscillate with a frequency considerably higher than that of a balance-spring resonator. For example, if the tuning fork oscillates at the frequency of 90 Hz, it follows that the illustrated escapement wheel advances at the speed of one revolution per second. This speed is already considerably higher than that of the exhaust wheel of a classic watch. If the escape wheel 118 had half the teeth, it would run twice as fast.
- the figure 6 annexed is a schematic plan view of an oscillating system according to a fifth embodiment of the invention.
- This oscillating system is very similar to the first embodiment illustrated by the figure 1 .
- the oscillating system of the figure 6 according to the invention it can be described as "non-optimal". Indeed, it can be verified that if a straight line is drawn in the drawing which passes through both the pivot 19 and the articulation between the first and the second joining means 23 and 25, this line intersects the bar flexible in a certain distance from the reference point 27.
- the segment connecting the hinge to the reference point 27 is not exactly in the extension of the segment connecting the pivot 19 to the joint .
- the joint Since the joint is not located on the segment that connects the pivot 19 to the virtual center, it follows that the segment connecting the articulation to the pivot axis 19 forms an angle with the segment connecting the articulation to the point of rotation. 27. Note however that according to the invention, the angle ⁇ between the segment connecting the joint to the pivot axis 19 and the segment connecting the joint to the reference point 27 can not be less than 150 °. The angle ⁇ is therefore between 150 and 180 °.
- the figure 7 is a detailed plan representation of an alternative variant of the oscillating system illustrated in FIG. Figure 5A .
- the elements that are common to the oscillating systems according to the two illustrated variants of the fourth embodiment are designated by the same reference numerals on the figure 7 and on the Figure 5A .
- the caps 214 and 216 are not identical to the caps 114 and 116.
- the caps 214 and 216 each have a thickening (respectively referenced 220 and 222) located in the immediate vicinity of the distal end of one of the flexible bars 111a, 111b.
- the thickenings 220 and 222 make it possible to increase the mass of inertia of the caps 214 and 216 without unduly increasing the moment of inertia of the caps relative to their point of attachment on the distal end.
- the caps are arranged in the plane in which the flexible bars 111a and 111b are arranged to oscillate, and each of the caps has two thickenings arranged symmetrically on its two main faces on either side of the plane in which the flexible bars 111a and 111b are arranged to oscillate.
- the thickenings 220, 222 are preferably formed of a denser material than the material of the cap 214, 216 and the bar 111a, 111b. In the illustrated example, these thickenings are in the form of coating layers. However, these thickenings could as well be in the form of inserts for example. It will be further understood that the thickenings could be formed of the same material as the caps.
- a flexible anchor comprises one or more anchoring points integral with a fixed support, and further comprises flexible portions which give it mobility relative to said fixed support.
- a flexible anchor is arranged to pivot about an axis (it will be understood that even if it is not precisely the entire structure of the anchor which pivots about an axis, the anchor proper, or in other words, its part intended to cooperate with the escape wheel, necessarily pivots about an axis). This is called a “virtual pivot”. It will therefore be understood that according to certain embodiments, the pivot axis according to the invention may correspond to a virtual pivot.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Micromachines (AREA)
Abstract
Le Système oscillant comporte un résonateur mécanique comprenant un barreau flexible (111a) maintenu par une extrémité et agencé pour osciller dans un plan autour d'une position d'équilibre. L'autre extrémité du barreau porte une coiffe rigide (114) qui porte elle-même une articulation (123, 125) agencée pour relier mécaniquement le barreau à une ancre (117). Lorsque le barreau se trouve dans la position d'équilibre, l'articulation est sensiblement alignée entre le pivot (119) et un point du barreau (111 a) situé à une distance déterminée de l'extrémité libre de ce dernier, la distance déterminée étant égale au quotient de la valeur de la flèche à un instant donné, lorsque le barreau ne se trouve pas dans la position d'équilibre, sur la valeur au même instant de la dérivée de la déformée du barreau évaluée à l'extrémité distale du barreau.The oscillating system comprises a mechanical resonator comprising a flexible bar (111a) held at one end and arranged to oscillate in a plane around an equilibrium position. The other end of the bar carries a rigid cap (114) which itself carries a hinge (123, 125) arranged to mechanically connect the bar to an anchor (117). When the bar is in the equilibrium position, the articulation is substantially aligned between the pivot (119) and a point of the bar (111 a) situated at a determined distance from the free end thereof, the determined distance being equal to the quotient of the value of the arrow at a given instant, when the bar is not in the equilibrium position, to the value at the same time of the derivative of the deformation of the bar evaluated at the distal end of the bar. bar.
Description
La présente invention concerne un système oscillant pour mouvement horloger à échappement à ancre, le système oscillant comportant un résonateur mécanique comprenant au moins un barreau flexible maintenu par une extrémité, dite extrémité proximale, et agencé pour osciller dans un plan autour d'une position d'équilibre, l'ancre étant agencée pour pivoter autour d'un axe perpendiculaire au plan dans lequel le barreau flexible est agencé pour osciller, et l'autre extrémité du barreau flexible, dite extrémité distale, portant des premiers moyens de jonction agencés pour s'articuler avec des seconds moyens de jonction solidaires de l'ancre, de manière à ce que l'ancre pivote alternativement de concert avec les oscillations du barreau.The present invention relates to an oscillating system for watch movement with anchor escapement, the oscillating system comprising a mechanical resonator comprising at least one flexible bar held by one end, said proximal end, and arranged to oscillate in a plane around a position of balance, the anchor being arranged to pivot about an axis perpendicular to the plane in which the flexible bar is arranged to oscillate, and the other end of the flexible bar, said distal end, carrying first connecting means arranged for s articulate with second joining means integral with the anchor, so that the anchor pivots alternately in concert with the oscillations of the bar.
Dans les mouvements d'horlogerie mécaniques usuels, la marche synchrone du mouvement est assurée par un dispositif réglant constitué par un ensemble balancier-spiral et échappement. Ce dispositif, quoique actuellement parfaitement au point, nécessite un réglage très délicat et sa précision est limitée du fait de sa fréquence d'oscillation très basse.In the usual mechanical clockwork movements, the synchronous movement of the movement is ensured by a regulating device constituted by a pendulum-balance and escapement assembly. This device, although currently perfectly developed, requires a very delicate adjustment and its accuracy is limited because of its very low oscillation frequency.
Le document de brevet
Le document de brevet
Un but de la présente invention est de remédier aux inconvénients de l'art antérieur qui viennent d'être mentionnés. L'invention atteint ce but en fournissant un système oscillant pour mouvement horloger à échappement à ancre, qui est conforme à la définition donnée en introduction. Ce système oscillant est en outre caractérisé en ce que le barreau flexible porte une coiffe rigide fixée à l'extrémité distale, les premiers moyens de jonction étant fixés sur la coiffe rigide à un endroit déterminé dont la position est telle que, lorsque le barreau se trouve dans la position d'équilibre, un premier segment reliant l'endroit déterminé à l'axe de pivotement de l'ancre et un deuxième segment reliant l'endroit déterminé à un point de référence font entre eux un angle α compris entre 150° et 180° ; où ledit point de référence est le centre d'inertie d'une section droite du barreau dont la position est déterminée de manière à ce que la longueur de la partie du barreau comprise entre le point de référence et l'extrémité distale soit égale au quotient de la valeur de la flèche à un instant donné, lorsque le barreau ne se trouve pas dans la position d'équilibre, sur la valeur au même instant de la dérivée de la déformée du barreau évaluée à l'extrémité distale du barreau.An object of the present invention is to overcome the disadvantages of the prior art just mentioned. The invention achieves this goal by providing an oscillating system for an escape clock movement. anchor, which conforms to the definition given in the introduction. This oscillating system is further characterized in that the flexible bar carries a rigid cap attached to the distal end, the first connecting means being fixed on the rigid cap at a predetermined location whose position is such that, when the bar is in the equilibrium position, a first segment connecting the determined location to the pivot axis of the anchor and a second segment connecting the determined location to a reference point form between them an angle α of between 150 ° and 180 °; where said reference point is the center of inertia of a straight section of the bar whose position is determined so that the length of the portion of the bar between the reference point and the distal end is equal to the quotient the value of the arrow at a given moment, when the bar is not in the equilibrium position, on the value at the same time of the derivative of the deformation of the bar evaluated at the distal end of the bar.
Conformément à ce qui sera expliqué plus en détail plus loin, on peut assimiler les oscillations de la coiffe du barreau flexible à un pivotement alternatif autour d'un point à l'endroit duquel le vecteur vitesse de la coiffe demeure sensiblement nul. Nous appellerons par la suite ce point fixe le « centre virtuel » de rotation de la coiffe. Selon l'invention, lorsque le barreau flexible se trouve dans sa position d'équilibre, le centre virtuel de rotation de la coiffe est superposé à un point du barreau appelé point de référence. Le point de référence du barreau est lui-même défini selon l'invention comme le point du barreau pour lequel la longueur de la partie du barreau comprise entre le point de référence et l'extrémité distale est égale au quotient de la valeur de la flèche à un instant donné, lorsque le barreau ne se trouve pas dans la position d'équilibre, sur la valeur au même instant de la dérivée de la déformée du barreau évaluée à l'extrémité distale du barreau. Précisons que l'invention n'est pas limitée à un système oscillant dans lequel le barreau flexible a une forme particulière. C'est la raison pour laquelle la distance entre l'extrémité distale et le point de référence du barreau est exprimée dans les termes très généraux qui figurent ci-dessus.In accordance with what will be explained in more detail below, we can assimilate the oscillations of the flexible bar cap to a reciprocating around a point where the velocity vector of the cap remains substantially zero. We will call this fixed point the "virtual center" of rotation of the cap. According to the invention, when the flexible bar is in its equilibrium position, the virtual center of rotation of the cap is superimposed on a point of the bar called the reference point. The reference point of the bar is itself defined according to the invention as the point of the bar for which the length of the portion of the bar between the reference point and the distal end is equal to the quotient of the value of the arrow at a given time, when the bar is not in the equilibrium position, on the value at the same time of the derivative of the deformation of the bar evaluated at the distal end of the bar. It should be noted that the invention is not limited to an oscillating system in which the flexible bar has a particular shape. This is the reason for the distance between the distal end and the reference point of the bar is expressed in the very general terms above.
Le mouvement d'oscillation de la coiffe rigide entraînée par le barreau flexible correspond donc à un mouvement de rotation alternée autour du centre virtuel. Dans ces conditions, l'amplitude et la vitesse des oscillations d'un point donné de la coiffe sont proportionnelles à une distance séparant ce point donné du centre virtuel. Selon un mode de réalisation avantageux de l'invention, la distance séparant le centre virtuel de l'articulation est inférieure à la distance séparant le centre virtuel de l'extrémité distale du barreau flexible. On comprendra que dans ces conditions, la vitesse des oscillations au niveau de l'articulation entre la coiffe et l'ancre est avantageusement réduite.The oscillation movement of the rigid cap driven by the flexible bar thus corresponds to an alternating rotational movement around the virtual center. Under these conditions, the amplitude and speed of the oscillations of a given point of the cap are proportional to a distance separating this given point from the virtual center. According to an advantageous embodiment of the invention, the distance separating the virtual center of the joint is less than the distance separating the virtual center from the distal end of the flexible bar. It will be understood that under these conditions, the speed of the oscillations at the articulation between the cap and the anchor is advantageously reduced.
La courte parenthèse théorique qui va suivre a pour but de contribuer à la bonne compréhension de la portée générale de l'invention telle que définie par la revendication 1 annexée. Tout d'abord, le système oscillant de l'invention comporte un résonateur mécanique qui comprend au moins un barreau flexible maintenu par une extrémité. La seconde extrémité du barreau est libre, et le barreau est agencé pour osciller dans un plan autour d'une position d'équilibre. La
Sur la figure, le barreau flexible de longueur L est représenté par une simple ligne référencée 3. La ligne 3 est la fibre moyenne. Il s'agit d'une courbe imaginaire passant par les centres d'inertie G de toutes les sections droites (transversales) du barreau (on peut préciser que la fibre moyenne correspond à la fibre neutre dans le cas où les sections droites ont un profil symétrique). Par ailleurs, la ligne en traits interrompus référencée 5 sur la
Conformément à l'invention, une coiffe rigide est fixée à l'extrémité libre du barreau. En première approximation, lorsque le barreau se déforme, la coiffe se déplace parallèlement au plan d'oscillation du barreau solidairement de son extrémité libre. Dans un tel contexte, la cinématique classique nous enseigne qu'à chaque instant où le barreau oscille, il est possible d'identifier un centre instantané de rotation (CIR) autour duquel la coiffe rigide est en train de tourner sans translation. Le CIR est le point de la coiffe dont la vitesse est nulle. La théorie nous enseigne d'autre part que le CIR se situe à l'intersection entre les perpendiculaires aux vecteurs vitesses de chaque point de la coiffe. Ainsi, puisque le vecteur vitesse du centre d'inertie G x=L de la section droite terminale est orienté perpendiculairement à la fibre neutre 3, le CIR se trouve nécessairement sur la droite qui est tangente au barreau en son extrémité. Cette droite est donnée par la formule suivante :
On a fait plus haut l'hypothèse que les sections droites du barreau restent toujours orientées perpendiculairement à la fibre neutre. Dans ces conditions, on peut montrer que les points de la coiffe dont les trajectoires coupent à un instant donné la ligne correspondant à la position de repos de l'axe du barreau sont, à cet instant donné, tous animés de vitesses dirigées perpendiculairement à cette ligne. En d'autres termes, à un instant donné, la ligne correspondant à la position de repos de l'axe du barreau est perpendiculaire aux vecteurs vitesses de tous les points dont les trajectoires coupent cette ligne à cet instant donné. Le CIR se trouve donc sur la ligne correspondant à la position de repos de l'axe du barreau. Cet axe correspond à la droite dont l'équation est la suivante :
On déduit de (i) et de (ii) que pour le centre instantané de rotation :
ou de manière équivalente (en posant λ = L - x) :
où λ est la distance entre l'extrémité libre et le centre instantané de rotation.We deduce from (i) and (ii) that for the instantaneous center of rotation:
or in an equivalent way (by posing λ = L - x):
where λ is the distance between the free end and the instantaneous center of rotation.
On notera de plus que la distance à laquelle le CIR se trouve de l'extrémité libre ne dépend pas de l'amplitude de la déformation. En effet, on a dit plus haut que l'amplitude de la déformation du barreau ne dépend que de l'intensité de la force qui provoque la flexion. Dans ces conditions, on peut séparer les variables t et x et exprimer la déformée et sa dérivée respectivement par les deux formules suivantes :
où
or
Ainsi l'équation (iv) peut être réécrite :
On comprendra donc que la force F(t) peut être éliminée par simplification et que la distance déterminée à laquelle le CIR se trouve de l'extrémité du barreau est donc constante (dans la limite de validité des hypothèses liées aux petites oscillations). Le CIR est donc immobile en première approximation lorsque le barreau se déforme en flexion. Le centre instantané de rotation n'étant donc pas à proprement parler « instantané », nous avons préféré utiliser l'expression alternative « de centre virtuel » pour le désigner.It will therefore be understood that the force F ( t ) can be eliminated by simplification and that the determined distance at which the CIR is from the end of the bar is therefore constant (within the validity limit of the hypotheses related to small oscillations). The CIR is therefore immobile in first approximation when the bar is deformed in flexion. Since the instantaneous center of rotation is not strictly speaking "instantaneous", we preferred to use the alternative expression "virtual center" to designate it.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés dans lesquels :
- la
figure 1 est une vue schématique en plan d'un système oscillant selon un premier mode de réalisation de l'invention ; - la
figure 2 est une vue schématique en plan d'un système oscillant selon un deuxième mode de réalisation de l'invention ; - la
figure 3 est une vue schématique en plan d'un système oscillant selon un troisième mode de réalisation de l'invention ; - la
figure 4 est un schéma de principe illustrant la déformation d'un barreau flexible encastré dont l'extrémité libre est soumise à une force ; - la
figure 5A est une représentation en plan plus détaillée d'un système oscillant selon un quatrième mode de réalisation de l'invention ; - la
figure 5B est une vue partielle agrandie montrant plus particulièrement les premiers et les seconds moyens de jonction du système oscillant de lafigure 5A ; - la
figure 6 est une vue schématique en plan d'un système oscillant selon un cinquième mode de réalisation de l'invention ; - la
figure 7 est une représentation détaillée en plan d'une variante alternative du système oscillant illustré dans lafigure 5A .
- the
figure 1 is a schematic plan view of an oscillating system according to a first embodiment of the invention; - the
figure 2 is a schematic plan view of an oscillating system according to a second embodiment of the invention; - the
figure 3 is a schematic plan view of an oscillating system according to a third embodiment of the invention; - the
figure 4 is a schematic diagram illustrating the deformation of a recessed flexible bar whose free end is subjected to a force; - the
Figure 5A is a more detailed plan representation of an oscillating system according to a fourth embodiment of the invention; - the
Figure 5B is an enlarged partial view showing more particularly the first and second connecting means of the oscillating system of theFigure 5A ; - the
figure 6 is a schematic plan view of an oscillating system according to a fifth embodiment of the invention; - the
figure 7 is a detailed plan representation of an alternative variant of the oscillating system illustrated in FIG.Figure 5A .
La
En se référant encore à la
En se référant encore à la
En se référant encore à la
En se référant encore à la
Conformément à l'invention, la distance entre l'extrémité distale et le point de référence 27 du barreau 11 est égale au quotient de la valeur de la flèche à un instant donné (υ(x=L, t)), lorsque le barreau ne se trouve pas dans la position d'équilibre, sur la valeur au même instant de la dérivée de la déformée du barreau évaluée à l'extrémité distale du barreau
Dans le cas d'un barreau de section carrée constante, les formulaires indiquent que la déformée est égale à
où F est la force, d est le côté de la section carrée et E est le module de Young.In the case of a constant square section bar, the forms indicate that the deformed is equal to
where F is the force, d is the side of the square section and E is the Young's modulus.
En appliquant la formule de l'équation (iv) donnée plus haut à ce cas particulier, on trouve que la distance entre l'extrémité distale et le point de référence 27 est égale à λ = 2L /3. C'est bien ce que montrent les
À titre d'exemple alternatif, on peut citer également le cas non représenté dans les figures d'un barreau de forme effilée (dont le moment quadratique linéaire décroît de manière linéaire à partir du point d'encastrement). Dans ce cas, les formules indiquent que la déformée est égale à :
En appliquant à nouveau la formule de l'équation (iv) donnée plus haut, on trouve que, dans ce deuxième cas, la distance entre l'extrémité distale et le point de référence est égale à λ = L /2.Applying again the formula of equation (iv) given above, we find that, in this second case, the distance between the distal end and the reference point is equal to λ = L / 2 .
D'autre part, quelle que soit la forme d'un barreau flexible, l'homme du métier est capable de calculer la valeur de la flèche et de la dérivée de la déformée du barreau évaluée à l'extrémité distale du barreau, par exemple, par un calcul aux différences finies.On the other hand, whatever the shape of a flexible bar, the skilled person is able to calculate the value of the arrow and the derivative of the deformation of the bar evaluated at the distal end of the bar, for example , by a finite difference calculus.
La
La
On sait que, dans un diapason, en première approximation chaque barreau 11 a, 11 b peut être considéré isolément pour déterminer la fréquence de résonance. Toutefois, un avantage lié à la symétrie du diapason 10 est qu'elle privilégie quelques modes de vibration bien définis ayant un facteur de qualité élevé.It is known that, in a tuning fork, as a first approximation each
La
En se référant encore à la
Comme on l'a déjà dit, les barreaux 111 a et 111 b du diapason 110 sont de section constante. Dans ces conditions, la distance entre l'extrémité distale du barreau 111a et le point de référence 27 doit être égale à λ = 2L /3.As already mentioned, the
D'autre part, en se référant encore à la
Finalement, la roue d'échappement 118 représentée sur la
La
La
On comprendra en outre que diverses modifications et/ou améliorations évidentes pour un homme du métier peuvent être apportées aux modes de réalisation qui font l'objet de la présente description sans sortir du cadre de la présente invention définie par les revendications annexées. Par exemple, l'ancre visible sur l'une ou l'autre des figures pourrait être remplacée par une ancre flexible sans pivot. Une telle ancre flexible comporte un ou plusieurs points d'ancrage solidaires d'un support fixe, et comporte en outre des parties flexibles qui lui donnent une mobilité par rapport au dit support fixe. Comme le sait bien l'homme du métier, même une ancre flexible est agencée pour pivoter autour d'un axe (on comprendra que même si ce n'est pas précisément toute la structure de l'ancre qui pivote autour d'un axe, l'ancre proprement dite, ou autrement dit, sa partie prévue pour coopérer avec la roue d'échappement, pivote nécessairement autour d'un axe). On parle alors d'un « pivot virtuel ». On comprendra donc que conformément à certains modes de réalisation, l'axe de pivotement selon l'invention peut correspondre à un pivot virtuel.It will be further understood that various modifications and / or improvements obvious to those skilled in the art can be made to the embodiments which are the subject of the present description without departing from the scope of the present invention defined by the appended claims. For example, the anchor visible on one or the other of the figures could be replaced by a flexible anchor without pivot. Such a flexible anchor comprises one or more anchoring points integral with a fixed support, and further comprises flexible portions which give it mobility relative to said fixed support. As is well known to those skilled in the art, even a flexible anchor is arranged to pivot about an axis (it will be understood that even if it is not precisely the entire structure of the anchor which pivots about an axis, the anchor proper, or in other words, its part intended to cooperate with the escape wheel, necessarily pivots about an axis). This is called a "virtual pivot". It will therefore be understood that according to certain embodiments, the pivot axis according to the invention may correspond to a virtual pivot.
Claims (20)
où ledit point de référence (27) est le centre d'inertie d'une section droite du barreau dont la position est déterminée de manière à ce que la longueur de la partie du barreau comprise entre le point de référence et l'extrémité distale soit égale au quotient de la valeur de la flèche à un instant donné, lorsque le barreau ne se trouve pas dans la position d'équilibre, sur la valeur au même instant de la dérivée de la déformée du barreau évaluée à l'extrémité distale du barreau ;Oscillating system for an anchor escapement watch movement comprising a mechanical resonator comprising at least one flexible bar (11; 11a; 111a) held by a first end, said proximal end, and arranged to oscillate in a plane around a position equilibrium, said anchor (17; 117) being arranged to pivot about an axis (19; 119) perpendicular to the plane in which the flexible bar is arranged to oscillate, the second end of the bar, said distal end, bearing first junction means (25; 125) arranged to articulate with second connecting means (23; 123) secured to the anchor, so that the anchor pivots alternately in concert with the oscillations of the bar; characterized in that the flexible bar (11; 11a; 111a) carries a rigid cap (15; 114; 115; 214,216) attached to the distal end, the first joining means (25; 125) being attached to the rigid cap at a predetermined location whose position is such that, when the bar is in the equilibrium position, a first segment connecting the determined location to the pivot axis (19; 119) of the anchor and a second segment connecting the determined location to a reference point (27) is between them an angle (α) between 150 ° and 180 °;
where said reference point (27) is the center of inertia of a straight section of the bar whose position is determined so that the length of the portion of the bar between the reference point and the distal end is equal to the quotient of the value of the arrow at a given instant, when the bar is not in the equilibrium position, to the value at the same time of the derivative of the deformation of the bar evaluated at the distal end of the bar ;
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00963/14A CH709811B1 (en) | 2014-06-25 | 2014-06-25 | Oscillating system for watch movement with anchor escapement. |
EP14173905.2A EP2960725A1 (en) | 2014-06-25 | 2014-06-25 | Oscillating system for a clock movement with anchor escapement |
PCT/EP2015/063329 WO2015197411A1 (en) | 2014-06-25 | 2015-06-15 | Oscillating system for horological movement with a pallet escapement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14173905.2A EP2960725A1 (en) | 2014-06-25 | 2014-06-25 | Oscillating system for a clock movement with anchor escapement |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2960725A1 true EP2960725A1 (en) | 2015-12-30 |
Family
ID=50980980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14173905.2A Withdrawn EP2960725A1 (en) | 2014-06-25 | 2014-06-25 | Oscillating system for a clock movement with anchor escapement |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2960725A1 (en) |
CH (1) | CH709811B1 (en) |
WO (1) | WO2015197411A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3032351A1 (en) * | 2014-12-09 | 2016-06-15 | LVMH Swiss Manufactures SA | Timepiece mechanism, timepiece movement and timepiece having such a mechanism |
EP3812843A1 (en) * | 2019-10-25 | 2021-04-28 | ETA SA Manufacture Horlogère Suisse | Flexible guide and set of stacked flexible guides for rotary resonator mechanism, in particular for a clock movement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH442153A (en) | 1965-08-13 | 1967-03-31 | Golay Bernard Sa | Clockwork movement |
FR1505656A (en) * | 1965-12-07 | 1967-12-15 | Golay Bernard Sa | Exhaust system |
EP2574994A1 (en) | 2011-09-29 | 2013-04-03 | Asgalium Unitec SA | Resonator with tuning fork for mechanical timepiece movement |
CH705967A1 (en) * | 2012-01-09 | 2013-07-15 | Lvmh Swiss Mft Sa | Regulating element for clockwork of chronograph, has anchor including impulse surfaces receiving mechanical impulse of teeth of exhaust wheel to maintain vibrator isochronous oscillations and to advance wheel to alternation of oscillations |
-
2014
- 2014-06-25 EP EP14173905.2A patent/EP2960725A1/en not_active Withdrawn
- 2014-06-25 CH CH00963/14A patent/CH709811B1/en unknown
-
2015
- 2015-06-15 WO PCT/EP2015/063329 patent/WO2015197411A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH442153A (en) | 1965-08-13 | 1967-03-31 | Golay Bernard Sa | Clockwork movement |
FR1505656A (en) * | 1965-12-07 | 1967-12-15 | Golay Bernard Sa | Exhaust system |
EP2574994A1 (en) | 2011-09-29 | 2013-04-03 | Asgalium Unitec SA | Resonator with tuning fork for mechanical timepiece movement |
CH705967A1 (en) * | 2012-01-09 | 2013-07-15 | Lvmh Swiss Mft Sa | Regulating element for clockwork of chronograph, has anchor including impulse surfaces receiving mechanical impulse of teeth of exhaust wheel to maintain vibrator isochronous oscillations and to advance wheel to alternation of oscillations |
Also Published As
Publication number | Publication date |
---|---|
CH709811A2 (en) | 2015-12-31 |
CH709811B1 (en) | 2018-03-15 |
WO2015197411A1 (en) | 2015-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3054358B1 (en) | Clock oscillator mechanism | |
EP2105806B1 (en) | Escapement mechanism | |
EP3548973B1 (en) | Device for timepiece, clockwork mechanism and timepiece comprising such a device. | |
EP2761380B1 (en) | Integral assembly of a hairspring and a collet | |
EP2995999B1 (en) | Synchronisation of clock resonators | |
EP2405313B1 (en) | Spiral with immobile mass centre | |
EP3254158A1 (en) | Isochronous timepiece resonator | |
EP2790068B1 (en) | Escapement system for a balance-hairspring resonator | |
EP3206091B1 (en) | Isochronous clock resonator | |
EP2613206A1 (en) | Hairspring with two spiral springs with improved isochronism | |
EP3382470B1 (en) | Timepiece oscillator with a flexible pivot | |
EP2761378A1 (en) | Resonator having a tuning fork for a mechanical clock movement | |
EP2679952B1 (en) | Micro-machined gyroscope with in-plane detection | |
EP2960725A1 (en) | Oscillating system for a clock movement with anchor escapement | |
EP3336613A1 (en) | Timepiece resonator with two balances arranged to oscillate in a single plane | |
CH714030A2 (en) | Clock oscillator with flexible guides with long angular travel. | |
CH713790B1 (en) | Mechanism for a timepiece, timepiece movement and timepiece comprising such a mechanism. | |
EP3572885B1 (en) | Timepiece mechanical oscillator that is isochronous in any position | |
EP3561605B1 (en) | Timepiece regulator mechanism with hinged resonators | |
EP3451073A1 (en) | Timepiece oscillator having flexible guides with wide angular travel | |
CH720388A2 (en) | Piezoelectric resonator, piezoelectric motor and timepiece | |
CH713791B1 (en) | Micro mechanism with position adjustment, watch movement and timepiece comprising such a mechanism. | |
EP4391347A1 (en) | Piezoelectric resonator with flexible guide, in particular for rotary motors in horology | |
EP3435171A2 (en) | Timepiece oscillator having flexible guides with wide angular travel | |
EP4425273A1 (en) | Balance for timepiece resonator mechanism provided with lateral inertia adjustment weights |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160630 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161109 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170321 |