EP2957110A1 - Procede et dispositif de generation de signaux d'alimentation destines a un systeme de restitution sonore - Google Patents

Procede et dispositif de generation de signaux d'alimentation destines a un systeme de restitution sonore

Info

Publication number
EP2957110A1
EP2957110A1 EP14710015.0A EP14710015A EP2957110A1 EP 2957110 A1 EP2957110 A1 EP 2957110A1 EP 14710015 A EP14710015 A EP 14710015A EP 2957110 A1 EP2957110 A1 EP 2957110A1
Authority
EP
European Patent Office
Prior art keywords
loudspeakers
listening
sound
plane
speakers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14710015.0A
Other languages
German (de)
English (en)
Other versions
EP2957110B1 (fr
Inventor
Khoa-Van NGUYEN
Etienne Corteel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonic Emotion Labs
Original Assignee
Sonic Emotion Labs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonic Emotion Labs filed Critical Sonic Emotion Labs
Publication of EP2957110A1 publication Critical patent/EP2957110A1/fr
Application granted granted Critical
Publication of EP2957110B1 publication Critical patent/EP2957110B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution

Definitions

  • the invention relates to the general field of acoustic processing and spatialization of sounds.
  • It relates more particularly to a method of sound reproduction based on a transaural technique.
  • the invention applies for example in a restricted space, such as for example in a passenger compartment of a car or of another vehicle (eg an airplane) equipped with at least two pairs of loudspeakers, in order to reproduce a wide stereophonic sound scene (ie spatialized) around two known listening positions to which listeners are likely to find themselves.
  • a restricted space such as for example in a passenger compartment of a car or of another vehicle (eg an airplane) equipped with at least two pairs of loudspeakers, in order to reproduce a wide stereophonic sound scene (ie spatialized) around two known listening positions to which listeners are likely to find themselves.
  • these two positions are for example the position of the driver of the car and that of his passenger.
  • the invention is however not limited to this single application, and can easily be applied to other sound environments having a similar speaker configuration and in which two different listening positions are aimed.
  • Transaural techniques aim to adapt binaural synthesis to a speaker device.
  • CTCs cross-cycle cancellation techniques
  • echo cancellation In other words, the sound signal emitted by the right speaker on the left ear, and the sound signal emitted by the left speaker on the right ear are eliminated or at least reduced by an appropriate signal processing.
  • FIG. 1 illustrates the system envisaged in D1: N sound programs (ie, N multichannel sound signals) are used to generate M signals supplying respectively M loudspeakers of a playback system intended for L / 2 listeners (in other words, L human ears).
  • the processing for generating the M power signals of the loudspeakers from the N sound programs is a cross-path cancellation process.
  • This system can be modeled in matrix form. So, if:
  • Z denotes the acoustic transfer matrix between the N original sound programs and the L signals received respectively by the listeners' ears
  • Y denotes the CTC processing matrix between the N original sound programs and the M feed signals of the M loudspeakers (Y represents the transaural filters), and
  • X denotes the acoustic propagation matrix between the loudspeakers M and the ears of the listeners
  • the matrices X and Z are known: in fact, the matrix Z characterizes the desired sound reproduction at the level of the listeners while the matrix X is measurable. We therefore seek a processing matrix Y satisfying equation (1).
  • the matrix X is of dimensions LxM: it is not necessarily square. Moreover, this matrix is not always well conditioned. It is not always invertible. Under such conditions, it is customary to use the pseudo-inverse matrix of the X matrix, denoted by X + , and defined by:
  • D1 The technique proposed in D1 is general and is theoretically suitable for any values of N, M and L.
  • the invention responds in particular to this need by proposing a method of generating power supply signals intended for a sound reproduction system comprising two sets of loudspeakers situated on either side of a separation plane, these signaling signals.
  • power supply being generated for sound reproduction of a multichannel sound signal to two spatial listening positions, each listening space position being associated with one of the speaker sets and being located on a parallel plane to the separation plane so that at least one loudspeaker of this set is positioned on either side of this parallel plane
  • the generation method comprising, for each set of loudspeakers, a generating step, to from an input signal derived from the multichannel sound signal for this set, supply signals for supplying the loudspeakers of this set, this generation step comprising the applicati one of a technique of transaural restitution to the input signal, this technique creating a virtual sound source for the listening position associated with the set on a first line obtained by symmetry, with respect to the parallel plane on which is located the listening space position associated with this set of a second straight connecting the listening space position
  • the invention also relates to a device for generating supply signals intended for a sound reproduction system comprising two sets of loudspeakers located on either side of a separation plane, said signals being generated for a sound reproduction of a multichannel sound signal to two spatial listening positions, each listening spatial position being associated with one of the speaker sets and being located on a plane parallel to the separation plane so that at least one loudspeaker of this set is positioned on either side of this parallel plane,
  • this generation device comprising means able to generate for each set of loudspeakers, from a signal of input derived from the multichannel sound signal for this set, power signals for supplying the speakers of this set, these means being able to apply a technique of restitution tr ansaural to the input signal, this technique creating a virtual sound source for the listening position associated with the set on a first straight line obtained by symmetry, with respect to the parallel plane on which is located the listening spatial position associated with this set of a second straight connecting the listening space position to the speaker more distant from this position belonging to the
  • each listening position is in the frontal area of the speakers of the set with which it is associated.
  • the invention allows spatialized sound reproduction of a multichannel sound signal, from a speaker array comprising at least two sets of loudspeakers, and simultaneously for two listening positions defined respectively with respect to these two sets of speakers.
  • These listening positions are not necessarily punctual: they may indeed be actual listening zones, in which case the listening position on a plane parallel to the separation plane means that the geometric center of this listening position is on the parallel plane.
  • These listening spatial zones are preferentially defined by a radius around the geometric center of less than 15-20 cm.
  • Each set of speakers of the reproduction system envisaged for the sound reproduction of the multichannel signal thus comprises a loudspeaker on either side of the parallel plane on which the listening position is located.
  • the listening position is for example centered with respect to the set of speakers to which it is attached.
  • the invention advantageously proposes to treat separately each set of speakers and the listening position attached thereto.
  • a separate transaural technique is used for each set of speakers to generate the speaker power signals of this set.
  • This transaural technique is implemented according to the invention, so as to create a virtual source outside the speaker array, in the opposite direction with respect to the listening position associated with the set of loudspeakers. considered, to the speaker of the network farthest from this position (and belonging to the other set of speakers).
  • the invention combines, on the one hand, the advantages of a transaural reproduction applied to a small number of loudspeakers (resulting from the separate treatment performed on each set of loudspeakers), and on the other hand, the precedence principle or law of the first wavefront, well known to those skilled in the art.
  • the location of a sound object is given by the direction from which the sound comes first to the ear (i.e. first wavefront).
  • the invention returns, according to this example, to spatialize the left part of the sound stage (given by the left channel of the stereo signal) for the listening position to the left of the separation plane (called left listening position) and to spatialize the right part of the sound stage (given by the right channel of the stereo signal) for the listening position to the right of the separation plane, (the right listening position), the right part of the sound stage being then naturally given for the left listening position by the position of the set of speakers to the right of it, and the left part of the sound stage being naturally given for the right listening position by the position of all speakers located to the left of it.
  • the matrices to be reversed in the transaural techniques implemented according to the invention are in fact of reduced dimensions (2x2 matrices in the example envisaged above), since they are limited to each set of speakers. In this way, they suffer little or nothing from the disadvantages of the state of the art (matrices of large dimensions difficult to reverse and poorly conditioned).
  • the rendering technique proposed by the invention is thus more robust to the environment of the rendering system.
  • the sound reproduction proposed by the invention is less sensitive to the so-called "sweet-spot" phenomenon that the sound reproduction proposed in Dl.
  • the "sweet-spot" defines an ideal listening area for which the sound reproduction is designed and optimized: this ideal listening area generally corresponds to a single position in the center of the device.
  • the loudspeakers of the two sets of restitution are substantially aligned on a horizontal axis of the rendering system.
  • Such a configuration of speakers has a preferred application in a small space such as a car interior for example.
  • the virtual source is preferentially created at the intersection of the first line and the horizontal axis of the rendering system, so as to optimize the spatial reproduction of the signal. multichannel sound.
  • the generation method further comprises a spectral equalization step during which, for each supply signal intended to supply a loudspeaker, an equalization filter adapted to this particular signal is applied individually. loud speaker.
  • This spectral equalization advantageously makes it possible to take into account the environment in which the rendering system is located.
  • the rendering system In general, and more specifically when the rendering system is in a closed environment such as for example the passenger compartment of a car, it is to be expected that the timbre of the multichannel sound signal reproduced will not be identical to the two listening positions. Spectral equalization can be implemented to correct this effect. At the same time, for each listening position, it corrects the staining effect due to the transaural technique applied to the set of speakers opposite to the listening position.
  • each equalization filter adapted to a loudspeaker is chosen so as to obtain an amplitude spectrum of a frequency response established for this loudspeaker from measurements made in a soundproof environment, in accordance with a first predetermined target spectrum (eg flat amplitude spectrum).
  • a first predetermined target spectrum eg flat amplitude spectrum
  • the application of this first criterion aims to individually correct the defects of each speaker, and reduce the differences that may appear between them.
  • the equalization aims to harmonize the amplitude spectra of the Sequential responses of the different loudspeakers.
  • the equalization filters are chosen so as to obtain an average amplitude spectrum evaluated from the impulse responses of the loudspeakers of the sets of the rendering system, according to a second predetermined target spectrum.
  • This second criterion aims at a global average equalization of all the power supply signals of the loudspeakers, for example to improve the tone (or coloration) of the restored signal.
  • the generation method further comprises a step of spatial analysis of the multichannel sound signal comprising the extraction of at least one sound object and the determination of a spatial position of this sound object, each signal input signal used to generate the speaker power signals of a set of loudspeakers being made from at least one sound object extracted during this spatial analysis step and selected according to its position space relative to the separation plane.
  • the invention makes it possible to process any multichannel sound signal and to optimize the rendering of this sound signal, by extracting sound objects from this system.
  • the rendering system further comprises a third set of loudspeakers, at least one loudspeaker of this third set being placed on either side of the separation plane.
  • This third set of speakers makes it possible to reproduce the sound objects of the multichannel signal whose spatial position determined during the spatial analysis step is in the center.
  • each set of speakers of the rendering system comprises a pair of loudspeakers.
  • the various steps of the generation method are determined by instructions of computer programs or microprocessors.
  • the invention also relates to a computer or microprocessor program on an information carrier, this program being capable of being implemented in a generation device or more generally in a computer or by a microprocessor, this program comprising instructions adapted to the implementation of the steps of a generation method as described above.
  • This program can use any programming language, and be in the form of source code, object code, or intermediate code between source code and object code, such as in a partially compiled form, or in any other form desirable shape.
  • the invention also relates to a computer-readable information medium, comprising instructions of a computer program as mentioned above.
  • the information carrier may be any entity or device capable of storing the program.
  • the medium may comprise storage means, such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or a magnetic recording medium, for example a floppy disk or a disk. hard.
  • the information medium may be a transmissible medium such as an electrical or optical signal, which may be conveyed via an electrical or optical cable, by radio or by other means.
  • the program according to the invention can be downloaded in particular on an Internet type network.
  • the information carrier may be an integrated circuit in which the program is incorporated, the circuit being adapted to execute or to be used in the execution of the method in question.
  • the invention also provides a sound reproduction system comprising:
  • the sound reproduction system comprises at least two sets of loudspeakers located in a front plane with respect to the listening positions and at least two sets of speakers located in a rear plane with respect to the listening positions.
  • This embodiment is particularly well suited to the rendering of multichannel signals comprising rear signals, for example signals having a 5.1 format.
  • the generation method, the generation device and the system according to the invention present in combination all or part of the aforementioned characteristics.
  • FIG. 1 already described represents, schematically, a technique of generalized transaural restitution of the state of the art
  • FIG. 2 represents a reproduction system according to the invention comprising a device for generating supply signals intended for loudspeaker assemblies, according to the invention
  • FIG. 3 illustrates the hardware architecture of the generation device of FIG. 2
  • FIG. 4 represents a reproduction system and a generation device according to the invention in a first particular embodiment of the invention
  • FIG. 5 illustrates the main steps of the generation method according to the invention as they are implemented by the generation device of FIG. 4 in the first embodiment
  • FIGS. 6A and 6B illustrate how the equalization filters that can be used during the generation process shown in FIG. 5 can be determined
  • FIG. 7 illustrates a variant of the first particular embodiment of the invention
  • FIG. 8 represents a reproduction system and a generation device according to the invention in a second particular embodiment of the invention.
  • FIG. 9 illustrates the main steps of the generation method according to the invention as implemented by the generation device of FIG. 8 in the second embodiment.
  • FIG. 10 represents a reproduction system and a generation device according to the invention in a third particular embodiment of the invention.
  • a reproduction system 1 comprising a plurality of sets of loudspeakers El. , ..., EN, (N greater than or equal to 2), and a device 2 for generating supply signals to these sets of loudspeakers, according to the invention.
  • Each set of loudspeakers includes at least one pair of loudspeakers and is associated with a determined listening position, this listening position being centered here with respect to this set of loudspeakers, so that at least a loudspeaker of the set is located on both sides of the listening position.
  • the loudspeakers of each set are positioned on either side of a vertical plane passing through the listening position and parallel to a vertical separation plane situated between the two sets of loudspeakers.
  • each listening position is centered relative to the set of speakers with which it is associated is not limiting in itself: the speakers of a set of speakers can be arranged asymmetrically with respect to the listening position.
  • the sets of speakers El, ..., EN can be mounted on separate physical entities or on the contrary on the same entity while delimiting distinct areas of space.
  • the generation device 2 is not necessarily located on the same physical entity as the speaker sets.
  • the generation device 2 has the hardware architecture of a computer, as illustrated schematically in FIG.
  • a processor 3 a read-only memory 4, a random access memory 5, a non-volatile memory 6 and communication means 7 on the one hand with a source supplying it with the multichannel sound signal S (not shown in FIG. 2) and on the other hand, with the loudspeakers of the loudspeaker sets El,..., EN to which the generating device 2 supplies the power signals that it has generated.
  • These communication means may be for example wired communication means, or alternatively, wireless communication means using WiFI (Wireless FIdelity) for example or Bluetooth TM.
  • the read-only memory 4 of the generation device 2 constitutes a recording medium in accordance with the invention, readable by the processor 3 and on which is recorded a computer program according to the invention, comprising instructions for the execution of the steps of a generation method according to the invention described later with reference to Figures 5 and 9, in various particular embodiments.
  • This computer program defines, in an equivalent way, functional modules of the generation device 2 (ie module of generation, generation module and if appropriate sound signal analysis module S and equalization).
  • FIG. 4 envisages a system for reproducing a stereo signal S 'comprising two sets of loudspeakers E1' and E2 ', each set comprising a pair of loudspeakers (FIG. Hll ', H12' for the set E1 'and ⁇ 2, H22' for the set E2 ').
  • the two sets El 'and E2' are located on either side of a vertical separation plane D '.
  • the vertical separation plane D ' defines a plane of symmetry for the two sets of loudspeakers El' and E2 '.
  • the speakers Hll ', ⁇ 12', ⁇ 2, H22 ' are, in the example illustrated in Figure 4, aligned or substantially aligned on the same horizontal axis ⁇ ' of the rendering system.
  • the invention is however not limited to such an aligned configuration of the loudspeakers.
  • the loudspeakers H11 'and H22' may be on the axis ⁇ 'while H 12' is positioned above the axis ⁇ 'and ⁇ 2 below, and so on.
  • Each set of speakers El ', E2' is positioned facing a privileged listening position PI ', P2'. These listening positions are located on vertical planes Ll 'and L2' respectively, which are parallel to the separation plane D '.
  • the listening positions PI 'and P2' are not necessarily one-off.
  • PI 'and P2' are located on a plane parallel to the separation plane since their geometric center is located on this parallel plane.
  • the listening position PI ' is centered with respect to the set of loudspeakers E1', in other words, the plane L1 'is a median plane of the set of loudspeakers E1'. speakers El ', orthogonal to the axis ⁇ '.
  • the listening position P2 ' is centered with respect to the set of loudspeakers E2', that is, the plane L2 'is a center plane of the set of loudspeakers E2' orthogonal to the loudspeaker assembly E2 '. 'axis ⁇ '.
  • the listeners i.e. listening positions
  • the loudspeakers are placed symmetrically with respect to the separation plane D '.
  • the two sets of speakers El 'and E2' are placed asymmetrically with respect to the separation plane D '.
  • the signal S ' is a stereo signal composed of two left and right channels, denoted respectively SL' and SR '.
  • the generating device 2' On receiving the sound signal S ', the generating device 2' implements a spatial analysis of this signal (step E10), in order to identify the components (ie sound objects) of this signal intended to be restored on the different sets of speakers.
  • the sound signal S ' is a stereo signal in the example envisaged in FIG. 4, this spatial analysis is limited here to associating with the first set of speakers El' situated to the left of the separation plane D 'in the space of sound reproduction, the left channel SL 'of the stereo signal, and the second set of speakers E2' located to the right of the separation plane D 'in the sound reproduction space, the right channel SR' of the stereo signal.
  • the signals SL 'and SR' are input signals in the sense of the invention for the set ⁇ and for the set E2 'respectively.
  • the generation device 2 applies two different transaural techniques to each of the input signals SL' and SR '.
  • Each set of speakers El 'and E2' is thus treated separately according to the invention.
  • the generation device 2 applies a first transaural technique Tl' to the input signal SL 'so as to create a virtual source VI' in a direction symmetrical with respect to the plane L1 ' passing through the listening position PI 'to the direction of the speaker of the set E2' furthest from the listening position PI ', in other words to the direction of the speaker H22'.
  • This virtual source VI ' is created, in the example envisaged in FIG. 4, at the intersection of the axis ⁇ ' and of the straight line d11 '(first straight line within the meaning of the invention) passing through the position of listening PI 'and symmetrical of the line dl2' (second right in the sense of the invention) connecting the listening position PI 'to the speaker H22'.
  • VI ' is the symmetrical (in distance and direction) of the loudspeaker H22' with respect to the plane L1 '.
  • the listener at the listening position PI ' has a sound scene extending between the direction given by the virtual source VI' (that is to say by the right dll ') and the direction given by the loudspeaker H22 '(i.e., the line dl2').
  • the virtual source VI' can also be created on the right dll 'so as to be the symmetrical direction and distance of the speaker H22 'relative to the plane L1'.
  • the implementation of the invention does not require that a symmetry in terms of distance is imperatively respected. It is enough that the source virtual VI 'is created on the right dll', that is to say in a direction symmetrical to the direction dl2 'relative to the plane Ll', that the speakers are aligned or not on the same axis.
  • the step E20 is implemented by the generation device 2 'by filtering the signal SL' by transaural filters determined so as to create the virtual source VI '.
  • these transaural filters are defined in such a way that the listener at the listening position PI 'receives on his two ears two binaural signals which define the virtual source VI'.
  • ZI ' is an acoustic transfer matrix between the input signal SL' and the two signals received respectively by the ears of the listener at the listening position PI '(ZI' is in fact a two-component vector in the example envisaged here),
  • - ⁇ is a transaural processing matrix between the input signal SL 'and the two power supply signals of the loudspeakers H 11' and H 12 '(Yl' represents the transaural filters and is also a two-component vector in the example envisaged here), and
  • the transaural filters applied to the signal SL ' are obtained by inversion of the matrix XI' and multiplication of the inverse matrix thus obtained by the matrix ZI '.
  • contains the binaural filters which correspond to the creation of the virtual source VI '
  • XI' contains the impulse response of the loudspeakers ⁇ 1 and H12 '.
  • the matrix XI ' is composed of four acoustic paths, namely the path between the loudspeaker H 11' and the left ear of the listener placed at P1 ', the path between the loudspeaker H11' and the right ear of the listener, the path between loudspeaker H12 'and the left ear of the listener and finally the path between loudspeaker H12' and the right ear of the listener. It can be determined in different ways. For example, as examples:
  • - XI 'can be simulated using a database of functions H RTF and extracting the HTRF in the direction of the speakers Hll' and H12 'relative to the listener at the listening position PI'; or - XI 'can be simulated with HTRF functions corresponding to a spherical head model well known to those skilled in the art.
  • transaural matrix filters ⁇ thus determined to the signal SL 'results in two power supply signals SU' and S12 'intended to feed respectively the two loudspeakers H11' and H12 'of the set E1'.
  • these power signals SU 'and S12' are equalized by means of individual equalizing filters F1 ', F2' before being supplied to the loudspeakers H11 'and H22' (step E30).
  • This spectral equalization step is intended to compensate for the possible defects of the speakers H11 'and H12' (for example, the tone of the speakers), and to reduce the differences that may exist between these different speakers.
  • the equalization filters F1 'and F2' respectively applied to the signals SU 'and S12' are of course predetermined during a preliminary step, and stored in the nonvolatile memory of the generation device 2 '.
  • the average impulse response is then transformed into a frequency response, in a manner known per se, for example by means of a Fourier transformation.
  • This average frequency response is then optionally smoothed by frequency band (eg octave bands or auditory bands).
  • the equalization filter is then chosen so as to obtain an amplitude spectrum of the optionally smoothed frequency response in accordance with a predetermined target amplitude spectrum SPcible (first target spectrum in the sense of the invention).
  • This target amplitude spectrum is for example a flat spectrum, that is to say constant whatever the frequency.
  • the equalization filter Fl ' is chosen so as to minimize the difference between SP1 'and SPcible, respectively between SP2' and SPCible, within a limit for example of plus or minus 5dB. This ensures that, on average, the amplitude spectrum of the frequency response of each speaker of the set of speakers El is identical or similar to the amplitude spectrum SPCible and therefore between them. It should be noted that in the example considered here, only the amplitude of the impulse response of each speaker is corrected, it is not interested in the phase itself.
  • the filtering of the signal SU 'by the filter F1' results in a filtered feed signal SI 1f, which is supplied by the device 2 'to the loudspeaker ⁇ 1 for reproduction (step E40).
  • the filtering of the signal S12 'by the filter F2' results in a filtered feed signal S12f, which is supplied by the device 2 'to the loudspeaker H 12' for reproduction (step E40).
  • the generation device 2 Similarly, and in parallel with steps E20-E40, the generation device 2 'applies a second transaural technique 12' to the input signal SR 'so as to create a virtual source V2' in a direction symmetrical with respect to the plane L2 'passing through the listening position P2' to the direction of the loudspeaker of the set ⁇ furthest from the listening position P2 ', that is to say the loudspeaker H 11' (step E50)
  • This virtual source V2 ' is created, in the example envisaged in FIG. 4, at the intersection of the axis ⁇ ' and of the straight line d22 '(first straight line within the meaning of the invention) passing through the position of listening P2 'and symmetrical to the line dl2' (second right in the sense of the invention) connecting the listening position P2 'to the loudspeaker H 11'.
  • the listener at the listening position P2 ' has a sound stage extending between the direction given by the virtual source V2' (that is to say, by the line d22 ') and the direction given by the loudspeaker ⁇ 1 (that is, the line dl2 ').
  • the step E50 is implemented by the generation device 2 'by filtering the signal SR' by transaural filters determined so as to create the virtual source V2 '.
  • These transaural filters are determined similarly or identically to the transaural filters applied during step E20 for the creation of the virtual source VI 'and will therefore not be described again here.
  • these supply signals S21 'and S22' are equalized by means of individual equalization filters F3 ', F4' before being supplied to the speakers ⁇ 2 and H22 '( step E60).
  • This spectral equalization step is intended to compensate for any speaker faults (for example, the tone of the speakers), and to reduce the differences that may exist between the different speakers (ie between H21 'and H22 ' right here).
  • the equalization filters F3 'and F4' respectively applied to the signals S21 'and
  • step E70 the filtering of the signal S22 'by the filter F4' results in a filtered feed signal S22f supplied to the loudspeaker H22 'for reproduction.
  • the filters F1 ', F2', F3 ', F4' are determined so as to compensate for possible defects of the loudspeakers H 11 ', H 12', H21 'and H22' respectively , and to harmonize the timbre of these speakers.
  • FIG. 6A illustrates a network of four microphones ml, m2, m3 and m4 duly positioned for the system.
  • the impulse responses thus measured are averaged over the set of loudspeakers for each microphone so as to obtain an average impulse response for each microphone.
  • the average impulse responses are transformed into frequency responses using a Fourier transform for example.
  • Frequency smoothing of the frequency responses thus obtained can be achieved (for example by octave or by auditory band).
  • the frequency average of the amplitude spectra of the possibly smoothed frequency responses associated with the microphones is then evaluated.
  • the average amplitude spectrum thus obtained thus includes the contribution of all the speakers of the system of restitution the on all the microphones ml, m2, m3 and m4.
  • the equalization filters to be applied to the supply signals before they are supplied to the loudspeakers are then chosen so as to obtain a spectrum of average amplitude (in a tolerance for example of +/- 5dB) with a spectrum of predetermined target amplitude SPcible '(second frequency response in the sense of the invention).
  • This target amplitude spectrum is for example a flat spectrum, as shown in FIG. 6B, that is constant regardless of the frequency.
  • the filters making it possible to improve the timbre of the system as a whole can be applied alternatively to the filters FI ', F2', F3 ', F4' previously described, or in addition to these filters ( applies the two sets of filters successively or equivalent filters to the supply signals).
  • the sets of loudspeakers E1 'and E2' each comprise a pair of loudspeakers.
  • the invention can also be applied in a similar manner to a different configuration of speaker assemblies El 'and E2', as illustrated in FIG. 7.
  • each set of loudspeakers El 'and E2' comprises three loudspeakers H 11 ', H12', H13 'and ⁇ 21', ⁇ 22 ', H23' respectively.
  • the virtual source VI ' is then created at a position symmetrical with respect to the plane L1' of the position of the loudspeaker H23 ', while the virtual source V2' is created at a position symmetrical with respect to the plane L2 'of the position of the loudspeaker H 11 '.
  • FIG. 8 a system for rendering 1 "of a stereo signal S" comprising two sets of loudspeakers E1 "and E2" arranged similarly to the sets E1 'and E2' of Figure 4, on either side of a vertical separation plane D ".
  • Each set of speakers El “, E2” is placed facing a preferred listening position PI “, P2" defined in a manner similar to that previously described for PI 'and P2', and comprises a pair of high speakers (H11 “, H12” for the set E1 “and H21", H22 “for the set E2”).
  • PI "and P2" are respectively located on vertical planes L1 “and L2" parallel to the separation plane D. "A loudspeaker of the set E1” is thus positioned on either side of L1 "and the listening position PI ", and a speaker of the set E2" is positioned on either side of L2 "and the listening position P2".
  • the reproduction system 1 "further comprises a third set E3" of two loudspeakers H31 “and H32" placed in the center of the reproduction system 1 ", between the two sets E1" and E2 ", as illustrated in FIG. 8. More precisely, the set of loudspeakers E3 "is positioned at the level of the separation plane D": at least one loudspeaker of the set E3 "is placed on either side of the separation plane D ".
  • the speakers H11 “, H12", H21 “, H22”, H31 “and H32” are in the example illustrated in Figure 8, aligned or substantially aligned on the same horizontal axis ⁇ "of the reproduction system. as mentioned above, this hypothesis is not limiting and no limitation is strictly attached to the placement of the loudspeakers of the sets El “, E2" and E3 "with respect to this horizontal axis.
  • the generation device 2 On reception of the sound signal S ", the generation device 2" implements a spatial analysis of this signal (step F10), in order to identify the components (ie sound objects) of this signal which will be restored on the different sets of speakers.
  • the analysis step F10 comprises a decomposition of the sound signal S "into several frequency sub-bands (eg in octave, or into auditory bands depending on the available processing power to implement the invention).
  • the device 2 "extracts on each frequency subband the sound objects contained in the signal S", and determines for each sound object, its spatial position.
  • the device 2 "then generates from the sound objects thus extracted three input signals denoted SL", SR "and SC" for the three sets of speakers El “, E2” and E3 ".
  • the sound objects selected for each input signal depend here on their spatial positions with respect to the separation plane D "(and more generally predetermined analysis criteria which determine to which set of loudspeakers to send which sound object according to its spatial position)
  • D the separation plane D
  • the generation device 2 "applies two different transaural techniques to each of the input signals SL" and SR ", similarly to what has been described previously with reference to FIG. F20 and F50 for applying a transaural technique resulting in the creation of two virtual sources VI “and V2", the spectral equalization steps F30 and F60 by the filters F1 ", F2", F3 “and F4", and the steps F40 and F70 for generating the power supply signals to the loudspeakers of the sets E1 "and E2" being identical respectively to the steps E20 and E50, to the steps E30 and E60, and to the steps E40 and E70, they are not described again here.
  • the generation device 2 also applies a spatial rendering technique T3" to the input signal SC "in order to generate the power signals of the speakers H31 “and H32" of the third central speaker set E3 "(step F80).
  • This rendering technique is chosen for example so as to directly broadcast the signal SC "on the speakers H31" and H32 ".
  • the supply signals S31 "S32” generated by applying the technique T3 "to the input signal SC” are then filtered using equalization filters (which can be determined according to a method similar to that explained previously to determine filters FI ', F2', F3 'and F4') (step F90).
  • the spatial reproduction technique T3 "applied to the input signal SC" generates supply signals for the loudspeakers of the three sets E1 “, E2” and E3 ", using a technique of holophonic rendering such as for example a WFS technique (for Wave Field Synthesis)
  • a technique of holophonic rendering such as for example a WFS technique (for Wave Field Synthesis)
  • this second embodiment can be declined according to the different variants previously envisaged for the first embodiment.
  • the invention also applies to other types of multichannel signals, for example to a multi-channel 5.1 signal.
  • FIG. 10 illustrates a reproduction system 1 "'according to a third embodiment, allowing the reproduction of a sound signal S'" 5.1, composed of a left channel (SL '"), of a right channel (SR '"), a left rear channel (SLs'”), a right rear channel (SRs '”), a center channel (SC”), and a bass channel (SLfe' ”) .
  • the reproduction system 1 "'comprises two subsystems" front “A and” rear “B, respectively placed in front of and behind the listening positions PI'" and P2 '"(with respect to the positioning of the listeners at these positions d 'listening).
  • the subsystem A comprises three sets of loudspeakers ⁇ ", EA2 '” and EA3' "arranged with respect to the listening positions PI '" and P2 ", and with respect to the vertical separation plane D'" so identical to the sets of speakers El “, E2” and E3 "considered previously to illustrate the second embodiment.
  • the subsystem B further comprises two sets of loudspeakers EB1 '' and EB2 '' disposed rearward of the listening positions PI '' and P2 '' identically to the loudspeaker assemblies E1 'and E2 'considered previously to illustrate the first embodiment.
  • EBl '"and ⁇ 2 '" are placed on either side of the vertical separation plane D'", and are respectively centered with respect to the vertical planes L1 '"and L2'" which are parallel to the separation plane D '"and pass through PI '"and P2'" respectively.
  • the reproduction system 1 "'thus comprises a frontal array of loudspeakers comprising the sets EA1'", EA2 '"and EA3'" which is located in a front plane with respect to the listening positions PI '"and P2' and a rear speaker array comprising the sets EB1 "and EB2 '" which is in a rear plane with respect to the listening positions PI' "and P2 '".
  • the channels SL '"and SR'" are used to generate power supply signals of the speaker assemblies ⁇ "and EA2 '" respectively, as previously described in the first embodiment, resulting in the creation of two sources virtual VA1 '"and VA2'";
  • the channel SC " is used to generate signals of supply of the loudspeakers of the third set EA3 '" of loudspeakers of the subsystem A, by applying a technique of spatial restitution directly on these channels, as described previously for the input signal SC "in the second embodiment;
  • the channels SLs' "and SRs'” are used to generate supply signals of the speaker assemblies ⁇ "and EB2 '" respectively, as previously described in the first embodiment, resulting in the creation of two sources virtual VB1 '"and VB2'", as shown in Figure 10;
  • the SLFE channel is used to generate a signal for powering a subwoofer not shown in FIG.
  • the "rear" subsystem B may be an exact replica of the "forward" subsystem A, symmetrical with respect to the listening positions PI '"and P2'".
  • different loudspeaker configurations may be envisioned for both subsystems (eg, three sets of two speakers for A and two sets of two speakers for B, as illustrated in Figure 10).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

Le procédé permet de générer des signaux d'alimentation d'un système (Γ) de deux ensembles de haut-parleurs (Ε1',Ε2') situés de part et d'autre d'un plan de séparation (D'), en vue d'une restitution sonore d'un signal multicanal (S') vers deux positions spatiales d'écoute (Ρ1',Ρ2'), chacune associée à un ensemble de haut-parleurs et située sur un plan parallèle (L1',L2') au plan de séparation de sorte qu'au moins un haut-parleur de cet ensemble soit de part et d'autre de ce plan parallèle. Le procédé comprend, pour chaque ensemble de haut-parleurs, la génération, à partir d'un signal d'entrée dérivé du signal multicanal, de signaux d'alimentation des haut-parleurs de cet ensemble, comprenant l'application d'une technique de restitution transaurale au signal d'entrée créant une source sonore virtuelle (V1',V2') sur une première droite (d11',d22') obtenue par symétrie, par rapport au plan parallèle (Ρ1',Ρ2') sur lequel est située la position spatiale d'écoute associée à cet ensemble, d'une seconde droite (d12',d21') reliant la position spatiale d'écoute au haut-parleur le plus distant de cette position appartenant à l'autre ensemble de haut- parleurs.

Description

Procédé et dispositif de génération de signaux d'alimentation destinés à un système de restitution sonore
Arrière-plan de l'invention
L'invention se rapporte au domaine général des traitements acoustiques et de la spatialisation des sons.
Elle concerne plus particulièrement un procédé de restitution sonore s'appuyant sur une technique transaurale.
L'invention s'applique par exemple dans un espace restreint, tel que par exemple dans un habitacle de voiture ou d'un autre véhicule (ex. un avion) équipé d'au moins deux paires de haut-parleurs, en vue de reproduire une scène sonore stéréophonique large (i.e. spatialisée) autour de deux positions d'écoute connues auxquelles sont susceptibles de se trouver des auditeurs. Dans l'exemple de l'habitacle de la voiture, ces deux positions sont par exemple la position du conducteur de la voiture et celle de son passager.
L'invention n'est toutefois pas limitée à cette seule application, et peut aisément s'appliquer à d'autres environnements sonores présentant une configuration de haut-parleurs similaire et dans lesquels on vise deux positions d'écoute différentes.
Il existe dans l'état de la technique, des techniques de restitution sonore dites binaurales qui s'appuient sur les caractéristiques physiologiques de l'audition humaine, via l'utilisation de fonctions de transfert aussi appelées HT F (pour Head Related Transfer Functions) qui traduisent l'ensemble des indices acoustiques spatiaux reçus au niveau des tympans d'un auditeur pour une source émise depuis un point donné de l'espace.
Ces techniques binaurales permettent d'obtenir une spatialisation sonore très proche de l'écoute naturelle. Toutefois, elles se limitent à une restitution sonore par l'intermédiaire d'un casque d'écoute.
Les techniques transaurales visent à adapter la synthèse binaurale à un dispositif de haut-parleurs.
Dans le cas simple d'un dispositif à deux haut-parleurs utilisé pour restituer un signal stéréophonique à destination d'un auditeur unique, ces techniques s'emploient à diffuser, via les deux haut-parleurs du dispositif, le signal binaural droit uniquement sur l'oreille droite de l'auditeur, et le signal binaural gauche uniquement sur son oreille gauche. A cet effet, les signaux indésirables entre les haut-parleurs et les oreilles de l'auditeur sont éliminés par l'intermédiaire de techniques dites d'élimination des chemins croisés (CTC pour « CrossTalk Cancellation ») aussi connues sous le nom de techniques d'annulation d'écho. Autrement dit, le signal sonore émis par le haut-parleur droit sur l'oreille gauche, et le signal sonore émis par le haut-parleur gauche sur l'oreille droite sont éliminés ou tout du moins réduits par un traitement de signal approprié.
Le document de J. Bauck et al., intitulé « Generalized Transaural Stereo and Applications », Journal of Audio Engineering Society, vol. 44 n°9, sept. 1996 (ci-après Dl), décrit une technique transaurale généralisée pouvant être appliquée à un nombre quelconque de haut- parleurs et d'auditeurs.
La figure 1 illustre le système envisagé dans Dl : N programmes sonores (i.e., N signaux sonores multicanaux) sont utilisés pour générer M signaux alimentant respectivement M haut-parleurs d'un système de restitution destiné à L/2 auditeurs (autrement dit, L oreilles humaines). Le traitement permettant de générer les M signaux d'alimentation des haut-parleurs à partir des N programmes sonores est un traitement d'annulation de chemins croisés.
Ce système peut être modélisé sous forme matricielle. Ainsi, si :
— Z désigne la matrice acoustique de transfert entre les N programmes sonores d'origine et les L signaux reçus respectivement par les oreilles des auditeurs,
— Y désigne la matrice de traitement CTC entre les N programmes sonores d'origine et les M signaux d'alimentation des M haut-parleurs (Y représente les filtres transauraux), et
— X désigne la matrice de propagation acoustique entre les M haut-parleurs et les L oreilles des auditeurs,
l'équation matricielle suivante doit être résolue :
Z = XY (i)
Dans cette équation matricielle, les matrices X et Z sont connues : en effet, la matrice Z caractérise le rendu sonore souhaité au niveau des auditeurs tandis que la matrice X est mesurable. On cherche donc une matrice de traitement Y vérifiant l'équation (1).
La matrice X est de dimensions LxM : elle n'est donc pas nécessairement carrée. Par ailleurs, cette matrice n'est pas toujours bien conditionnée. Elle n'est donc pas toujours inversible. En de telles conditions, il est usuel de recourir à la matrice pseudo-inverse de la matrice X, notée X+, et définie par :
H définit l'opérateur hermitien.
La solution à l'équation (1) est alors donnée par :
y = +Z (2)
La technique proposée dans Dl est générale et convient en théorie à n'importe quelles valeurs de N, M et L.
Toutefois, cette technique ne fonctionne que dans une configuration géométrique déterminée de haut-parleurs et de positions des auditeurs, et est particulièrement sensible à l'environnement acoustique des auditeurs. Elle requiert en outre l'inversion de la matrice acoustique X, qui pour de multiples raisons, comme mentionné précédemment, peut s'avérer problématique (en cas de mauvais conditionnement de la matrice), voire impossible pour certaines bandes de fréquences de la bande audible.
Il existe donc un besoin d'un procédé de restitution spatialisée d'un signal sonore à destination de deux positions spatiales déterminées, et via un système de restitution équipé d'au moins deux paires de ha ut- parleurs, qui soit robuste et ne présente pas les inconvénients précités de l'état de la technique.
Objet et résumé de l'invention
L'invention répond notamment à ce besoin en proposant un procédé de génération de signaux d'alimentation destinés à un système de restitution sonore comprenant deux ensembles de haut-parleurs situés de part et d'autre d'un plan de séparation, ces signaux d'alimentation étant générés en vue d'une restitution sonore d'un signal sonore multicanal vers deux positions spatiales d'écoute, chaque position spatiale d'écoute étant associée à l'un des ensembles de haut-parleurs et étant située sur un plan parallèle au plan de séparation de sorte qu'au moins un haut-parleur de cet ensemble soit positionné de part et d'autre de ce plan parallèle, le procédé de génération comprenant, pour chaque ensemble de haut-parleurs, une étape de génération, à partir d'un signal d'entrée dérivé du signal sonore multicanal pour cet ensemble, de signaux d'alimentation destinés à alimenter les haut-parleurs de cet ensemble, cette étape de génération comprenant l'application d'une technique de restitution transaurale au signal d'entrée, cette technique créant une source sonore virtuelle pour la position d'écoute associée à l'ensemble sur une première droite obtenue par symétrie, par rapport au plan parallèle sur lequel est située la position spatiale d'écoute associée à cet ensemble, d'une seconde droite reliant la position spatiale d'écoute au haut-parleur le plus distant de cette position appartenant à l'autre ensemble de haut-parleurs du système de restitution.
Corrélativement, l'invention vise également un dispositif de génération de signaux d'alimentation destinés à un système de restitution sonore comprenant deux ensembles de haut- parleurs situés de part et d'autre d'un plan de séparation, lesdits signaux étant générés en vue d'une restitution sonore d'un signal sonore multicanal vers deux positions spatiales d'écoute, chaque position spatiale d'écoute étant associée à l'un des ensembles de haut-parleurs et étant située sur un plan parallèle au plan de séparation de sorte qu'au moins un haut-parleur de cet ensemble est positionné de part et d'autre de ce plan parallèle, ce dispositif de génération comprenant des moyens aptes à générer pour chaque ensemble de haut-parleurs, à partir d'un signal d'entrée dérivé du signal sonore multicanal pour cet ensemble, des signaux d'alimentation destinés à alimenter les haut-parleurs de cet ensemble, ces moyens étant aptes à appliquer une technique de restitution transaurale au signal d'entrée, cette technique créant une source sonore virtuelle pour la position d'écoute associée à l'ensemble sur une première droite obtenue par symétrie, par rapport au plan parallèle sur lequel est située la position spatiale d'écoute associée à cet ensemble, d'une seconde droite reliant la position spatiale d'écoute au haut-parleur le plus distant de cette position appartenant à l'autre ensemble de haut-parleurs du système de restitution. Les haut-parleurs des deux ensembles de haut-parleurs du système de restitution peuvent être montés dans ou sur deux entités physiques disjointes, ou en variante, sur une même entité physique mais séparés par un plan « virtuel » vertical dit de séparation.
Ils sont orientés en direction des positions d'écoute auxquelles ils sont associés, autrement dit, chaque position d'écoute se trouve dans la zone frontale des haut-parleurs de l'ensemble auquel elle est associée.
Ainsi, l'invention permet une restitution sonore spatialisée d'un signal sonore multicanal, à partir d'un réseau de haut-parleurs comprenant au moins deux ensembles de haut- parleurs, et simultanément pour deux positions d'écoute définies respectivement par rapport à ces deux ensembles de haut-parleurs.
Ces positions d'écoute ne sont pas nécessairement ponctuelles : il peut en effet s'agir de zones spatiales d'écoute à proprement parler, auquel cas on entend par position d'écoute située sur un plan parallèle au plan de séparation, le fait que le centre géométrique de cette position d'écoute se trouve sur le plan parallèle. Ces zones spatiales d'écoute sont définies préférentiel lement par un rayon autour du centre géométrique inférieur à 15-20 cm.
Chaque ensemble de haut-parleurs du système de restitution envisagé pour la restitution sonore du signal multicanal comprend ainsi un haut-parleur de part et d'autre du plan parallèle sur lequel est située la position d'écoute. La position d'écoute est par exemple centrée par rapport à l'ensemble de haut-parleurs auquel elle est rattachée.
Pour permettre une restitution sonore spatialisée, l'invention propose avantageusement de traiter séparément chaque ensemble de haut-parleurs et la position d'écoute qui lui est rattachée.
Plus précisément, une technique transaurale distincte est utilisée pour chaque ensemble de haut-parleurs pour générer les signaux d'alimentation des haut-parleurs de cet ensemble. Cette technique transaurale est implémentée conformément à l'invention, de sorte à créer une source virtuelle à l'extérieur du réseau de haut-parleurs, dans la direction opposée par rapport à la position d'écoute associée à l'ensemble de haut-parleurs considéré, au haut-parleur du réseau le plus éloigné de cette position (et appartenant à l'autre ensemble de haut-parleurs).
De cette sorte, l'invention associe d'une part les avantages d'une restitution transaurale appliquée à un faible nombre de haut-parleurs (résultant du traitement séparé effectué sur chaque ensemble de haut-parleurs), et d'autre part, le principe de précédence ou loi du premier front d'onde, bien connu de l'homme du métier. Selon ce principe, la localisation d'un objet sonore est donnée par la direction d'où provient le son qui arrive en premier à l'oreille (i.e. premier front d'onde).
Pour mieux illustrer l'invention, considérons un signal sonore multicanal de type stéréo, que l'on souhaite restituer via un réseau frontal de haut-parleurs constitués de deux ensembles de deux haut-parleurs, ces ensembles étant placés respectivement face à deux positions spatiales d'écoute. L'invention revient, selon cet exemple, à spatialiser la partie gauche de la scène sonore (donnée par le canal gauche du signal stéréo) pour la position d'écoute située à gauche du plan de séparation (dite position d'écoute gauche) et à spatialiser la partie droite de la scène sonore (donnée par le canal droite du signal stéréo) pour la position d'écoute située à droite du plan de séparation, (dite position d'écoute droite), la partie droite de la scène sonore étant alors naturellement donnée pour la position d'écoute gauche par la position de l'ensemble des haut- parleurs situé à droite de celle-ci, et la partie gauche de la scène sonore étant naturellement donnée pour la position d'écoute droite par la position de l'ensemble des haut-parleurs situé à gauche de celle-ci.
II en résulte une technique de restitution sonore spatialisée relativement simple à mettre en oeuvre : les matrices à inverser dans les techniques transaurales implémentées selon l'invention sont en effet de dimensions réduites (matrices 2x2 dans l'exemple envisagé précédemment), puisqu'elles sont limitées à chaque ensemble de haut-parleurs. De cette sorte, elles ne souffrent pas ou peu des inconvénients de l'état de la technique (matrices de grandes dimensions difficiles à inverser et mal conditionnées). La technique de restitution proposée par l'invention est ainsi plus robuste à l'environnement du système de restitution.
Par ailleurs, pour une configuration de système de restitution dans laquelle les haut- parleurs de chaque ensemble sont peu écartés (typiquement, pour un espacement maximal entre les haut-parleurs de 70 cm), la restitution sonore proposée par l'invention est moins sensible au phénomène dit de « sweet-spot » que la restitution sonore proposée dans Dl.
De façon connue, le « sweet-spot » définit une zone d'écoute idéale pour laquelle la restitution sonore est conçue et optimisée : cette zone d'écoute idéale correspond généralement à une unique position au centre du dispositif.
Dans Dl, lorsqu'un auditeur se déplace en dehors de cette zone d'écoute idéale, il perçoit non seulement un changement de l'image spatiale du signal sonore restitué, mais également un changement de timbre (i.e. une coloration du signal restitué).
Au contraire dans l'invention, un auditeur placé au niveau d'une position d'écoute associée à un ensemble de haut-parleurs, et qui se trouve par là-même en dehors du « sweet- spot » de la technique de restitution associée à l'autre ensemble de haut-parleurs et à l'autre position d'écoute, n'entend pas d'effet de spatial isation non désiré. Il entend uniquement un effet de coloration du signal d'entrée restitué par l'autre ensemble de haut-parleurs, mais celui-ci est perçu sur des haut-parleurs éloignés (i.e. sur les haut-parleurs de l'autre ensemble de haut- parleurs).
Dans un mode particulier de réalisation de l'invention, les haut-parleurs des deux ensembles de restitution sont sensiblement alignés sur un axe horizontal du système de restitution.
Une telle configuration de haut-parleurs a une application privilégiée dans un espace de dimensions réduites tel un habitacle de voiture par exemple. Dans ce mode particulier de réalisation, au cours de l'étape de génération, la source virtuelle est créée préférentiellement à l'intersection de la première droite et de l'axe horizontal du système de restitution, de sorte à optimiser la restitution spatiale du signal sonore multicanal.
Dans un mode particulier de réalisation, le procédé de génération comprend en outre une étape d'égalisation spectrale au cours de laquelle, on applique individuellement à chaque signal d'alimentation destiné à alimenter un haut-parleur, un filtre d'égalisation adapté à ce haut- parleur.
Cette égalisation spectrale permet avantageusement de prendre en compte l'environnement dans lequel se trouve le système de restitution.
De manière générale, et plus spécifiquement lorsque le système de restitution se trouve dans un environnement clos tel que par exemple l'habitacle d'une voiture, on peut s'attendre à ce que le timbre du signal sonore multicanal restitué ne soit pas identique aux deux positions d'écoute. L'égalisation spectrale peut être mise en œuvre en vue de corriger cet effet. Elle va par la même occasion, pour chaque position d'écoute, corriger l'effet de coloration dû à la technique transaurale appliquée à l'ensemble de haut-parleurs opposé à la position d'écoute.
Différents critères peuvent donc être envisagés pour dériver ces filtres d'égalisation.
Selon un premier critère, chaque filtre d'égalisation adapté à un haut-parleur est choisi de sorte à obtenir un spectre d'amplitude d'une réponse fréquentielle établie pour ce haut-parleur à partir de mesures réalisées dans un environnement insonorisé, conforme à un premier spectre cible prédéterminé (ex. spectre d'amplitude plat).
L'application de ce premier critère vise à corriger individuellement les défauts de chaque haut-parleur, et à réduire les différences pouvant apparaître entre eux. L'égalisation vise à harmoniser les spectres d'amplitude des réponses Séquentielles des différents haut-parleurs.
Selon une deuxième variante, les filtres d'égalisation sont choisis de sorte à obtenir un spectre d'amplitude moyen évalué à partir des réponses impulsionnelles des haut-parleurs des ensembles du système de restitution, conforme à un second spectre cible prédéterminé.
Ce second critère vise une égalisation moyenne globale de tous les signaux d'alimentation des haut-parleurs, en vue par exemple d'améliorer le timbre (ou coloration) du signal restitué.
Dans un mode particulier de réalisation, le procédé de génération comprend en outre une étape d'analyse spatiale du signal sonore multicanal comprenant l'extraction d'au moins un objet sonore et la détermination d'une position spatiale de cet objet sonore, chaque signal d'entrée utilisé pour générer les signaux d'alimentation des haut-parleurs d'un ensemble de haut- parleurs étant élaboré à partir d'au moins un objet sonore extrait lors de cette étape d'analyse spatiale et sélectionné en fonction de sa position spatiale par rapport au plan de séparation.
L'invention permet par le biais de cette analyse spatiale de traiter n'importe quel signal sonore multicanal et d'optimiser le rendu de ce signal sonore, via l'extraction des objets sonores de ce système. Dans un autre mode de réalisation, le système de restitution comprend en outre un troisième ensemble de haut-parleurs, au moins un haut-parleur de ce troisième ensemble étant placé de part et d'autre du plan de séparation.
Ce troisième ensemble de haut-parleurs permet notamment de restituer les objets sonores du signal multicanal dont la position spatiale déterminée au cours de l'étape d'analyse spatiale est au centre.
Dans un mode préférentiel de réalisation, chaque ensemble de haut-parleurs du système de restitution comprend une paire de haut-parleurs.
Dans un mode particulier de réalisation, les différentes étapes du procédé de génération sont déterminées par des instructions de programmes d'ordinateurs ou de microprocesseurs.
En conséquence, l'invention vise aussi un programme d'ordinateur ou de microprocesseur sur un support d'informations, ce programme étant susceptible d'être mis en œuvre dans un dispositif de génération ou plus généralement dans un ordinateur ou par un microprocesseur, ce programme comportant des instructions adaptées à la mise en œuvre des étapes d'un procédé de génération tel que décrit ci-dessus.
Ce programme peut utiliser n'importe quel langage de programmation, et être sous la forme de code source, code objet, ou de code intermédiaire entre code source et code objet, tel que dans une forme partiellement compilée, ou dans n'importe quelle autre forme souhaitable.
L'invention vise aussi un support d'informations lisible par un ordinateur, et comportant des instructions d'un programme d'ordinateur tel que mentionné ci-dessus.
Le support d'informations peut être n'importe quelle entité ou dispositif capable de stocker le programme. Par exemple, le support peut comporter un moyen de stockage, tel qu'une ROM, par exemple un CD ROM ou une ROM de circuit microélectronique, ou encore un moyen d'enregistrement magnétique, par exemple une disquette (floppy dise) ou un disque dur.
D'autre part, le support d'informations peut être un support transmissible tel qu'un signal électrique ou optique, qui peut être acheminé via un câble électrique ou optique, par radio ou par d'autres moyens. Le programme selon l'invention peut être en particulier téléchargé sur un réseau de type Internet.
Alternativement, le support d'informations peut être un circuit intégré dans lequel le programme est incorporé, le circuit étant adapté pour exécuter ou pour être utilisé dans l'exécution du procédé en question.
Selon un autre aspect, l'invention vise également un système de restitution sonore comprenant :
— au moins deux ensembles de haut-parleurs ; et
— un dispositif de génération de signaux d'alimentation destinés aux haut-parleurs desdits deux ensembles de haut-parleurs selon l'invention. Dans un autre mode de réalisation, le système de restitution sonore comprend au moins deux ensembles de haut-parleurs situés dans un plan frontal par rapport aux positions d'écoute et au moins deux ensembles de haut-parleurs situés dans un plan arrière par rapport aux positions d'écoute.
Ce mode de réalisation est particulièrement bien adapté à la restitution de signaux multicanaux comprenant des signaux arrière comme par exemple des signaux ayant un format 5.1.
On peut également envisager, dans d'autres modes de réalisation, que le procédé de génération, le dispositif de génération et le système selon l'invention présentent en combinaison tout ou partie des caractéristiques précitées.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent des exemples de réalisation dépourvus de tout caractère limitatif. Sur les figures :
— la figure 1 déjà décrite représente, de façon schématique, une technique de restitution transaurale généralisée de l'état de la technique ;
— la figure 2 représente un système de restitution conforme à l'invention comprenant un dispositif de génération de signaux d'alimentation destinés à des ensembles de haut-parleurs, conforme à l'invention ;
— la figure 3 illustre l'architecture matérielle du dispositif de génération de la figure 2 ;
— la figure 4 représente un système de restitution et un dispositif de génération conformes à l'invention dans un premier mode particulier de réalisation de l'invention ;
— la figure 5 illustre les principales étapes du procédé de génération selon l'invention telles qu'elles sont mises en œuvre par le dispositif de génération de la figure 4 dans le premier mode de réalisation ;
— les figures 6A et 6B illustrent comment peuvent être déterminés les filtres d'égalisation pouvant être utilisés lors du procédé de génération représenté à la figure 5 ;
— la figure 7 illustre une variante du premier mode particulier de réalisation de l'invention ;
— la figure 8 représente un système de restitution et un dispositif de génération conformes à l'invention dans un deuxième mode particulier de réalisation de l'invention ;
— la figure 9 illustre les principales étapes du procédé de génération selon l'invention telles qu'elles sont mises en œuvre par le dispositif de génération de la figure 8 dans le deuxième mode de réalisation ; et
— la figure 10 représente un système de restitution et un dispositif de génération conformes à l'invention dans un troisième mode particulier de réalisation de l'invention.
Description détaillée de l'invention Nous allons maintenant décrire, en référence aux figures 2 à 10, trois modes de réalisation particuliers de l'invention.
Dans ces trois modes de réalisation, on envisage, comme illustré schématiquement à la figure 2, la restitution d'un signal sonore S multicanal via un système de restitution 1 conforme à l'invention, comprenant une pluralité d'ensembles de haut-parleurs El,..., EN, (N supérieur ou égal à 2), et un dispositif 2 de génération de signaux d'alimentation à ces ensembles de haut- parleurs, conforme à l'invention.
Chaque ensemble de haut-parleurs comprend au moins une paire de haut-parleurs et est associé à une position d'écoute déterminée, cette position d'écoute étant centrée ici par rapport à cet ensemble de haut-parleurs, de sorte qu'au moins un haut-parleur de l'ensemble est situé de part et d'autre de la position d'écoute.
Plus généralement, les haut-parleurs de chaque ensemble sont positionnés de part et d'autre d'un plan vertical passant par la position d'écoute et parallèle à un plan vertical de séparation situés entre les deux ensembles de haut-parleurs.
Toutefois, l'hypothèse selon laquelle chaque position d'écoute est centrée par rapport à l'ensemble de haut-parleurs auquel elle est associée n'est pas limitative en soi : les haut-parleurs d'un ensemble de haut-parleurs peuvent être disposés de façon asymétrique par rapport à la position d'écoute.
Les ensembles de haut-parleurs El,..., EN, peuvent être montés sur des entités physiques distinctes ou au contraire sur une même entité tout en délimitant des zones distinctes de l'espace. De même, le dispositif de génération 2 n'est pas nécessairement localisé sur la même entité physique que les ensembles de haut-parleurs.
Dans les modes de réalisation décrit ici, le dispositif de génération 2 selon l'invention a l'architecture matérielle d'un ordinateur, comme illustré schématiquement à la figure 3.
II comporte notamment un processeur 3, une mémoire morte 4, une mémoire vive 5, une mémoire non volatile 6 et des moyens de communication 7 d'une part avec une source lui fournissant le signal sonore multicanal S (non représentée sur la figure 2) et d'autre part, avec les haut-parleurs des ensembles de haut-parleurs El,..., EN auxquels le dispositif de génération 2 fournit les signaux d'alimentation qu'il a générés. Ces moyens de communication peuvent être par exemples des moyens de communication filaires, ou en variante, des moyens de communication sans fil utilisant une technologie WiFI (Wireless FIdelity) par exemple ou Bluetooth™.
La mémoire morte 4 du dispositif de génération 2 constitue un support d'enregistrement conforme à l'invention, lisible par le processeur 3 et sur lequel est enregistré un programme d'ordinateur conforme à l'invention, comportant des instructions pour l'exécution des étapes d'un procédé de génération selon l'invention décrites ultérieurement en référence aux figures 5 et 9, dans différents modes particuliers de réalisation. Ce programme d'ordinateur définit, de façon équivalente, des modules fonctionnels du dispositif 2 de génération (i.e. module de génération, module de génération et le cas échéant module d'analyse du signal sonore S et d'égalisation).
Par souci de simplification et de clarté dans la suite de la description, les éléments similaires sont référencés à l'aide de références numériques identiques indexés par ', " ou "' selon le mode de réalisation envisagé.
Nous allons maintenant décrire en référence aux figures 4 à 7 un premier mode particulier de réalisation de l'invention.
Pour illustrer ce premier mode de réalisation, on envisage à la figure 4 un système de restitution l' d'un signal stéréo S' comprenant deux ensembles de haut-parleurs El' et E2', chaque ensemble comprenant une paire de haut-parleurs (Hll', H12' pour l'ensemble El' et Η2 , H22' pour l'ensemble E2').
Les deux ensembles El' et E2' sont situés de part et d'autre d'un plan de séparation vertical D'. Dans l'exemple représenté à la figure 4, le plan de séparation vertical D' définit un plan de symétrie pour les deux ensembles de haut-parleurs El' et E2'.
Les haut-parleurs Hll', Η12', Η2 , H22' sont, dans l'exemple illustré à la figure 4, alignés ou sensiblement alignés sur un même axe horizontal Δ' du système de restitution.
L'invention ne se limite toutefois pas à une telle configuration alignée des haut- parleurs. Ainsi à titre illustratif, les haut-parleurs Hll' et H22' peuvent être sur l'axe Δ' tandis que H 12' est positionné au dessus de l'axe Δ' et Η2 en dessous, etc.
Chaque ensemble de haut-parleurs El', E2' est positionné face à une position d'écoute privilégiée PI', P2'. Ces positions d'écoute sont situées sur des plans verticaux Ll' et L2' respectivement, qui sont parallèles au plan de séparation D'.
Il convient de noter que les positions d'écoute PI' et P2' ne sont pas nécessairement ponctuelles. Au sens de l'invention PI' et P2' sont situées sur un plan parallèle au plan de séparation dès lors que leur centre géométrique est situé sur ce plan parallèle.
Selon l'exemple illustré à la figure 4, la position d'écoute PI' est centrée par rapport à l'ensemble de haut-parleurs El', autrement dit, le plan Ll' est un plan médian de l'ensemble de haut-parleurs El', orthogonal à l'axe Δ'.
De même, la position d'écoute P2' est centrée par rapport à l'ensemble de haut- parleurs E2', autrement dit, le plan L2' est un plan médian de l'ensemble de haut-parleurs E2', orthogonal à l'axe Δ'.
On suppose que les positions d'écoute PI' et P2' sont occupées par deux auditeurs.
Ainsi, conformément à cette configuration, les auditeurs (i.e. positions d'écoute) et les haut-parleurs sont placés de façon symétrique par rapport au plan de séparation D'.
Toutefois cette hypothèse n'est pas limitative et on peut envisager en variante que les deux ensembles de haut-parleurs El' et E2' soient placés de façon asymétrique par rapport au plan de séparation D'. Dans l'exemple envisagé à la figure 4, le signal S' est un signal stéréo, composé de deux canaux gauche et droite, notés respectivement SL' et SR'.
Nous allons maintenant décrire en référence à la figure 5, les principales étapes du procédé de génération selon l'invention, dans le premier mode de réalisation, lorsqu'il est mis en œuvre par le dispositif de génération 2' pour fournir des signaux d'alimentation aux haut-parleurs des ensembles Ε et E2'.
Sur réception du signal sonore S', le dispositif de génération 2' met en œuvre une analyse spatiale de ce signal (étape E10), afin d'identifier les composantes (i.e. objets sonores) de ce signal destinées à être restituées sur les différents ensembles de haut-parleurs.
Le signal sonore S' étant un signal stéréo dans l'exemple envisagé à la figure 4, cette analyse spatiale se limite ici à associer au premier ensemble de haut-parleurs El' situé à gauche du plan de séparation D' dans l'espace de restitution sonore, le canal gauche SL' du signal stéréo, et au deuxième ensemble de haut-parleurs E2' situé à droite du plan de séparation D' dans l'espace de restitution sonore, le canal droite SR' du signal stéréo. Les signaux SL' et SR' sont des signaux d'entrée au sens de l'invention pour l'ensemble Ε et pour l'ensemble E2' respectivement.
Puis conformément à l'invention, le dispositif de génération 2' applique deux techniques transaurales distinctes à chacun des signaux d'entrée SL' et SR'. Chaque ensemble de haut-parleurs El' et E2' est ainsi traité séparément conformément à l'invention.
Plus précisément, au cours de l'étape E20, le dispositif de génération 2' applique une première technique transaurale Tl' au signal d'entrée SL' de sorte à créer une source virtuelle VI' dans une direction symétrique par rapport au plan Ll' passant par la position d'écoute PI' à la direction du haut-parleur de l'ensemble E2' le plus distant de la position d'écoute PI', autrement dit à la direction du haut-parleur H22'.
Cette source virtuelle VI' est créée, dans l'exemple envisagé à la figure 4, à l'intersection de l'axe Δ' et de la droite dll' (première droite au sens de l'invention) passant par la position d'écoute PI' et symétrique de la droite dl2' (seconde droite au sens de l'invention) reliant la position d'écoute PI' au haut-parleur H22'. Autrement dit, dans l'exemple de la figure 4, VI' est le symétrique (en distance et en direction) du haut-parleur H22' par rapport au plan Ll'.
De cette sorte, l'auditeur se trouvant à la position d'écoute PI' dispose d'une scène sonore s'étendant entre la direction donnée par la source virtuelle VI' (c'est-à-dire par la droite dll') et la direction donnée par le haut-parleur H22' (c'est-à-dire par le droite dl2').
Selon une autre configuration de haut-parleurs dans laquelle les haut-parleurs des ensembles El' et E2' ne sont pas alignés sur un même axe Δ', la source virtuelle VI' peut également être créée sur la droite dll' de sorte à être le symétrique en direction et en distance du haut-parleur H22' par rapport au plan Ll'.
Toutefois, il convient de noter que la mise en œuvre de l'invention n'impose pas qu'une symétrie en termes de distance soit impérativement respectée. Il suffit que la source virtuelle VI' soit créée sur la droite dll', c'est-à-dire dans une direction symétrique à la direction dl2' par rapport au plan Ll', que les haut-parleurs soient alignés ou non sur un même axe.
L'étape E20 est mise en œuvre par le dispositif de génération 2' en filtrant le signal SL' par des filtres transauraux déterminés de sorte à créer la source virtuelle VI'. En d'autres mots, ces filtres transauraux sont définis de telle façon que l'auditeur placé à la position d'écoute PI' reçoive sur ses deux oreilles deux signaux binauraux qui définissent la source virtuelle VI'.
Plus spécifiquement, si l'on suppose, en reprenant les notations précédemment introduites en référence à la figure 1, que :
— ZI' est une matrice acoustique de transfert entre le signal d'entrée SL' et les deux signaux reçus respectivement par les oreilles de l'auditeur situé à la position d'écoute PI' (ZI' est en fait un vecteur à deux composantes dans l'exemple envisagé ici),
— Υ est une matrice de traitement transaural entre le signal d'entrée SL' et les deux signaux d'alimentation des haut-parleurs H 11' et H 12' (Yl' représente les filtres transauraux et est également un vecteur à deux composantes dans l'exemple envisagé ici), et
— XI' désigne une matrice de propagation acoustique entre les deux haut-parleurs Η1 et H12' et les oreilles de l'auditeur placé à la position d'écoute PI' (XI' est de dimension 2x2 ici), la matrice Υ contenant les filtres transauraux appliqués au signal SL' vérifie l'équation matricielle suivante :
Zl'= XVYV
Autrement dit, les filtres transauraux appliqués au signal SL' sont obtenus par inversion de la matrice XI' et multiplication de la matrice inverse ainsi obtenue par la matrice ZI'.
Comme mentionné précédemment, les matrices ZI' et XI' sont connues : Ζ contient les filtres binauraux qui correspondent à la création de la source virtuelle VI', et XI' contient la réponse impulsionnelle des haut-parleurs Η1 et H12'.
La détermination des filtres binauraux permettant la création de la source virtuelle VI' ne pose pas de difficulté en soi pour l'homme du métier et ne sera pas décrite davantage ici. On peut se référer notamment au document WO 95/23493.
La matrice XI' se compose quant à elle de quatre trajets acoustiques, à savoir le trajet entre le haut-parleur H 11' et l'oreille gauche de l'auditeur placé en PI', le trajet entre le haut- parleur Hll' et l'oreille droite de l'auditeur, le trajet entre haut-parleur H12' et l'oreille gauche de l'auditeur et enfin le trajet entre le haut-parleur H12' et l'oreille droite de l'auditeur. Elle peut être déterminée de différentes façons. Ainsi, à titre d'exemples :
— XI' peut être mesurée directement aux oreilles de l'auditeur en posant des microphones binauraux au niveau de ses oreilles ;
— XI' peut être simulée en utilisant une base de données de fonctions H RTF et en extrayant les HTRF dans la direction des haut-parleurs Hll' et H12' par rapport à l'auditeur placé à la position d'écoute PI' ; ou — XI' peut être simulée grâce à des fonctions HTRF correspondant à un modèle de tête sphérique bien connues de l'homme du métier.
L'application des filtres transauraux de la matrice Υ ainsi déterminés au signal SL' résulte en deux signaux d'alimentation SU' et S12' destinés à alimenter respectivement les deux haut-parleurs Hll' et H12' de l'ensemble El'.
Dans le premier mode de réalisation décrit ici, ces signaux d'alimentation SU' et S12' sont égalisés à l'aide de filtres d'égalisation individuels Fl', F2' avant d'être fournis aux haut- parleurs Hll' et H22' (étape E30). Cette étape d'égalisation spectrale a pour but de compenser les éventuels défauts des haut-parleurs Hll' et H12' (par exemple, le timbres des haut-parleurs), et de réduire les différences pouvant exister entre ces différents haut-parleurs.
Les filtres d'égalisation Fl' et F2', appliqués respectivement sur les signaux SU' et S12' sont bien entendu prédéterminés au cours d'une étape préliminaire, et stockés dans la mémoire non volatile du dispositif de génération 2'.
Une méthode pouvant être mise en œuvre au cours de cette étape préliminaire pour déterminer les filtres Fl' et F2' est la suivante.
Dans un premier temps, des mesures sont effectuées pour chaque haut-parleur Hll' et H 12' en environnement insonorisé (i.e. traité acoustiquement) avec un microphone omnidirectionnel placé en face de chaque haut-parleur et des signaux de référence connus (ex. bruit blanc). Ces mesures permettent d'obtenir les réponses impulsionnelles de chaque haut- parleur Hll' et H 12'.
Puis pour chaque haut-parleur, on réalise une moyenne temporelle des différentes réponses impulsionnelles mesurées pour ce haut-parleur de sorte à obtenir une réponse impulsionnelle moyenne.
La réponse impulsionnelle moyenne est ensuite transformée en une réponse fréquentielle, de façon connue en soi, par exemple par l'intermédiaire d'une transformation de Fourier. Cette réponse fréquentielle moyenne est ensuite éventuellement lissée par bande de fréquences (ex. bandes d'octave ou bandes auditives).
Puis on détermine le spectre d'amplitude de cette réponse fréquentielle. Le filtre d'égalisation est alors choisi de sorte à obtenir un spectre d'amplitude de la réponse fréquentielle éventuellement lissée conforme à un spectre d'amplitude cible prédéterminé SPcible (premier spectre cible au sens de l'invention). Ce spectre d'amplitude cible est par exemple un spectre plat, c'est-à-dire constant quelle que soit la fréquence.
En d'autres mots, si SP1' et SP2' désignent respectivement le spectre d'amplitude de la réponse fréquentielle ainsi déterminée du haut-parleur Hll' et du haut-parleur H12' de l'ensemble El', le filtre d'égalisation Fl', respectivement F2', est choisi de sorte à minimiser la différence entre SP1' et SPcible, respectivement entre SP2' et SPCible, dans une limite par exemple de plus ou moins 5dB. On s'assure ainsi qu'en moyenne, le spectre d'amplitude de la réponse fréquentielle de chaque haut-parleur de l'ensemble de haut-parleurs El est identique ou similaire au spectre d'amplitude SPCible et donc entre eux. Il convient de noter que dans l'exemple envisagé ici, seule l'amplitude de la réponse impulsionnelle de chaque haut-parleur est corrigée, on ne s'intéresse pas à la phase à proprement parler.
Le filtrage du signal SU' par le filtre Fl' résulte en un signal d'alimentation filtré SI lf, qui est fourni par le dispositif 2' au haut-parleur Η1 pour restitution (étape E40).
De même, le filtrage du signal S12' par le filtre F2' résulte en un signal d'alimentation filtré S12f, qui est fourni par le dispositif 2' au haut-parleur H 12' pour restitution (étape E40).
De façon similaire, et en parallèle des étapes E20-E40, le dispositif de génération 2' applique une seconde technique transaurale 12' au signal d'entrée SR' de sorte à créer une source virtuelle V2' dans une direction symétrique par rapport au plan L2' passant par la position d'écoute P2' à la direction du haut-parleur de l'ensemble Ε le plus distant de la position d'écoute P2', autrement dit du haut-parleur H 11' (étape E50)
Cette source virtuelle V2' est créée, dans l'exemple envisagé à la figure 4, à l'intersection de l'axe Δ' et de la droite d22' (première droite au sens de l'invention) passant par la position d'écoute P2' et symétrique de la droite dl2' (seconde droite au sens de l'invention) reliant la position d'écoute P2' au haut-parleur H 11'.
De cette sorte, l'auditeur se trouvant à la position d'écoute P2' dispose d'une scène sonore s'étendant entre la direction donnée par la source virtuelle V2' (c'est-à-dire par la droite d22') et la direction donnée par le haut-parleur Η1 (c'est-à-dire par la droite dl2').
L'étape E50 est mise en œuvre par le dispositif de génération 2' en filtrant le signal SR' par des filtres transauraux déterminés de sorte à créer la source virtuelle V2'. Ces filtres transauraux sont déterminés de façon similaire ou identique aux filtres transauraux appliqués lors de l'étape E20 pour la création de la source virtuelle VI' et ne seront donc pas décrits à nouveau ici.
L'application des filtres transauraux au signal SR' résulte en deux signaux d'alimentation S21' et S22' destinés à alimenter respectivement les deux haut-parleurs Η2 et H22' de l'ensemble E2'.
Dans le premier mode de réalisation décrit ici, ces signaux d'alimentation S21' et S22' sont égalisés à l'aide de filtres d'égalisation individuels F3', F4' avant d'être fournis aux haut- parleurs Η2 et H22' (étape E60). Cette étape d'égalisation spectrale a pour but de compenser les éventuels défauts des haut-parleurs (par exemple, le timbres des haut-parleurs), et de réduire les différences pouvant exister entre les différents haut-parleurs (i.e. entre H21' et H22' ici).
Les filtres d'égalisation F3' et F4', appliqués respectivement sur les signaux S21' et
S22' sont prédéterminés au cours d'une étape préliminaire, de façon similaire ou identique aux filtres d'égalisation Fl' et F2', et sont stockés dans la mémoire non volatile du dispositif de génération 2'. Le filtrage du signal S21' par le filtre F3' résulte en un signal d'alimentation filtré S21f, fourni au haut-parleur Η2 pour restitution (étape E70).
De même, le filtrage du signal S22' par le filtre F4' résulte en un signal d'alimentation filtré S22f, fourni au haut-parleur H22' pour restitution (étape E70).
Dans le premier mode de réalisation décrit ici, les filtres Fl', F2', F3', F4' sont déterminés de sorte à compenser d'éventuels défauts des haut-parleurs H 11', H 12', H21' et H22' respectivement, et à harmoniser le timbre de ces haut-parleurs.
Dans une variante de réalisation, on peut envisager d'appliquer aux signaux SU', S12', S21' et S22' obtenus après application des techniques transaurales Τ et 12', des filtres d'égalisation spectrale (un filtre pour chaque haut-parleur) visant à améliorer le timbre ou la coloration du système l' de restitution dans son ensemble, c'est-à-dire incluant les deux ensembles de haut-parleurs El' et E2'.
Ces filtres peuvent alors être déterminés de la façon suivante.
Dans un premier temps, on réalise plusieurs mesures dans l'environnement réel dans lequel sont positionnés les haut-parleurs du système de restitution l' (ex. habitacle de la voiture si le système de restitution est inclus dans un tel habitacle), de la réponse impulsionnelle de ces haut-parleurs sur un réseau de microphones distribués sur la zone d'écoute visée et qui inclut les positions d'écoute PI' et P2' (autrement dit, la zone d'écoute visée est définie à proximité des positions d'écoute PI' et P2'). La figure 6A illustre un réseau de quatre microphones ml, m2, m3 et m4 dûment positionnés pour le système l'.
Les réponses impulsionnelles ainsi mesurées sont moyennées sur l'ensemble des haut- parleurs pour chaque microphone de sorte à obtenir une réponse impulsionnelle moyenne pour chaque microphone.
Puis les réponses impulsionnelles moyennes sont transformées en des réponses fréquentielles à l'aide d'une transformation de Fourier par exemple.
Un lissage fréquentiel des réponses fréquentielles ainsi obtenues peut être réalisé (par exemple par octave ou par bande auditive).
On évalue alors la moyenne fréquentielle des spectres d'amplitude des réponses fréquentielles éventuellement lissées associées aux microphones. Le spectre d'amplitude moyen ainsi obtenu inclut ainsi la contribution de tous les haut-parleurs du système de restitution l' sur tous les microphones ml, m2, m3 et m4.
Les filtres d'égalisation à appliquer sur les signaux d'alimentation avant leur fourniture aux haut-parleurs sont alors choisis de sorte à obtenir un spectre d'amplitude moyen conforme (dans une tolérance par exemple de +/- 5dB) à spectre d'amplitude cible prédéterminé SPcible' (seconde réponse fréquentielle au sens de l'invention). Ce spectre d'amplitude cible est par exemple un spectre plat, comme illustré à la figure 6B, c'est-à-dire constant quelle que soit la fréquence. Il convient de noter que les filtres permettant d'améliorer le timbre du système l' dans son ensemble peuvent être appliqués de façon alternative aux filtres FI', F2', F3', F4' précédemment décrits, ou en complément de ces filtres (on applique aux signaux d'alimentation les deux ensembles de filtres successivement ou des filtres équivalents).
Dans l'exemple envisagé à la figure 4, les ensembles de haut-parleurs El' et E2' comprennent chacun une paire de haut-parleurs. Toutefois, l'invention peut également s'appliquer de façon similaire à une configuration différente des ensembles de haut-parleurs El' et E2', comme illustrée à la figure 7.
Ainsi, selon l'exemple de la figure 7, chaque ensemble de haut-parleurs El' et E2' comprend trois haut-parleurs H 11', H12', H13' et Η21', Η22', H23' respectivement.
La source virtuelle VI' est alors créée à une position symétrique par rapport au plan Ll' de la position du haut-parleur H23', tandis que la source virtuelle V2' est créée à une position symétrique par rapport au plan L2' de la position du haut-parleur H 11'.
Nous allons maintenant décrire en référence aux figures 8 et 9, un deuxième mode de réalisation de l'invention.
Pour illustrer ce deuxième mode de réalisation, on envisage à la figure 8 un système de restitution 1" d'un signal stéréo S" comprenant deux ensembles de haut-parleurs El" et E2" disposés de façon similaire aux ensembles El' et E2' de la figure 4, de part et d'autre d'un plan de séparation vertical D".
Chaque ensemble de haut-parleurs El", E2" est placé face à une position d'écoute privilégiée PI", P2" définies de façon similaire à ce qui a été décrit précédemment pour PI' et P2', et comprend une paire de haut-parleurs (Hll", H12" pour l'ensemble El" et H21", H22" pour l'ensemble E2"). PI" et P2" sont situées respectivement sur des plans verticaux Ll" et L2" parallèles au plan de séparation D". Un haut-parleur de l'ensemble El" est ainsi positionné de part et d'autre de Ll" et de la position d'écoute PI", et un haut-parleur de l'ensemble E2" est positionné de part et d'autre de L2" et de la position d'écoute P2".
Le système de restitution 1" comprend en outre un troisième ensemble E3" de deux haut-parleurs H31" et H32", placé au centre du système de restitution 1", entre les deux ensembles El" et E2", comme illustré sur la figure 8. Plus précisément, l'ensemble de haut- parleurs E3" est positionné au niveau du plan de séparation D" : au moins un haut-parleur de l'ensemble E3" est placé de part et d'autre du plan de séparation D".
Les haut-parleurs Hll", H12", H21", H22", H31" et H32" sont dans l'exemple illustré à la figure 8, alignés ou sensiblement alignés sur un même axe horizontal Δ" du système de restitution. Toutefois, comme mentionné précédemment, cette hypothèse n'est pas limitative et aucune limitation n'est attachée à proprement parler au placement des haut-parleurs des ensembles El", E2" et E3" par rapport à cet axe horizontal.
Nous allons maintenant décrire en référence à la figure 9, les principales étapes du procédé de génération selon l'invention, dans le deuxième mode de réalisation, lorsqu'il est mis en œuvre par le dispositif de génération 2" pour fournir des signaux d'alimentation aux haut-parleurs des ensembles El", E2" et E3".
Sur réception du signal sonore S", le dispositif de génération 2" met en œuvre une analyse spatiale de ce signal (étape F10), afin d'identifier les composantes (i.e. objets sonores) de ce signal qui seront restitués sur les différents ensembles de haut-parleurs.
A cet effet, dans le deuxième mode de réalisation décrit ici, l'étape d'analyse F10 comprend une décomposition du signal sonore S" en plusieurs sous-bandes fréquentielles (ex. en octave, ou en bandes auditives selon la puissance de traitement disponible pour mettre en œuvre l'invention).
Puis le dispositif 2" extrait sur chaque sous-bande fréquentielle les objets sonores contenus dans le signal S", et détermine pour chaque objet sonore, sa position spatiale.
Il utilise à cette fin des techniques connues de l'homme du métier, comme par exemple la détermination d'un vecteur de Gerzon représentatif du signal S" telle que décrite dans le document US 2007/0269063, ou une décomposition en harmoniques sphériques telle que décrite dans le document WO 2012/025580.
Le dispositif 2" génère ensuite à partir des objets sonores ainsi extraits trois signaux d'entrée notés SL", SR" et SC" destinés aux trois ensembles de haut-parleurs El", E2" et E3".
Les objets sonores sélectionnés pour chaque signal d'entrée dépendent ici de leurs positions spatiales par rapport au plan de séparation D" (et plus généralement de critères d'analyse prédéterminés qui déterminent vers quel ensemble de haut-parleur envoyer quel objet sonore en fonction de sa position spatiale). Dans le mode de réalisation envisagé ici :
— les objets sonores se trouvant à gauche du plan de séparation D" sont alors intégrés dans le signal SL" dérivé pour l'ensemble El",
— les objets sonores se trouvant à droite du plan de séparation D" sont alors intégrés dans le signal SR" dérivé pour l'ensemble E2", et
— les objets sonores se trouvant à proximité du plan de séparation D" sont alors intégrés dans le signal SC" dérivé pour l'ensemble E3".
Puis conformément à l'invention, le dispositif de génération 2" applique deux techniques transaurales distinctes à chacun des signaux d'entrée SL" et SR", de façon similaire à ce qui a été décrit précédemment en référence à la figure 5. Les étapes F20 et F50 d'application d'une technique transaurale résultant en la création de deux sources virtuelles VI" et V2", les étapes F30 et F60 d'égalisation spectrale par les filtres Fl", F2", F3" et F4", et les étapes F40 et F70 de génération des signaux d'alimentation aux haut-parleurs des ensembles El" et E2" étant identiques respectivement aux étapes E20 et E50, aux étapes E30 et E60, et aux étapes E40 et E70, elles ne sont pas décrites de nouveau ici.
Dans le deuxième mode de réalisation décrit ici, le dispositif de génération 2" applique en outre une technique de restitution spatiale T3" au signal d'entrée SC" afin de générer des signaux d'alimentation des haut-parleurs H31" et H32" du troisième ensemble central de haut- parleurs E3" (étape F80).
Cette technique de restitution est choisie par exemple de sorte à diffuser directement le signal SC" sur les haut-parleurs H31" et H32".
Les signaux d'alimentation S31" S32" générés par application de la technique T3" au signal d'entrée SC" sont ensuite filtrés à l'aide de filtres d'égalisation (pouvant être déterminés selon une méthode similaire à celle expliquée précédemment pour déterminer les filtres FI', F2', F3' et F4') (étape F90).
Puis les signaux filtrés S31f" et S32f" sont fournis par le dispositif de génération 2" aux haut-parleurs H31" et H32" respectivement (étape F100).
En variante, on peut envisager que la technique de restitution spatiale T3" appliquée au signal d'entrée SC" génèrent des signaux d'alimentation pour les haut-parleurs des trois ensembles El", E2" et E3", en utilisant une technique de restitution holophonique telle que par exemple une technique WFS (pour Wave Field Synthesis). Ainsi, par le biais de cette technique, on peut par exemple créer une source virtuelle au centre, placée sur le plan de séparation D" à une distance assez lointaine des positions d'écoute en termes de front d'onde (typiquement à une distance supérieure à 10m), de sorte que les auditeurs placés au niveau des positions d'écoute PI" et P2" perçoivent le centre de signaux restitués devant eux.
Bien entendu, ce deuxième mode de réalisation peut être décliné selon les différentes variantes précédemment envisagées pour le premier mode de réalisation.
Par ailleurs, pour illustrer les premier et deuxième modes de réalisation, on a considéré des signaux sonores S' et S" stéréo.
Toutefois l'invention s'applique également à d'autres types de signaux multicanaux, comme par exemple à un signal multi-canal 5.1.
La figure 10 illustre un système de restitution 1"' selon un troisième mode de réalisation, permettant la restitution d'un signal sonore S'" 5.1, composé d'un canal gauche (SL'"), d'un canal droit (SR'"), d'un canal arrière gauche (SLs'"), d'un canal arrière droit (SRs'"), d'un canal central (SC"), et d'un canal de grave (SLfe'").
Le système de restitution 1"' comprend deux sous-systèmes « avant » A et « arrière » B, placés respectivement devant et derrière les positions d'écoute PI'" et P2'" (par rapport au positionnement des auditeurs à ces positions d'écoute).
Le sous-système A comprend trois ensembles de haut-parleurs ΕΑ ", EA2'" et EA3'" disposés par rapport aux positions d'écoute PI'" et P2", et par rapport au plan vertical de séparation D'" de façon identique aux ensembles de haut-parleurs El", E2" et E3" considérés précédemment pour illustrer le deuxième mode de réalisation.
Le sous-système B comprend en outre deux ensembles de haut-parleurs EBl'" et EB2'" disposés à l'arrière des positions d'écoute PI'" et P2'" de façon identique aux ensembles de haut- parleurs El' et E2' considérés précédemment pour illustrer le premier mode de réalisation. EBl'" et ΕΒ2'" sont placés de part et d'autre du plan vertical de séparation D'", et sont centrés respectivement par rapport aux plans verticaux Ll'" et L2'" qui sont parallèles au plan de séparation D'" et passent par PI'" et P2'" respectivement.
Le système de restitution 1"' comprend ainsi un réseau frontal de haut-parleurs comprenant les ensembles EA1'", EA2'" et EA3'" qui se situe dans un plan frontal par rapport aux positions d'écoute PI'" et P2'", et un réseau arrière de haut-parleurs comprenant les ensembles EB1" et EB2'" qui se situe dans un plan arrière par rapport aux positions d'écoute PI'" et P2'".
La restitution du signal sonore S'" est alors réalisée via le système 1"' de la façon suivante :
— les canaux SL'" et SR'" sont utilisés pour générer des signaux d'alimentation des ensembles de haut-parleurs ΕΑ " et EA2'" respectivement, comme décrit précédemment dans le premier mode de réalisation, résultant en la création de deux sources virtuelles VA1'" et VA2'" ;
— le canal SC" est utilisé pour générer des signaux d'alimentation des haut-parleurs du troisième ensemble EA3'" de haut-parleurs du sous-système A, en appliquant une technique de restitution spatiale directement sur ces canaux, comme décrit précédemment pour le signal d'entrée SC" dans le deuxième mode de réalisation ;
— les canaux SLs'" et SRs'" sont utilisés pour générer des signaux d'alimentation des ensembles de haut-parleurs ΕΒ " et EB2'" respectivement, comme décrit précédemment dans le premier mode de réalisation, résultant en la création de deux sources virtuelles VB1'" et VB2'", comme illustré à la figure 10 ; et
— et le canal SLfe'" est utilisé pour générer un signal d'alimentation d'un caisson de grave non représenté sur la figure 10.
Il convient de noter que le sous-système « arrière » B peut être une réplique exacte du sous-système « avant » A, symétrique par rapport aux positions d'écoute PI'" et P2'". En variante, des configurations différentes de haut-parleurs peuvent être envisagées pour les deux sous-systèmes (ex. trois ensembles de deux haut-parleurs pour A et deux ensembles de deux haut-parleurs pour B, comme illustré sur la figure 10).

Claims

REVENDICATIONS
1. Procédé de génération de signaux d'alimentation destinés à un système de restitution sonore (1';1";1"') comprenant deux ensembles de haut-parleurs (E1',E2';E1",E2"; EA1"',EA2"',EB1"',EB2"') situés de part et d'autre d'un plan de séparation (D';D";D"'), lesdits signaux d'alimentation étant générés en vue d'une restitution sonore d'un signal sonore multicanal (S';S";S"') vers deux positions spatiales d'écoute (Ρ1',Ρ2';Ρ1",Ρ2";Ρ1"',Ρ2"'), chaque position spatiale d'écoute étant associée à l'un des ensembles de haut-parleurs et étant située sur un plan parallèle (L1',L2';L1",L2";L1"',L2"') au plan de séparation de sorte qu'au moins un haut-parleur de cet ensemble est positionné de part et d'autre de ce plan parallèle,
le procédé de génération comprenant, pour chaque ensemble de haut-parleurs, une étape de génération (F20-F30,F50-F60), à partir d'un signal d'entrée dérivé du signal sonore multicanal pour cet ensemble, de signaux d'alimentation destinés à alimenter les haut-parleurs de cet ensemble, cette étape de génération comprenant l'application (F20,F50) d'une technique de restitution transaurale audit signal d'entrée, cette technique créant une source sonore virtuelle (V1',V2';V1",V2";VA1"',VA2"',VB1"',VB2"') pour la position d'écoute associée à l'ensemble sur une première droite (dll',d22';dll",d22";dll"',d22",d22"',dll"') obtenue par symétrie, par rapport au plan parallèle (Ρ1',Ρ2';Ρ1",Ρ2";Ρ1"',Ρ2"') sur lequel est située la position spatiale d'écoute associée à cet ensemble, d'une seconde droite (dl2',d21';dl2",d21";dl2"',d21"',d21"',dl2"') reliant la position spatiale d'écoute au haut-parleur le plus distant de cette position appartenant à l'autre ensemble de haut-parleurs du système de restitution.
2. Procédé selon la revendication 1 dans lequel les haut-parleurs des deux ensembles de haut-parleurs sont sensiblement alignés sur un axe horizontal (Δ',Δ") du système de restitution.
3. Procédé selon la revendication 2 dans lequel au cours de l'étape de génération, la source virtuelle est créée à l'intersection de la première droite et de l'axe horizontal du système de restitution.
4. Procédé selon l'une quelconque des revendications 1 à 3, comprenant en outre une étape d'égalisation spectrale au cours de laquelle, on applique (F30,F60) individuellement à chaque signal d'alimentation destiné à alimenter un haut-parleur, un filtre d'égalisation adapté à ce haut- parleur.
5. Procédé selon la revendication 4 dans lequel chaque filtre d'égalisation adapté à un haut-parleur est choisi de sorte à obtenir un spectre d'amplitude d'une réponse fréquentielle établie pour ce haut-parleur à partir de mesures réalisées dans un environnement insonorisé, conforme à un premier spectre cible prédéterminé.
6. Procédé selon la revendication 4 ou 5 dans lequel les filtres d'égalisation sont choisis de sorte à obtenir un spectre d'amplitude moyen évalué à partir des réponses impulsionnelles des haut-parleurs des ensembles du système de restitution, conforme à un second spectre cible prédéterminé.
7. Procédé selon l'une quelconque des revendications 1 à 6 comprenant en outre une étape d'analyse spatiale (F10) du signal sonore multicanal comprenant l'extraction d'au moins un objet sonore et la détermination d'une position spatiale de cet objet sonore, chaque signal d'entrée utilisé pour générer les signaux d'alimentation des haut-parleurs d'un ensemble de haut-parleurs étant élaboré à partir d'au moins un objet sonore extrait lors de cette étape d'analyse spatiale et sélectionné en fonction de sa position spatiale par rapport au plan de séparation.
8. Procédé selon l'une quelconques des revendications 1 à 7 dans lequel le système de restitution comprend en outre un troisième ensemble (E3") de haut-parleurs, au moins un haut- parleur de ce troisième ensemble étant placé de part et d'autre du plan de séparation.
9. Procédé selon l'une quelconque des revendications 1 à 8 dans lequel chaque ensemble de haut-parleurs du système de restitution comprend une paire de haut-parleurs.
10. Programme comportant des instructions pour l'exécution des étapes du procédé de restitution selon l'une quelconque des revendications 1 à 9 lorsque ledit programme est exécuté par un ordinateur ou par un microprocesseur.
11. Support d'enregistrement lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur comprenant des instructions pour l'exécution des étapes du procédé de génération selon l'une quelconque des revendications 1 à 9.
12. Dispositif de génération (2',2",2"') de signaux d'alimentation destinés à un système (1';1";1"') de restitution sonore comprenant deux ensembles de haut-parleurs situés de part et d'autre d'un plan de séparation, lesdits signaux d'alimentation étant générés en vue d'une restitution sonore d'un signal sonore multicanal vers deux positions spatiales d'écoute, chaque position spatiale d'écoute étant associée à l'un des ensembles de haut-parleurs et étant située sur un plan parallèle au plan de séparation de sorte qu'au moins un haut-parleur de cet ensemble est positionné de part et d'autre de ce plan parallèle,
le dispositif de génération comprenant des moyens aptes à générer pour chaque ensemble de haut-parleurs, à partir d'un signal d'entrée dérivé du signal sonore multicanal pour cet ensemble, des signaux d'alimentation destinés à alimenter les haut-parleurs de cet ensemble, ces moyens étant aptes à appliquer une technique de restitution transaurale audit signal d'entrée, cette technique créant une source sonore virtuelle pour la position d'écoute associée à l'ensemble sur une première droite obtenue par symétrie, par rapport au plan parallèle sur lequel est située la position spatiale d'écoute associée à cet ensemble, d'une seconde droite reliant la position spatiale d'écoute au haut-parleur le plus distant de cette position appartenant à l'autre ensemble de haut- parleurs du système de restitution.
13. Système de restitution sonore ( ;1";1"') comprenant :
— au moins deux ensembles de haut-parleurs ; et
— un dispositif de génération (2';2";2"') selon la revendication 12 de signaux d'alimentation destinés aux haut-parleurs desdits deux ensembles de haut-parleurs.
14. Système de restitution sonore (1"') selon la revendication 13 comprenant au moins deux ensembles (ΕΑ1"',ΕΑ2"') situés dans un plan frontal par rapport aux positions d'écoute (Ρ1"',Ρ2"') et au moins deux ensembles (ΕΒ1"',ΕΒ2"') situés dans un plan arrière par rapport aux positions d'écoute.
EP14710015.0A 2013-02-18 2014-02-14 Procede et dispositif de generation de signaux d'alimentation destines a un systeme de restitution sonore Active EP2957110B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1351352A FR3002406B1 (fr) 2013-02-18 2013-02-18 Procede et dispositif de generation de signaux d'alimentation destines a un systeme de restitution sonore
PCT/FR2014/050313 WO2014125232A1 (fr) 2013-02-18 2014-02-14 Procede et dispositif de generation de signaux d'alimentation destines a un systeme de restitution sonore

Publications (2)

Publication Number Publication Date
EP2957110A1 true EP2957110A1 (fr) 2015-12-23
EP2957110B1 EP2957110B1 (fr) 2016-11-30

Family

ID=48225019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14710015.0A Active EP2957110B1 (fr) 2013-02-18 2014-02-14 Procede et dispositif de generation de signaux d'alimentation destines a un systeme de restitution sonore

Country Status (3)

Country Link
EP (1) EP2957110B1 (fr)
FR (1) FR3002406B1 (fr)
WO (1) WO2014125232A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118875A (en) 1994-02-25 2000-09-12 Moeller; Henrik Binaural synthesis, head-related transfer functions, and uses thereof
CN1281098C (zh) * 1998-10-19 2006-10-18 安桥株式会社 环绕处理系统、环绕处理装置和环绕处理方法
EP1370115B1 (fr) * 2002-06-07 2009-07-15 Panasonic Corporation Système de contrôle d'image sonores
US8379868B2 (en) 2006-05-17 2013-02-19 Creative Technology Ltd Spatial audio coding based on universal spatial cues
WO2012025580A1 (fr) 2010-08-27 2012-03-01 Sonicemotion Ag Procédé et dispositif de reproduction de champ sonore améliorée de signaux d'entrée audio spatialement codés

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014125232A1 *

Also Published As

Publication number Publication date
WO2014125232A1 (fr) 2014-08-21
EP2957110B1 (fr) 2016-11-30
FR3002406A1 (fr) 2014-08-22
FR3002406B1 (fr) 2015-04-03

Similar Documents

Publication Publication Date Title
KR102423757B1 (ko) 음향 신호의 렌더링 방법, 장치 및 컴퓨터 판독 가능한 기록 매체
TWI489887B (zh) 用於喇叭或耳機播放之虛擬音訊處理技術
US9253573B2 (en) Acoustic signal processing apparatus, acoustic signal processing method, program, and recording medium
FR2790634A1 (fr) Procede de synthese d'un champ sonore tridimensionnel
KR100943215B1 (ko) 음장 합성을 이용한 입체 음장 재생 장치 및 그 방법
US20150222994A1 (en) Multichannel audio system having audio channel compensation
WO2012042905A1 (fr) Dispositif et procédé de restitution sonore
JP2017098999A (ja) ヘッドレストベースのオーディオシステムのための信号処理
EP2901718B1 (fr) Procede et systeme de restitution d'un signal audio
EP1558056A1 (fr) Système acoustique pour véhicule et dispositif correspondant
EP2489206A1 (fr) Traitement de donnees sonores encodees dans un domaine de sous-bandes
FR2776461A1 (fr) Procede de perfectionnement de reproduction sonore tridimensionnelle
US20190174248A1 (en) Acoustic signal processing apparatus, acoustic signal processing method and program
JP6434165B2 (ja) 前面ラウドスピーカによって個別の三次元音響を達成する、車内再生のためのステレオ信号を処理する装置および方法
FR3065137A1 (fr) Procede de spatialisation sonore
EP2957110B1 (fr) Procede et dispositif de generation de signaux d'alimentation destines a un systeme de restitution sonore
US11388538B2 (en) Signal processing device, signal processing method, and program for stabilizing localization of a sound image in a center direction
EP2901717B1 (fr) Procede et dispositif de generation de signaux audio destines a etre fournis a un systeme de restitution sonore
EP3108670B1 (fr) Procédé et dispositif de restitution d'un signal audio multicanal dans une zone d'écoute
FR3127858A1 (fr) Systeme de generation d’ondes sonores pour au moins deux zones distinctes d’un meme espace et procede associe
Pfanzagl-Cardone et al. Surround Microphone Techniques
FR3114209A1 (fr) Systeme de reproduction de sons avec virtualisation du champ reverbere
WO2023232586A1 (fr) Procédé de traitement de signal
FR3091636A1 (fr) Procédé de traitement d’un signal audio multicanal
GB2583438A (en) Signal processing device for headphones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 3/04 20060101ALN20160517BHEP

Ipc: H04S 3/00 20060101ALN20160517BHEP

Ipc: H04S 1/00 20060101AFI20160517BHEP

INTG Intention to grant announced

Effective date: 20160608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 850801

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014005221

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 850801

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20170515

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014005221

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

26N No opposition filed

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014005221

Country of ref document: DE

Owner name: SENNHEISER ELECTRONIC GMBH & CO. KG, DE

Free format text: FORMER OWNER: SONIC EMOTION LABS, PARIS, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180214

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240209

Year of fee payment: 11