EP2956236A1 - Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions - Google Patents

Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions

Info

Publication number
EP2956236A1
EP2956236A1 EP14704157.8A EP14704157A EP2956236A1 EP 2956236 A1 EP2956236 A1 EP 2956236A1 EP 14704157 A EP14704157 A EP 14704157A EP 2956236 A1 EP2956236 A1 EP 2956236A1
Authority
EP
European Patent Office
Prior art keywords
reactor
monoliths
mat
plastic film
blähmatte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14704157.8A
Other languages
German (de)
French (fr)
Inventor
Gerhard Olbert
Jochen Gauer
Arnold KÜHLING
Carlos TELLAECHE HERRANZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAUER, JOCHEN
KUEHLING, ARNOLD
OLBERT, GERHARD
TELLAECHE HERRANZ, CARLOS
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP14704157.8A priority Critical patent/EP2956236A1/en
Publication of EP2956236A1 publication Critical patent/EP2956236A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/2428Catalysts coated on the surface of the monolith channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2433Construction materials of the monoliths
    • B01J2219/2438Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2441Other constructional details
    • B01J2219/2443Assembling means of monolith modules

Definitions

  • the invention relates to a process for the incorporation of monoliths in a reactor for carrying out heterogeneously catalyzed gas phase reactions.
  • the object is achieved by a method for installing monoliths, each formed of a ceramic block having a plurality of mutually parallel channels, which are flowed through by the reaction gas mixture of the heterogeneously catalyzed gas phase reaction in a reactor for carrying out heterogeneously catalyzed gas phase reactions, wherein the Monoliths side by side and one above the other, in the reactor interior, are stacked, which is characterized in that the monoliths are sealed against each other and the inner wall of the reactor by means of mats, comprising in each case a Blähmatte, wrapped on all sides in a plastic film prior to installation in the reactor wherein the space enclosed by the plastic film and containing the mat is vacuum-sealed and wherein the space enclosed by the plastic film and containing the mat interior is de-vacuumed after installation in the reactor.
  • the interior containing the mat can in particular be vacuum-evacuated by piercing and / or burning off the plastic film.
  • Monoliths for use in reactors for carrying out heterogeneously catalyzed gas phase reactions are known and described, for example, in WO-A 2012/084609.
  • Monoliths are formed from a ceramic material coated with catalytically active material.
  • the monoliths are installed in the reactor in one or more horizontal layers side-by-side, with vertically arranged channels, such that each layer completely fills the reactor cross-section, and spacers are provided between successive layers, keeping cavities clear the measuring elements, in particular for a temperature measurement, can be introduced.
  • the reaction mixture of the heterogeneously catalyzed gas phase reaction flows in the vertical direction, through the vertically arranged channels of the monoliths.
  • spacers for example, sheet metal strips with a width of in particular 10 to 30 mm between each two consecutive horizontal layers of monoliths are installed, so that they have a distance corresponding to the width of the metal strip.
  • the metal strips may preferably be angled; This increases their rigidity and they can carry higher weights.
  • the monoliths are incorporated into the reactor in such a way that mutually parallel channels thereof are arranged horizontally in the reactor.
  • two or more monoliths are arranged side by side and / or one above the other, with channels aligned parallel to one another and enveloped on the outer periphery thereof, in the longitudinal direction of the channels, with a metal rim, forming a monolith module.
  • the monolith modules are installed in the reactor with horizontally arranged channels.
  • two or more monolith modules are advantageously stacked on top of one another to form monolith module stacks. It is also possible to increase the capacity or, in order to achieve the desired conversion, install two or more monolith module stacks in succession in the reactor.
  • the monoliths comprising metal monoliths preferably extend slightly beyond the monoliths at both ends, in particular by about 5 to 10 mm.
  • the metal rim acts as a spacer between them when stacking monolithic sheets.
  • in the cavity thus kept free, it is possible, in a simple manner, to introduce multi-thermocouples for the temperature measurement through holes and / or holes in the protruding edge of the metal rim.
  • the respectively opposite sides of the metal enclosure in front of and behind the monoliths are welded together by means of metallic webs, so that a mechanical stability of the monolith module enveloped by the metal enclosure is ensured.
  • the metal rim can be made thinner.
  • the modular design ensures easier handling when installing and removing the monoliths in the reactor.
  • the service life of the reactors can be increased since exchange systems can be prepared for the catalyst change outside the reactor.
  • the monolith modules can easily be inserted into the reactor via guide rails and pulled out.
  • the presently used mat is a sheet with two opposite large surfaces and two perpendicular thereto arranged end faces.
  • the mat comprises a Blähmatte, ie a fiber mat, which expands (swells) at high temperatures.
  • Blähmatten are usually composed of silicates, such as aluminum silicate, an expanding mica, such as vermiculite, and an organic binder. Blähmatten be marketed for example by the company 3M under the trade name INTERAM®.
  • the organic binders have a number of adverse properties, in particular they lead to odor nuisance by evaporation of volatile components, such as poisoning of catalysts.
  • the mat consists exclusively of a Blähmatte.
  • the Blähmatte is a composite mat, which in addition to a Blähmatte a fiber mat of oxide fibers, in particular of alumina, which is lighter and more pressure resistant to a Blähmatte, has a lower thermal conductivity and up to about 1 .200 ° C. is temperature resistant.
  • a composite mat which comprises a plurality of successive layers of a respective Blähmatte and each a fiber mat of oxide fibers.
  • a mat which has a reinforcing material at its end faces.
  • plastic film enveloping the bluing mat.
  • plastic film is pierced and / or burned off.
  • a plastic film is preferably used, one side of which has a structured, not completely smooth surface;
  • the mat is wrapped with plastic film in such a way that its structured side is directed towards the mat.
  • the vacuum drawing is facilitated because form between the opposing structured inner sides of the plastic film through the fine surface structures that support each other, cavities through which the air can be sucked. Completely flat surfaces, on the other hand, would stick together and make vacuuming of the interior difficult.
  • the invention also provides a reactor which is assembled according to the above method.
  • the reactor can advantageously be used for carrying out dehydrogenations, in particular of butane or propane, or of partial oxidations. LIST OF REFERENCE NUMBERS
  • FIG. 1 shows a cross section through a reactor assembled according to the method according to the invention, in a first embodiment
  • FIG. 2 is a schematic representation of the invention used
  • FIG. 3 shows a detail of a monolith module for installation in a reactor according to a second embodiment variant
  • Figure 4 is a schematic representation of a Monolithmodulstapels with example four stacked Monolithmodulen.
  • FIG. 1 shows a cross section through a cylindrical reactor 1, with a plurality of arranged in the reactor interior monoliths 2, which are sealed against each other and the reactor inside wall by means of mats 3, each comprising a Blähmatte and the sides in a plastic film, not shown is shrouded.
  • the channels of the monoliths 2 are arranged vertically, parallel to one another, in the interior of the reactor and are accordingly flowed through from top to bottom or from bottom to top through the reaction mixture of the gas phase reaction.
  • Figure 2 shows a preferred geometric shape, with a rectangular gradation of the ends for the mats 3 used in the invention, which are each welded on all sides in a plastic film, not shown.
  • Figure 3 shows a section of a monolith module 4, formed from a plurality of juxtaposed and stacked monoliths 2, which are enveloped by a metal enclosure 5, wherein the monoliths 2 are sealed against each other and the metal enclosure 5 out by means of mats 3.
  • the parallel aligned channels of the monoliths 2 are arranged horizontally.
  • FIG. 4 shows a monolith module stack 6, formed by four monolith modules 4 arranged one above the other, each formed from monoliths 2, an outer metal enclosure 5 and mats 3, which seal the monoliths 2 against each other and with the metal enclosure 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention relates to a method for mounting monoliths (2), which are each formed from a ceramic block having a plurality of parallel channels through which the reaction gas mixture of the heterogeneously catalyzed gas-phase reaction can flow into a reactor (1) for carrying out heterogeneously catalyzed gas-phase reactions, the monoliths (2) being stacked in the reactor interior next to and above one another. The method is characterized in that the monoliths are sealed from each other and with respect to the inner wall of the reactor (1) by means of mats (3), each comprising an expanding mat, which prior to mounting in the reactor (1) are enveloped completely by plastic film, vacuum conditions being created in the interior enclosed by the plastic film and containing the mat (3). Once the monoliths are mounted in the reactor (1), the vacuum conditions in the interior enclosed by the plastic film and containing the mat (3) are reversed.

Description

Verfahren zum Einbau von Monolithen in einen Reaktor zur Durchführung von heterogen katalysierten Gasphasenreaktionen  Process for the incorporation of monoliths in a reactor for carrying out heterogeneously catalyzed gas phase reactions
Die Erfindung betrifft ein Verfahren zum Einbau von Monolithen in einen Reaktor zur Durchführung von heterogen katalysierten Gasphasenreaktionen. The invention relates to a process for the incorporation of monoliths in a reactor for carrying out heterogeneously catalyzed gas phase reactions.
In Reaktoren zur Durchführung von heterogen katalysierten Gasphasenreaktionen wird häufig eine Vielzahl von Monolithen aus keramischen Werkstoffen eingesetzt. An den Seitenrändern derselben, in Richtung der Kanäle durch die Monolithe, werden diese häufig, zum Schutz des fragilen keramischen Werkstoffes, mit einem Metallgehäuse umhüllt. Da die Monolithe nicht immer vollkommen plan sind, ist der unmittelbare Zusammenbau der einzelnen Monolithe ohne Dichtelemente zwischen denselben problematisch. Darüber hinaus weisen die keramischen Monolithe gegenüber dem metallischen Gehäuse einen deutlich geringeren thermischen Ausdehnungskoeffizienten auf, so dass es in Hochtemperaturreaktoren, d.h. bei Reaktionstemperaturen insbesondere oberhalb von 400°C, oder auch oberhalb von 500°C, zu Veränderungen des Abstandes zwischen den keramischen Monolithen und dem metallischen Gehäuse kommt. Um bypassfreie Monolith-Systeme aus Monolithen und Dichtelementen (Blähmatten) nach dem Stand der Technik herzustellen müssen große Krafteinwirkungen zum Verspannen aufgebracht werden. In reactors for carrying out heterogeneously catalyzed gas phase reactions, a large number of monoliths made of ceramic materials is frequently used. At the side edges of the same, in the direction of the channels through the monoliths, these are often, for the protection of the fragile ceramic material, coated with a metal housing. Since the monoliths are not always perfectly flat, the immediate assembly of the individual monoliths without sealing elements between them is problematic. In addition, the ceramic monoliths have a significantly lower coefficient of thermal expansion than the metallic housing, so that it can be used in high temperature reactors, i. at reaction temperatures in particular above 400 ° C, or even above 500 ° C, changes in the distance between the ceramic monoliths and the metallic housing comes. In order to produce bypass-free monolith systems of monoliths and sealing elements (Blähmatten) according to the prior art, large forces must be applied for bracing.
Es war demgegenüber Aufgabe der Erfindung, ein Verfahren zum Einbau einer Vielzahl von Monolithen in einen Reaktor zur Durchführung von heterogen katalysierten Gasphasenreaktionen zur Verfügung zu stellen, das die obigen Nachteile nicht aufweist. It was accordingly an object of the invention to provide a method for incorporating a plurality of monoliths in a reactor for carrying out heterogeneously catalyzed gas phase reactions, which does not have the above disadvantages.
Die Aufgabe wird gelöst durch ein Verfahren zum Einbau von Monolithen, die jeweils aus einem keramischen Block mit einer Vielzahl von parallel zueinander angeordneten Kanälen gebildet sind, die vom Reaktionsgasgemisch der heterogen katalysierten Gasphasenreaktion durchströmbar sind in einen Reaktor zur Durchführung von heterogen katalysierten Gasphasenreaktionen, wobei die Monolithe neben- und übereinander, im Reaktorinnenraum, gestapelt sind, das dadurch gekennzeichnet ist, dass die Monolithe gegeneinander sowie zur Innenwand des Reaktors hin mittels Matten, umfassend jeweils eine Blähmatte, abgedichtet werden, die vor dem Einbau in den Reaktor allseitig in eine Kunststofffolie eingehüllt sind, wobei der von der Kunststofffolie umschlossene und die Matte enthaltende Innenraum vakuumiert ist und wobei der von der Kunststofffolie umschlossene und die Matte enthaltende Innenraum nach dem Einbau in den Reaktor entvakuumiert wird. Der die Matte enthaltende Innenraum kann insbesondere entvakuumiert werden, indem die Kunststofffolie angestochen und/oder abgebrannt wird. Monolithe zum Einsatz in Reaktoren zur Durchführung von heterogen katalysierten Gasphasenreaktionen sind bekannt und beispielsweise in WO-A 2012/084609 beschrieben. Monolithe sind aus einem keramischen Material gebildet, das mit katalytisch aktivem Material beschichtet ist. Nach einer ersten bevorzugten Einbauvariante werden die Monolithe in den Reaktor in einer oder mehreren horizontalen Lagen nebeneinander, mit vertikal angeordneten Kanälen, eingebaut, dergestalt, dass jede Lage den Reaktorquerschnitt vollständig ausfüllt, und wobei zwischen aufeinanderfolgenden Lagen Abstandhalter vorgesehen sind, die Hohlräume freihalten, in die Messelemente, insbesondere für eine Temperaturmessung, eingeführt werden können. Das Reaktionsgemisch der heterogen katalysierten Gasphasenreaktion strömt in vertikaler Richtung, durch die vertikal angeordneten Kanäle der Monolithe. Als Abstandhalter werden beispielsweise Blechstreifen mit einer Breite von insbesondere 10 bis 30 mm zwischen jeweils zwei aufeinanderfolgenden horizontalen Lagen von Monolithen eingebaut, so dass diese zueinander einen Abstand entsprechend der Breite der Blechstreifen aufweisen. Die Blechstreifen können bevorzugt abgewinkelt sein; dadurch wird ihre Steifigkeit erhöht, und sie können höhere Gewichte tragen. The object is achieved by a method for installing monoliths, each formed of a ceramic block having a plurality of mutually parallel channels, which are flowed through by the reaction gas mixture of the heterogeneously catalyzed gas phase reaction in a reactor for carrying out heterogeneously catalyzed gas phase reactions, wherein the Monoliths side by side and one above the other, in the reactor interior, are stacked, which is characterized in that the monoliths are sealed against each other and the inner wall of the reactor by means of mats, comprising in each case a Blähmatte, wrapped on all sides in a plastic film prior to installation in the reactor wherein the space enclosed by the plastic film and containing the mat is vacuum-sealed and wherein the space enclosed by the plastic film and containing the mat interior is de-vacuumed after installation in the reactor. The interior containing the mat can in particular be vacuum-evacuated by piercing and / or burning off the plastic film. Monoliths for use in reactors for carrying out heterogeneously catalyzed gas phase reactions are known and described, for example, in WO-A 2012/084609. Monoliths are formed from a ceramic material coated with catalytically active material. According to a first preferred embodiment, the monoliths are installed in the reactor in one or more horizontal layers side-by-side, with vertically arranged channels, such that each layer completely fills the reactor cross-section, and spacers are provided between successive layers, keeping cavities clear the measuring elements, in particular for a temperature measurement, can be introduced. The reaction mixture of the heterogeneously catalyzed gas phase reaction flows in the vertical direction, through the vertically arranged channels of the monoliths. As spacers, for example, sheet metal strips with a width of in particular 10 to 30 mm between each two consecutive horizontal layers of monoliths are installed, so that they have a distance corresponding to the width of the metal strip. The metal strips may preferably be angled; This increases their rigidity and they can carry higher weights.
Nach einer weiteren bevorzugten Einbauvariante werden die Monolithe dergestalt in den Reaktor eingebaut, dass parallel zueinander angeordnete Kanäle derselben horizontal im Reaktor angeordnet sind. Hierzu werden zwei oder mehrere Monolithe neben- und/oder übereinander, mit parallel zueinander ausgerichteten Kanälen angeordnet und am äußeren Umfang derselben, in Längsrichtung der Kanäle, mit einer Metalleinfassung, unter Ausbildung eines Monolithmoduls, umhüllt. Die Monolithmodule werden mit horizontal angeordneten Kanälen in den Reaktor eingebaut. According to a further preferred installation variant, the monoliths are incorporated into the reactor in such a way that mutually parallel channels thereof are arranged horizontally in the reactor. For this purpose, two or more monoliths are arranged side by side and / or one above the other, with channels aligned parallel to one another and enveloped on the outer periphery thereof, in the longitudinal direction of the channels, with a metal rim, forming a monolith module. The monolith modules are installed in the reactor with horizontally arranged channels.
Um die Anströmfläche zu vergrößern werden vorteilhaft zwei oder mehrere Monolithmodule übereinander zu Monolithmodulstapeln aufeinander gestapelt. Es ist auch möglich, zur Kapazitätserhöhung beziehungsweise, um den gewünschten Umsatz zu erreichen, zwei oder mehrere Monolithmodulstapel hintereinander im Reaktor einzubauen. Bevorzugt steht die Monolithe umfassende Metalleinfassung an beiden Enden desselben jeweils geringfügig über die Monolithe hinaus, insbesondere um etwa 5 bis 10 mm. Dadurch fungiert die Metalleinfassung beim Übereinanderstapeln von Monolithlagen als Abstandhalter zwischen denselben. In den dadurch freigehaltenen Hohlraum können vorteilhaft, in einfacher Weise, durch Bohrungen und/oder Löcher in den überstehenden Rand der Metalleinfassung, Multithermoelemente für die Temperaturmessung eingeführt werden. In order to increase the inflow area, two or more monolith modules are advantageously stacked on top of one another to form monolith module stacks. It is also possible to increase the capacity or, in order to achieve the desired conversion, install two or more monolith module stacks in succession in the reactor. The monoliths comprising metal monoliths preferably extend slightly beyond the monoliths at both ends, in particular by about 5 to 10 mm. As a result, the metal rim acts as a spacer between them when stacking monolithic sheets. Advantageously, in the cavity thus kept free, it is possible, in a simple manner, to introduce multi-thermocouples for the temperature measurement through holes and / or holes in the protruding edge of the metal rim.
Bevorzugt sind die jeweils einander gegenüberliegenden Seiten der Metalleinfassung vor und hinter den Monolithen miteinander mittels metallischer Stege verschweißt, so dass eine mechanische Stabilität des mit der Metalleinfassung umhüllten Monolithmoduls gewährleistet ist. Dadurch kann die Metalleinfassung dünner ausgeführt werden. Preferably, the respectively opposite sides of the metal enclosure in front of and behind the monoliths are welded together by means of metallic webs, so that a mechanical stability of the monolith module enveloped by the metal enclosure is ensured. As a result, the metal rim can be made thinner.
Durch die Modulbauweise wird eine einfachere Handhabung beim Ein- und Ausbau der Monolithe in den Reaktor gewährleistet. Die Standzeit der Reaktoren kann erhöht werden, da Austauschsysteme für den Katalysatorwechsel außerhalb des Reaktors vorbereitet werden können. The modular design ensures easier handling when installing and removing the monoliths in the reactor. The service life of the reactors can be increased since exchange systems can be prepared for the catalyst change outside the reactor.
Dank der Metalleinfassung können die Monolithmodule über Führungsschienen in einfacher Weise in den Reaktor eingeschoben und herausgezogen werden. Thanks to the metal frame, the monolith modules can easily be inserted into the reactor via guide rails and pulled out.
Die vorliegend eingesetzte Matte ist ein Flächengebilde mit zwei einander gegenüberliegenden Großflächen und zwei senkrecht hierzu angeordneten Stirnflächen. The presently used mat is a sheet with two opposite large surfaces and two perpendicular thereto arranged end faces.
Die Matte umfasst eine Blähmatte, d.h. eine Fasermatte, die sich bei hohen Temperaturen ausdehnt (aufquillt). Blähmatten sind in der Regel aus Silikaten, z.B. Aluminiumsilikat, einem Blähglimmer, z.B. Vermiculit, und einem organischen Bindemittel zusammengesetzt. Blähmatten werden beispielsweise von der Firma 3M unter der Markenbezeichnung INTERAM® vertrieben. Die organischen Bindemittel haben jedoch eine Reihe von nachteiligen Eigenschaften, insbesondere führen sie zur Geruchsbelästigung durch Ausdampfen flüchtiger Anteile, wie zur Vergiftung von Katalysatoren. Zunehmend werden daher Blähmatten mit einem niedrigeren Gehalt an organischen Bindemitteln, von früher ca. 12 bis 14 Gew.-%, auf nunmehr ca. 2 bis 5 Gew.-%, insbesondere 3 bis 4 Gew.-% organisches Bindemittel, bezogen auf das Gesamtgewicht der Blähmatte, gefordert. Durch den niedrigeren Gehalt an organischem Bindemittel werden die Blähmatten jedoch krümeliger, weniger gut plastisch verformbar und schlechter handhabbar. Indem die Blähmatten erfindungsgemäß allseitig mit einer Kunststofffolie umhüllt werden, werden diese Nachteile jedoch behoben und auch Matten mit den geforderten niedrigeren Bindemittelgehalten können in einfacher Weise gehandhabt und in die Hohlräume, unter Ausfüllung derselben, eingebracht werden. In einer Ausführungsform besteht die Matte ausschließlich aus einer Blähmatte. The mat comprises a Blähmatte, ie a fiber mat, which expands (swells) at high temperatures. Blähmatten are usually composed of silicates, such as aluminum silicate, an expanding mica, such as vermiculite, and an organic binder. Blähmatten be marketed for example by the company 3M under the trade name INTERAM®. However, the organic binders have a number of adverse properties, in particular they lead to odor nuisance by evaporation of volatile components, such as poisoning of catalysts. Increasingly, therefore, are Blähmatten having a lower content of organic binders, from about 12 to 14 wt .-%, to now about 2 to 5 wt .-%, in particular 3 to 4 wt .-% of organic binder, based on the Total weight of the inflatable mat, required. Due to the lower content of organic binder but the Blähmatten crumbly, less easily plastically deformable and less manageable. By the blown mats according to the invention are coated on all sides with a plastic film, however, these disadvantages are eliminated and also mats with the required lower binder contents can be handled in a simple manner and in the cavities, filling the same, introduced. In one embodiment, the mat consists exclusively of a Blähmatte.
In einer weiteren Ausführungsform ist die Blähmatte eine Verbundmatte, die zusätzlich zu einer Blähmatte eine Fasermatte aus oxidischen Fasern, insbesondere aus Aluminiumoxid, aufweist, die gegenüber einer Blähmatte leichter und druckfester ist, eine geringere Wärmeleitfähigkeit aufweist und bis zu ca. 1 .200°C temperaturbeständig ist. In a further embodiment, the Blähmatte is a composite mat, which in addition to a Blähmatte a fiber mat of oxide fibers, in particular of alumina, which is lighter and more pressure resistant to a Blähmatte, has a lower thermal conductivity and up to about 1 .200 ° C. is temperature resistant.
Die Blähmatte sowie die Fasermatte aus oxidischen Fasern, die die Verbundmatte bilden, sind jeweils Flächengebilde, deren aneinander angrenzende Großflächen miteinander verbunden sind. The Blähmatte and the fiber mat of oxidic fibers that form the composite mat, each sheet, whose adjacent large surfaces are interconnected.
Weiter vorteilhaft ist der Einsatz einer Verbundmatte, die mehrere aufeinanderfolgende Lagen von jeweils einer Blähmatte und jeweils einer Fasermatte aus oxidischen Fasern umfasst. Further advantageous is the use of a composite mat which comprises a plurality of successive layers of a respective Blähmatte and each a fiber mat of oxide fibers.
In einer weiteren bevorzugten Ausführungsform wird eine Matte eingesetzt, die an ihren Stirnflächen ein Verstärkungsmaterial aufweist. In a further preferred embodiment, a mat is used which has a reinforcing material at its end faces.
Vorteilhaft werden als Kunststoffe für die die Blähmatte umhüllende Kunststofffolie Polyamide oder eine Mischung aus Polyamiden mit Polyethylen und/der Polypropylen eingesetzt. Nach dem Einbau wird die Kunststofffolie angestochen und/oder abgebrannt. Dadurch ist die Abdichtung der Monolithe gegeneinander sowie zur Reaktorinnenwand hin gewährleistet Zum Umhüllen der Matte wird bevorzugt eine Kunststofffolie eingesetzt, deren eine Seite eine strukturierte, nicht vollkommen glatte Oberfläche aufweist; die Matte wird der mit Kunststofffolie dergestalt umhüllt, dass deren strukturierte Seite zur Matte hin gerichtet ist. Dadurch wird das Vakuumziehen erleichtert, da sich zwischen den einander gegenüberliegenden strukturierten Innenseiten der Kunststofffolie durch die feinen Oberflächenstrukturen, die sich gegenseitig abstützen, Hohlräume bilden, durch die die Luft abgesaugt werden kann. Vollkommen plane Flächen würden dagegen aneinander kleben und das Vakuumieren des Innenraumes erschweren. It is advantageous to use polyamides or a mixture of polyamides with polyethylene and / or polypropylene as plastics for the plastic film enveloping the bluing mat. After installation, the plastic film is pierced and / or burned off. As a result, the sealing of the monoliths is ensured against each other and the reactor inner wall out to envelop the mat, a plastic film is preferably used, one side of which has a structured, not completely smooth surface; The mat is wrapped with plastic film in such a way that its structured side is directed towards the mat. As a result, the vacuum drawing is facilitated because form between the opposing structured inner sides of the plastic film through the fine surface structures that support each other, cavities through which the air can be sucked. Completely flat surfaces, on the other hand, would stick together and make vacuuming of the interior difficult.
Gegenstand der Erfindung auch ein Reaktor, der nach dem obigen Verfahren zusammengebaut ist. The invention also provides a reactor which is assembled according to the above method.
Der Reaktor kann vorteilhaft zur Durchführung von Dehydrierungen, insbesondere von Butan oder Propan, oder von partiellen Oxidationen eingesetzt werden. Bezugszeichenliste The reactor can advantageously be used for carrying out dehydrogenations, in particular of butane or propane, or of partial oxidations. LIST OF REFERENCE NUMBERS
1 Reaktor 1 reactor
2 Monolith  2 monolith
3 Matte  3 mat
4 Monolithmodul 4 monolith module
5 Metalleinfassung  5 metal bezel
6 Monolithmodulstapel  6 monolith module stacks
Die Erfindung wird im Folgenden anhand einer Zeichnung näher erläutert. The invention will be explained in more detail below with reference to a drawing.
Es zeigen im Einzelnen: They show in detail:
Figur 1 einen Querschnitt durch einen nach dem erfindungsgemäßen Verfahren zusammengebauten Reaktor, in einer ersten Ausführungsvariante, 1 shows a cross section through a reactor assembled according to the method according to the invention, in a first embodiment,
Figur 2 eine schematische Darstellung von erfindungsgemäß eingesetzten Figure 2 is a schematic representation of the invention used
Blähmatten, Figur 3 einen Ausschnitt aus einem Monolithmodul zum Einbau in einen Reaktor nach einer zweiten Ausführungsvariante und Blähmatten, FIG. 3 shows a detail of a monolith module for installation in a reactor according to a second embodiment variant, and
Figur 4 eine schematische Darstellung eines Monolithmodulstapels mit beispielhaft vier übereinander gestapelten Monolithmodulen. Figure 4 is a schematic representation of a Monolithmodulstapels with example four stacked Monolithmodulen.
Die schematische Darstellung in Figur 1 zeigt einen Querschnitt durch einen zylinderförmigen Reaktor 1 , mit einer Vielzahl von im Reaktorinnenraum angeordneten Monolithen 2, die gegeneinander und zur Reaktorinnenwand hin mittels Matten 3 abgedichtet sind, die jeweils eine Blähmatte umfassen und die allseitig in eine nicht dargestellte Kunststofffolie eingehüllt ist. Die Kanäle der Monolithe 2 sind vertikal, parallel zueinander, im Reaktorinnenraum angeordnet und werden entsprechend von oben nach unten oder von unten nach oben durch das Reaktionsgemisch der Gasphasenreaktion durchströmt. The schematic representation in Figure 1 shows a cross section through a cylindrical reactor 1, with a plurality of arranged in the reactor interior monoliths 2, which are sealed against each other and the reactor inside wall by means of mats 3, each comprising a Blähmatte and the sides in a plastic film, not shown is shrouded. The channels of the monoliths 2 are arranged vertically, parallel to one another, in the interior of the reactor and are accordingly flowed through from top to bottom or from bottom to top through the reaction mixture of the gas phase reaction.
Figur 2 zeigt eine bevorzugte geometrische Form, mit rechtwinkliger Abstufung der Enden für die erfindungsgemäß eingesetzten Matten 3, die jeweils allseitig in eine nicht dargestellte Kunststofffolie eingeschweißt sind. Figur 3 zeigt einen Ausschnitt aus einem Monolithmodul 4, gebildet aus einer Vielzahl von neben- und übereinander angeordneten Monolithen 2, die von einer Metalleinfassung 5 umhüllt sind, wobei die Monolithe 2 gegeneinander sowie zur Metalleinfassung 5 hin mittels Matten 3 abgedichtet sind. Die parallel zueinander ausgerichteten Kanäle der Monolithe 2 sind horizontal angeordnet. Figure 2 shows a preferred geometric shape, with a rectangular gradation of the ends for the mats 3 used in the invention, which are each welded on all sides in a plastic film, not shown. Figure 3 shows a section of a monolith module 4, formed from a plurality of juxtaposed and stacked monoliths 2, which are enveloped by a metal enclosure 5, wherein the monoliths 2 are sealed against each other and the metal enclosure 5 out by means of mats 3. The parallel aligned channels of the monoliths 2 are arranged horizontally.
Figur 4 zeigt einen Monolithmodulstapel 6, gebildet aus beispielhaft vier übereinander angeordneten Monolithmodulen 4, die jeweils aus Monolithen 2 gebildet sind, einer äußeren Metalleinfassung 5 sowie mit Matten 3, die die Monolithe 2 gegeneinander sowie zur Metalleinfassung 5 hin abdichten. FIG. 4 shows a monolith module stack 6, formed by four monolith modules 4 arranged one above the other, each formed from monoliths 2, an outer metal enclosure 5 and mats 3, which seal the monoliths 2 against each other and with the metal enclosure 5.

Claims

Patentansprüche claims
1 . Verfahren zum Einbau von Monolithen (2), die jeweils aus einem keramischen Block mit einer Vielzahl von parallel zueinander angeordneten Kanälen gebildet sind, die vom Reaktionsgasgemisch der heterogen katalysierten Gasphasenreaktion durchströmbar sind in einen Reaktor (1 ) zur Durchführung von heterogen katalysierten Gasphasenreaktionen, wobei die Monolithe (2) neben- und übereinander, im Reaktorinnenraum, gestapelt sind, dadurch gekennzeichnet, dass die Monolithe gegeneinander sowie zur Innenwand des Reaktors (1 ) hin mittels Matten (3), umfassend jeweils eine Blähmatte, abgedichtet werden, die vor dem Einbau in den Reaktor (1 ) allseitig in eine Kunststofffolie eingehüllt sind, wobei der von der Kunststofffolie umschlossene und die Matte (3) enthaltende Innenraum vakuumiert ist und wobei der von der Kunststofffolie umschlossene und die Matte (3) enthaltende Innenraum nach dem Einbau in den Reaktor (1 ) entvakuumiert wird. 1 . Process for the incorporation of monoliths (2), each of which is formed from a ceramic block having a plurality of channels arranged parallel to one another, through which the reaction gas mixture of the heterogeneously catalyzed gas phase reaction can flow in a reactor (1) for carrying out heterogeneously catalyzed gas phase reactions, wherein the Monoliths (2) side by side and one above the other, in the reactor interior, are stacked, characterized in that the monoliths against each other and to the inner wall of the reactor (1) out by means of mats (3), each comprising a Blähmatte be sealed before installation in the reactor (1) are encased in a plastic film on all sides, the inner space enclosed by the plastic film and containing the mat (3) being vacuum-sealed, and the inner space enclosed by the plastic film and containing the mat (3) after installation in the reactor ( 1) is evacuated.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Monolithe (2) in den Reaktor (1 ) in einer oder mehreren horizontalen Lagen nebeneinander mit vertikal angeordneten Kanälen eingebaut werden, dergestalt, dass jede Lage den Reaktorquerschnitt vollständig ausfüllt, und wobei zwischen aufeinanderfolgenden Lagen Abstandhalter vorgesehen sind, die Hohlräume freihalten, in die Messelemente insbesondere für eine Temperaturmessung eingeführt werden können. 2. The method according to claim 1, characterized in that the monoliths (2) are installed in the reactor (1) in one or more horizontal layers side by side with vertically arranged channels, such that each layer completely fills the reactor cross-section, and wherein between successive Layers spacers are provided which keep clear cavities, can be introduced into the measuring elements in particular for a temperature measurement.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zwei oder mehrere Monolithe (2) neben- und/oder übereinander, mit parallel zueinander ausgerichteten Kanälen, angeordnet sind und am äußeren Umfang derselben, in Längsrichtung der Kanäle, mit einer Metalleinfassung (5) unter Ausbildung eines Monolithmoduls (4) umhüllt sind, wobei die Monolithe (2) gegeneinander sowie zur Metalleinfassung (5) hin mittels Matten (3) abgedichtet sind und dass die Monolithmodule (4) mit horizontal angeordneten Kanälen in den Reaktor (1 ) eingebaut werden. 3. The method according to claim 1, characterized in that two or more monoliths (2) are arranged side by side and / or one above the other, with channels aligned parallel to one another, and on the outer circumference thereof, in the longitudinal direction of the channels, with a metal rim (5). with the formation of a monolithic module (4), wherein the monoliths (2) are sealed against each other and the metal enclosure (5) by means of mats (3) and that the monolith modules (4) are installed with horizontally arranged channels in the reactor (1) ,
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass zwei oder mehrere Monolithmodule (4) übereinander zu Monolithmodulstapeln (6) aufeinandergestapelt werden. 4. The method according to claim 3, characterized in that two or more monolith modules (4) are stacked one above the other to monolith module stacks (6).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass zwei oder mehrere Monolithmodulstapel (6) hintereinander im Reaktor (1 ) eingebaut werden. 5. The method according to claim 4, characterized in that two or more Monolithmodulstapel (6) are installed one behind the other in the reactor (1).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Matte (3) aus einer Blähmatte besteht. 6. The method according to any one of claims 1 to 5, characterized in that the mat (3) consists of a Blähmatte.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Matte (3) eine Verbundmatte ist, umfassend zusätzlich zu einer Blähmatte eine Fasermatte aus oxidischen Fasern, wobei die Blähmatte und die Fasermatte jeweils Flächengebilde sind, die an ihren Großflächen miteinander verbunden sind. 7. The method according to any one of claims 1 to 5, characterized in that the mat (3) is a composite mat, comprising in addition to a Blähmatte a fiber mat of oxidic fibers, wherein the Blähmatte and the fiber mat are each flat, which at their large areas with each other are connected.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Verbundmatte mehrere aufeinanderfolgende Lagen von jeweils einer Blähmatte und jeweils einer Fasermatte umfasst. 8. The method according to claim 7, characterized in that the composite mat comprises a plurality of successive layers of a respective Blähmatte and each a fiber mat.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Kunststoffe für die Kunststofffolie ein oder mehrere Polyamide oder Mischungen aus einem oder mehreren Polyamiden mit Polyethylen und/oder Polypropylen eingesetzt werden. 9. The method according to any one of claims 1 to 8, characterized in that as plastics for the plastic film one or more polyamides or mixtures of one or more polyamides with polyethylene and / or polypropylene are used.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der die Matte (3) enthaltende Innenraum entvakuumiert wird, indem die Kunststofffolie angestochen wird und/oder abgebrannt wird. 10. The method according to any one of claims 1 to 8, characterized in that the mat containing the mat (3) is de-vacuumed by the plastic film is pierced and / or burned off.
1 1 . Reaktor (1 ) zur Durchführung von heterogen katalysierten Gasphasenreaktionen, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 6. 1 1. Reactor (1) for carrying out heterogeneously catalyzed gas phase reactions, prepared by a process according to one of claims 1 to 6.
12. Verwendung des Reaktors (1 ) nach Anspruch 1 1 zur Durchführung von Dehydrierungen, insbesondere von Butan oder Propan, oder von partiellen Oxidationen. 12. Use of the reactor (1) according to claim 1 1 for carrying out dehydrogenation, in particular of butane or propane, or of partial oxidation.
EP14704157.8A 2013-02-14 2014-02-13 Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions Withdrawn EP2956236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14704157.8A EP2956236A1 (en) 2013-02-14 2014-02-13 Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13155163 2013-02-14
PCT/EP2014/052821 WO2014125024A1 (en) 2013-02-14 2014-02-13 Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions
EP14704157.8A EP2956236A1 (en) 2013-02-14 2014-02-13 Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions

Publications (1)

Publication Number Publication Date
EP2956236A1 true EP2956236A1 (en) 2015-12-23

Family

ID=47747427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14704157.8A Withdrawn EP2956236A1 (en) 2013-02-14 2014-02-13 Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions

Country Status (7)

Country Link
EP (1) EP2956236A1 (en)
JP (1) JP2016513006A (en)
KR (1) KR20150119068A (en)
CN (1) CN104994942B (en)
DE (1) DE202014011409U1 (en)
EA (1) EA201591496A1 (en)
WO (1) WO2014125024A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9616406B2 (en) 2013-02-14 2017-04-11 Basf Se Installing monoliths in a reactor for conducting heterogeneously catalyzed gas phase reactions
EP2993323B1 (en) * 2014-09-04 2017-07-19 3M Innovative Properties Company Mounting mat for a pollution control element or a chemical reactor
DE102015220126A1 (en) * 2015-10-15 2017-04-20 Mtu Friedrichshafen Gmbh Exhaust gas component, method for producing such an exhaust gas component, and device for carrying out the method
EP3389847A1 (en) * 2015-12-16 2018-10-24 Basf Se Reactor for carrying out heterogeneously catalysed gas phase reactions, and use of the reactor
WO2018024740A1 (en) * 2016-08-02 2018-02-08 Basf Se Reactor for carrying out the autothermal gas phase dehydrogenation of a hydrocarbon-containing gas flow
KR20210036363A (en) 2018-08-06 2021-04-02 바스프 에스이 Device consisting of pressure-rating device shell and internal framework system consisting of ceramic fiber composite material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685012U (en) * 1979-12-05 1981-07-08
JPS57146954A (en) * 1981-03-04 1982-09-10 Toyota Motor Corp Fixing method of thermally blowing sealant
GB8504239D0 (en) * 1985-02-19 1985-03-20 W F J Refractories Ltd Use of fibrous materials
US4929429A (en) * 1988-02-11 1990-05-29 Minnesota Mining And Manufacturing Company Catalytic converter
DE3827863A1 (en) * 1988-08-17 1990-02-22 Leistritz Ag Catalytic exhaust gas purification apparatus
JPH0397521U (en) * 1990-01-25 1991-10-08
US5882608A (en) * 1996-06-18 1999-03-16 Minnesota Mining And Manufacturing Company Hybrid mounting system for pollution control devices
EP0859133B1 (en) * 1997-02-12 2003-09-03 Corning Incorporated Method of making a catalytic converter for use in an internal combustion engine
WO2000037781A1 (en) * 1998-12-18 2000-06-29 Corning Incorporated A catalytic converter for use in an internal combustion engine and a method of making
EP1495807A1 (en) * 2003-06-30 2005-01-12 3M Innovative Properties Company Mounting mat for mounting monolith in a pollution control device
US20110030355A1 (en) * 2009-08-10 2011-02-10 Vconverter Company Catalytic Converter and Process of Manufacture
EA024781B1 (en) 2010-12-21 2016-10-31 Басф Се Reactor for carrying out autothermal gas phase dehydration
CN103702753B (en) * 2011-08-02 2015-07-08 巴斯夫欧洲公司 Reactor for carrying out autothermal gas-phase dehydrogenation
US8852538B2 (en) * 2011-08-02 2014-10-07 Basf Se Reactor for carrying out an autothermal gas-phase dehydrogenation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014125024A1 *

Also Published As

Publication number Publication date
CN104994942B (en) 2017-09-01
CN104994942A (en) 2015-10-21
WO2014125024A1 (en) 2014-08-21
DE202014011409U1 (en) 2020-04-21
EA201591496A1 (en) 2016-02-29
KR20150119068A (en) 2015-10-23
JP2016513006A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2014125024A1 (en) Method for mounting monoliths in a reactor for carrying out heterogeneously catalyzed gas-phase reactions
DE102019123534A1 (en) Humidifier with carrier plates and carrier plate for a humidifier
EP2414746B1 (en) Operating resource store, heat transfer device and heating pump
DE102011079586A1 (en) Module for a heat pump
EP2956235B1 (en) Material and method for sealing cavities
DE3614347C2 (en)
DE3102763A1 (en) PHASE CONTACT DEVICE AND PACKS THEREFOR
EP0036944B1 (en) Packing elements
EP1317955B1 (en) Device and process for the performance of heterogeneously catalysed reactions
DE102020207350A1 (en) Membrane composite for a humidifier
WO1999057453A1 (en) Support element comprising a deformation element with radial deformation limiters
DE1501375A1 (en) Filler body plates for heat and mass transfer devices
EP3464850B1 (en) Honeycomb body for exhaust gas aftertreatment
EP1300555A9 (en) Catalyst
EP3847348B1 (en) Catalyst having a metal honeycomb body
DE102018216841B4 (en) Particle filter
DE102019210238A1 (en) Stacked plate heat exchanger
CH673963A5 (en)
EP2084462B1 (en) Ceiling/floor element for a heating/cooling ceiling/floor, heating/cooling ceiling/floor with at least one such ceiling/floor element, and method of producing at least two ceiling/floor modules from such a ceiling/floor element
EP3669963B1 (en) Mist eliminator with novel connecting structure
WO2021164874A1 (en) Apparatus comprising a reactor for dehydrogenating a hydrogen-enriched liquid hydrogen carrier
DE8901773U1 (en) Catalyst moldings with spacers
DE102022118939A1 (en) Plate stack for a humidification device and humidification device
EP2786862A1 (en) Sandwich panel
DE202021100709U1 (en) System module for the construction of a splinter protection wall and flexible splinter protection cage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GAUER, JOCHEN

Owner name: OLBERT, GERHARD

Owner name: TELLAECHE HERRANZ, CARLOS

Owner name: KUEHLING, ARNOLD

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUEHLING, ARNOLD

Inventor name: TELLAECHE HERRANZ, CARLOS

Inventor name: GAUER, JOCHEN

Inventor name: OLBERT, GERHARD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

110E Request filed for conversion into a national patent application [according to art. 135 epc]

Effective date: 20191127

18W Application withdrawn

Effective date: 20191127