EP2951681A4 - Solution to divergent branches in a simd core using hardware pointers - Google Patents

Solution to divergent branches in a simd core using hardware pointers

Info

Publication number
EP2951681A4
EP2951681A4 EP14746501.7A EP14746501A EP2951681A4 EP 2951681 A4 EP2951681 A4 EP 2951681A4 EP 14746501 A EP14746501 A EP 14746501A EP 2951681 A4 EP2951681 A4 EP 2951681A4
Authority
EP
European Patent Office
Prior art keywords
solution
divergent branches
simd core
pointers
hardware
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14746501.7A
Other languages
German (de)
French (fr)
Other versions
EP2951681B1 (en
EP2951681A1 (en
Inventor
Reza Yazdani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of EP2951681A1 publication Critical patent/EP2951681A1/en
Publication of EP2951681A4 publication Critical patent/EP2951681A4/en
Application granted granted Critical
Publication of EP2951681B1 publication Critical patent/EP2951681B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
    • G06F9/3887Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple data lanes [SIMD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformation of program code
    • G06F8/41Compilation
    • G06F8/44Encoding
    • G06F8/445Exploiting fine grain parallelism, i.e. parallelism at instruction level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/3005Arrangements for executing specific machine instructions to perform operations for flow control
    • G06F9/30058Conditional branch instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/32Address formation of the next instruction, e.g. by incrementing the instruction counter
    • G06F9/321Program or instruction counter, e.g. incrementing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3802Instruction prefetching
    • G06F9/3804Instruction prefetching for branches, e.g. hedging, branch folding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3836Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution
    • G06F9/3851Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution from multiple instruction streams, e.g. multistreaming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3836Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution
    • G06F9/3853Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution of compound instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
    • G06F9/3889Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Advance Control (AREA)
  • Devices For Executing Special Programs (AREA)
  • Executing Machine-Instructions (AREA)
EP14746501.7A 2013-01-29 2014-01-29 Solution to divergent branches in a simd core using hardware pointers Active EP2951681B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/753,113 US9639371B2 (en) 2013-01-29 2013-01-29 Solution to divergent branches in a SIMD core using hardware pointers
PCT/US2014/013474 WO2014120703A1 (en) 2013-01-29 2014-01-29 Solution to divergent branches in a simd core using hardware pointers

Publications (3)

Publication Number Publication Date
EP2951681A1 EP2951681A1 (en) 2015-12-09
EP2951681A4 true EP2951681A4 (en) 2016-12-07
EP2951681B1 EP2951681B1 (en) 2018-11-14

Family

ID=51224343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14746501.7A Active EP2951681B1 (en) 2013-01-29 2014-01-29 Solution to divergent branches in a simd core using hardware pointers

Country Status (6)

Country Link
US (1) US9639371B2 (en)
EP (1) EP2951681B1 (en)
JP (1) JP6159825B2 (en)
KR (1) KR101702651B1 (en)
CN (1) CN105051680B (en)
WO (1) WO2014120703A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9697003B2 (en) * 2013-06-07 2017-07-04 Advanced Micro Devices, Inc. Method and system for yield operation supporting thread-like behavior
US9582321B2 (en) * 2013-11-08 2017-02-28 Swarm64 As System and method of data processing
US9292269B2 (en) * 2014-01-31 2016-03-22 Nvidia Corporation Control flow optimization for efficient program code execution on a processor
US9348595B1 (en) 2014-12-22 2016-05-24 Centipede Semi Ltd. Run-time code parallelization with continuous monitoring of repetitive instruction sequences
US10180841B2 (en) 2014-12-22 2019-01-15 Centipede Semi Ltd. Early termination of segment monitoring in run-time code parallelization
KR101624636B1 (en) * 2015-03-03 2016-05-27 주식회사 에이디칩스 Apparatus and Method for Instruction Fatch
US9208066B1 (en) * 2015-03-04 2015-12-08 Centipede Semi Ltd. Run-time code parallelization with approximate monitoring of instruction sequences
US10296346B2 (en) 2015-03-31 2019-05-21 Centipede Semi Ltd. Parallelized execution of instruction sequences based on pre-monitoring
US10296350B2 (en) 2015-03-31 2019-05-21 Centipede Semi Ltd. Parallelized execution of instruction sequences
US9715390B2 (en) 2015-04-19 2017-07-25 Centipede Semi Ltd. Run-time parallelization of code execution based on an approximate register-access specification
EP3106982B1 (en) * 2015-06-18 2021-03-10 ARM Limited Determination of branch convergence in a sequence of program instructions
US10585623B2 (en) 2015-12-11 2020-03-10 Vivante Corporation Software defined FIFO buffer for multithreaded access
JP6167193B1 (en) * 2016-01-25 2017-07-19 株式会社ドワンゴ Processor
US10474468B2 (en) 2017-02-22 2019-11-12 Advanced Micro Devices, Inc. Indicating instruction scheduling mode for processing wavefront portions
US10620994B2 (en) 2017-05-30 2020-04-14 Advanced Micro Devices, Inc. Continuation analysis tasks for GPU task scheduling
US10990394B2 (en) * 2017-09-28 2021-04-27 Intel Corporation Systems and methods for mixed instruction multiple data (xIMD) computing
US10877757B2 (en) * 2017-11-14 2020-12-29 Nvidia Corporation Binding constants at runtime for improved resource utilization
KR102406340B1 (en) * 2018-02-26 2022-06-13 에스케이하이닉스 주식회사 Electronic apparatus and operating method thereof
CN110716750A (en) * 2018-07-11 2020-01-21 超威半导体公司 Method and system for partial wavefront combining
FR3084187B1 (en) * 2018-07-18 2021-01-01 Commissariat Energie Atomique PROCEDURE FOR ACCELERATING THE EXECUTION OF A SINGLE PATH PROGRAM BY PARALLEL EXECUTION OF CONDITIONALLY COMPETING SEQUENCES
US11061681B2 (en) 2019-07-25 2021-07-13 International Business Machines Corporation Instruction streaming using copy select vector
CN113885877A (en) * 2021-10-11 2022-01-04 北京超弦存储器研究院 Compiling method, device, equipment and medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242645A1 (en) * 2005-04-26 2006-10-26 Lucian Codrescu System and method of executing program threads in a multi-threaded processor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374419A3 (en) 1988-12-21 1991-04-10 International Business Machines Corporation Method and apparatus for efficient loop constructs in hardware and microcode
JPH07239780A (en) * 1994-01-06 1995-09-12 Motohiro Kurisu One-clock variable length instruction execution process type instruction read computer
GB2311882B (en) 1996-04-04 2000-08-09 Videologic Ltd A data processing management system
US5838984A (en) 1996-08-19 1998-11-17 Samsung Electronics Co., Ltd. Single-instruction-multiple-data processing using multiple banks of vector registers
US6003128A (en) 1997-05-01 1999-12-14 Advanced Micro Devices, Inc. Number of pipeline stages and loop length related counter differential based end-loop prediction
US5898865A (en) 1997-06-12 1999-04-27 Advanced Micro Devices, Inc. Apparatus and method for predicting an end of loop for string instructions
US6157988A (en) 1997-08-01 2000-12-05 Micron Technology, Inc. Method and apparatus for high performance branching in pipelined microsystems
US6032252A (en) 1997-10-28 2000-02-29 Advanced Micro Devices, Inc. Apparatus and method for efficient loop control in a superscalar microprocessor
US6366999B1 (en) 1998-01-28 2002-04-02 Bops, Inc. Methods and apparatus to support conditional execution in a VLIW-based array processor with subword execution
US6490673B1 (en) 1998-11-27 2002-12-03 Matsushita Electric Industrial Co., Ltd Processor, compiling apparatus, and compile program recorded on a recording medium
JP2000259579A (en) 1999-03-11 2000-09-22 Hitachi Ltd Semiconductor integrated circuit
GB2374442B (en) 2001-02-14 2005-03-23 Clearspeed Technology Ltd Method for controlling the order of datagrams
JP3796124B2 (en) 2001-03-07 2006-07-12 株式会社ルネサステクノロジ Variable thread priority processor
US6986025B2 (en) * 2001-06-11 2006-01-10 Broadcom Corporation Conditional execution per lane
US7159103B2 (en) 2003-03-24 2007-01-02 Infineon Technologies Ag Zero-overhead loop operation in microprocessor having instruction buffer
US7124318B2 (en) 2003-09-18 2006-10-17 International Business Machines Corporation Multiple parallel pipeline processor having self-repairing capability
US7366885B1 (en) 2004-06-02 2008-04-29 Advanced Micro Devices, Inc. Method for optimizing loop control of microcoded instructions
US7330964B2 (en) * 2005-11-14 2008-02-12 Texas Instruments Incorporated Microprocessor with independent SIMD loop buffer
JP2008090744A (en) 2006-10-04 2008-04-17 Matsushita Electric Ind Co Ltd Processor and object code generation apparatus
US7937574B2 (en) 2007-07-17 2011-05-03 Advanced Micro Devices, Inc. Precise counter hardware for microcode loops
CN102043755B (en) 2009-10-22 2012-12-05 财团法人工业技术研究院 Reconfigurable processing device and system
EP2508979B1 (en) 2011-04-07 2018-10-10 VIA Technologies, Inc. Efficient conditional alu instruction in read-port limited register file microprocessor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242645A1 (en) * 2005-04-26 2006-10-26 Lucian Codrescu System and method of executing program threads in a multi-threaded processor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIAYUAN MENG ET AL: "Dynamic warp subdivision for integrated branch and memory divergence tolerance", ACM SIGARCH COMPUTER ARCHITECTURE NEWS, ACM SPECIAL INTEREST GROUP ON COMPUTER ARCHITECTURE, 2 PENN PLAZA, SUITE 701 NEW YORK NY 10121-0701 USA, vol. 38, no. 3, 19 June 2010 (2010-06-19), pages 235 - 246, XP058128025, ISSN: 0163-5964, DOI: 10.1145/1816038.1815992 *
NICOLAS BRUNIE ET AL: "Simultaneous branch and warp interweaving for sustained GPU performance", COMPUTER ARCHITECTURE (ISCA), 2012 39TH ANNUAL INTERNATIONAL SYMPOSIUM ON, IEEE, 9 June 2012 (2012-06-09), pages 49 - 60, XP032200021, ISBN: 978-1-4673-0475-7, DOI: 10.1109/ISCA.2012.6237005 *
See also references of WO2014120703A1 *
YAOHUA WANG ET AL: "Instruction Shuffle: Achieving MIMD-like Performance on SIMD Architectures", IEEE COMPUTER ARCHITECTURE LETTERS, IEEE, US, vol. 11, no. 2, 1 July 2012 (2012-07-01), pages 37 - 40, XP011480936, ISSN: 1556-6056, DOI: 10.1109/L-CA.2011.34 *

Also Published As

Publication number Publication date
US9639371B2 (en) 2017-05-02
US20140215187A1 (en) 2014-07-31
EP2951681B1 (en) 2018-11-14
CN105051680B (en) 2018-08-14
JP6159825B2 (en) 2017-07-05
EP2951681A1 (en) 2015-12-09
WO2014120703A1 (en) 2014-08-07
CN105051680A (en) 2015-11-11
KR101702651B1 (en) 2017-02-03
JP2016508640A (en) 2016-03-22
KR20150111990A (en) 2015-10-06

Similar Documents

Publication Publication Date Title
EP2951681A4 (en) Solution to divergent branches in a simd core using hardware pointers
GB2514658B (en) Improvements in and relating to displays
GB2518534B (en) Improvements in and relating to a lighting unit
GB2513508B (en) Restricted instructions in transactional execution
GB2519103B (en) Decoding a complex program instruction corresponding to multiple micro-operations
GB2557789B (en) Improvements in relation to valves
SG11201602282TA (en) Use of a complex ester in a fuel
GB201407698D0 (en) Improvements in and relating to ophthalmo-scopes
EP2951682A4 (en) Hardware and software solutions to divergent branches in a parallel pipeline
PL3052770T3 (en) Turbomachine designed to operate in turning gear mode
GB201315038D0 (en) Improvements in and relating to lenses
PL2999478T3 (en) Dextran sulfate for use in mobilization of cells
GB201322490D0 (en) Improvements in or relating to waveguides
GB2511042B (en) Improvements in and relating to cable rods
GB201801057D0 (en) Improvements in or relating to stairlifts
GB2522177B (en) Improvements in and relating to sampling
GB201301282D0 (en) Improvements in or relating to a portable structure
GB201322488D0 (en) Improvements in and relating to waveguides
GB201322489D0 (en) Improvement in and relating to waveguides
GB2515520B (en) Improvements in and relating to displays
GB201308595D0 (en) Improvements in or Relating to a Plant Shelter
GB201313010D0 (en) Improvements in or relating to posts
GB201317357D0 (en) Improvements in and relating to displays
GB201317754D0 (en) Improvements in and related to a waterproof connector
TH1301006251B (en) How to export coins with the solution yourself

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20161107

RIC1 Information provided on ipc code assigned before grant

Ipc: G06F 9/32 20060101ALI20161031BHEP

Ipc: G06F 9/45 20060101ALI20161031BHEP

Ipc: G06F 9/30 20060101ALI20161031BHEP

Ipc: G06F 9/38 20060101AFI20161031BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171006

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ADVANCED MICRO DEVICES, INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ADVANCED MICRO DEVICES, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G06F 9/38 20060101AFI20180516BHEP

Ipc: G06F 9/32 20060101ALI20180516BHEP

Ipc: G06F 9/30 20060101ALI20180516BHEP

Ipc: G06F 8/41 20180101ALI20180516BHEP

INTG Intention to grant announced

Effective date: 20180613

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1065626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014036015

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1065626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014036015

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

26N No opposition filed

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240118

Year of fee payment: 11

Ref country code: GB

Payment date: 20240130

Year of fee payment: 11