EP2949811B1 - Blade segment for a disc refiner - Google Patents

Blade segment for a disc refiner Download PDF

Info

Publication number
EP2949811B1
EP2949811B1 EP15166589.0A EP15166589A EP2949811B1 EP 2949811 B1 EP2949811 B1 EP 2949811B1 EP 15166589 A EP15166589 A EP 15166589A EP 2949811 B1 EP2949811 B1 EP 2949811B1
Authority
EP
European Patent Office
Prior art keywords
blade
blade segment
side edge
refining surface
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15166589.0A
Other languages
German (de)
French (fr)
Other versions
EP2949811A1 (en
Inventor
Håkan SJÖSTRÖM
Matti Kaarineva
Tomi Iisakkila
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valmet Technologies Oy
Original Assignee
Valmet Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valmet Technologies Oy filed Critical Valmet Technologies Oy
Publication of EP2949811A1 publication Critical patent/EP2949811A1/en
Application granted granted Critical
Publication of EP2949811B1 publication Critical patent/EP2949811B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • D21D1/306Discs

Definitions

  • the invention relates to a blade segment of a disc refiner according to the preamble of claim 1, which is intended for refining lignocellulose material used in the production of fibrous material such as paper and board.
  • a disc refiner consists of two or more opposite refining elements, at least one of which refining elements is rotatable.
  • the rotating refining element can be referred to as rotor, and the non-rotating, or stationary, refining element can be referred to as stator.
  • stator Between the refining elements is a refining gap, where the material to be refined is ground against the refining surfaces.
  • the refining surface of the refining elements comprises blade bars and blade grooves.
  • the refining surface is constituted by attaching one or more blade elements to the frame structure of the refining element, with the blade element having a refining surface which comprises blade bars and blade grooves.
  • said blade element can also be attached directly to the frame structure of the refiner.
  • the refining surface of the refining element can consist of one uniform blade element, in which case a single individual annular planar blade element can constitute an entire refining surface of a refining element.
  • the refining surface of the refining element of a disc refiner is, however, constituted of several planar blade segments placed side by side, in which case each blade segment on its own constitutes only some portion of the complete annular refining surface of the refining element, and the blade segments placed side by side together constitute the complete annular refining surface of the refining element.
  • a typical blade segment comprises an inner circumference of the blade segment directed in the direction of the inner circumference of the refining element and an outer circumference of the blade segment directed in the direction of the outer circumference of the refining element, and a first side edge of the blade segment and a second side edge of the blade segment connecting the inner circumference and the outer circumference of the blade segment, where the first side edge and the second side edge are straight, i.e. in the radial direction of the blade segment so that the blade segment resembles the shape of a sector of a ring.
  • the side edges of the blade segments constitute a point of discontinuity at the interface or at the point of contact of adjacent blade segments, which can result for example in disturbances both in the actual refining and in the flow of the material that is to be refined and that has been refined at the interfaces of adjacent blade segments and in their vicinity.
  • blade segments where the side edges are not straight, i.e. not in the radial direction of the blade segment, but instead in the vicinity of the inner circumference the side edge is in the radial direction and then turns at one point away from the radial direction against the intended direction of rotation of the blade segment.
  • Such a construction requires precise tolerances at the interfaces of the blade segments so that unrefined pulp would not escape through the refiner.
  • the blade segment comprises an inner circumference and an outer circumference as well as a first side edge and a second side edge which combine the inner circumference and the outer circumference, wherein the first side edge and the second side edge of the blade segment are curved so that one side edge is concave and the other side edge is convex.
  • EP 2 559 807 A1 shows a refining plate segment for a mechanical refiner of lignocellulosic material including: a convex conical refining surface on a convex conical substrate of the plate, wherein the refining surface is adapted to face a concave conical refining surface of an opposing refiner plate, the convex conical refining surface including bars and grooves formed between adjacent bars, wherein an angle of each bar with respect to a reference line parallel to a rotational axis of the refiner increases at least 15 degrees and the angle is a holdback angle is 10 to 45 degrees at a periphery of the refining surface, and wherein the bars each include a leading sidewall having an irregular surface having protrusions extending outwardly from the sidewall toward a sidewall on an adjacent bar.
  • WO 95/25199 A1 shows an annular base having radial breaker bars for transporting high consistency stock from a flinger nut section of a refiner to refining plates.
  • the radial breaker bars are curved so that the radial outward ends curve away from the direction of rotation.
  • the object of the invention is achieved by a blade segment of a disc refiner having the features of claim 1.
  • the blade segment of a disc refiner according to the invention is defined in claim 1.
  • the first side edge and the second side edge of the blade segment are curved side edges which comprise a single radius of curvature.
  • the blade segment comprises a refining surface, which comprises first refining surface portions that refine the material to be refined and second refining surface portions that run between the first refining surface portions and that carry the material to be refined, and the center line of the first refining surface portions and of the second refining surface portions is curved.
  • the magnitude of the radius of curvature and the direction of curvature of the center line of the first side edge and second side edge of the blade segment and of the second refining surface portion are essentially the same.
  • the first refining surface portion comprises a first blade bar running from the direction of the inner circumference of the blade segment to the direction of the outer circumference and the second refining surface portion is a first blade groove running from the direction of the inner circumference of the blade segment to the direction of the outer circumference and the upper surface of the first blade bar comprises second blade bars and between them second blade grooves.
  • the first refining surface portion comprises blade bars and between them blade grooves
  • the second refining surface portion is a blade groove running from the direction of the inner circumference of the blade segment to the direction of the outer circumference.
  • At least one side edge of the blade segment comprises an area free from blade bars to constitute at least some portion of the second refining surface portion that is constituted between two adjacent blade segments.
  • the volume of at least one blade groove included in the first refining surface portion is adapted to change in the run direction of the blade groove.
  • the width and/or depth of the blade groove included in the first refining surface portion is adapted to change in the run direction of the blade groove.
  • the width and/or depth of the first blade groove constituting the second refining surface portion is adapted to change in the run direction of the blade groove.
  • the portion of the non-pumping curve is 0 to 50%, preferably approximately 20 to 40% and most preferably over approximately 30% of the radius of the blade segment.
  • the blade segment is a blade segment of a rotatable refining element.
  • Figure 1 schematically shows a blade segment 1 of a disc refiner, i.e. a planar blade segment 1 seen in the direction of the refining surface 2 of the blade segment 1.
  • the blade segment 1 shown in Figure 1 is thus a planar blade segment that can be adapted to be a part of the stationary refining element of the disc refiner, i.e. a part of the stator, whereby the refining surface 2 of the blade segment 1 constitutes a portion of the refining surface of the stationary refining element, or it can be adapted to be a part of the rotating refining element of the disc refiner, i.e.
  • the refining surface 2 of the blade segment 1 constitutes a portion of the refining surface of the rotatable refining element.
  • the blade segment 1 can have securing openings 13, through which securing bolts can be inserted in order to fasten the blade segment 1 to the refining element.
  • the blade segment can also be secured to the refining element so that the securing points do not extend through the blade segment, but there is bolt securing only at the back part of the blade segment, whereby the refining surface of the blade segment, i.e. the blade surface, remains intact.
  • the blade segment 1 comprises an inner circumference 3 or inner edge 3 or feed edge 3 directed to the direction of the inner circumference of the refining element of the refiner, and from the direction of the inner circumference 3 or inner edge 3 or feed edge 3 the material to be refined is fed into the refining gap, i.e. blade gap, located between the opposite refining elements of the refiner.
  • the blade segment 1 further comprises an outer circumference 4 or outer edge 4 or outlet edge 4 directed to the direction of the outer circumference of the refining element of the refiner, and the material to be refined travels in the blade gap of the refiner during refining to the direction of the outer circumference 4 or outer edge 4 or outlet edge 4 and the material that has been refined exits the blade gap of the refiner through it.
  • the inner circumference 3 and outer circumference 4 of the blade segment 1 constitute a portion of the inner circumference and outer circumference of a complete refining surface of a refining element.
  • the blade segment further comprises a first side edge 5 and a second side edge 6 combining the inner circumference 3 and outer circumference 4 of the blade segment 1.
  • the refining surface 2 of the blade segment 1 comprises first refining surface portions 7 and between them second refining surface portions 8, with the first refining surface portions 7 constituting refining surface portions that refine the material to be refined and with the second refining surface portions constituting refining surface portions that run between the first refining surface portions and that carry the material to be refined.
  • the first refining surface portion 7 of the blade segment 1 comprises a first blade bar 9 and second blade bars 11 constituted at its upper surface and between them second blade grooves 12, with the second refining surface portions 8 being constituted by the first blade grooves 10 between the first blade bars 9, and the first blade grooves 10 constitute the feed grooves 10 of the blade segment 1, which feed grooves 10 carry the material to be refined from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4.
  • the width of the second blade bars 11 can be for example approximately 1.2 to 1.4 millimeters and the width of the second blade grooves 12 can be for example approximately 1.8 to 2.0 millimeters.
  • the depth of the second blade grooves 12 can be for example approximately 5.0 to 7.0 millimeters.
  • the width of the first blade grooves 10 on the inner circumference 3 of the blade segment 1 can be for example approximately 15 mm and can become narrower towards the outer circumference 4 for example so that the width of the first blade grooves 10 on the outer circumference 4 of the blade segment 1 is for example approximately 5 mm.
  • the depth of the first blade grooves 10, i.e. the distance from the upper surface of the second blade bars 11 to the bottom of the first blade bars 10 is greater than the depth of the second blade grooves 12.
  • the depth of the first blade grooves 10 can become smaller, i.e.
  • the first blade grooves 10 can become shallower towards the outer circumference 4 of the blade segment 1, but in this case, too, the depth of the first blade grooves 10 on the outer circumference 4 of the blade segment 1 is greater than the depth of the second blade grooves 12.
  • the second blade bars 11 and between them the second blade grooves 12 constitute dense blading, i.e. so-called microblading or microgrooving, on the refining surface 2 of the blade segment 1, whereby the shearing length of the refining surface 2 of the blade segment 1 becomes considerably large.
  • Said second blade bars 11 and second blade grooves 12 can be straight or curved in their respective run direction.
  • the width and height of the second blade bars 11 and correspondingly the width and depth of the second blade grooves 12 can be constant or they can vary in the run direction of said blade bars 11 and blade grooves 12.
  • the first blade bars 9 and the first blade grooves 10 are curved, i.e. they run from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 in a curved pattern, or in other words the center lines of the first blade bars 9 and the first blade grooves 10 are curved, i.e. they run from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 in a curved pattern.
  • the center line referred to in Figure 1 is only presented at one first blade groove 10 on the side of the first side edge 5 and marked with reference marking CL.
  • the shape of the first blade groove 10 is curved so that in the vicinity of the inner circumference 3 of the blade segment 1 it is pumping, i.e. it enhances the travel of the pulp to be refined from the direction of the inner circumference 3 of the blade segment 1 towards the outer circumference 4, when the blade segment 1 constitutes a portion of the refining surface of the rotatable refining element and when the direction of rotation corresponds to the direction indicated by the arrow denoted with reference marking RD in Figure 1 .
  • the blade groove 10 curves back so that in the vicinity of the outer circumference 4 of the blade segment 1 the blade groove 10 is non-pumping, i.e.
  • the material to be refined is thus subject to a force effect which slows down or holds the travel of the material to be refined towards the outer circumference 4 of the blade segment 1, in other words it has a non-pumping effect on the material to be refined.
  • the direction of the feed groove 10 on the side of the inner circumference 3 of the blade segment 1 intensifies the travel of the material to be refined towards the direction of the outer circumference 4 of the blade segment 1, and correspondingly on the side of the outer circumference 4 of the blade segment 1 the direction of the feed groove 10 slows down the travel of the material to be refined towards the direction of the outer circumference 4 of the blade segment 1.
  • Figure 1 shows and also Figures 2 and 3 show the portion of the refining surface of the rotatable refining element, i.e. of the refining surface of the rotor, constituting the blade segment 1, but a similar piece can also be used in the stationary refining element, i.e. in the stator.
  • the first side edge 5 of the blade segment 1 thus corresponds to the side edge of the blade segment adapted to the direction of rotation of the rotatable refining element and the second side edge 6 of the blade segment 1 thus corresponds to the side edge of the blade segment adapted to the direction opposite to the direction of rotation of the rotatable refining element.
  • the first side edge 5 of the blade segment 1 thus constitutes the front edge of the blade segment 1 and the second side edge 6 of the blade segment 1 constitutes the back edge of the blade segment 1.
  • the first side edge 5 and second side edge 6 of the blade segment 1 are curved, in other words the first or front side edge 5 and second or back side edge 6 of the blade segment 1 run in a curved pattern from the inner circumference 3 of the blade segment 1 to the outer circumference 4 so that the first side edge 5 of the blade segment 1 has the shape of a concave curve and the second side edge 6 has the shape of a convex curve, in other words the center point of the radius of curvature of the curves constituted by the side edges 5 and 6 is residing in the direction of rotation RD of the rotatable refining element, ie.
  • the center points of the radii of the side edge curves reside on the left side of the corresponding side edges, and, respectively, the bottom points of the side edge curves are thus residing opposite to the rotating direction. Since the center point of the radius of curvature of the curves constituted by both side edges 5 and 6 is located in the same direction with respect to the direction of rotation RD of the rotatable refining element, it can be said that the direction of curvature of the curved side edges 5, 6 is the same. Moreover, in order to simplify the structure of the blade segment 1, the magnitude or value of the radii of curvature of the side edges 5, 6 is essentially the same.
  • the first side edge 5 and second side edge 6 of the blade segment 1 are curved so that the first side edge 5 and second side edge 6 curve in the vicinity of the inner circumference 3 to the pulp-carrying direction, i.e. to the pumping direction, and in the vicinity of the outer circumference 4 to the pulp-holding direction, i.e. to the non-pumping direction.
  • Both the first curved side edge 5 and second curved side edge 6 of the blade segment 1 are composed of only one radius of curvature.
  • the magnitude of the radius of curvature may vary on the basis of the size category of the blade segment 1, i.e. on the basis of the distance between the inner circumference 3 and outer circumference 4 of the blade segment 1, i.e. on the basis of the radius R of the blade segment 1.
  • Figure 1 schematically shows the radius R of the blade segment 1 beside the first side edge 5 of the blade segment 1. The essential matter is that when the blade segment 1 constitutes a portion of the refining surface of the rotatable refining element, the side edges 5 and 6 of the blade segment 1 curve in the vicinity of the inner circumference 3 to the pulp-carrying direction, i.e.
  • the portion of the non-pumping curve is 0 to 50%, preferably approximately 20 to 40% and most preferably over approximately 30% of the radius R of the blade segment 1, when used as a rotating refining element.
  • the curved side edges 5 and 6 of the blade segment 1 are especially advantageous when the second refining surface portions 8, i.e. the first blade grooves 10, i.e. the feed grooves 10 included in the blade segment 1 are made to be curved, as presented in Figure 1 and in the related description above, so that the radius and direction of curvature of the side edges 5 and 6 of the blade segment 1 and the radius and direction of curvature of the first blade grooves 10 of the blade segment 1 are the same.
  • the first blade grooves 10 running from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 in a curved manner can be arranged easily in the blade segment 1 without a need for the first blade bar 9 or the first blade groove 10 to continue from the direction of the inner circumference 3 to the direction of the outer circumference 4 over the interface of adjacent blade segments 1 from one blade segment to another in order to accomplish a desired refining surface blade pattern which comprises curved refining surface portions.
  • the first blade grooves 10 can hence run from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 essentially as intact uniform portions without any points of discontinuity that might cause disturbance both in the actual refining and in the flow of the material that is to be refined and that has been refined.
  • Another advantage is that the microgrooving constituted by the second blade bars 11 and the second blade grooves 12 on the refining surface 2 is directed to the pumping direction, in other words to the same direction as the curvature of the first side edge 5 on the side of the inner circumference 3 of the blade segment 1, when used as a rotating refining element
  • the first side edge 5 curves away from the direction of the second blade grooves 12, i.e. to the holding direction.
  • FIG 2 schematically shows a second blade segment 1 of a disc refiner seen in the direction of the refining surface 2 of the blade segment 1.
  • the blade segment 1 comprises an inner circumference 3 and an outer circumference 4 of the blade segment 1 and a curved first side edge 5 and a curved second side edge 6 combining the inner circumference 3 and the outer circumference 4.
  • the refining surface 2 of the blade segment 1 comprises first refining surface portions 7 and between them second refining surface portions 8, with the first refining surface portions 7 constituting refining surface portions that refine the material to be refined and with the second refining surface portions 8 constituting refining surface portions that run between the first refining surface portions and that carry the material to be refined.
  • the center lines of the refining surface portions 7, 8 are curved from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 as shown in Figure 1 .
  • the first refining surface portion 7 comprises a first blade bar 9 and second blade bars 11 constituted at its upper surface and between them second blade grooves 12, with the second refining surface portions 8 being constituted by the first blade grooves 10 between the first blade bars 9, and the first blade grooves 10 constitute the feed grooves 10 of the blade segment 1, which feed grooves 10 carry the material to be refined from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4.
  • the width of the second blade bars 11 can be for example approximately 3.5 to 4.0 millimeters and the width of the second blade grooves 12 can be for example approximately 4.0 to 4.5 millimeters.
  • the depth of the second blade grooves 12 can be for example approximately 5.0 to 11.0 millimeters.
  • the second blade bars 11 and the second blade grooves 12 can be straight or curved in their respective run direction, as shown in Figure 2 .
  • the width and height of the second blade bars 11 and correspondingly the width and depth of the second blade grooves 12 can be constant or they can vary in the run direction of said blade bars 11 and blade grooves 12 within the above-mentioned range of variation.
  • FIG 3 schematically shows a third blade segment 1 of a disc refiner seen in the direction of the refining surface 2 of the blade segment 1.
  • the blade segment 1 comprises an inner circumference 3 and an outer circumference 4 of the blade segment 1 and a curved first side edge 5 and a curved second side edge 6 combining the inner circumference 3 and the outer circumference 4.
  • the refining surface 2 of the blade segment 1 comprises first refining surface portions 7 and between them second refining surface portions 8, with the first refining surface portions 7 constituting refining surface portions that refine the material to be refined and with the second refining surface portions 8 constituting refining surface portions that run between the first refining surface portions and that carry the material to be refined.
  • the center lines of the refining surface portions 7, 8 are curved from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 as shown in Figure 1 .
  • the first refining surface portion 7 comprises a first blade bar 9 and second blade bars 11 constituted at its upper surface and between them second blade grooves 12, with the second refining surface portions 8 being constituted by the first blade grooves 10 between the first blade bars 9, and the first blade grooves 10 constitute the feed grooves 10 of the blade segment 1, which feed grooves 10 carry the material to be refined from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4.
  • the microblading or microgrooving constituted by the second blade bars 11 and the second blade grooves 12 has been arranged to be sparser than on the side of the outer circumference 4 of the blade segment 1 or in its vicinity.
  • the width of the second blade bars 11 can be for example approximately 2.3 millimeters, and the width of the second blade grooves 12 can be for example approximately 7.0 to 9.0 millimeters, and the depth of the second blade grooves 12 can be for example approximately 8.0 to 18.0 millimeters.
  • the width of the second blade bars 11 can be for example approximately 2.2 millimeters, and the width of the second blade grooves 12 can be for example approximately 2.8 to 3.6 millimeters, and the depth of the blade grooves 10 can be for example approximately 4.0 to 8.0 millimeters.
  • the blade bars 11 and the blade grooves 12 can be straight or curved in their respective run direction, and the width and depth of the blade grooves 12 can be constant or they can vary in the run direction of said blade grooves 12 for example within the above-mentioned range of variation.
  • an area free from blade bars 9, 11 has been arranged beside the first side edge 5, whereby said area is intended to constitute at least a portion of the portion of the refining surface 2 of the blade segment 1 intended as a feed groove 10.
  • the portion arranged beside the first side edge 5 of the blade segment 1 free from blade bars 9, 11 is preferably dimensioned so that said portion can constitute a whole feed groove 10, whereby when placing the first side edge 5 of the blade segment 1 with a butt joint with the second side edge 6 of the blade segment 1 located adjacent to it, the formation of an interface between adjacent blade segments is avoided in the area of the feed groove 10, since this might disturb the flow of the material to be refined in the feed groove 10.
  • a blade segment 1 of a disc refiner intended for refining fibrous material is provided, which blade segment 1 comprises an inner circumference 3 and an outer circumference 4 as well as a first side edge 5 and a second side edge 6 which combine the inner circumference 3 and the outer circumference 4.
  • the first side edge 5 and the second side edge 6 of the blade segment 1 are curved so that one side edge is concave and the other side edge is convex.
  • the first side edge 5 and the second side edge 6 of the blade segment 1 curve in the vicinity of the inner circumference 3 to the pulp-carrying direction, i.e. to the pumping direction, and in the vicinity of the outer circumference 4 to the pulp-holding direction, i.e. to the non-pumping direction, when used as as rotating refining element.

Description

    Background of invention
  • The invention relates to a blade segment of a disc refiner according to the preamble of claim 1, which is intended for refining lignocellulose material used in the production of fibrous material such as paper and board.
  • A disc refiner consists of two or more opposite refining elements, at least one of which refining elements is rotatable. The rotating refining element can be referred to as rotor, and the non-rotating, or stationary, refining element can be referred to as stator. Between the refining elements is a refining gap, where the material to be refined is ground against the refining surfaces. The refining surface of the refining elements comprises blade bars and blade grooves. The refining surface is constituted by attaching one or more blade elements to the frame structure of the refining element, with the blade element having a refining surface which comprises blade bars and blade grooves. In stationary refining elements, said blade element can also be attached directly to the frame structure of the refiner. The refining surface of the refining element can consist of one uniform blade element, in which case a single individual annular planar blade element can constitute an entire refining surface of a refining element. Conventionally, the refining surface of the refining element of a disc refiner is, however, constituted of several planar blade segments placed side by side, in which case each blade segment on its own constitutes only some portion of the complete annular refining surface of the refining element, and the blade segments placed side by side together constitute the complete annular refining surface of the refining element.
  • A typical blade segment comprises an inner circumference of the blade segment directed in the direction of the inner circumference of the refining element and an outer circumference of the blade segment directed in the direction of the outer circumference of the refining element, and a first side edge of the blade segment and a second side edge of the blade segment connecting the inner circumference and the outer circumference of the blade segment, where the first side edge and the second side edge are straight, i.e. in the radial direction of the blade segment so that the blade segment resembles the shape of a sector of a ring. It is typical for said blade segments that the side edges of the blade segments constitute a point of discontinuity at the interface or at the point of contact of adjacent blade segments, which can result for example in disturbances both in the actual refining and in the flow of the material that is to be refined and that has been refined at the interfaces of adjacent blade segments and in their vicinity. Moreover, in order to ensure the structural strength of the blade bars, there is a need to make reinforcements when moving from one blade segment to another. There are also prior art blade segments where the side edges are not straight, i.e. not in the radial direction of the blade segment, but instead in the vicinity of the inner circumference the side edge is in the radial direction and then turns at one point away from the radial direction against the intended direction of rotation of the blade segment. Such a construction requires precise tolerances at the interfaces of the blade segments so that unrefined pulp would not escape through the refiner.
  • DE 10 2010 002459 A1 shows a blade segment of a disc refiner according to the preamble of claim 1, which is intended for refining fibrous material. The blade segment comprises an inner circumference and an outer circumference as well as a first side edge and a second side edge which combine the inner circumference and the outer circumference, wherein the first side edge and the second side edge of the blade segment are curved so that one side edge is concave and the other side edge is convex.
  • EP 2 559 807 A1 shows a refining plate segment for a mechanical refiner of lignocellulosic material including: a convex conical refining surface on a convex conical substrate of the plate, wherein the refining surface is adapted to face a concave conical refining surface of an opposing refiner plate, the convex conical refining surface including bars and grooves formed between adjacent bars, wherein an angle of each bar with respect to a reference line parallel to a rotational axis of the refiner increases at least 15 degrees and the angle is a holdback angle is 10 to 45 degrees at a periphery of the refining surface, and wherein the bars each include a leading sidewall having an irregular surface having protrusions extending outwardly from the sidewall toward a sidewall on an adjacent bar.
  • WO 95/25199 A1 shows an annular base having radial breaker bars for transporting high consistency stock from a flinger nut section of a refiner to refining plates. The radial breaker bars are curved so that the radial outward ends curve away from the direction of rotation.
  • Short description of invention
  • It is the object of the invention to further develop a blade segment of a disc refiner according to the preamble of claim 1 such that its refining performance is increased and amount of unrefined material (pulp) is reduced.
  • The object of the invention is achieved by a blade segment of a disc refiner having the features of claim 1.
  • Further advantageous developments of the invention are defined in the dependent claims.
  • The blade segment of a disc refiner according to the invention is defined in claim 1.
  • According to an embodiment, the first side edge and the second side edge of the blade segment are curved side edges which comprise a single radius of curvature.
  • According to an embodiment, the blade segment comprises a refining surface, which comprises first refining surface portions that refine the material to be refined and second refining surface portions that run between the first refining surface portions and that carry the material to be refined, and the center line of the first refining surface portions and of the second refining surface portions is curved.
  • According to an embodiment, the magnitude of the radius of curvature and the direction of curvature of the center line of the first side edge and second side edge of the blade segment and of the second refining surface portion are essentially the same.
  • According to an embodiment, the first refining surface portion comprises a first blade bar running from the direction of the inner circumference of the blade segment to the direction of the outer circumference and the second refining surface portion is a first blade groove running from the direction of the inner circumference of the blade segment to the direction of the outer circumference and the upper surface of the first blade bar comprises second blade bars and between them second blade grooves.
  • According to an embodiment, the first refining surface portion comprises blade bars and between them blade grooves, and the second refining surface portion is a blade groove running from the direction of the inner circumference of the blade segment to the direction of the outer circumference.
  • According to an embodiment, at least one side edge of the blade segment comprises an area free from blade bars to constitute at least some portion of the second refining surface portion that is constituted between two adjacent blade segments.
  • According to an embodiment, the volume of at least one blade groove included in the first refining surface portion is adapted to change in the run direction of the blade groove.
  • According to an embodiment, the width and/or depth of the blade groove included in the first refining surface portion is adapted to change in the run direction of the blade groove.
  • According to an embodiment, the width and/or depth of the first blade groove constituting the second refining surface portion is adapted to change in the run direction of the blade groove.
  • According to an embodiment, in the area on the side of the outer circumference of the blade segment, the portion of the non-pumping curve is 0 to 50%, preferably approximately 20 to 40% and most preferably over approximately 30% of the radius of the blade segment.
  • According to an embodiment, the blade segment is a blade segment of a rotatable refining element.
  • Brief description of the figures
  • The invention is now described in greater detail in connection with some preferred embodiments by making reference to the accompanying drawings, in which
    • Figure 1 schematically shows a blade segment seen in the direction of its refining surface,
    • Figure 2 schematically shows a second blade segment seen in the direction of its refining surface,
    • Figure 3 schematically shows a third blade segment seen in the direction of its refining surface, and
    • Figure 4 schematically shows a blade segment shown in Figures 1, 2 and 3 in outline representation.
  • For the sake of clarity, the figures show some embodiments of the invention in a simplified manner. In the figures, like reference numerals identify like elements.
  • Detailed description of the invention
  • Figure 1 schematically shows a blade segment 1 of a disc refiner, i.e. a planar blade segment 1 seen in the direction of the refining surface 2 of the blade segment 1. The blade segment 1 shown in Figure 1 is thus a planar blade segment that can be adapted to be a part of the stationary refining element of the disc refiner, i.e. a part of the stator, whereby the refining surface 2 of the blade segment 1 constitutes a portion of the refining surface of the stationary refining element, or it can be adapted to be a part of the rotating refining element of the disc refiner, i.e. a part of the rotor, whereby the refining surface 2 of the blade segment 1 constitutes a portion of the refining surface of the rotatable refining element. The blade segment 1 can have securing openings 13, through which securing bolts can be inserted in order to fasten the blade segment 1 to the refining element. The blade segment can also be secured to the refining element so that the securing points do not extend through the blade segment, but there is bolt securing only at the back part of the blade segment, whereby the refining surface of the blade segment, i.e. the blade surface, remains intact.
  • The blade segment 1 comprises an inner circumference 3 or inner edge 3 or feed edge 3 directed to the direction of the inner circumference of the refining element of the refiner, and from the direction of the inner circumference 3 or inner edge 3 or feed edge 3 the material to be refined is fed into the refining gap, i.e. blade gap, located between the opposite refining elements of the refiner. The blade segment 1 further comprises an outer circumference 4 or outer edge 4 or outlet edge 4 directed to the direction of the outer circumference of the refining element of the refiner, and the material to be refined travels in the blade gap of the refiner during refining to the direction of the outer circumference 4 or outer edge 4 or outlet edge 4 and the material that has been refined exits the blade gap of the refiner through it. The inner circumference 3 and outer circumference 4 of the blade segment 1 constitute a portion of the inner circumference and outer circumference of a complete refining surface of a refining element. The blade segment further comprises a first side edge 5 and a second side edge 6 combining the inner circumference 3 and outer circumference 4 of the blade segment 1.
  • The refining surface 2 of the blade segment 1 comprises first refining surface portions 7 and between them second refining surface portions 8, with the first refining surface portions 7 constituting refining surface portions that refine the material to be refined and with the second refining surface portions constituting refining surface portions that run between the first refining surface portions and that carry the material to be refined.
  • In the embodiment of Figure 1, the first refining surface portion 7 of the blade segment 1 comprises a first blade bar 9 and second blade bars 11 constituted at its upper surface and between them second blade grooves 12, with the second refining surface portions 8 being constituted by the first blade grooves 10 between the first blade bars 9, and the first blade grooves 10 constitute the feed grooves 10 of the blade segment 1, which feed grooves 10 carry the material to be refined from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4. The width of the second blade bars 11 can be for example approximately 1.2 to 1.4 millimeters and the width of the second blade grooves 12 can be for example approximately 1.8 to 2.0 millimeters. The depth of the second blade grooves 12 can be for example approximately 5.0 to 7.0 millimeters. The width of the first blade grooves 10 on the inner circumference 3 of the blade segment 1 can be for example approximately 15 mm and can become narrower towards the outer circumference 4 for example so that the width of the first blade grooves 10 on the outer circumference 4 of the blade segment 1 is for example approximately 5 mm. The depth of the first blade grooves 10, i.e. the distance from the upper surface of the second blade bars 11 to the bottom of the first blade bars 10 is greater than the depth of the second blade grooves 12. The depth of the first blade grooves 10 can become smaller, i.e. the first blade grooves 10 can become shallower towards the outer circumference 4 of the blade segment 1, but in this case, too, the depth of the first blade grooves 10 on the outer circumference 4 of the blade segment 1 is greater than the depth of the second blade grooves 12. The second blade bars 11 and between them the second blade grooves 12 constitute dense blading, i.e. so-called microblading or microgrooving, on the refining surface 2 of the blade segment 1, whereby the shearing length of the refining surface 2 of the blade segment 1 becomes considerably large. Said second blade bars 11 and second blade grooves 12 can be straight or curved in their respective run direction. The width and height of the second blade bars 11 and correspondingly the width and depth of the second blade grooves 12 can be constant or they can vary in the run direction of said blade bars 11 and blade grooves 12.
  • In the embodiment of Figure 1, the first blade bars 9 and the first blade grooves 10 are curved, i.e. they run from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 in a curved pattern, or in other words the center lines of the first blade bars 9 and the first blade grooves 10 are curved, i.e. they run from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 in a curved pattern. The center line referred to in Figure 1 is only presented at one first blade groove 10 on the side of the first side edge 5 and marked with reference marking CL.
  • The shape of the first blade groove 10 is curved so that in the vicinity of the inner circumference 3 of the blade segment 1 it is pumping, i.e. it enhances the travel of the pulp to be refined from the direction of the inner circumference 3 of the blade segment 1 towards the outer circumference 4, when the blade segment 1 constitutes a portion of the refining surface of the rotatable refining element and when the direction of rotation corresponds to the direction indicated by the arrow denoted with reference marking RD in Figure 1. When moving towards the outer circumference 4 of the blade segment 1, the blade groove 10 curves back so that in the vicinity of the outer circumference 4 of the blade segment 1 the blade groove 10 is non-pumping, i.e. it slows down the travel of the pulp to be refined towards the outer circumference 4 of the blade segment 1. The pumping and non-pumping effect caused in the material to be refined by the rotation of the rotating refining element and by the direction of the first blade bars 10 on the refining surface is further illustrated in Figure 4, which schematically shows the outlines of the blade segment 1 and the first blade grooves 10 running in the blade segment 1. On the side of the inner circumference 3 of the blade segment 1, the rotation of the rotating refining element and the direction of the first blade bars 10 induce that the material to be refined is subject to a force effect the resultant of which is described by the arrow denoted with the reference marking P and which is directed towards the outer circumference 4 of the blade segment 1. This can be seen for example by comparing the direction of the arrow P to the direction of the radius R of the blade segment 1. On the side of the inner circumference 3 of the blade segment 1, the material to be refined is thus subject to a force effect which promotes the travel of the material to be refined, i.e. it pumps the material to be refined towards the outer circumference 4 of the blade segment 1. On the side of the outer circumference 4 of the blade segment 1, as a result of the direction of the first blade bars 10 the material to be refined is subject to a force effect the resultant of which is described by the arrow denoted with the reference marking N and which is directed towards the inner circumference 3 of the blade segment 1. This can again be seen for example by comparing the direction of the arrow N to the direction of the radius R of the blade segment 1. On the side of the outer circumference 4 of the blade segment 1, the material to be refined is thus subject to a force effect which slows down or holds the travel of the material to be refined towards the outer circumference 4 of the blade segment 1, in other words it has a non-pumping effect on the material to be refined.
  • In other words, when the blade segment 1 according to Figure 1 is intended to constitute a portion of the refining surface of the rotatable refining element and the direction of rotation of said refining element corresponds to the direction of the arrow denoted with the reference marking RD in Figure 1, the direction of the feed groove 10 on the side of the inner circumference 3 of the blade segment 1 intensifies the travel of the material to be refined towards the direction of the outer circumference 4 of the blade segment 1, and correspondingly on the side of the outer circumference 4 of the blade segment 1 the direction of the feed groove 10 slows down the travel of the material to be refined towards the direction of the outer circumference 4 of the blade segment 1.
  • Figure 1 shows and also Figures 2 and 3 show the portion of the refining surface of the rotatable refining element, i.e. of the refining surface of the rotor, constituting the blade segment 1, but a similar piece can also be used in the stationary refining element, i.e. in the stator.
  • When the direction of rotation of the rotatable refining element of the refiner corresponds to the direction of the arrow denoted with the reference marking RD in Figure 1, the first side edge 5 of the blade segment 1 thus corresponds to the side edge of the blade segment adapted to the direction of rotation of the rotatable refining element and the second side edge 6 of the blade segment 1 thus corresponds to the side edge of the blade segment adapted to the direction opposite to the direction of rotation of the rotatable refining element. When seen in the direction of rotation RD, the first side edge 5 of the blade segment 1 thus constitutes the front edge of the blade segment 1 and the second side edge 6 of the blade segment 1 constitutes the back edge of the blade segment 1.
  • In the blade segment 1 according to Figure 1, the first side edge 5 and second side edge 6 of the blade segment 1 are curved, in other words the first or front side edge 5 and second or back side edge 6 of the blade segment 1 run in a curved pattern from the inner circumference 3 of the blade segment 1 to the outer circumference 4 so that the first side edge 5 of the blade segment 1 has the shape of a concave curve and the second side edge 6 has the shape of a convex curve, in other words the center point of the radius of curvature of the curves constituted by the side edges 5 and 6 is residing in the direction of rotation RD of the rotatable refining element, ie. when rotating counter clock - wise as in Figs 1-4 the center points of the radii of the side edge curves reside on the left side of the corresponding side edges, and, respectively, the bottom points of the side edge curves are thus residing opposite to the rotating direction. Since the center point of the radius of curvature of the curves constituted by both side edges 5 and 6 is located in the same direction with respect to the direction of rotation RD of the rotatable refining element, it can be said that the direction of curvature of the curved side edges 5, 6 is the same. Moreover, in order to simplify the structure of the blade segment 1, the magnitude or value of the radii of curvature of the side edges 5, 6 is essentially the same. The first side edge 5 and second side edge 6 of the blade segment 1 are curved so that the first side edge 5 and second side edge 6 curve in the vicinity of the inner circumference 3 to the pulp-carrying direction, i.e. to the pumping direction, and in the vicinity of the outer circumference 4 to the pulp-holding direction, i.e. to the non-pumping direction.
  • Both the first curved side edge 5 and second curved side edge 6 of the blade segment 1 are composed of only one radius of curvature. The magnitude of the radius of curvature may vary on the basis of the size category of the blade segment 1, i.e. on the basis of the distance between the inner circumference 3 and outer circumference 4 of the blade segment 1, i.e. on the basis of the radius R of the blade segment 1. Figure 1 schematically shows the radius R of the blade segment 1 beside the first side edge 5 of the blade segment 1. The essential matter is that when the blade segment 1 constitutes a portion of the refining surface of the rotatable refining element, the side edges 5 and 6 of the blade segment 1 curve in the vicinity of the inner circumference 3 to the pulp-carrying direction, i.e. to the pumping direction, and in the vicinity of the outer circumference 4 to the non-pumping direction, i.e. to the pulp-holding direction. In the area on the side of the outer circumference 4, the portion of the non-pumping curve is 0 to 50%, preferably approximately 20 to 40% and most preferably over approximately 30% of the radius R of the blade segment 1, when used as a rotating refining element. When the first side edge 5 and second side edge 6 of the blade segment 1 are curved in this manner, the blade segments 1 can be aligned easily with respect to each other upon the installation of the blade segments 1 to the refining elements of the refiner. Another advantage of the structure is that the blade segments can be manufactured with larger tolerances without the possibility that unrefined pulp escapes from between the blade segments.
  • The curved side edges 5 and 6 of the blade segment 1 are especially advantageous when the second refining surface portions 8, i.e. the first blade grooves 10, i.e. the feed grooves 10 included in the blade segment 1 are made to be curved, as presented in Figure 1 and in the related description above, so that the radius and direction of curvature of the side edges 5 and 6 of the blade segment 1 and the radius and direction of curvature of the first blade grooves 10 of the blade segment 1 are the same. In this case, the first refining surface portions 7, i.e. the first blade bars 9, and the second refining surface portions 8, i.e. the first blade grooves 10 running from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 in a curved manner can be arranged easily in the blade segment 1 without a need for the first blade bar 9 or the first blade groove 10 to continue from the direction of the inner circumference 3 to the direction of the outer circumference 4 over the interface of adjacent blade segments 1 from one blade segment to another in order to accomplish a desired refining surface blade pattern which comprises curved refining surface portions. Said curved first refining surface portions 7, i.e. the first blade bars 9, and the second refining surface portions 8, i.e. the first blade grooves 10 can hence run from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 essentially as intact uniform portions without any points of discontinuity that might cause disturbance both in the actual refining and in the flow of the material that is to be refined and that has been refined. Another advantage is that the microgrooving constituted by the second blade bars 11 and the second blade grooves 12 on the refining surface 2 is directed to the pumping direction, in other words to the same direction as the curvature of the first side edge 5 on the side of the inner circumference 3 of the blade segment 1, when used as a rotating refining element When going to the outer circumference 4, the first side edge 5 curves away from the direction of the second blade grooves 12, i.e. to the holding direction.
  • Figure 2 schematically shows a second blade segment 1 of a disc refiner seen in the direction of the refining surface 2 of the blade segment 1. The blade segment 1 comprises an inner circumference 3 and an outer circumference 4 of the blade segment 1 and a curved first side edge 5 and a curved second side edge 6 combining the inner circumference 3 and the outer circumference 4. The refining surface 2 of the blade segment 1 comprises first refining surface portions 7 and between them second refining surface portions 8, with the first refining surface portions 7 constituting refining surface portions that refine the material to be refined and with the second refining surface portions 8 constituting refining surface portions that run between the first refining surface portions and that carry the material to be refined. The center lines of the refining surface portions 7, 8 are curved from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 as shown in Figure 1.
  • In Figure 2, the first refining surface portion 7 comprises a first blade bar 9 and second blade bars 11 constituted at its upper surface and between them second blade grooves 12, with the second refining surface portions 8 being constituted by the first blade grooves 10 between the first blade bars 9, and the first blade grooves 10 constitute the feed grooves 10 of the blade segment 1, which feed grooves 10 carry the material to be refined from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4. The width of the second blade bars 11 can be for example approximately 3.5 to 4.0 millimeters and the width of the second blade grooves 12 can be for example approximately 4.0 to 4.5 millimeters. The depth of the second blade grooves 12 can be for example approximately 5.0 to 11.0 millimeters. The second blade bars 11 and the second blade grooves 12 can be straight or curved in their respective run direction, as shown in Figure 2. The width and height of the second blade bars 11 and correspondingly the width and depth of the second blade grooves 12 can be constant or they can vary in the run direction of said blade bars 11 and blade grooves 12 within the above-mentioned range of variation.
  • Figure 3 schematically shows a third blade segment 1 of a disc refiner seen in the direction of the refining surface 2 of the blade segment 1. The blade segment 1 comprises an inner circumference 3 and an outer circumference 4 of the blade segment 1 and a curved first side edge 5 and a curved second side edge 6 combining the inner circumference 3 and the outer circumference 4. The refining surface 2 of the blade segment 1 comprises first refining surface portions 7 and between them second refining surface portions 8, with the first refining surface portions 7 constituting refining surface portions that refine the material to be refined and with the second refining surface portions 8 constituting refining surface portions that run between the first refining surface portions and that carry the material to be refined. The center lines of the refining surface portions 7, 8 are curved from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4 of the blade segment 1 as shown in Figure 1.
  • In Figure 3, the first refining surface portion 7 comprises a first blade bar 9 and second blade bars 11 constituted at its upper surface and between them second blade grooves 12, with the second refining surface portions 8 being constituted by the first blade grooves 10 between the first blade bars 9, and the first blade grooves 10 constitute the feed grooves 10 of the blade segment 1, which feed grooves 10 carry the material to be refined from the direction of the inner circumference 3 of the blade segment 1 to the direction of the outer circumference 4. On the side of the inner circumference 3 of the blade segment 1 or in its vicinity, the microblading or microgrooving constituted by the second blade bars 11 and the second blade grooves 12 has been arranged to be sparser than on the side of the outer circumference 4 of the blade segment 1 or in its vicinity. On the side of the inner circumference 3 of the blade segment 1, the width of the second blade bars 11 can be for example approximately 2.3 millimeters, and the width of the second blade grooves 12 can be for example approximately 7.0 to 9.0 millimeters, and the depth of the second blade grooves 12 can be for example approximately 8.0 to 18.0 millimeters. On the side of the outer circumference 4 of the blade segment 1, the width of the second blade bars 11 can be for example approximately 2.2 millimeters, and the width of the second blade grooves 12 can be for example approximately 2.8 to 3.6 millimeters, and the depth of the blade grooves 10 can be for example approximately 4.0 to 8.0 millimeters. The blade bars 11 and the blade grooves 12 can be straight or curved in their respective run direction, and the width and depth of the blade grooves 12 can be constant or they can vary in the run direction of said blade grooves 12 for example within the above-mentioned range of variation.
  • In the blade segments shown in Figures 1, 2 and 3, an area free from blade bars 9, 11 has been arranged beside the first side edge 5, whereby said area is intended to constitute at least a portion of the portion of the refining surface 2 of the blade segment 1 intended as a feed groove 10. The portion arranged beside the first side edge 5 of the blade segment 1 free from blade bars 9, 11 is preferably dimensioned so that said portion can constitute a whole feed groove 10, whereby when placing the first side edge 5 of the blade segment 1 with a butt joint with the second side edge 6 of the blade segment 1 located adjacent to it, the formation of an interface between adjacent blade segments is avoided in the area of the feed groove 10, since this might disturb the flow of the material to be refined in the feed groove 10.
  • For a person having ordinary skill in the art, it is obvious that as technology makes further progress, the basic idea of the invention can be implemented in many different way, i.e. the invention and its embodiments are therefore not restricted to the examples described above, but they may vary within the scope of the invention as defined in the appended claims.
  • A blade segment 1 of a disc refiner intended for refining fibrous material is provided, which blade segment 1 comprises an inner circumference 3 and an outer circumference 4 as well as a first side edge 5 and a second side edge 6 which combine the inner circumference 3 and the outer circumference 4. The first side edge 5 and the second side edge 6 of the blade segment 1 are curved so that one side edge is concave and the other side edge is convex. The first side edge 5 and the second side edge 6 of the blade segment 1 curve in the vicinity of the inner circumference 3 to the pulp-carrying direction, i.e. to the pumping direction, and in the vicinity of the outer circumference 4 to the pulp-holding direction, i.e. to the non-pumping direction, when used as as rotating refining element.

Claims (10)

  1. A blade segment (1) for a disc refiner intended for refining fibrous material, which blade segment (1) comprises an inner circumference (3) and an outer circumference (4) as well as a first side edge (5) and a second side edge (6) which combine the inner circumference (3) and the outer circumference (4), wherein
    the first side edge (5) and the second side edge (6) of the blade segment (1) are curved so that one side edge is concave and the other side edge is convex,
    the blade segment (1) has a refining surface (2) comprising first refining surface portions (7) and between them second refining surface portions (8), the first refining surface portions (7) constituting refining surface portions that are configured to refine the fibrous material to be refined, and the second refining surface portions (8) constituting refining surface portions that run between the first refining surface portions (7) and that are configured to carry the fibrous material to be refined,
    each of the first refining surface portions (7) comprises first blade bars (9),
    the second refining surface portions (8) are constituted by first blade grooves (10) between the first blade bars (9), and the first blade grooves (10) are configured to carry the fibrous material to be refined from the direction of the inner circumference (3) to the direction of the outer circumference (4), and
    the first blade bars (9) and the first blade grooves (10) are curved,
    the first side edge (5) constitutes the front edge of the blade segment (1) and forms the concave side edge of the blade segment (1),
    the second side edge (6) constitutes the back edge of the blade segment (1) and forms the convex side edge of the blade segment (1),
    the first blade grooves (10) are curved to the same direction as the front edge (5), characterized in that each of the first refining surface portions (7) also comprises second blade bars (11) on the upper surface of the first blade bars (9) and constituting between them second blade grooves (12) and in that
    a width of the first blade grooves (10) on the inner circumference (3) becomes narrower towards the outer circumference (4).
  2. The blade segment of claim 1, characterized in that the first side edge (5) and the second side edge (6) of the blade segment (1) are curved side edges (5, 6) which comprise a single radius of curvature.
  3. The blade segment of claim 1 or 2, characterized in that the center line (CL) of the first refining surface portions (7) and of the second refining surface portions (8) is curved.
  4. The blade segment of claim 1, 2 or 3, characterized in that the magnitude of the radius of curvature and the direction of curvature of the center line (CL) of the first side edge (5), second side edge (6) and second refining surface portion (8) of the blade segment (1) are essentially the same.
  5. The blade segment of any one of claims 3 to 4, characterized in that at least one side edge (5, 6) of the blade segment (1) comprises an area free from blade bars (9, 11) to constitute at least some portion of the second refining surface portion (8) that is constituted between two adjacent blade segments (1).
  6. The blade segment of any one of claims 3 to 5, characterized in that the volume of at least one blade groove (12) included in the first refining surface portion (7) is adapted to change in the run direction of the blade groove (10, 12).
  7. The blade segment of claim 6, characterized in that the volume and/or depth of the second blade groove (12) included in the first refining surface portion (7) is adapted to change in the run direction of the blade groove (12).
  8. The blade segment of any one of claims 4 to 7, characterized in that the volume and/or depth of the first blade groove (10) which constitutes the second refining surface portion (8) is adapted to change in the run direction of the blade groove (10).
  9. The blade segment of claim 1, characterized in that the blade segment (1) is a blade segment for a rotatable refining element.
  10. The blade segment of any one of claims 4 to 9, characterized in that the second blade bars (11) and the second blade grooves (12) constitute dense blading, so-called microgrooving, which is directed to the same direction as the curvature of the first side edge (5) on the side of the inner circumference (3) of the blade segment (1).
EP15166589.0A 2014-05-26 2015-05-06 Blade segment for a disc refiner Active EP2949811B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FIU20144124U FI10978U1 (en) 2014-05-26 2014-05-26 Sheet steel refiner segment

Publications (2)

Publication Number Publication Date
EP2949811A1 EP2949811A1 (en) 2015-12-02
EP2949811B1 true EP2949811B1 (en) 2019-04-03

Family

ID=54148765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15166589.0A Active EP2949811B1 (en) 2014-05-26 2015-05-06 Blade segment for a disc refiner

Country Status (5)

Country Link
EP (1) EP2949811B1 (en)
JP (1) JP3200740U (en)
CN (1) CN105274895B (en)
ES (1) ES2728914T3 (en)
FI (1) FI10978U1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20215746A1 (en) * 2021-06-24 2022-12-25 Valmet Technologies Oy System and method of processing recycled textile material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2117695A (en) * 1994-03-15 1995-10-03 Beloit Technologies, Inc. Breaker bar section for a high consistency refiner
NZ324882A (en) * 1995-12-21 1999-05-28 Sunds Defibrator Ind Ab Refining element has a refining surface having with bars and grooves with specific geometry characteristics
AT508895B1 (en) * 2010-01-14 2011-05-15 Erema RUNNER WASHER
DE102010002459A1 (en) * 2010-03-01 2011-09-01 Voith Patent Gmbh Process for grinding aqueous suspended pulp fibers and grinding sets for its implementation
FI125031B (en) * 2011-01-27 2015-04-30 Valmet Technologies Inc Grinder and blade element
US9670615B2 (en) * 2011-08-19 2017-06-06 Andritz Inc. Conical rotor refiner plate element for counter-rotating refiner having curved bars and serrated leading sidewalls

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2728914T3 (en) 2019-10-29
EP2949811A1 (en) 2015-12-02
CN105274895A (en) 2016-01-27
JP3200740U (en) 2015-11-05
FI10978U1 (en) 2015-08-26
CN105274895B (en) 2018-09-25

Similar Documents

Publication Publication Date Title
CA2890381C (en) Blade segment of disc refiner
US8789775B2 (en) Method for refining aqueous suspended cellulose fibers and refiner fillings for carrying out said method
US7913942B2 (en) Refiner
EP3401439B1 (en) Blade segment for a refiner
CA2536794A1 (en) Refining surface and a blade segment for a refiner
CN103422383B (en) Blade element
US20200283955A1 (en) Refining set
US10464068B2 (en) Blade element for refiner
EP2949811B1 (en) Blade segment for a disc refiner
EP2960367B1 (en) Single-disc refiner
US20050167538A1 (en) Refiner fittings for paper fiber stock
CN107109789B (en) Pulp grinding device
US10300489B2 (en) Blade element for refiner
US20180280901A1 (en) Hydrofoil impeller
CN212925594U (en) Cone grinding device
US10953405B2 (en) Blade element
US20110253327A1 (en) Method for refining cellulose fibers in aqueous suspension as well as refiner filling to implement said method
FI127607B (en) Device for grinding fibrous material
US7451946B2 (en) Refining element
FI126475B (en) Blade element
CN115702273A (en) Blade segment for a refiner

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160601

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1115892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015027432

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2728914

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015027432

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190506

26N No opposition filed

Effective date: 20200106

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190703

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150506

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1115892

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190403

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 9

Ref country code: FR

Payment date: 20230526

Year of fee payment: 9

Ref country code: DE

Payment date: 20230519

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230519

Year of fee payment: 9

Ref country code: FI

Payment date: 20230523

Year of fee payment: 9

Ref country code: AT

Payment date: 20230522

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230725

Year of fee payment: 9