EP2948672A1 - Modulare aktuatoreinheit für ein einspritzventil - Google Patents

Modulare aktuatoreinheit für ein einspritzventil

Info

Publication number
EP2948672A1
EP2948672A1 EP14721245.0A EP14721245A EP2948672A1 EP 2948672 A1 EP2948672 A1 EP 2948672A1 EP 14721245 A EP14721245 A EP 14721245A EP 2948672 A1 EP2948672 A1 EP 2948672A1
Authority
EP
European Patent Office
Prior art keywords
component
actuator unit
electrodes
sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14721245.0A
Other languages
English (en)
French (fr)
Inventor
Claus Zumstrull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2948672A1 publication Critical patent/EP2948672A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • F16K31/008Piezoelectric stacks for sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/244Force sensors

Definitions

  • Modular actuator for an injection valve the invention relates to a modular actuator for an injection valve of an internal combustion engine of a driving ⁇ zeugs. Such an actuator unit is used for injecting fuels into a combustion chamber of a cylinder of the internal combustion engine.
  • An actuator for an injection valve of a Burn ⁇ voltage combustion engine of a vehicle typically includes a formed as a stacking device having a plurality of electrode layers and a plurality of responsive to applying an electric field layers of material, each material layer between two disposed electrode layers ⁇ the.
  • a stack Such a component of überei ⁇ Nander and alternately to each other stacked layers of material layer and electrode layer is generally referred to as a stack.
  • the nowadays most well-known electronic component of this kind is generally referred to as a piezoelectric actuator stack, which is used as an actuating element in injection valves of the various ⁇ most engine types for motor vehicles.
  • the material layers are ceramic layers in this piezoelectric actuator.
  • such a stack viewed in plan view, has a rectangular or square cross-section.
  • the stack is typically electrically contacted at two opposite circumferential sides.
  • the electrode layers are geometrically designed, for example, such that only every second electrode layer extends laterally to one of the two circumferential sides, while the respective other electrode layers do not extend to this one circumferential side. The same applies analogously to the other circumferential side of the stack.
  • the electrical contacting of the electrode layers takes place via two outer electrodes, which are generally electrically connected to respective electrode layers on at least one peripheral side of the component and typically on two opposite circumferential sides.
  • the finished component is surrounded by a Bourdon tube, which is typically made of a metal.
  • the tube spring serves to bias the component stack during operation of the actuator unit and thereby prevent damage to the ceramic. Furthermore, the tube spring serves to provide a restoring force for the deflected component stack.
  • a layer e.g. made of silicone, which covers at least the outer electrodes.
  • sensors can be used, which directly detect the opening and closing time of a actuated by the actuator needle of the injection valve.
  • a sensor may be, for example, a piezoelectric force sensor, which is coupled in the frictional connection with the piezoelectric actuator.
  • recoverable Messge ⁇ accuracy is not high enough for precise control.
  • the invention provides an actuator unit for an injection valve of an internal combustion engine of a vehicle.
  • the actuator unit comprises a designed as a stack elekt ⁇ ronic component.
  • the component has a plurality of electrode layers and a plurality of material layers reacting upon application of an electric field, wherein the material layers and electrode layers are each stacked in an alternating manner.
  • the component further comprises two outer electrodes, with which the electrode layers are alternately electrically connected to at least one circumferential side of the component.
  • the actuator unit comprises a piezoelectric sensor which is non-positively coupled with the component in the stroke direction of the component.
  • the senor detects a force generated by the construction ⁇ element, which is detected as a voltage or charge between two arranged on opposite end faces of a sensor body electrodes.
  • the electrodes are applied from an electrically conductive material directly to at least the end faces of the sensor body.
  • the invention is based on the finding that the coupling point between the component (piezoactuator) and the sensor with regard to its rigidity and force transmission is of great importance for high measuring accuracy.
  • the electrodes are formed by, on the side and end faces applied, metal foils, which are connected via an adhesive to the side and end faces of the sensor body. Since the metal foils can not be applied completely flat to the sensor body and the adhesive has elastic properties even after curing, the result is an overall elastic coupling region. which distorts the measurement of the force generated by the component or does not reflect the time course correctly.
  • the end faces represent opposing main sides of the sensor body, which are arranged parallel to each other.
  • the main sides of the sensor body are preferably arranged in the actuator unit parallel to the material layers or the electrode layers of the component (piezoelectric actuator).
  • the electrodes applied directly to the sensor body can have a different thickness. You can also have the same thickness.
  • the geometry of the two electrodes is freely selectable.
  • the geometry may e.g. be determined by a mask or the like.
  • the proposed embodiment allows a separate Fer tion of sensor and piezoelectric actuator, which can be joined together at a later date.
  • the material used for the electrodes may be metals such as silver, copper, gold, palladium or alloys thereof. Other conductive materials are possible.
  • the higher rigidity of the coupling region is further favored in that the direct application of the electrodes enables a lower electrode thickness. While in a conventional actuator unit ⁇ forth the thickness of the metal foil between n
  • the thickness of the electrodes can be reduced to less than 20 ⁇ m, in particular less than 10 ⁇ m, according to one embodiment.
  • a respective end face is limited by side edges, which is arranged on the respective end surface electrode includes at least one of the parent to ⁇ side edges a distance.
  • At least one contacting section of a respective electrode is arranged on at least one side surface of the sensor body, wherein the at least one contacting section and the associated electrode are generated over a side edge in one step.
  • the contacting portions on the side surface are used for the electrical contacting of the electrodes.
  • the electrodes are formed by metal foils, they can not be bent over to the side surface due to the small thickness of the sensor body (usually less than 0.5 mm). Instead, the contacting section of the electrode facing the stack (so-called internal electrode) in the direction of the piezoelectric actuator and the electrode facing away from the stack (so-called external electrode) must be bent in the direction of an insulator. In particular for the inner ⁇ electrode suitable isolation measures must be taken for this, which is not necessary in the inventive procedure.
  • the distance between the electrode and this side edge is at least on a Bei ⁇ tenkante opposite the contacting section intended. This avoids isolation problems with respect to the outer electrodes of the piezoelectric actuator without separate further measures.
  • the sensor body is a monolithic plate made of a piezoceramic.
  • the piezoceramic of the sensor may be formed of a different material than the material layers of the component.
  • the senor is non-positively connected to the component via an insulating layer.
  • the sensor can be supported on the side facing away from the piezoelectric actuator side via an insulating layer on a housing of the actuator unit.
  • FIG. 1 shows a schematic representation of a device according to the invention
  • FIG. 2 shows a first exemplary embodiment of a sensor designed according to the invention for the actuator unit according to FIG. 1, FIG.
  • FIG. 3 shows a second exemplary embodiment of a sensor designed according to the invention for the actuator unit according to FIG. 1, FIG.
  • FIG. 4 shows a third exemplary embodiment of a sensor designed according to the invention for the actuator unit according to FIG. 1
  • FIG. 5 shows a fourth exemplary embodiment of a sensor configured according to the invention for the actuator unit according to FIG. 1.
  • 1 shows a schematic illustration of an actuator unit according to the invention for an injection valve of an internal combustion engine of a vehicle.
  • This comprises an electronic component 10 designed as a stack.
  • Such a stack 16 as viewed in plan view, usually has a rectangular or square cross section.
  • the component stack 16 comprises (not visible in FIG. 1) a plurality of electrode layers or a plurality of material layers responsive to application of an electric field, wherein each of the material layers is arranged between two of the electrode layers.
  • the electrical contacting takes place via two outer electrodes 11, 12, which are electrically connected to respective electrode layers via schematically represented conductors 13, 14.
  • the outer electrodes 11, 12 are connected to drive the component stack 16 with a control unit 17 (ECU Electronic Control Unit).
  • the outer electrodes 11, 12 are arranged at least on one peripheral side, but preferably on two different circumferential sides of the stack, which are particularly preferably opposite.
  • Piezo actuator can be achieved.
  • an insulating layer for example of silicone, is usually applied to the peripheral sides of the component stack (not shown).
  • the Bourdon tube is typically ge ⁇ made of a metal.
  • the sensor 20 can be supported, for example, on a housing component, not shown, of the injection valve.
  • the sensor 20 comprises a sensor body 21, which is formed by a monolithic plate made of a piezoceramic.
  • the sensor 20 detects a force F generated by the component stack 16, which can be detected as a voltage between two electrodes 24, 25 arranged on opposite side surfaces 22, 23 of the sensor body 21.
  • the electrodes 24, 25 are connected to a voltage measuring device 30, which detects the voltage generated by the piezoceramic and converts it into the force correlating thereto.
  • Electrodes 24, 25 To the electrodes 24, 25 is a respective insulation layer 31, applied 32 to prevent an electrical short of the so-called. External electrode 24 to the housing of the injection valve or the so-called. Inner electrode 25 to the device stack 16 or its outer ⁇ electrodes 11,12. For this reason, the contacting of the electrodes 24, 25 does not take place in the region of the end faces 22, 23, but in the region of a side face 26a, 26b, 26c, 26d of the sensor body via contacting sections 27a, 27b, 27c, 27d of the electrodes 24, 25.
  • the thickness of the sensor body 21 is about 0.5 mm.
  • the lengths of the side edges are for example between 2 and 3 mm, although other dimensions are possible.
  • the side lengths of the sensor body are chosen equal to the side lengths of the actuator.
  • the sensor body 21 can optionally have a square, a rectangular or another cross-section in plan view.
  • the electrodes 24, 25 are applied from an electrically conductive material directly at least on the end faces of the sensor body. Direct means that the electrode material is applied without adhesive or other adhesive material directly by the way the generation of the contact on the sensor body.
  • the electrically conductive material for example, silver, gold or copper, palladium or alloys thereof may be used.
  • These materials can be applied directly to the sensor body 21 by plasma deposition, vapor deposition or sputtering. Together with the electrodes 24, 25 applied to a respective end face 22, 23, one or more contacting sections 27a, 27b, 27c, 27d can also be applied to one or more side faces 26a, 26b, 26c, 26d of the sensor body 21, for example by rotation of the Sensor body 21 during manufacture. By masking during the manufacturing process, any desired contours of the electrodes 24, 25 and / or the contacting sections 27a, 27b, 27c, 27d can be generated.
  • the mentioned methods for direct application of the material of the electrodes 24, 25 allow compared to metal foils very thin electrodes of about 10 to 20 ym thickness. At the same time, a very even surface can be achieved, so that a rigid connection to the component stack is possible.
  • FIGS. 2 to 5 each show, in a perspective view, various embodiments of a sensor 20 which is used in an actuator unit according to FIG.
  • the embodiments differ in the shape of the electrodes and the arrangement or number of contacting portions. Due to the perspective view, only the outer electrode 24 on the end face 22 and the side edges 26c and 26d of the sensor body with the contacting section (s) 27c, 27d are visible.
  • the electrode 24 extends over the entire surface of the end face 22. This has the consequence that the electrode up to the four side edges 22a, 22b, 22c, 22d of the end face 22nd protrudes.
  • a contacting portion 27c is disposed on the side surface 26c.
  • the electrode 25 is at a distance from the side edge 23c, wherein the contacting portion is disposed on the non-visible side surface 26a, ie opposite the contacting portion 27c.
  • This refinement likewise makes it possible to dispense with otherwise customary isolation measures.
  • the electrode 24 to the side edges 22a and 22b at a distance 28a, 28b. Otherwise, the electrode projects up to the side edges 22c, 22d.
  • the contacting portion 27c is again disposed on the side surface 26c.
  • a contacting portion 27d is provided on the side surface 26d.
  • the electrode 25 is at a distance from the side edges 23c, 23d, wherein the Kontak- t istsabête on the non-visible end faces 26a and 26b, that are arranged opposite the contacting sections 27c, 27d.
  • This refinement makes it possible to dispense with otherwise customary insulation measures and a lower resistance contacting of the electrodes 24, 25.
  • the contact portions and the associated electrode are produced in one step and form a unit.
  • the or Darge ⁇ presented contacting sections take only an example of a part of the surface of the respective side edge.
  • the contacting portion 27c could also be up to the side edge 23c of Face 23 protrude.
  • the contacting portion 27c could also occupy a greater width. It could also extend over the entire side surface 26c. The same applies to the contacting section 27d in FIG. 5 or all contacting sections provided on the sensor body 21.
  • the elasticity of the coupling region between the sensor and the component stack can be reduced or even eliminated almost completely.
  • the absence of adhesive has the further advantage that no contamination by solvent adhesives can occur.
  • the proposed configuration allows separate Ferti ⁇ supply of the sensor and the piezoelectric actuator, which can be joined at a later date.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft eine Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahrzeugs. Die Aktuatoreinheit umfasst ein als Stapel ausgebildetes elektronisches Bauelement (10). Das Bauelement (10) weist eine Mehrzahl an Elektrodenschichten und eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten auf, wobei Werkstoffschichten und Elektrodenschichten abwechselnd angeordnet ist. Das Bauelement (10) umfasst ferner zwei Außenelektroden (11, 12), welche an zumindest einer Umfangsseite des Bauelements (10) mit jeweiligen Elektrodenschichten elektrisch verbunden sind. Weiter umfasst die Aktuatoreinheit einen piezoelektrischen Sensor (20), der in Hubrichtung des Bauelements (10) kraftschlüssig mit dem Bauelement (10) gekoppelt ist. Im Betrieb des Bauelements (10) erfasst der Sensor (20) eine von dem Bauelement erzeugte Kraft (F), welche als Spannung oder Ladung zwischen zwei auf gegenüberliegenden Stirnflächen (22, 23) eines Sensorkörpers (21) angeordneten Elektroden (24, 25) erfassbar ist. Die Elektroden (24, 25) sind aus einem elektrisch leitfähigen Material direkt zumindest auf die Stirnflächen (22, 23) des Sensorkörpers (21) aufgebracht.

Description

Beschreibung
Modulare Aktuatoreinheit für ein Einspritzventil Die Erfindung betrifft eine modulare Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahr¬ zeugs. Eine solche Aktuatoreinheit wird zum Einspritzen von Kraftstoffen in einen Brennraum eines Zylinders der Verbrennungskraftmaschine verwendet.
Eine Aktuatoreinheit für ein Einspritzventil einer Verbren¬ nungskraftmaschine eines Fahrzeugs umfasst typischerweise ein als Stapel ausgebildetes Bauelement, das eine Mehrzahl von Elektrodenschichten sowie eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten aufweist, wobei jede WerkstoffSchicht zwischen zwei der Elektroden¬ schichten angeordnet ist. Ein solches Bauelement von überei¬ nander und alternierend zueinander gestapelten Schichten von WerkstoffSchicht und Elektrodenschicht wird allgemein als Stapel bezeichnet. Das heutzutage bekannteste elektronische Bauelement dieser Art ist allgemein als ein Piezoaktor bezeichneter Stapel, der als Betätigungselement in Einspritzventilen der verschie¬ densten Motortypen für Kraftfahrzeuge zur Anwendung kommt. Die Werkstoffschichten sind bei diesem Piezoaktor Keramikschich- ten.
Üblicherweise weist ein solcher Stapel, in der Draufsicht betrachtet, einen rechteckigen oder quadratischen Querschnitt auf. Der Stapel wird typischerweise an zwei sich gegenüber- liegenden Umfangsseiten elektrisch kontaktiert. Um dies technologisch sorgfältig durchführen zu können, werden die Elektrodenschichten geometrisch z.B. so ausgelegt, dass sich nur jede zweite Elektrodenschicht seitlich bis zu einer der beiden Umfangsseiten erstreckt, während sich die jeweils anderen Elektrodenschichten nicht bis zu dieser einen Umfangsseite hin erstrecken. Entsprechendes gilt für die andere Umfangsseite des Stapels analog. Die elektrische Kontaktierung der Elektrodenschichten erfolgt über zwei Außenelektroden, welche allgemein an zumindest einer Umfangsseite des Bauelements und typischerweise an zwei sich gegenüberliegenden Umfangsseiten mit jeweiligen Elektroden- schichten elektrisch verbunden sind.
Das fertig gestellte Bauelement ist von einer Rohrfeder umgeben, welche typischerweise aus einem Metall besteht. Die Rohrfeder dient dazu, im Betrieb der Aktuatoreinheit den Bauelementstapel vorzuspannen und dadurch eine Beschädigung der Keramik zu verhindern. Ferner dient die Rohrfeder dazu, eine Rückstellkraft für den ausgelenkten Bauelementstapel bereitzustellen. Als Isolationsmaterial zwischen der Rohrfeder und den Außenelektroden des Bauelementstapels ist auf dem Bauelementstapel außenumfangsseitig eine Schicht, z.B. aus Silikon, vorgesehen, welche zumindest die Außenelektroden bedeckt.
Mit zunehmender Anforderung an Emission und Verbrauch steigen die Anforderungen an die Einspritzung des Kraftstoffes in den Brennraum. Höhere Drücke, Temperaturen sowie Mehrfacheinsprit zungen erfordern demzufolge eine höhere Genauigkeit bei der Zumessung des eingespritzten Kraftstoffes. Um die geforderten Genauigkeiten zu erreichen, ist es daher nicht ausreichend den Aktuator in einem Stellbetrieb zu betreiben. Vielmehr wird eine Regelung benötigt. Für die Regelung werden definierte Messgrößen benötigt, die an oder in der Aktuatoreinheit ermittelt werden, um daraus die entsprechenden Regelgrößen zu berechnen.
Hierzu können z.B. Sensoren eingesetzt werden, die direkt den Öffnungs- und Schließzeitpunkt einer von dem Aktuator betätigten Nadel des Einspritzventils detektieren. So ein Sensor kann z.B. ein piezoelektrischer Kraftsensor sein, der im Kraftschluss mit dem Piezoaktor gekoppelt ist. Die dabei erzielbare Messge¬ nauigkeit ist für eine präzise Regelung jedoch nicht hoch genug.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahrzeugs anzugeben, welche baulich und/oder funktionell verbessert ist, so dass eine höhere Messgenauigkeit des Kraft Verlaufs des Piezoaktors erzielt wird.
Diese Aufgabe wird durch eine Aktuatoreinheit gemäß den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Die Erfindung schafft ein Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahrzeugs. Die Aktuatoreinheit umfasst ein als Stapel ausgebildetes elekt¬ ronisches Bauelement. Das Bauelement weist eine Mehrzahl an Elektrodenschichten und eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten auf, wobei die Werkstoffschichten und Elektrodenschichten jeweils al- ternierend gestapelt sind. Das Bauelement umfasst ferner zwei Außenelektroden, mit welchen die Elektrodenschichten an zumindest einer Umfangsseite des Bauelements jeweils abwechselnd elektrisch verbunden sind. Weiter umfasst die Aktuatoreinheit einen piezoelektrischen Sensor, der in Hubrichtung des Bau- elements kraftschlüssig mit dem Bauelement gekoppelt ist. Im Betrieb des Bauelements erfasst der Sensor eine von dem Bau¬ element erzeugte Kraft, welche als Spannung oder Ladung zwischen zwei auf gegenüberliegenden Stirnflächen eines Sensorkörpers angeordneten Elektroden erfassbar ist. Die Elektroden sind aus einem elektrisch leitfähigen Material direkt zumindest auf die Stirnflächen des Sensorkörpers aufgebracht.
Der Erfindung liegt die Erkenntnis zugrunde, dass für eine hohe Messgenauigkeit die Kopplungsstelle zwischen dem Bauelement (Piezoaktor) und dem Sensor bezüglich ihrer Steifigkeit und Kraftübertragung von großer Bedeutung ist. Bei herkömmlichen piezoelektrischen Sensoren sind die Elektroden durch, auf die Seiten- und Stirnflächen aufgebrachte, Metallfolien gebildet, welche über einen Kleber mit den Seiten- und Stirnflächen des Sensorkörpers verbunden sind. Da die Metallfolien nicht vollkommen plan auf den Sensorkörper aufgebracht werden können und der Kleber auch nach Aushärtung elastische Eigenschaften aufweist, ergibt sich ein insgesamt elastischer Koppelbereich, der die Messung der durch das Bauelement erzeugten Kraft verfälscht bzw. den zeitlichen Verlauf nicht korrekt wiedergibt.
Durch das erfindungsgemäß direkte Aufbringen der Elektroden auf den Sensorkörper, z.B. durch Plasmaauftrag oder Aufdampfen oder Sputtern, lässt sich die Elastizität des Koppelbereichs re¬ duzieren bzw. sogar nahezu vollständig eliminieren . Insbesondere besteht kein Steifigkeitsverlust durch den herkömmlicherweise verwendeten Kleber. Der Verzicht auf Kleber bringt den weiteren Vorteil mit sich, dass keine Kontamination durch Lösemit¬ tel-Klebstoffe auftreten kann.
Die Stirnflächen stellen einander gegenüberliegende Hauptseiten des Sensorkörpers dar, welche parallel zueinander angeordnet sind. Die Hauptseiten des Sensorkörpers sind in der Aktuator- einheit vorzugsweise parallel zu den Werkstoffschichten bzw. den Elektrodenschichten des Bauelements ( Piezoaktors ) angeordnet.
Die direkt auf den Sensorkörper aufgebrachten Elektroden können eine unterschiedliche Dicke aufweisen. Sie können auch die gleiche Dicke haben.
Die Geometrie der beiden Elektroden ist frei wählbar. Die Geo metrie kann z.B. durch eine Maskierung oder ähnliches festgelegt sein.
Die vorgeschlagene Ausgestaltung ermöglicht eine separate Fer tigung von Sensor und Piezoaktor, welche zu einem späteren Zeitpunkt zusammengefügt werden können.
Als Material für die Elektroden können Metalle wie z.B. Silber, Kupfer, Gold, Palladium oder Legierungen davon eingesetzt werden. Auch andere leitfähige Materialien sind möglich. Begünstigt wird die höhere Steifigkeit des Koppelbereichs wei terhin dadurch, dass das direkte Aufbringen der Elektroden eine geringere Elektrodendicke ermöglicht. Während bei einer her¬ kömmlichen Aktuatoreinheit die Dicke der Metallfolie zwischen n
5
50 μ und 80 ym beträgt, lässt sich die Dicke der Elektroden gemäß einer Ausgestaltung auf weniger als 20 ym, insbesondere auf weniger als 10 ym, reduzieren. Gemäß einer weiteren Ausgestaltung ist eine jeweilige Stirnfläche durch Seitenkanten begrenzt, wobei die auf der jeweiligen Stirnfläche angeordnete Elektrode zumindest zu einer der zu¬ geordneten Seitenkanten einen Abstand aufweist. Hierdurch kann ohne weitere Maßnahmen eine unerwünschte elektrische Verbindung zu den Außenelektroden des Piezoaktors oder anderen leitfähigen Komponenten vermieden werden.
Gemäß einer weiteren zweckmäßigen Ausgestaltung ist zumindest ein Kontaktierungsabschnitt einer jeweiligen Elektrode auf zumindest einer Seitenfläche des Sensorkörpers angeordnet, wobei der zumindest eine Kontaktierungsabschnitt und die zugeordnete Elektrode über eine Seitenkante hinweg in einem Schritt erzeugt sind. Die Kontaktierungsabschnitte an den Seitenfläche werden für die elektrische Kontaktierung der Elektroden genutzt. Dadurch, dass diese - im Gegensatz zu herkömmlichen Aktuator- einheiten - nun auf den Seitenflächen angeordnet sind, verein facht sich der Gesamtaufbau der Aktuatoreinheit .
Bei herkömmlichen Sensoreinheiten, bei denen die Elektroden durch Metallfolien gebildet sind, können diese aufgrund der geringen Dicke des Sensorkörpers (in Regel weniger als 0,5 mm) nicht auf die Seitenfläche umgebogen werden. Stattdessen muss der Kontaktierungsabschnitt der dem Stapel zugewandten Elektrode (sog. Innenelektrode) in Richtung des Piezoaktors und die von dem Stapel weg gewandte Elektrode (sog. Außenelektrode) in Richtung eines Isolators gebogen werden. Insbesondere für die Innen¬ elektrode müssen hierzu geeignete Isolationsmaßnahmen getroffen werden, was bei dem erfindungsgemäßen Vorgehen nicht erforderlich ist.
Gemäß einer weiteren zweckmäßigen Ausgestaltung ist zumindest auf einer dem Kontaktierungsabschnitt gegenüberliegenden Sei¬ tenkante der Abstand zwischen Elektrode und dieser Seitenkante vorgesehen. Dies vermeidet ohne gesonderte weitere Maßnahmen Isolationsprobleme gegenüber den Außenelektroden des Piezo- aktors . Gemäß einer weiteren zweckmäßigen Ausgestaltung ist der Sensorkörper eine monolithische Platte aus einer Piezokeramik. Insbesondere kann die Piezokeramik des Sensors aus einem anderen Material als die Werkstoffschichten des Bauelements gebildet sein .
Gemäß einer weiteren zweckmäßigen Ausgestaltung ist der Sensor über eine Isolationsschicht mit dem Bauelement kraftschlüssig verbunden. Ebenso kann sich der Sensor auf der von dem Piezoaktor abgewandten Seite über eine Isolationsschicht an einem Gehäuse der Aktuatoreinheit abstützen.
Die Erfindung wird nachfolgend näher anhand von Ausführungs¬ beispielen in der Zeichnung erläutert. Es zeigen: Fig. 1 eine schematische Darstellung einer erfindungsgemäßen
Aktuatoreinheit,
Fig. 2 ein erstes Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1,
Fig. 3 ein zweites Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1,
Fig. 4 ein drittes Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1, und Fig. 5 ein viertes Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1. Fig. 1 zeigt in einer schematischen Darstellung eine erfindungsgemäße Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahrzeugs. Diese umfasst ein als Stapel ausgebildetes elektronisches Bauelement 10. Üblicher- weise weist ein solcher Stapel 16, in der Draufsicht betrachtet, einen rechteckigen oder quadratischen Querschnitt auf. Der Bauelementstapel 16 umfasst (in Fig. 1 nicht sichtbar) eine Mehrzahl von Elektrodenschichten oder eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoff- schichten, wobei jede der Werkstoffschichten zwischen zwei der Elektrodenschichten angeordnet ist. Die elektrische Kontak- tierung erfolgt über zwei Außenelektroden 11, 12, welche mit jeweiligen Elektrodenschichten elektrisch über schematisch dargestellte Leiter 13, 14 verbunden sind. Die Außenelektroden 11, 12 sind zur Ansteuerung des Bauelementstapels 16 mit einer Steuereinheit 17 (ECU- Electronic Control Unit) verbunden. Die Außenelektroden 11, 12 sind zumindest an einer Umfangsseite, vorzugsweise jedoch an zwei verschiedenen Umfangsseiten des Stapels angeordnet, die sich besonders bevorzugt gegenüber- liegen.
Durch Anlegen eines elektrischen Feldes an die zwei Außenelektroden 11, 12 mittels eines Steuersignals der Steuereinheit 17 kann eine Auslenkung des Bauelementstapels 16 (sog.
Piezoaktor) erreicht werden.
Um den mit den zwei Außenelektroden versehenen Bauelementstapel mechanisch schützen zu können, ist auf die Umfangsseiten des Bauelementstapels meist eine Isolationsschicht, z.B. aus Si- likon, aufgebracht (nicht dargestellt) . Um eine Beschädigung des Bauelementstapels während dessen aktuatorischer Betätigung verhindern zu können und andererseits eine Rückstellkraft auf den Bauelementstapel ausüben zu können, wenn eine Ansteuerung über die zwei Außenelektroden 11, 12 nicht mehr erfolgt, ist eine das Bauelement 10 umgebende Rohrfeder (nicht dargestellt) vorge¬ sehen. Die Rohrfeder ist typischerweise aus einem Metall ge¬ fertigt . Während das in Blattrichtung untere Ende des Bauelementstapels 16 mit einer ebenfalls nicht dargestellten Nadel eines Ein- spritzventils oder eines anderen Bauelementes eines hydrau¬ lischen Systems des Einspritzventils in Eingriff gebracht ist, um bei einer Auslenkung des BauelementStapels 16 Kraftstoff in einen Brennraum einzuspritzen, ist an dem in Blattrichtung oberen Ende ein Sensor 20 in Hubrichtung des Bauelementstapels 16 kraftschlüssig mit dem Bauelementstapel 16 verbunden. Hierzu kann sich der Sensor 20 z.B. an einem nicht dargestellten Gehäusebauteil des Einspritzventils abstützen.
Der Sensor 20 umfasst einen Sensorkörper 21, welcher durch eine monolithische Platte aus einer Piezokeramik gebildet ist. Im Betrieb des Bauelements 10 erfasst der Sensor 20 eine von dem Bauelementstapel 16 erzeugte Kraft F, welche als Spannung zwischen zwei auf gegenüberliegenden Seitenflächen 22, 23 des Sensorkörpers 21 angeordneten Elektroden 24, 25 erfassbar ist. Die Elektroden 24, 25 sind hierzu mit einer Spannungsmesseinrichtung 30 verbunden, welche die durch die Piezokeramik erzeugte Spannung erfasst und in die dazu korrelierende Kraft umrechnet.
Auf die Elektroden 24, 25 ist jeweils eine Isolationsschicht 31, 32 aufgebracht, um einen elektrischen Kurzschluss der sog. Außenelektrode 24 zum Gehäuse des Einspritzventils bzw. der sog. Innenelektrode 25 zum Bauelementstapel 16 bzw. dessen Außen¬ elektroden 11,12 zu verhindern. Aus diesem Grund erfolgt die Kontaktierung der Elektroden 24, 25 nicht im Bereich der Stirnflächen 22, 23, sondern im Bereich einer Seitenfläche 26a, 26b, 26c, 26d des Sensorkörpers über Kontaktierungsabschnitte 27a, 27b, 27c, 27d der Elektroden 24, 25.
Die Dicke des Sensorkörpers 21 beträgt etwa 0,5 mm. Die Längen der Seitenkanten betragen z.B. zwischen 2 und 3 mm, wobei auch andere Abmessungen möglich sind. Typischerweise werden die Seitenlängen des Sensorkörpers gleich den Seitenlängen des Aktors gewählt. Der Sensorkörper 21 kann in der Draufsicht wahlweise einen quadratischen, einen rechteckigen oder einen anderen Querschnitt aufweisen. Die Elektroden 24, 25 sind aus einem elektrisch leitfähigen Material direkt zumindest auf die Stirnflächen des Sensorkörpers aufgebracht. Direkt heißt, dass das Elektrodenmaterial ohne Kleber oder sonstiges Haftmaterial unmittelbar durch die Art der Erzeugung der Kontaktierung auf den Sensorkörper aufgebracht ist. Als elektrisch leitfähiges Material können z.B. Silber, Gold oder Kupfer, Palladium oder Legierungen davon verwendet werden. Diese Materialien können durch Plasmaauftrag, Aufdampfen oder Sputtern direkt auf den Sensorkörper 21 aufgebracht werden. Zusammen mit den auf einer jeweiligen Stirnfläche 22, 23 aufgebrachten Elektroden 24, 25 können auch ein oder mehrere Kontaktierungsabschnitte 27a, 27b, 27c, 27d auf eine oder mehrere Seitenflächen 26a, 26b, 26c, 26d des Sensorkörpers 21 aufgebracht werden, z.B. durch Drehung des Sensorkörpers 21 während der Herstellung. Durch eine Maskierung während der Herstellungsprozesses können dabei beliebige Konturen der Elektroden 24, 25 und/oder der Kontaktierungsabschnitte 27a, 27b, 27c, 27d erzeugt werden . Die genannten Verfahren zum direkten Aufbringen des Materials der Elektroden 24, 25 ermöglichen im Vergleich zu Metallfolien sehr dünne Elektroden von etwa 10 bis 20 ym Dicke. Gleichzeitig kann eine sehr ebene Oberfläche erzielt werden, so dass eine steife Anbindung an den Bauelementstapel möglich ist.
Die Fig. 2 bis 5 zeigen jeweils in einer perspektivischen Darstellung verschiedene Ausführungsbeispiele eines Sensors 20, der in einer Aktuatoreinheit gemäß Fig. 1 zum Einsatz kommt. Die Ausführungsbeispiele unterscheiden sich in der Gestalt der Elektroden und der Anordnung bzw. Anzahl der Kontaktierungsabschnitte. Aufgrund der perspektivischen Darstellung sind jeweils nur die Außenelektrode 24 auf der Stirnfläche 22 und die Seitenkanten 26c und 26d des Sensorkörpers mit dem oder den Kontaktierungsabschnitt (en) 27c, 27d sichtbar.
In Fig. 2 erstreckt sich die Elektrode 24 über die gesamte Fläche der Stirnfläche 22. Dies hat zur Folge, dass die Elektrode bis an die vier Seitenkanten 22a, 22b, 22c, 22d der Stirnfläche 22 ragt. Ein Kontaktierungsabschnitt 27c ist auf der Seitenfläche 26c angeordnet.
In Fig. 3 weist die Elektrode 24 zu jeder der Seitenkanten 22a, 22b, 22c, 22d einen Abstand 28a, 28b, 28c, 28d auf. Der Kon¬ taktierungsabschnitt 27c ist wieder auf der Seitenkante 26c angeordnet. Der Abstand ermöglicht den Verzicht auf weitere, seitliche Isolationsmaßnahmen. In Fig. 4 weist die Elektrode 24 nur zu der Seitenkante 22a einen Abstand 28a auf. Ansonsten ragt die Elektrode bis an die Seiten¬ kanten 22b, 22c, 22d heran. Der Kontaktierungsabschnitt 27c ist wieder auf der Seitenkante 26c angeordnet. In entsprechender Weise weist die Elektrode 25 einen Abstand zur Seitenkante 23c auf, wobei der Kontaktierungsabschnitt auf der nicht sichtbaren Seitenfläche 26a, d.h. gegenüber dem Kontaktierungsabschnitt 27c, angeordnet ist. Diese Ausgestaltung ermöglicht ebenfalls den Verzicht auf ansonsten übliche Isolationsmaßnahmen. In Fig. 5 weist die Elektrode 24 zu den Seitenkanten 22a und 22b einen Abstand 28a, 28b auf. Ansonsten ragt die Elektrode bis an die Seitenkanten 22c, 22d heran. Der Kontaktierungsabschnitt 27c ist wieder auf der Seitenfläche 26c angeordnet. Zusätzlich ist ein Kontaktierungsabschnitt 27d auf der Seitenfläche 26d vorgesehen. In entsprechender Weise weist die Elektrode 25 einen Abstand zu den Seitenkanten 23c, 23d auf, wobei die Kontak- tierungsabschnitte auf den nicht sichtbaren Stirnseiten 26a und 26b, d.h. gegenüber dem Kontaktierungsabschnitten 27c, 27d angeordnet sind. Diese Ausgestaltung ermöglicht den Verzicht auf ansonsten übliche Isolationsmaßnahmen und eine widerstandärmere Kontaktierung der Elektroden 24, 25.
In den beschriebenen Ausführungsbeispielen sind die Kontak- tierungsabschnitte und die zugeordnete Elektrode in einem Schritt erzeugt und bilden eine Einheit. Der bzw. die darge¬ stellten Kontaktierungsabschnitte nehmen nur beispielhaft einen Teil der Fläche der betreffenden Seitenkante ein. Z.B. könnte der Kontaktierungsabschnitt 27c auch bis an die Seitenkante 23c der Stirnfläche 23 ragen. Ebenso könnte der Kontaktierungsabschnitt 27c auch eine größere Breite einnehmen. Er könnte sich auch über die gesamte Seitenfläche 26c erstrecken. Gleiches gilt für den Kontaktierungsabschnitt 27d in Fig. 5 bzw. alle am Sensorkörper 21 vorgesehen Kontaktierungsabschnitte .
Durch das direkte Aufbringen der Elektroden auf den Sensorkörper lässt sich die Elastizität des Koppelbereichs zwischen Sensor und Bauelementstapel reduzieren bzw. sogar nahezu vollständig eliminieren. Insbesondere besteht kein Steifigkeitsverlust durch den herkömmlicherweise verwendeten Kleber. Der Verzicht auf Kleber bringt den weiteren Vorteil mit sich, dass keine Kontamination durch Lösemittel-Klebstoffe auftreten kann. Die vorgeschlagene Ausgestaltung ermöglicht eine separate Ferti¬ gung von Sensor und Piezoaktor, welche zu einem späteren Zeitpunkt zusammengefügt werden können.

Claims

Patentansprüche
Aktuatoreinheit für ein Einspritzventil einer Verbren¬ nungskraftmaschine eines Fahrzeugs, umfassend:
ein als Stapel ausgebildetes elektronisches Bauelement
(10), mit
einer Mehrzahl von Elektrodenschichten;
einer Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten, wobei Werkstoffschichten und Elektrodenschichten jeweils alternierend gestapelt sind; und
zwei Außenelektroden, mit welchen die Elektrodenschichten an zumindest einer Umfangsseite des Bau¬ elements (10) jeweils abwechselnd elektrisch verbunden sind;
einen piezoelektrischen Sensor (20), umfassend einen Sensorkörper (21) und zwei auf gegenüberliegenden Stirnflächen (22, 23) des Sensorkörpers (21) angeordnete Elektroden (24, 25),
wobei der piezoelektrische Sensor (20) in Hubrichtung des Bauelements (10) kraftschlüssig mit dem Bauelement (10) gekoppelt ist und im Betrieb des Bauelements (10) eine von dem Bauelement (10) erzeugte Kraft erfasst, welche als Spannung oder Ladung zwischen den Elektroden (24, 25) erfassbar ist,
wobei die Elektroden (24, 25) aus einem elektrisch leitfähigen Material direkt zumindest auf die Stirnflächen (22, 23) des Sensorkörpers (21) aufgebracht sind.
Aktuatoreinheit nach Anspruch 1, bei der die Elektroden (24, 25) eine Schichtdicke von weniger als 20ym und insbesondere weniger als 10ym aufweisen.
Aktuatoreinheit nach Anspruch 1 oder 2, bei der eine jeweilige Stirnfläche (22, 23) des Sensorkörpers durch Seitenkanten (22a, 22b, 22c, 22d; 23a, 23b, 23c, 23d) begrenzt ist, wobei die auf der jeweiligen Stirnfläche (22, 23) angeordnete Elektrode (24, 25) zumindest zu einem der zugeordneten Seitenkanten (22a, 22b, 22c, 22d; 23a, 23b, 23c, 23d) einen Abstand (28a, 28b, 28c, 28d) aufweist.
Aktuatoreinheit nach einem der vorhergehenden Ansprüche, bei der zumindest ein Kontaktierungsabschnitt (27a, 27b, 27c, 27d) einer jeweiligen Elektrode (24, 25) auf zumindest einer Seitenfläche (26a, 26b, 26c, 26d) des Sensorkörpers (21) angeordnet ist, wobei der zumindest eine Kontaktierungs¬ abschnitt und die zugeordnete Elektrode (24, 25) über eine Seitenkante (22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d) ) hinweg in einem Schritt erzeugt sind.
Aktuatoreinheit nach Anspruch 3 und 4, bei der zumindest an einer dem Kontaktierungsabschnitt (27a, 27b, 27c, 27d) gegenüberliegenden Seitenkante der Abstand (28a, 28b, 28c, 28d) zwischen der Elektrode (24, 25) und dieser Seitenkante (22a, 22b, 22c, 22d; 23a, 23b, 23c, 23d) vorgesehen ist.
Aktuatoreinheit nach einem der vorhergehenden Ansprüche, bei der der Sensorkörper (21) eine monolithische Platte aus einer Piezokeramik ist.
7. Aktuatoreinheit nach Anspruch 6, bei der die Piezokeramik des Sensors (20) aus einem anderen Material als die Werk- stoffschichten des Bauelements gebildet ist.
8. Aktuatoreinheit nach einem der vorhergehenden Ansprüche, bei der die Elektroden (24, 25) durch einen Plasmaauftrag oder Sputtern oder Aufdampfen erzeugt sind.
9. Aktuatoreinheit nach einem der vorhergehenden Ansprüche, bei der der Sensor (20) über eine Isolationsschicht mit dem Bauelement (10) kraftschlüssig verbunden ist.
EP14721245.0A 2013-04-17 2014-04-16 Modulare aktuatoreinheit für ein einspritzventil Ceased EP2948672A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013206933.2A DE102013206933A1 (de) 2013-04-17 2013-04-17 Modulare Aktuatoreinheit für ein Einspritzventil
PCT/EP2014/057802 WO2014170399A1 (de) 2013-04-17 2014-04-16 Modulare aktuatoreinheit für ein einspritzventil

Publications (1)

Publication Number Publication Date
EP2948672A1 true EP2948672A1 (de) 2015-12-02

Family

ID=50639442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14721245.0A Ceased EP2948672A1 (de) 2013-04-17 2014-04-16 Modulare aktuatoreinheit für ein einspritzventil

Country Status (4)

Country Link
US (1) US9709186B2 (de)
EP (1) EP2948672A1 (de)
DE (1) DE102013206933A1 (de)
WO (1) WO2014170399A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217193A1 (de) * 2015-09-09 2017-03-09 Continental Automotive Gmbh Erfassungsverfahren zum Erfassen einer Spaltgröße eines Spaltes zwischen einer Injektorventilbaugruppe und einem Piezostapel sowie Ansteuerungsverfahren zum Ansteuern einer Aktoreinheit in einem Piezostapel.
DE102016204888A1 (de) * 2016-03-23 2017-03-16 Continental Automotive Gmbh Piezoelektrische Aktuatoreinheit und Herstellungsverfahren zum Herstellen einer Aktuatoreinheit
JP2020089037A (ja) * 2018-11-22 2020-06-04 株式会社堀場エステック ピエゾアクチュエータ、流体制御バルブ、及び、流体制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281888A (en) * 1992-03-17 1994-01-25 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element having auxiliary electrode disposed between piezoelectric/electrostrictive layer and substrate
DE102011078905A1 (de) * 2011-07-11 2013-01-17 Robert Bosch Gmbh Sensoranordnung zur Kraft- oder Druckmessung sowie Kraftstoffinjektor mit einer solchen Sensoranordnung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489931A (en) * 1968-08-30 1970-01-13 Bourns Inc Monolithic electrical transformer
JP3039971B2 (ja) * 1989-09-19 2000-05-08 株式会社日立製作所 接合型圧電装置及び製造方法並びに接合型圧電素子
DE19960971A1 (de) 1999-12-17 2001-03-08 Bosch Gmbh Robert Piezoaktor
JP3706903B2 (ja) * 2000-08-10 2005-10-19 独立行政法人産業技術総合研究所 フレキシブル高感度セラミックスセンサー
DE10127932A1 (de) * 2001-06-08 2002-12-19 Bosch Gmbh Robert Ventil zum Steuern von Fluiden sowie Verfahren zur Bestimmung von Drücken
DE10345730A1 (de) * 2003-10-01 2005-04-21 Bosch Gmbh Robert Piezoaktor
FR2907544B1 (fr) * 2006-10-19 2009-02-13 Renault Sas Systeme d'estimation du debit d'un injecteur de moteur a combustion interne
WO2009041476A1 (ja) * 2007-09-27 2009-04-02 Kyocera Corporation 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
DE102008007205A1 (de) * 2008-02-01 2009-08-06 Robert Bosch Gmbh Piezoaktormodul mit mehr als zwei Anschlusspins für Piezoinjektioren mit integriertem Piezo-Sensor
JP2010103315A (ja) * 2008-10-23 2010-05-06 Denso Corp 圧電アクチュエータおよびそれを用いた燃料噴射弁
DE102009002311A1 (de) * 2009-04-09 2010-10-14 Robert Bosch Gmbh Piezoelektrischer Aktor und Brennstoffeinspritzventil
US9016127B2 (en) * 2009-10-07 2015-04-28 Nec Tokin Corporation Piezoelectric acceleration sensor
DE102009047611A1 (de) 2009-12-08 2011-06-09 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung mit Nadelpositionsbestimmung
DE102012204251B4 (de) * 2012-03-19 2013-12-12 Continental Automotive Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzsystems und Kraftstoffeinspritzsystem mit Einspritzventilen mit Piezo-Direktantrieb

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281888A (en) * 1992-03-17 1994-01-25 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element having auxiliary electrode disposed between piezoelectric/electrostrictive layer and substrate
DE102011078905A1 (de) * 2011-07-11 2013-01-17 Robert Bosch Gmbh Sensoranordnung zur Kraft- oder Druckmessung sowie Kraftstoffinjektor mit einer solchen Sensoranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014170399A1 *

Also Published As

Publication number Publication date
US20160053910A1 (en) 2016-02-25
DE102013206933A1 (de) 2014-10-23
WO2014170399A1 (de) 2014-10-23
US9709186B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
DE102006003070B3 (de) Verfahren zum elektrischen Kontakieren eines elektronischen Bauelements
WO1998047187A1 (de) Piezoaktor mit neuer kontaktierung und herstellverfahren
WO2014170399A1 (de) Modulare aktuatoreinheit für ein einspritzventil
EP2543085B1 (de) Piezoelektrisches bauelement
DE102010049311B4 (de) Verfahren zur Herstellung eines piezoelektrischen Aktorbauelements
EP1690303B1 (de) Piezoaktor
EP2865027B1 (de) Verfahren zum herstellen eines elektronischen bauelements als stapel
EP1587152B1 (de) Vorrichtung mit piezoelektrischem Aktor
EP2642544B1 (de) Anordnung aus einem Piezoaktor und einer flexiblen Leiterplatte
DE102011078905A1 (de) Sensoranordnung zur Kraft- oder Druckmessung sowie Kraftstoffinjektor mit einer solchen Sensoranordnung
DE102009017434A1 (de) Elektronisches Bauelement und Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel
EP2417346B1 (de) Piezoelektrischer aktor und brennstoffeinspritzventil
DE102005013912A1 (de) Piezoaktor
EP3058600A1 (de) Vielschichtbauelement und verfahren zur herstellung eines vielschichtbauelements
EP2054951B1 (de) Piezoelektrisches bauelement
EP2798679B1 (de) Piezostack mit passivierung und verfahren zur passivierung eines piezostacks
DE19946837A1 (de) Piezoaktor
EP2396535B1 (de) Piezoelektrischer aktor, verfahren zur herstellung des aktors und injektor
DE112010002244T5 (de) Piezoelektrische gestapelte Stellanordnung
DE102017108384A1 (de) Vielschichtbauelement und Verfahren zur Herstellung eines Vielschichtbauelements
WO2017054950A1 (de) Elektrokeramisches bauelement, insbesondere vielschicht-piezoaktor
DE102011078915A1 (de) Sensoranordnung zur Kraft- oder Druckmessung sowie Kraftstoffinjektor mit einer solchen Sensoranordnung
DE102012110556A1 (de) Vielschichtbauelement und Verfahren zu dessen Herstellung
DE102019201650A1 (de) Verfahren zur Herstellung eines piezoelektrischen Stapelaktors und piezoelektrischer Stapelaktor, vorzugsweise hergestellt nach dem Verfahren
WO2011020844A1 (de) Optimierte aktuatoreinheit für ein einspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20170324