Beschreibung
Modulare Aktuatoreinheit für ein Einspritzventil Die Erfindung betrifft eine modulare Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahr¬ zeugs. Eine solche Aktuatoreinheit wird zum Einspritzen von Kraftstoffen in einen Brennraum eines Zylinders der Verbrennungskraftmaschine verwendet.
Eine Aktuatoreinheit für ein Einspritzventil einer Verbren¬ nungskraftmaschine eines Fahrzeugs umfasst typischerweise ein als Stapel ausgebildetes Bauelement, das eine Mehrzahl von Elektrodenschichten sowie eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten aufweist, wobei jede WerkstoffSchicht zwischen zwei der Elektroden¬ schichten angeordnet ist. Ein solches Bauelement von überei¬ nander und alternierend zueinander gestapelten Schichten von WerkstoffSchicht und Elektrodenschicht wird allgemein als Stapel bezeichnet. Das heutzutage bekannteste elektronische Bauelement dieser Art ist allgemein als ein Piezoaktor bezeichneter Stapel, der als Betätigungselement in Einspritzventilen der verschie¬ densten Motortypen für Kraftfahrzeuge zur Anwendung kommt. Die Werkstoffschichten sind bei diesem Piezoaktor Keramikschich- ten.
Üblicherweise weist ein solcher Stapel, in der Draufsicht betrachtet, einen rechteckigen oder quadratischen Querschnitt auf. Der Stapel wird typischerweise an zwei sich gegenüber- liegenden Umfangsseiten elektrisch kontaktiert. Um dies technologisch sorgfältig durchführen zu können, werden die Elektrodenschichten geometrisch z.B. so ausgelegt, dass sich nur jede zweite Elektrodenschicht seitlich bis zu einer der beiden Umfangsseiten erstreckt, während sich die jeweils anderen Elektrodenschichten nicht bis zu dieser einen Umfangsseite hin erstrecken. Entsprechendes gilt für die andere Umfangsseite des Stapels analog.
Die elektrische Kontaktierung der Elektrodenschichten erfolgt über zwei Außenelektroden, welche allgemein an zumindest einer Umfangsseite des Bauelements und typischerweise an zwei sich gegenüberliegenden Umfangsseiten mit jeweiligen Elektroden- schichten elektrisch verbunden sind.
Das fertig gestellte Bauelement ist von einer Rohrfeder umgeben, welche typischerweise aus einem Metall besteht. Die Rohrfeder dient dazu, im Betrieb der Aktuatoreinheit den Bauelementstapel vorzuspannen und dadurch eine Beschädigung der Keramik zu verhindern. Ferner dient die Rohrfeder dazu, eine Rückstellkraft für den ausgelenkten Bauelementstapel bereitzustellen. Als Isolationsmaterial zwischen der Rohrfeder und den Außenelektroden des Bauelementstapels ist auf dem Bauelementstapel außenumfangsseitig eine Schicht, z.B. aus Silikon, vorgesehen, welche zumindest die Außenelektroden bedeckt.
Mit zunehmender Anforderung an Emission und Verbrauch steigen die Anforderungen an die Einspritzung des Kraftstoffes in den Brennraum. Höhere Drücke, Temperaturen sowie Mehrfacheinsprit zungen erfordern demzufolge eine höhere Genauigkeit bei der Zumessung des eingespritzten Kraftstoffes. Um die geforderten Genauigkeiten zu erreichen, ist es daher nicht ausreichend den Aktuator in einem Stellbetrieb zu betreiben. Vielmehr wird eine Regelung benötigt. Für die Regelung werden definierte Messgrößen benötigt, die an oder in der Aktuatoreinheit ermittelt werden, um daraus die entsprechenden Regelgrößen zu berechnen.
Hierzu können z.B. Sensoren eingesetzt werden, die direkt den Öffnungs- und Schließzeitpunkt einer von dem Aktuator betätigten Nadel des Einspritzventils detektieren. So ein Sensor kann z.B. ein piezoelektrischer Kraftsensor sein, der im Kraftschluss mit dem Piezoaktor gekoppelt ist. Die dabei erzielbare Messge¬ nauigkeit ist für eine präzise Regelung jedoch nicht hoch genug.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahrzeugs anzugeben, welche baulich und/oder funktionell
verbessert ist, so dass eine höhere Messgenauigkeit des Kraft Verlaufs des Piezoaktors erzielt wird.
Diese Aufgabe wird durch eine Aktuatoreinheit gemäß den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Die Erfindung schafft ein Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahrzeugs. Die Aktuatoreinheit umfasst ein als Stapel ausgebildetes elekt¬ ronisches Bauelement. Das Bauelement weist eine Mehrzahl an Elektrodenschichten und eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoffschichten auf, wobei die Werkstoffschichten und Elektrodenschichten jeweils al- ternierend gestapelt sind. Das Bauelement umfasst ferner zwei Außenelektroden, mit welchen die Elektrodenschichten an zumindest einer Umfangsseite des Bauelements jeweils abwechselnd elektrisch verbunden sind. Weiter umfasst die Aktuatoreinheit einen piezoelektrischen Sensor, der in Hubrichtung des Bau- elements kraftschlüssig mit dem Bauelement gekoppelt ist. Im Betrieb des Bauelements erfasst der Sensor eine von dem Bau¬ element erzeugte Kraft, welche als Spannung oder Ladung zwischen zwei auf gegenüberliegenden Stirnflächen eines Sensorkörpers angeordneten Elektroden erfassbar ist. Die Elektroden sind aus einem elektrisch leitfähigen Material direkt zumindest auf die Stirnflächen des Sensorkörpers aufgebracht.
Der Erfindung liegt die Erkenntnis zugrunde, dass für eine hohe Messgenauigkeit die Kopplungsstelle zwischen dem Bauelement (Piezoaktor) und dem Sensor bezüglich ihrer Steifigkeit und Kraftübertragung von großer Bedeutung ist. Bei herkömmlichen piezoelektrischen Sensoren sind die Elektroden durch, auf die Seiten- und Stirnflächen aufgebrachte, Metallfolien gebildet, welche über einen Kleber mit den Seiten- und Stirnflächen des Sensorkörpers verbunden sind. Da die Metallfolien nicht vollkommen plan auf den Sensorkörper aufgebracht werden können und der Kleber auch nach Aushärtung elastische Eigenschaften aufweist, ergibt sich ein insgesamt elastischer Koppelbereich,
der die Messung der durch das Bauelement erzeugten Kraft verfälscht bzw. den zeitlichen Verlauf nicht korrekt wiedergibt.
Durch das erfindungsgemäß direkte Aufbringen der Elektroden auf den Sensorkörper, z.B. durch Plasmaauftrag oder Aufdampfen oder Sputtern, lässt sich die Elastizität des Koppelbereichs re¬ duzieren bzw. sogar nahezu vollständig eliminieren . Insbesondere besteht kein Steifigkeitsverlust durch den herkömmlicherweise verwendeten Kleber. Der Verzicht auf Kleber bringt den weiteren Vorteil mit sich, dass keine Kontamination durch Lösemit¬ tel-Klebstoffe auftreten kann.
Die Stirnflächen stellen einander gegenüberliegende Hauptseiten des Sensorkörpers dar, welche parallel zueinander angeordnet sind. Die Hauptseiten des Sensorkörpers sind in der Aktuator- einheit vorzugsweise parallel zu den Werkstoffschichten bzw. den Elektrodenschichten des Bauelements ( Piezoaktors ) angeordnet.
Die direkt auf den Sensorkörper aufgebrachten Elektroden können eine unterschiedliche Dicke aufweisen. Sie können auch die gleiche Dicke haben.
Die Geometrie der beiden Elektroden ist frei wählbar. Die Geo metrie kann z.B. durch eine Maskierung oder ähnliches festgelegt sein.
Die vorgeschlagene Ausgestaltung ermöglicht eine separate Fer tigung von Sensor und Piezoaktor, welche zu einem späteren Zeitpunkt zusammengefügt werden können.
Als Material für die Elektroden können Metalle wie z.B. Silber, Kupfer, Gold, Palladium oder Legierungen davon eingesetzt werden. Auch andere leitfähige Materialien sind möglich. Begünstigt wird die höhere Steifigkeit des Koppelbereichs wei terhin dadurch, dass das direkte Aufbringen der Elektroden eine geringere Elektrodendicke ermöglicht. Während bei einer her¬ kömmlichen Aktuatoreinheit die Dicke der Metallfolie zwischen
n
5
50 μ und 80 ym beträgt, lässt sich die Dicke der Elektroden gemäß einer Ausgestaltung auf weniger als 20 ym, insbesondere auf weniger als 10 ym, reduzieren. Gemäß einer weiteren Ausgestaltung ist eine jeweilige Stirnfläche durch Seitenkanten begrenzt, wobei die auf der jeweiligen Stirnfläche angeordnete Elektrode zumindest zu einer der zu¬ geordneten Seitenkanten einen Abstand aufweist. Hierdurch kann ohne weitere Maßnahmen eine unerwünschte elektrische Verbindung zu den Außenelektroden des Piezoaktors oder anderen leitfähigen Komponenten vermieden werden.
Gemäß einer weiteren zweckmäßigen Ausgestaltung ist zumindest ein Kontaktierungsabschnitt einer jeweiligen Elektrode auf zumindest einer Seitenfläche des Sensorkörpers angeordnet, wobei der zumindest eine Kontaktierungsabschnitt und die zugeordnete Elektrode über eine Seitenkante hinweg in einem Schritt erzeugt sind. Die Kontaktierungsabschnitte an den Seitenfläche werden für die elektrische Kontaktierung der Elektroden genutzt. Dadurch, dass diese - im Gegensatz zu herkömmlichen Aktuator- einheiten - nun auf den Seitenflächen angeordnet sind, verein facht sich der Gesamtaufbau der Aktuatoreinheit .
Bei herkömmlichen Sensoreinheiten, bei denen die Elektroden durch Metallfolien gebildet sind, können diese aufgrund der geringen Dicke des Sensorkörpers (in Regel weniger als 0,5 mm) nicht auf die Seitenfläche umgebogen werden. Stattdessen muss der Kontaktierungsabschnitt der dem Stapel zugewandten Elektrode (sog. Innenelektrode) in Richtung des Piezoaktors und die von dem Stapel weg gewandte Elektrode (sog. Außenelektrode) in Richtung eines Isolators gebogen werden. Insbesondere für die Innen¬ elektrode müssen hierzu geeignete Isolationsmaßnahmen getroffen werden, was bei dem erfindungsgemäßen Vorgehen nicht erforderlich ist.
Gemäß einer weiteren zweckmäßigen Ausgestaltung ist zumindest auf einer dem Kontaktierungsabschnitt gegenüberliegenden Sei¬ tenkante der Abstand zwischen Elektrode und dieser Seitenkante
vorgesehen. Dies vermeidet ohne gesonderte weitere Maßnahmen Isolationsprobleme gegenüber den Außenelektroden des Piezo- aktors . Gemäß einer weiteren zweckmäßigen Ausgestaltung ist der Sensorkörper eine monolithische Platte aus einer Piezokeramik. Insbesondere kann die Piezokeramik des Sensors aus einem anderen Material als die Werkstoffschichten des Bauelements gebildet sein .
Gemäß einer weiteren zweckmäßigen Ausgestaltung ist der Sensor über eine Isolationsschicht mit dem Bauelement kraftschlüssig verbunden. Ebenso kann sich der Sensor auf der von dem Piezoaktor abgewandten Seite über eine Isolationsschicht an einem Gehäuse der Aktuatoreinheit abstützen.
Die Erfindung wird nachfolgend näher anhand von Ausführungs¬ beispielen in der Zeichnung erläutert. Es zeigen: Fig. 1 eine schematische Darstellung einer erfindungsgemäßen
Aktuatoreinheit,
Fig. 2 ein erstes Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1,
Fig. 3 ein zweites Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1,
Fig. 4 ein drittes Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1, und Fig. 5 ein viertes Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Sensors für die Aktuatoreinheit gemäß Fig. 1.
Fig. 1 zeigt in einer schematischen Darstellung eine erfindungsgemäße Aktuatoreinheit für ein Einspritzventil einer Verbrennungskraftmaschine eines Fahrzeugs. Diese umfasst ein als Stapel ausgebildetes elektronisches Bauelement 10. Üblicher- weise weist ein solcher Stapel 16, in der Draufsicht betrachtet, einen rechteckigen oder quadratischen Querschnitt auf. Der Bauelementstapel 16 umfasst (in Fig. 1 nicht sichtbar) eine Mehrzahl von Elektrodenschichten oder eine Mehrzahl von auf Anlegen eines elektrischen Feldes reagierenden Werkstoff- schichten, wobei jede der Werkstoffschichten zwischen zwei der Elektrodenschichten angeordnet ist. Die elektrische Kontak- tierung erfolgt über zwei Außenelektroden 11, 12, welche mit jeweiligen Elektrodenschichten elektrisch über schematisch dargestellte Leiter 13, 14 verbunden sind. Die Außenelektroden 11, 12 sind zur Ansteuerung des Bauelementstapels 16 mit einer Steuereinheit 17 (ECU- Electronic Control Unit) verbunden. Die Außenelektroden 11, 12 sind zumindest an einer Umfangsseite, vorzugsweise jedoch an zwei verschiedenen Umfangsseiten des Stapels angeordnet, die sich besonders bevorzugt gegenüber- liegen.
Durch Anlegen eines elektrischen Feldes an die zwei Außenelektroden 11, 12 mittels eines Steuersignals der Steuereinheit 17 kann eine Auslenkung des Bauelementstapels 16 (sog.
Piezoaktor) erreicht werden.
Um den mit den zwei Außenelektroden versehenen Bauelementstapel mechanisch schützen zu können, ist auf die Umfangsseiten des Bauelementstapels meist eine Isolationsschicht, z.B. aus Si- likon, aufgebracht (nicht dargestellt) . Um eine Beschädigung des Bauelementstapels während dessen aktuatorischer Betätigung verhindern zu können und andererseits eine Rückstellkraft auf den Bauelementstapel ausüben zu können, wenn eine Ansteuerung über die zwei Außenelektroden 11, 12 nicht mehr erfolgt, ist eine das Bauelement 10 umgebende Rohrfeder (nicht dargestellt) vorge¬ sehen. Die Rohrfeder ist typischerweise aus einem Metall ge¬ fertigt .
Während das in Blattrichtung untere Ende des Bauelementstapels 16 mit einer ebenfalls nicht dargestellten Nadel eines Ein- spritzventils oder eines anderen Bauelementes eines hydrau¬ lischen Systems des Einspritzventils in Eingriff gebracht ist, um bei einer Auslenkung des BauelementStapels 16 Kraftstoff in einen Brennraum einzuspritzen, ist an dem in Blattrichtung oberen Ende ein Sensor 20 in Hubrichtung des Bauelementstapels 16 kraftschlüssig mit dem Bauelementstapel 16 verbunden. Hierzu kann sich der Sensor 20 z.B. an einem nicht dargestellten Gehäusebauteil des Einspritzventils abstützen.
Der Sensor 20 umfasst einen Sensorkörper 21, welcher durch eine monolithische Platte aus einer Piezokeramik gebildet ist. Im Betrieb des Bauelements 10 erfasst der Sensor 20 eine von dem Bauelementstapel 16 erzeugte Kraft F, welche als Spannung zwischen zwei auf gegenüberliegenden Seitenflächen 22, 23 des Sensorkörpers 21 angeordneten Elektroden 24, 25 erfassbar ist. Die Elektroden 24, 25 sind hierzu mit einer Spannungsmesseinrichtung 30 verbunden, welche die durch die Piezokeramik erzeugte Spannung erfasst und in die dazu korrelierende Kraft umrechnet.
Auf die Elektroden 24, 25 ist jeweils eine Isolationsschicht 31, 32 aufgebracht, um einen elektrischen Kurzschluss der sog. Außenelektrode 24 zum Gehäuse des Einspritzventils bzw. der sog. Innenelektrode 25 zum Bauelementstapel 16 bzw. dessen Außen¬ elektroden 11,12 zu verhindern. Aus diesem Grund erfolgt die Kontaktierung der Elektroden 24, 25 nicht im Bereich der Stirnflächen 22, 23, sondern im Bereich einer Seitenfläche 26a, 26b, 26c, 26d des Sensorkörpers über Kontaktierungsabschnitte 27a, 27b, 27c, 27d der Elektroden 24, 25.
Die Dicke des Sensorkörpers 21 beträgt etwa 0,5 mm. Die Längen der Seitenkanten betragen z.B. zwischen 2 und 3 mm, wobei auch andere Abmessungen möglich sind. Typischerweise werden die Seitenlängen des Sensorkörpers gleich den Seitenlängen des Aktors gewählt. Der Sensorkörper 21 kann in der Draufsicht wahlweise einen quadratischen, einen rechteckigen oder einen anderen Querschnitt aufweisen.
Die Elektroden 24, 25 sind aus einem elektrisch leitfähigen Material direkt zumindest auf die Stirnflächen des Sensorkörpers aufgebracht. Direkt heißt, dass das Elektrodenmaterial ohne Kleber oder sonstiges Haftmaterial unmittelbar durch die Art der Erzeugung der Kontaktierung auf den Sensorkörper aufgebracht ist. Als elektrisch leitfähiges Material können z.B. Silber, Gold oder Kupfer, Palladium oder Legierungen davon verwendet werden. Diese Materialien können durch Plasmaauftrag, Aufdampfen oder Sputtern direkt auf den Sensorkörper 21 aufgebracht werden. Zusammen mit den auf einer jeweiligen Stirnfläche 22, 23 aufgebrachten Elektroden 24, 25 können auch ein oder mehrere Kontaktierungsabschnitte 27a, 27b, 27c, 27d auf eine oder mehrere Seitenflächen 26a, 26b, 26c, 26d des Sensorkörpers 21 aufgebracht werden, z.B. durch Drehung des Sensorkörpers 21 während der Herstellung. Durch eine Maskierung während der Herstellungsprozesses können dabei beliebige Konturen der Elektroden 24, 25 und/oder der Kontaktierungsabschnitte 27a, 27b, 27c, 27d erzeugt werden . Die genannten Verfahren zum direkten Aufbringen des Materials der Elektroden 24, 25 ermöglichen im Vergleich zu Metallfolien sehr dünne Elektroden von etwa 10 bis 20 ym Dicke. Gleichzeitig kann eine sehr ebene Oberfläche erzielt werden, so dass eine steife Anbindung an den Bauelementstapel möglich ist.
Die Fig. 2 bis 5 zeigen jeweils in einer perspektivischen Darstellung verschiedene Ausführungsbeispiele eines Sensors 20, der in einer Aktuatoreinheit gemäß Fig. 1 zum Einsatz kommt. Die Ausführungsbeispiele unterscheiden sich in der Gestalt der Elektroden und der Anordnung bzw. Anzahl der Kontaktierungsabschnitte. Aufgrund der perspektivischen Darstellung sind jeweils nur die Außenelektrode 24 auf der Stirnfläche 22 und die Seitenkanten 26c und 26d des Sensorkörpers mit dem oder den Kontaktierungsabschnitt (en) 27c, 27d sichtbar.
In Fig. 2 erstreckt sich die Elektrode 24 über die gesamte Fläche der Stirnfläche 22. Dies hat zur Folge, dass die Elektrode bis an die vier Seitenkanten 22a, 22b, 22c, 22d der Stirnfläche 22
ragt. Ein Kontaktierungsabschnitt 27c ist auf der Seitenfläche 26c angeordnet.
In Fig. 3 weist die Elektrode 24 zu jeder der Seitenkanten 22a, 22b, 22c, 22d einen Abstand 28a, 28b, 28c, 28d auf. Der Kon¬ taktierungsabschnitt 27c ist wieder auf der Seitenkante 26c angeordnet. Der Abstand ermöglicht den Verzicht auf weitere, seitliche Isolationsmaßnahmen. In Fig. 4 weist die Elektrode 24 nur zu der Seitenkante 22a einen Abstand 28a auf. Ansonsten ragt die Elektrode bis an die Seiten¬ kanten 22b, 22c, 22d heran. Der Kontaktierungsabschnitt 27c ist wieder auf der Seitenkante 26c angeordnet. In entsprechender Weise weist die Elektrode 25 einen Abstand zur Seitenkante 23c auf, wobei der Kontaktierungsabschnitt auf der nicht sichtbaren Seitenfläche 26a, d.h. gegenüber dem Kontaktierungsabschnitt 27c, angeordnet ist. Diese Ausgestaltung ermöglicht ebenfalls den Verzicht auf ansonsten übliche Isolationsmaßnahmen. In Fig. 5 weist die Elektrode 24 zu den Seitenkanten 22a und 22b einen Abstand 28a, 28b auf. Ansonsten ragt die Elektrode bis an die Seitenkanten 22c, 22d heran. Der Kontaktierungsabschnitt 27c ist wieder auf der Seitenfläche 26c angeordnet. Zusätzlich ist ein Kontaktierungsabschnitt 27d auf der Seitenfläche 26d vorgesehen. In entsprechender Weise weist die Elektrode 25 einen Abstand zu den Seitenkanten 23c, 23d auf, wobei die Kontak- tierungsabschnitte auf den nicht sichtbaren Stirnseiten 26a und 26b, d.h. gegenüber dem Kontaktierungsabschnitten 27c, 27d angeordnet sind. Diese Ausgestaltung ermöglicht den Verzicht auf ansonsten übliche Isolationsmaßnahmen und eine widerstandärmere Kontaktierung der Elektroden 24, 25.
In den beschriebenen Ausführungsbeispielen sind die Kontak- tierungsabschnitte und die zugeordnete Elektrode in einem Schritt erzeugt und bilden eine Einheit. Der bzw. die darge¬ stellten Kontaktierungsabschnitte nehmen nur beispielhaft einen Teil der Fläche der betreffenden Seitenkante ein. Z.B. könnte der Kontaktierungsabschnitt 27c auch bis an die Seitenkante 23c der
Stirnfläche 23 ragen. Ebenso könnte der Kontaktierungsabschnitt 27c auch eine größere Breite einnehmen. Er könnte sich auch über die gesamte Seitenfläche 26c erstrecken. Gleiches gilt für den Kontaktierungsabschnitt 27d in Fig. 5 bzw. alle am Sensorkörper 21 vorgesehen Kontaktierungsabschnitte .
Durch das direkte Aufbringen der Elektroden auf den Sensorkörper lässt sich die Elastizität des Koppelbereichs zwischen Sensor und Bauelementstapel reduzieren bzw. sogar nahezu vollständig eliminieren. Insbesondere besteht kein Steifigkeitsverlust durch den herkömmlicherweise verwendeten Kleber. Der Verzicht auf Kleber bringt den weiteren Vorteil mit sich, dass keine Kontamination durch Lösemittel-Klebstoffe auftreten kann. Die vorgeschlagene Ausgestaltung ermöglicht eine separate Ferti¬ gung von Sensor und Piezoaktor, welche zu einem späteren Zeitpunkt zusammengefügt werden können.