EP2945762B1 - Procédé de fabrication d'une pièce par fonderie à la cire perdue et refroidissement dirigé - Google Patents

Procédé de fabrication d'une pièce par fonderie à la cire perdue et refroidissement dirigé Download PDF

Info

Publication number
EP2945762B1
EP2945762B1 EP14703143.9A EP14703143A EP2945762B1 EP 2945762 B1 EP2945762 B1 EP 2945762B1 EP 14703143 A EP14703143 A EP 14703143A EP 2945762 B1 EP2945762 B1 EP 2945762B1
Authority
EP
European Patent Office
Prior art keywords
core
span
shell mould
wax
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14703143.9A
Other languages
German (de)
English (en)
Other versions
EP2945762A1 (fr
Inventor
Yvan Rappart
Christelle BERTHELEMY
Benoît Georges Jocelyn MARIE
David Locatelli
Sébastien Digard Brou de Cuissart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP2945762A1 publication Critical patent/EP2945762A1/fr
Application granted granted Critical
Publication of EP2945762B1 publication Critical patent/EP2945762B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C21/00Flasks; Accessories therefor
    • B22C21/12Accessories
    • B22C21/14Accessories for reinforcing or securing moulding materials or cores, e.g. gaggers, chaplets, pins, bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings

Definitions

  • the present invention relates to the field of metal parts, such as turbomachine blades obtained by casting metal in a shell mold and relates to a method of manufacturing these parts with directed solidification of columnar or monocrystalline type.
  • the state of the art also includes documents GB-A-1 377 042 and SU-A1- 606 676 .
  • the process for manufacturing metal parts by lost wax casting comprises a succession of steps recalled below.
  • Models of the parts to be manufactured are first produced in wax or other temporary material. Where appropriate, the models are gathered in a cluster around a central barrel also made of wax.
  • a ceramic material shell is then formed on the models, thus assembled, by successive soaking in slips of suitable composition comprising particles of ceramic materials in suspension in a liquid, alternated with dustings of refractory sand.
  • the wax model is then removed while consolidating the shell mold thus formed by heating.
  • the next step consists in casting a metal alloy, in particular a nickel superalloy, in fusion in the shell mold and then in cooling the parts obtained so as to direct their solidification according to the desired crystalline structure. After solidification, the shell is removed by detaching to extract the parts. Finally, the finishing steps are carried out to remove excess material.
  • the cooling and solidification step is therefore controlled.
  • the solidification of the metal alloy being the passage from the liquid phase to the solid phase, the directed solidification consists in advancing the growth of "seeds" in the bath of molten metal in a given direction, avoiding the appearance of new germs by controlling the thermal gradient and the rate of solidification.
  • Directed solidification can be columnar or monocrystalline. Columnar directed solidification involves orienting all grain boundaries in the same direction, such that they do not contribute to the propagation of cracks. Monocrystalline directed solidification consists in completely eliminating the grain boundaries.
  • the directed, columnar or monocrystalline solidification is carried out in a manner known per se by placing the shell mold, open in its lower part, on a cooled hearth, then by introducing the whole into a heating equipment capable of holding the ceramic mold. at a temperature higher than the liquidus of the alloy to be molded.
  • the metal located in openings made at the bottom of the shell mold solidifies almost instantaneously on contact with the cooled sole and freezes to a limited height of the order of a centimeter on which it has an equilibrium granular structure -axis, that is to say that its solidification over this limited height takes place naturally, without any preferred direction. Above this limited height, the metal remains in the liquid state, due to the imposed external heating.
  • the sole is moved at a controlled speed downwards so as to extract the ceramic mold from the heating device leading to a gradual cooling of the metal which continues to solidify from the lower part of the mold to its upper part.
  • the monocrystalline directed solidification further comprises the interposition between the part to be molded and the cooled sole, either of a baffle or grain selector, or of a monocrystalline seed; the thermal gradient and the rate of solidification are controlled in such a way that no new seeds are created in front of the solidification front. This results in a monocrystalline molded part after cooling.
  • This directed solidification technique is commonly used to produce molded parts, and in particular turbomachine blades, when it is desirable to give the molded parts specific mechanical and physical properties. This is particularly the case when the molded parts are turbomachine blades.
  • weights are used in order to eliminate the porosity defects in end areas of the. parts to be manufactured.
  • excess volumes are provided during the production of wax models, which are placed against the areas of the parts which are liable to exhibit porosity defects after solidification.
  • excess volumes translate into additional volumes inside the shell, and fill with molten metal during casting, in the same way as other parts of the shell.
  • the weights are the reserves of solidified metal which fill the additional volumes in the shell. The porosity defects, when they occur, are then displaced in the weights and are no longer located in the manufactured parts themselves. Then, once the metal has solidified and cooled, the weights are removed during a part finishing operation, for example by machining, by cutting or by grinding.
  • the present invention relates to the manufacture of parts having at least one cavity and the wax model of which is molded around a ceramic core.
  • This core during the casting of the molten metal reserves inside the part the volume corresponding to the desired cavity.
  • the cavities traversed by the cooling fluid are produced in this way.
  • Ceramic cores for turbomachine blades comprise, according to a known method of manufacture, two bearing surfaces or retaining lugs, one at each longitudinal end.
  • the models are prepared in such a way that an embedding or anchoring of the ceramic core is defined at the level of the area of the base of the core in the upper part of the mold. Indeed according to this technique the core and the wax model are mounted foot up and the top down. Thus after the ceramic molding operations, the ceramic shell formed blocks the core in this area.
  • the molten metal fills the imprint released by the wax which has been previously removed. The molten metal occupies the space between the core and the shell wall.
  • the solidification is then carried out by the pulling from top to bottom of the bottom of the furnace on which the shell is placed, the solidification progresses from the starter in which several metal grains solidify then successively in the top of the blade, the blade and the foot.
  • the core is then held at its two ends and is constrained in compression. This results in a deformation of the core by buckling.
  • the core no longer respects its theoretical position and defects may appear on the part: metal wall thicknesses may not be respected, or the core under the effect of the stresses of the two embedments at its two ends perforates the metal wall of dawn by buckling. In both cases the part must be scrapped.
  • the positioning of the embedding at the start of solidification has the drawback of disturbing the incipient solidification front with the risk of generating parasitic grains or disorientation.
  • the subject of the invention is therefore a method of manufacturing a part which overcomes the problems presented above.
  • the process, according to the invention, for manufacturing by lost wax casting of a metal part made of nickel alloy, with a columnar or monocrystalline structure with at least one elongated cavity comprising the following steps of producing a wax model of the part with a ceramic core corresponding to said cavity, the ceramic core having a first support surface at a longitudinal end and a second support surface at the opposite end, the second surface comprising surfaces which are parallel to the direction of cooling propagation and surfaces which are not parallel to the direction of cooling propagation, production of a shell mold around the model, the mold comprising a base and the first bearing surface of the core being on the side of the base of the shell mold, removal of the wax by a dewaxing operation of the shell mold, placing the mold in a furnace, the base being placed on the bottom of the furnace, casting of said molten alloy in the shell mold, Directed solidification of the cast metal by progressive cooling from the hearth in a direction of propagation, the surfaces of the second bearing surface which are not parallel to the direction of propagation of the cooling being initially
  • the core is made integral with the shell mold by an anchoring means between the first bearing surface of the core and the wall of the shell mold, the second bearing surface of the core being retained in the shell mold by a sliding retention means. on the wall of the shell mold, said sliding holding means being a layer of varnish applied, before the production of the shell mold, to the surfaces of the second bearing surface which are parallel to the direction of propagation of the cooling and which are not covered with wax, the surfaces of the second bearing surface which are parallel to the direction of propagation of the cooling, which are not covered with wax and which, after constitution of the shell mold, come into direct contact with the internal wall of the mold, being initially fully coated with the varnish layer, the thickness of the varnish layer being between 3 and 5 hundredths of a millimeter, said layer of varnish being removed during the dewaxing operation of the shell mold, as well as the wax covering the surfaces of the second bearing surface which are not parallel to the direction of propagation of the cooling, so that a free space is created between the second bearing surface of the core and the wall of
  • the solution of the invention makes it possible to avoid the deformation of the core during the progression of the directed solidification because the core is not retained by anchoring at its two ends. It is thus not put into compression by the stresses which would result from the difference in the expansion coefficients between the mold and the core. There is also no risk of generating parasitic grains or of re-bonding defects of the main grain.
  • the solution of the invention also guarantees the position of the core throughout the part manufacturing phase: from the wax model to the casting and solidification of the part.
  • the anchoring means comprises a rod, more particularly of refractory ceramic, alumina for example, passing through the first bearing surface and the wall of the mold.
  • the ceramic rod has a small diameter of the order of a millimeter. The rod passes through the wax model and the core which have been previously drilled to a diameter slightly greater than that of the rod to prevent stresses being generated at this level.
  • the sliding holding means is formed by a space provided between the bearing surface and the wall of the mold, this space is obtained by means of a film of expansion varnish deposited on the surface of the bearing surface at the realization of the model. This is then eliminated during the dewaxing operation. of the mold.
  • a material of the nail varnish type making it possible to obtain thicknesses of a few hundredths of a millimeter per layer.
  • a suitable varnish for this application includes solvents, resin, nitrocellulose and plasticizers.
  • a varnish such as that “Thixotropic base” marketed under the trade name: “Peggy Sage nail varnish all formulas” can be used in the process of the present invention.
  • this film is more precisely interposed between the second bearing surface and the wall of the mold. It is applied, before the formation of the shell mold, on the surfaces of the second bearing surface which are parallel to the direction of the progress of the cooling; that is to say in the case of a bogie, parallel to the pulling direction of the bogie. Its purpose is to prevent, on the one hand, the wall of the mold from sticking to the core in this zone and, on the other hand, to create a free space, after unwinding, of small thickness allowing the longitudinal guiding of the second bearing relative to to the mold and avoiding the mold to exert a stress on the core.
  • the surfaces of the second bearing surface which are not parallel to the axis of the progression of solidification, the drawing axis, are initially covered by a deposit of wax so as to leave, after dewaxing, a space between said surfaces of the second bearing surface and the wall of the mold.
  • This space prevents, during the casting of molten metal, the contact between the wall of the shell and the second scope of the core, and avoids the stressing of the core in this zone during solidification.
  • the thickness of this wax deposit is of the order of a millimeter for parts having a length of 100 to 200 mm, ie approximately 1% of the length of the part.
  • the process allows the simultaneous manufacture of several parts.
  • the models of said parts are in this case gathered in a cluster inside a shell mold.
  • the method applies to the manufacture of at least one metallic part with a columnar structure, a means of germinating the crystalline structure being provided between the shell mold and the bottom of the furnace.
  • the method applies to the manufacture of at least one part with a monocrystalline structure, a grain selector being provided between the seed element and the shell mold.
  • the invention applies in particular to the manufacture of a turbine engine blade, the first range being in the extension of the top of the blade of the blade, the second range being in the extension of the root of the blade.
  • the method advantageously uses a furnace whose sole is movable vertically between a hot zone where the metal is molten and a cold zone for solidification of the metal, the sole itself being cooled.
  • the present invention relates to a method of manufacturing metal parts made of a nickel-based alloy making it possible, through an appropriate directed solidification, to obtain a columnar or monocrystalline crystalline structure.
  • the invention relates more particularly to the manufacture of turbomachine blades such as that shown in figure 1 ; a blade 1 comprises a blade 2, a root 5 allowing it to be attached to a turbine disk, and a top 7 with, where appropriate, a heel. Due to the operating temperatures of the turbomachine, the blades are provided with an internal cooling circuit through which a cooling fluid, generally air, passes. A platform 6 between the root and the blade constitutes a portion of the radially inner wall of the gas stream.
  • the part shown here is a moving blade, but the invention also applies to a distributor or even to any other part having a core. Due to the complexity of the cooling circuit inside the part, it is advantageous to produce it by lost wax casting with a ceramic core to spare the cavities of the cooling circuit.
  • the figures 2 and 3 schematically show a simplified ceramic core used to provide the internal cavities of a turbomachine blade.
  • the core 10 of elongated shape comprises a branch or a plurality of branches 11 separated by spaces 12 to, after the metal has been poured, form the partitions between the cavities; in the example shown, the core comprises two branches 11 separated by a space 12.
  • the core is extended by a bearing surface or tab 14, the function of which is to hold the core during the manufacture of the part but which does not correspond not necessarily to part of the room, once it is completed.
  • the core comprises a second bearing surface 16 for also maintaining the core during the manufacturing steps.
  • This core is placed in a mold for the production of the wax model.
  • the imprint of this mold is the shape of the part to be obtained.
  • Staves 14 and 16 are used for keeping the core in the wax mold.
  • the figure 4 schematically represents this wax model 20 with the core 10 in dotted lines.
  • the model extends at a first end 24 in the extension of the blade so as to cover the bearing surface 14 and at the opposite end 26, at the level of the foot.
  • part 16A of the scope 16 is not covered with wax.
  • This part 16A comprises surfaces parallel to the axis of the core and is coated with a varnish, the function of which is explained below.
  • models are generally assembled in a cluster so as to manufacture several parts simultaneously.
  • the models are for example arranged in a parallel drum around a vertical central cylinder and held by the ends.
  • the lower part is mounted on an element intended to ensure the germination of the crystal structure.
  • the next step is to form a shell mold around the model (s).
  • the assembly is dipped in slurries so as to deposit the refractory ceramic particles in successive layers.
  • the mold is finally consolidated by heating and the wax removed by the dewaxing operation.
  • the first bearing surface 14 is held in the mold 30 by a refractory ceramic rod 40, which passes through it and extends into the wall of the mold 30 while being embedded therein.
  • the rod 40 was put in place before the production of the shell mold, after the model has been drilled at the level of the bearing 14.
  • the hole is slightly larger in diameter than that of the rod so that it is not created. of constraints between the rod and the seat and that the rod ensures correct positioning of the core in the model.
  • the second bearing surface 16, opposite the first, is initially coated with a layer of varnish 17 on the part 16A of the core which is not covered with wax and which, after constitution of the shell mold, comes into direct contact with the internal wall of the core. mold. After dewaxing the mold, as seen on the figure 5 , the layer having disappeared leaves a free space between the bearing surface 16 of the core and the wall of the shell mold. Reference 17 designates this free space left by the layer varnished. This space 17 is thin, 3 to 5 hundredths of a millimeter. It forms a sliding retaining means of the second bearing 16 on the wall of the shell 30.
  • the surfaces - here the horizontal surface 16B - which are not parallel to the axis of the progression of solidification are initially covered by a deposit of wax 18.
  • This deposit of wax leaves a free space after dewaxing, likewise reference 18, which prevents the bearing surface 16 of the core from coming into contact with the wall of the shell when the core expands, thus avoiding stressing the core.
  • the thickness of this wax deposit is of the order of a millimeter for parts having a length of 100 to 200 mm, ie approximately 1% of the length of the part.
  • the core does not run the risk of buckling and the initial wall thicknesses of the part between the wall of the mold and the core are preserved.
  • the figure 5 shows, in section along the part, the shell mold 30 and the core 10 inside the mold with the branches 11, the bearing surfaces 14 and 16.
  • the core is cut along the line VV of the figure 4 .
  • the volume 30 ′ corresponds to the wax of the model or, after solidification of the shell, to the space between the wall of the mold and the core to be filled with the metal.
  • the rod 40 passes through the first bearing 14; it is long enough to be anchored in the walls of the shell mold 30. In this way, the core 10 is positioned inside the shell mold 30.
  • the mold is placed on the bottom of a furnace equipped for directed solidification.
  • a furnace 100 is shown in figure 6 . It shows an enclosure 101 provided with heating elements 102.
  • An orifice 103 for supplying molten metal communicates with a crucible 104 which contains the charge of molten metal and which, by tilting, fills the shell mold 30 placed on the hearth. 105 from the oven.
  • the sole is movable vertically, see the arrow, and is cooled by the circulation of water in a circuit 106 internal to its plate.
  • the mold rests by its base on the cooled sole.
  • the lower part of the mold is open to the sole by means of a germination member.
  • the manufacturing method includes casting molten metal from crucible 104 directly in the mold 30 which is maintained at a temperature sufficient to keep the molten metal, by the heating means 102 of the enclosure 101 and where it fills the voids 30 'between the core 10 and the wall of the mold 30.
  • the metal solidifies forming a crystalline structure that propagates from bottom to top.
  • the sole 105 is continuously cooled and is gradually lowered out of the heated enclosure.
  • a grain selector is interposed between the germination and the solidification as is known per se.
  • the core is held by anchoring the first bearing 14 in the single lower zone for initiating solidification.
  • the core is free to expand differentially in the direction of its length with respect to the shell 30 because at the opposite end of the first bearing surface, the second bearing 16 is guided along the wall of the mold thanks to the free space 17 left by the layer of varnish, removed during dewaxing of the mold.
  • the surfaces of the second bearing 16 - here the horizontal surface 16B - which are not parallel to the axis of the progression of solidification, thanks to the free space 18 provided by the wax deposit, do not come into play. contact with the shell wall. This prevents stress on the core.
  • the thickness of this space corresponding to the wax deposit is of the order of a millimeter for parts having a length of 100 to 200 mm, ie approximately 1% of the length of the part.
  • the mold is broken and the parts are extracted which are sent to the finishing workshop.

Description

    Domaine technique
  • La présente invention concerne le domaine des pièces métalliques, telles que des aubes de turbomachine obtenues par coulée de métal dans un moule carapace et vise un procédé de fabrication de ces pièces avec solidification dirigée de type colonnaire ou monocristallin.
  • Art antérieur
  • Les documents US-A-3,659,645 et US-B1-6,364,001 décrivent des procédés de fabrication d'une pièce par fonderie à la cire perdue.
  • L'état de la technique comprend en outre les documents GB-A-1 377 042 et SU-A1- 606 676 .
  • Le procédé de fabrication de pièces métalliques par fonderie à la cire perdue, comprend une succession d'étapes rappelées ci-après. Des modèles des pièces à fabriquer sont d'abord élaborés en cire ou en un autre matériau provisoire. Le cas échéant les modèles sont réunis en une grappe autour d'un fût central également en cire. Une carapace en matériau céramique est ensuite formée sur les modèles, ainsi assemblés, par trempages successifs dans des barbotines de composition appropriée comprenant des particules de matières céramiques en suspension dans un liquide, alternés de saupoudrages de sable réfractaire. On élimine ensuite le modèle en cire tout en consolidant par chauffage le moule carapace ainsi formé. L'étape suivante consiste à couler un alliage métallique, notamment un superalliage de nickel, en fusion dans le moule carapace puis à refroidir les pièces obtenues de manière à en diriger la solidification selon la structure cristalline désirée. Après solidification, la carapace est éliminée par décochage pour en extraire les pièces. Enfin on procède aux étapes de finition pour éliminer les excès de matière.
  • L'étape de refroidissement et solidification est donc contrôlée. La solidification de l'alliage métallique étant le passage de la phase liquide à la phase solide, la solidification dirigée consiste à faire progresser la croissance de "germes" dans le bain de métal fondu selon une direction donnée, en évitant l'apparition de germes nouveaux par le contrôle du gradient thermique et de la vitesse de solidification. La solidification dirigée peut être colonnaire ou monocristalline. La solidification dirigée colonnaire consiste à orienter tous les joints de grains dans la même direction, de telle manière qu'ils ne contribuent pas à la propagation de fissures. La solidification dirigée monocristalline, consiste à supprimer totalement les joints de grains.
    On procède à la solidification dirigée, colonnaire ou monocristalline, de manière connue en soi en plaçant le moule carapace, ouvert en sa partie inférieure, sur une sole refroidie, puis en introduisant l'ensemble dans un équipement de chauffe capable de maintenir le moule céramique à une température supérieure au liquidus de l'alliage à mouler. Une fois la coulée effectuée, le métal situé dans des ouvertures ménagées au bas du moule carapace se solidifie quasi-instantanément au contact de la sole refroidie et se fige sur une hauteur limitée de l'ordre du centimètre sur laquelle il présente une structure granulaire équi-axe, c'est-à-dire que sa solidification sur cette hauteur limitée s'effectue de façon naturelle, sans direction privilégiée. Au-dessus de cette hauteur limitée, le métal demeure à l'état liquide, du fait du chauffage extérieur imposé. On déplace la sole à vitesse contrôlée vers le bas de manière à extraire le moule céramique du dispositif de chauffage conduisant à un refroidissement progressif du métal qui continue à se solidifier depuis la partie basse du moule jusque vers sa partie haute.
  • La solidification dirigée colonnaire est obtenue par le maintien d'un gradient de température approprié en grandeur et en direction dans la zone de changement de phase liquide-solide, pendant cette opération de déplacement de la sole. Cela permet d'éviter une surfusion génératrice de nouveaux germes en avant du front de solidification. Ainsi, les seuls germes qui permettent la croissance des grains sont ceux qui préexistent dans la zone équi-axe solidifiée au contact de la sole refroidie. La structure colonnaire ainsi obtenue est constituée d'un ensemble de grains étroits et allongés.
  • La solidification dirigée monocristalline comprend en outre l'interposition entre la pièce à mouler et la sole refroidie, soit d'une chicane ou sélecteur de grain, soit d'un germe monocristallin ; on contrôle le gradient thermique et la vitesse de solidification de telle façon qu'il ne se crée pas de nouveaux germes en avant du front de solidification. Il en résulte une pièce moulée monocristalline après refroidissement.
  • Cette technique de solidification dirigée, qu'elle soit colonnaire ou monocristalline, est couramment utilisée pour réaliser des pièces moulées, et notamment des aubes de turbomachine, lorsqu'il est souhaitable de conférer aux pièces moulées des propriétés mécaniques et physiques particulières. C'est notamment le cas lorsque les pièces moulées sont des aubes de turbomachine.
  • De plus, de manière connue en soi, lors de la mise en œuvre d'un procédé de moulage à cire perdue, avec ou sans solidification dirigée, on utilise des masselottes, afin de supprimer les défauts de porosité dans des zones d'extrémité des pièces à fabriquer. En pratique, on prévoit des volumes excédentaires lors de la réalisation des modèles en cire, qui sont placés contre les zones des pièces qui sont susceptibles de présenter des défauts de porosité après solidification. Lors de la réalisation de la carapace, les volumes excédentaires se traduisent par des volumes supplémentaires à l'intérieur de la carapace, et se remplissent de métal en fusion lors de la coulée, de la même manière que les autres parties de la carapace. Les masselottes sont les réserves de métal solidifié qui remplissent les volumes supplémentaires dans la carapace. Les défauts de porosité, lorsqu'ils surviennent, sont alors déplacés dans les masselottes et ne sont plus localisés dans les pièces fabriquées elles-mêmes. Puis, une fois le métal solidifié et refroidi, les masselottes sont éliminées lors d'une opération de parachèvement des pièces, par exemple par usinage, par tronçonnage ou par meulage.
  • On connaît par ailleurs, tel que décrit dans le brevet FR 2724857 au nom de la demanderesse, un procédé de fabrication d'aubes monocristallines, telles que de distributeurs de turbine, constituées d'au moins une pale entre deux plateformes transversales par rapport aux génératrices de la pale. Le procédé est du type selon lequel on alimente le moule en métal fondu à sa partie supérieure. On opère une solidification dirigée dont le front progresse verticalement de bas en haut, on sélectionne un grain de cristal unique au moyen d'un dispositif de sélection placé à la partie inférieure du moule et à la sortie duquel on se trouve en présence d'un grain unique d'orientation prédéterminée et de direction se confondant avec la verticale.
  • La présente invention concerne la fabrication de pièces présentant au moins une cavité et dont le modèle en cire est moulé autour d'un noyau en céramique. Ce noyau, lors de la coulée du métal en fusion réserve à l'intérieur de la pièce le volume correspondant à la cavité souhaitée. Pour une aube de turbomachine, on réalise de cette façon les cavités parcourues par le fluide de refroidissement.
  • Les noyaux en céramiques pour les aubes de turbomachine comprennent, selon un mode de fabrication connu, deux portées ou pattes de maintien, une à chaque extrémité longitudinale. Les modèles sont préparés de telle sorte qu'un encastrement ou ancrage du noyau céramique est défini au niveau de la zone du pied du noyau dans la partie haute du moule. En effet selon cette technique le noyau et le modèle en cire sont montés pied en haut et le sommet en bas. Ainsi après les opérations de moulage céramique, la carapace céramique formée bloque le noyau dans cette zone. Lors de la coulée, le métal en fusion remplit l'empreinte libérée par la cire qui a été préalablement éliminée. Le métal fondu occupe l'espace entre le noyau et la paroi de la carapace. La solidification est ensuite opérée par le tirage de haut en bas de la sole du four sur laquelle est placée la carapace, la solidification progresse depuis le starter dans lequel plusieurs grains métalliques solidifient puis successivement dans le sommet de l'aube, la pale et le pied. En solidifiant le métal crée un deuxième ancrage du noyau au niveau de la portée d'extrémité dans la partie de début de solidification. Le noyau est alors tenu à ses deux extrémités et est contraint en compression. Il s'ensuit une déformation du noyau par flambage. Le noyau ne respecte plus sa position théorique et des défauts peuvent apparaître sur la pièce : des épaisseurs de paroi métallique peuvent ne pas être respectées, ou alors le noyau sous l'effet des contraintes des deux encastrements à ses deux extrémités perfore la paroi métallique de l'aube par flambage. Dans ces deux cas la pièce doit être mise au rebut.
  • Par ailleurs, le positionnement de l'encastrement en début de solidification présente l'inconvénient de perturber le front de solidification naissant avec le risque de générer des grains parasites ou de la désorientation. En outre, il existe dans le cas du monocristal un risque de défaut de recollement des fronts croissants de part et d'autre de la zone d'encastrement.
  • Exposé de l'invention
  • L'invention a donc pour objet un procédé de fabrication d'une pièce qui pallie les problèmes présentés ci-dessus.
  • Le procédé, conforme à l'invention, de fabrication par fonderie à la cire perdue d'une pièce métallique en alliage de nickel, à structure colonnaire ou monocristalline avec au moins une cavité de forme allongée, comprenant les étapes suivantes de réalisation d'un modèle en cire de la pièce avec un noyau céramique correspondant à ladite cavité, le noyau céramique comportant une première portée de maintien à une extrémité longitudinale et une seconde portée de maintien à l'extrémité opposée, la seconde portée comprenant des surfaces qui sont parallèles à la direction de propagation du refroidissement et des surfaces qui ne sont pas parallèles à la direction de propagation du refroidissement,
    réalisation d'un moule carapace autour du modèle, le moule comprenant une base et la première portée du noyau étant du côté de la base du moule carapace,
    élimination de la cire par une opération de décirage du moule carapace, mise en place du moule dans un four, la base étant posée sur la sole du four, coulée dudit alliage en fusion dans le moule carapace,
    solidification dirigée du métal coulé par refroidissement progressif depuis la sole selon une direction de propagation, les surfaces de la seconde portée qui ne sont pas parallèles à la direction de propagation du refroidissement étant couvertes initialement par un dépôt de cire,
  • Conformément à l'invention, le noyau est rendu solidaire du moule carapace par un moyen d'ancrage entre la première portée du noyau et la paroi du moule carapace, la seconde portée du noyau étant retenue dans le moule carapace par un moyen de maintien glissant sur la paroi du moule carapace,
    ledit moyen de maintien glissant étant une couche de vernis appliquée, avant la réalisation du moule carapace, sur les surfaces de la seconde portée qui sont parallèles à la direction de propagation du refroidissement et qui ne sont pas recouvertes de cire,
    les surfaces de la seconde portée qui sont parallèles à la direction de propagation du refroidissement, qui ne sont pas recouvertes de cire et qui, après constitution du moule carapace, viennent en contact direct avec la paroi interne du moule, étant initialement intégralement revêtues de la couche de vernis,
    l'épaisseur de la couche de vernis étant comprise entre 3 et 5 centièmes de millimètre,
    ladite couche de vernis étant éliminée lors de l'opération de décirage du moule carapace, ainsi que la cire recouvrant les surfaces de la seconde portée qui ne sont pas parallèles à la direction de propagation du refroidissement, de sorte qu'un espace libre est créé entre la seconde portée du noyau et la paroi du moule carapace,
    ledit espace libre créé étant maintenu lors de la progression de la solidification dirigée, de manière à éviter à la seconde portée du noyau de venir en contact avec la paroi du moule carapace lorsque le noyau se dilate.
  • La solution de l'invention permet d'éviter la déformation du noyau lors de la progression de la solidification dirigée car le noyau n'est pas retenu par ancrage à ses deux extrémités. Il n'est ainsi pas mis en compression par les contraintes qui résulteraient de la différence des coefficients de dilatation entre le moule et le noyau. Il n'y a par ailleurs pas de risque de génération de grains parasites ou de défauts de recollement du grain principal.
  • La solution de l'invention garantit également la position du noyau pendant toute la phase de fabrication de la pièce : du modèle en cire à la coulée et la solidification de la pièce.
  • Avantageusement, le moyen d'ancrage comprend une tige, plus particulièrement en céramique réfractaire, alumine par exemple, traversant la première portée et la paroi du moule. De préférence la tige céramique est de faible diamètre de l'ordre du millimètre. La tige traverse le modèle en cire et le noyau qui ont été préalablement percés à un diamètre légèrement supérieur à celui de la tige pour éviter que des contraintes soient engendrées à ce niveau.
  • Conformément à l'invention, le moyen de maintien glissant est formé par un espace ménagé entre la portée et la paroi du moule, cet espace est obtenu par le biais d'une pellicule de vernis de dilatation déposée sur la surface de la portée à la réalisation du modèle. Celle-ci est ensuite éliminée lors de l'opération de décirage du moule. Il s'agit par exemple d'un matériau de type vernis à ongles permettant d'obtenir des épaisseurs de quelques centièmes de millimètre par couche. Un vernis convenant à cette application comprend des solvants, de la résine, de la nitrocellulose et des plastifiants. Par exemple, un vernis tel que celui « Thixotropic base » commercialisé sous le nom commercial : « Vernis à ongles Peggy Sage toutes formules » peut être utilisé dans le procédé de la présente invention.
  • Conformément à l'invention, cette pellicule est plus précisément interposée entre la seconde portée et la paroi du moule. Elle est appliquée, avant la formation du moule carapace, sur les surfaces de la seconde portée qui sont parallèles à la direction de la progression du refroidissement ; c'est-à-dire dans le cas d'une sole mobile, parallèle à la direction de tirage de la sole mobile. Elle a pour but d'éviter d'une part que la paroi du moule vienne coller au noyau dans cette zone et d'autre part de créer un espace libre, après décirage, de faible épaisseur permettant le guidage longitudinal de la seconde portée par rapport au moule et évitant au moule d'exercer une contrainte sur le noyau.
  • Conformément à l'invention, les surfaces de la seconde portée qui ne sont pas parallèles à l'axe de la progression de la solidification, axe de tirage, sont couvertes initialement par un dépôt de cire de manière à ménager, après décirage, un espace entre les dites surfaces de la seconde portée et la paroi du moule. Cet espace empêche, pendant la coulée de métal en fusion, le contact entre la paroi de la carapace et la seconde portée du noyau, et évite la mise sous contrainte du noyau dans cette zone pendant la solidification. Typiquement, l'épaisseur de ce dépôt de cire est de l'ordre du millimètre pour des pièces présentant une longueur de 100 à 200 mm soit environ 1% de la longueur de la pièce.
  • Le procédé permet la fabrication simultanée de plusieurs pièces. Les modèles desdites pièces sont dans ce cas rassemblés en une grappe à l'intérieur d'un moule carapace.
  • Le procédé s'applique à la fabrication d'au moins une pièce métallique à structure colonnaire, un moyen de germination de la structure cristalline étant ménagé entre le moule carapace et la sole du four.
  • Le procédé s'applique à la fabrication d'au moins une pièce à structure monocristalline, un sélecteur de grain étant ménagé entre l'élément de germination et le moule carapace.
  • L'invention s'applique en particulier à la fabrication d'une aube de turbomachine, la première portée étant dans le prolongement du sommet de la pale de l'aube, la seconde portée étant dans le prolongement du pied de l'aube.
  • Le procédé utilise avantageusement un four dont la sole est mobile verticalement entre une zone chaude où le métal est en fusion est une zone froide de solidification du métal, la sole étant elle-même refroidie.
  • Brève description des figures
  • D'autres caractéristiques et avantages ressortiront de la description qui suit d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif, en référence aux dessins annexés sur lesquels
    • La figure 1 représente une aube de turbomachine pouvant être obtenue selon le procédé de l'invention ;
    • La figure 2 représente schématiquement un noyau en céramique pour aube de turbomachine ;
    • La figure 3 représente le noyau de la figure 2 vu de profil.
    • La figure 4 représente schématiquement un modèle en cire avec le noyau de la figure 2 ;
    • La figure 5 représente le moule carapace vu en coupe longitudinale au travers du noyau;
    • La figure 6 représente un exemple de four permettant la solidification dirigée de métal coulé dans un moule carapace ;
    • La figure 7 est une vue agrandie de l'extrémité haute du moule carapace montré sur la figure 5.
    Description d'un mode de réalisation de l'invention
  • La présente invention concerne un procédé de fabrication de pièces métalliques en alliage à base nickel permettant par une solidification dirigée appropriée d'obtenir une structure cristalline colonnaire ou monocristalline. L'invention vise plus particulièrement la fabrication d'aubes de turbomachine telle que celle représentée sur la figure 1 ; une aube 1 comprend une pale 2, un pied 5 permettant son attache sur un disque de turbine, et un sommet 7 avec le cas échéant un talon. En raison des températures de fonctionnement de la turbomachine, les aubes sont pourvues d'un circuit interne de refroidissement parcouru par un fluide de refroidissement, généralement de l'air. Une plateforme 6 entre le pied et la pale constitue une portion de la paroi radialement intérieure de la veine de gaz. La pièce représentée ici est une aube mobile mais l'invention s'applique aussi à un distributeur ou encore à toute autre pièce présentant un noyau.
    En raison de la complexité du circuit de refroidissement à l'intérieur de la pièce, il est avantageux de la réaliser par fonderie à la cire perdue avec un noyau en céramique pour ménager les cavités du circuit de refroidissement.
    Les figures 2 et 3 représentent schématiquement un noyau de forme simplifiée, en céramique, utilisé pour ménager les cavités internes d'une aube de turbomachine. Le noyau 10 de forme allongée comprend une branche ou une pluralité de branches 11 séparées par des espaces 12 pour, après la coulée du métal, former les cloisons entre les cavités ; sur l'exemple représenté, le noyau comporte deux branches 11 séparées par un espace 12. A une extrémité, le noyau est prolongé par une portée ou patte 14 dont la fonction est de maintenir le noyau pendant la fabrication de la pièce mais qui ne correspond pas nécessairement à une partie de la pièce, une fois que celle-ci est achevée. A l'extrémité opposée le noyau comprend une seconde portée 16 pour le maintien aussi du noyau pendant les étapes de fabrication. On observe sur la figure 3 que le noyau tel que représenté est relativement fin par rapport à sa longueur. On comprend que plus le noyau est fin par rapport à sa longueur plus sensible il sera au flambage.
  • Ce noyau est placé dans un moule pour la fabrication du modèle en cire. L'empreinte de ce moule est à la forme de la pièce à obtenir. Par injection de cire dans ce moule, on obtient le modèle de la pièce. Les portées 14 et 16 servent au maintien du noyau dans le moule à cire. La figure 4 représente schématiquement ce modèle 20 en cire avec le noyau 10 en traits pointillés. Le modèle s'étend à une première extrémité 24 dans le prolongement de la pale de manière à recouvrir la portée 14 et à l'extrémité opposée 26, au niveau du pied. On note qu'une partie 16A de la portée 16 n'est pas recouverte de cire. Cette partie 16A comprend des surfaces parallèles à l'axe du noyau et est revêtue d'un vernis dont la fonction est expliquée plus loin.
  • Plusieurs modèles sont généralement assemblés en grappe de manière à fabriquer plusieurs pièces simultanément. Les modèles sont par exemple disposés en tambour parallèlement autour d'un cylindre central vertical et maintenus par les extrémités. La partie inférieure est montée sur un élément destiné à assurer la germination de la structure cristalline. L'étape suivante consiste à constituer un moule carapace autour du ou des modèles. Dans ce but, comme cela est connu également, l'assemblage est trempé dans des barbotines de manière à déposer en couches successives les particules céramiques réfractaires. Le moule est enfin consolidé par chauffage et la cire éliminée par l'opération de décirage.
  • On a représenté sur la figure 5, en coupe longitudinale, schématiquement l'agencement de l'invention entre le noyau 10 et la carapace 30 au niveau d'un seul modèle 20.
  • La première portée 14 est maintenue dans le moule 30 par une tige en céramique réfractaire 40, qui la traverse et s'étend dans la paroi du moule 30 en y étant encastrée. La tige 40 a été mise en place avant la réalisation du moule carapace, après que le modèle a été percé au niveau de la portée 14. Le perçage est de diamètre légèrement supérieur à celui de la tige de manière qu'il ne se crée pas de contraintes entre la tige et la portée et que la tige assure un positionnement correct du noyau dans le modèle.
  • La seconde portée 16, opposée à la première, est initialement revêtue d'une couche de vernis 17 sur la partie 16A du noyau qui n'est pas recouverte de cire et qui après constitution du moule carapace vient au contact direct avec la paroi interne du moule. Après décirage du moule, comme on le voit sur la figure 5, la couche ayant disparu laisse un espace libre entre la portée 16 du noyau et la paroi du moule carapace. La référence 17 désigne cet espace libre laissé par la couche de vernie. Cet espace 17 est de faible épaisseur, 3 à 5 centièmes de millimètres. Il forme un moyen de maintien glissant de la seconde portée 16 sur la paroi de la carapace 30.
  • Par ailleurs, les surfaces - ici la surface horizontale 16B - qui ne sont pas parallèles à l'axe de la progression de la solidification sont couvertes initialement par un dépôt de cire 18. Ce dépôt de cire laisse après décirage un espace libre, de même référence 18, qui évite à la portée 16 du noyau de venir en contact avec la paroi de la carapace lorsque le noyau se dilate, il évite ainsi la mise sous contrainte du noyau. Typiquement, l'épaisseur de ce dépôt de cire est de l'ordre du millimètre pour des pièces présentant une longueur de 100 à 200 mm soit environ 1% de la longueur de la pièce.
  • En n'étant pas contraint le noyau ne risque pas de flamber et les épaisseurs de paroi initiales de la pièce entre la paroi du moule et le noyau sont conservées.
  • La figure 5 montre, en coupe le long de la pièce, le moule carapace 30 et le noyau 10 à l'intérieur du moule avec les branches 11, les portées 14 et 16. La coupe du noyau est faite selon la ligne VV de la figure 4. Le volume 30' correspond à la cire du modèle ou, après solidification de la carapace, à l'espace entre la paroi du moule et le noyau à remplir par le métal. La tige 40 traverse la première portée 14 ; elle est suffisamment longue pour être ancrée dans les parois du moule carapace 30. De cette façon, le noyau 10 est positionné à l'intérieur du moule carapace 30.
  • Après décirage et consolidation, le moule est placé sur la sole d'un four équipé pour la solidification dirigée. Un tel four 100 est représenté sur la figure 6. On y voit une enceinte 101 pourvue d'éléments chauffants 102. Un orifice 103 d'alimentation en métal en fusion communique avec un creuset 104 qui contient la charge de métal en fusion et qui en basculant vient remplir le moule carapace 30 disposé sur la sole 105 du four. La sole est mobile verticalement, voir la flèche, et est refroidie par la circulation d'eau dans un circuit 106 interne à son plateau. Le moule repose par sa base sur la sole refroidie. La partie inférieure du moule est ouverte sur la sole par l'intermédiaire d'un organe de germination.
  • La méthode de fabrication, telle qu'expliquée dans le préambule de la demande, comprend la coulée du métal en fusion depuis le creuset 104 directement dans le moule 30 qui est maintenu à une température suffisante pour conserver le métal en fusion, par les moyens de chauffage 102 de l'enceinte 101 et où il vient remplir les vides 30' entre le noyau 10 et la paroi du moule 30. Comme la base du moule est en contact thermique avec la sole par l'élément de germination, le métal se solidifie en formant une structure cristalline que se propage de bas en haut. La sole 105 est refroidie en permanence et est descendue progressivement hors de l'enceinte chauffée. Dans le cas d'une structure monocristalline un sélecteur de grain est interposé entre la germination et la solidification comme cela est connu en soi.
  • Les écarts de température importants créent des contraintes entre les différentes zones du moule avec le métal. Par l'agencement de l'invention et la tige 40, le noyau est maintenu par ancrage de la première portée 14 dans la seule zone inférieure d'initialisation de la solidification. Comme on le voit sur la figure 7 le noyau est libre de se dilater différentiellement dans le sens de sa longueur par rapport à la carapace 30 car à l'extrémité opposée de la première portée, la seconde portée 16 est guidée le long de la paroi du moule grâce à l'espace libre 17 laissé par la couche de vernis, éliminée lors du décirage du moule.
  • De plus, les surfaces de la seconde portée 16 - ici la surface horizontale 16B - qui ne sont pas parallèles à l'axe de la progression de la solidification, grâce à l'espace libre 18 ménagé par le dépôt de cire ne viennent pas en contact avec la paroi de la carapace. On évite ainsi la mise sous contrainte du noyau. Typiquement, l'épaisseur de cet espace correspondant au dépôt de cire est de l'ordre du millimètre pour des pièces présentant une longueur de 100 à 200 mm soit environ 1% de la longueur de la pièce. En n'étant pas contraint le noyau ne risque pas de flamber et les épaisseurs de paroi initiales de la pièce entre la paroi du moule et le noyau sont conservés.
  • Une fois le métal refroidi, on casse le moule et on extrait les pièces qui sont dirigées vers l'atelier de finition.

Claims (8)

  1. Procédé de fabrication par fonderie à la cire perdue d'une pièce métallique en alliage de nickel, à structure colonnaire ou monocristalline avec au moins une cavité de forme allongée, comprenant les étapes suivantes de
    réalisation d'un modèle (20) en cire de la pièce avec un noyau céramique (10) correspondant à ladite cavité, le noyau céramique (10) comportant une première portée (14) de maintien à une extrémité longitudinale et une seconde portée (16) de maintien à l'extrémité opposée, la seconde portée (16) comprenant des surfaces (16A) qui sont parallèles à la direction de propagation du refroidissement et des surfaces (16B) qui ne sont pas parallèles à la direction de propagation du refroidissement,
    réalisation d'un moule carapace (30) autour du modèle (20), le moule carapace (30) comprenant une base et la première portée (14) du noyau étant du côté de la base du moule carapace (30),
    élimination de la cire par une opération de décirage du moule carapace (30),
    mise en place du moule carapace (30) dans un four (100), la base étant posée sur la sole (105) du four (100), coulée dudit alliage en fusion dans le moule carapace (30),
    solidification dirigée du métal coulé par refroidissement progressif depuis la sole (105) selon une direction de propagation, les surfaces (16B) de la seconde portée (16) qui ne sont pas parallèles à la direction de propagation du refroidissement étant couvertes initialement par un dépôt de cire (18),
    caractérisé par le fait que le noyau (10) est rendu solidaire du moule carapace (30) par un moyen d'ancrage (40) entre la première portée (14) du noyau (10) et la paroi du moule carapace (30), la seconde portée (16) du noyau (10) étant retenue dans le moule carapace (30) par un moyen de maintien glissant (17) sur la paroi du moule carapace (30), ledit moyen de maintien glissant (17) étant une couche de vernis (17) appliquée, avant la réalisation du moule carapace (30), sur les surfaces (16A) de la seconde portée (16) qui sont parallèles à la direction de propagation du refroidissement et qui ne sont pas recouvertes de cire, les surfaces (16A) de la seconde portée (16) qui sont parallèles à la direction de propagation du refroidissement, qui ne sont pas recouvertes de cire et qui, après constitution du moule carapace (30), viennent en contact direct avec la paroi interne du moule (30), étant initialement intégralement revêtues de la couche de vernis (17), l'épaisseur de la couche de vernis (17) étant comprise entre 3 et 5 centièmes de millimètre, ladite couche de vernis (17) étant éliminée lors de l'opération de décirage du moule carapace (30), ainsi que la cire (18) recouvrant les surfaces (16B) de la seconde portée (16) qui ne sont pas parallèles à la direction de propagation du refroidissement, de sorte qu'un espace libre (17,18) est créé entre la seconde portée (16) du noyau (10) et la paroi du moule carapace (30), ledit espace libre (17, 18) créé étant maintenu lors de la progression de la solidification dirigée, de manière à éviter à la seconde portée (16) du noyau (10) de venir en contact avec la paroi du moule carapace (30) lorsque le noyau (10) se dilate.
  2. Procédé selon la revendication 1 dont le moyen d'ancrage (40) comprend une tige traversant la première portée (14) et étant encastrée dans la paroi du moule.
  3. Procédé selon la revendication 2 dont la tige est en céramique.
  4. Procédé selon l'une des revendications précédentes pour la fabrication d'une pluralité de pièces, les modèles desdites pièces étant rassemblés en une grappe à l'intérieur d'un moule carapace (30).
  5. Procédé selon l'une des revendications précédentes pour la fabrication d'au moins une pièce métallique à structure colonnaire, un élément de germination de la structure cristalline étant ménagé entre le moule carapace (30) et la sole (105) du four (100).
  6. Procédé selon la revendication précédente pour la fabrication d'au moins une pièce à structure monocristalline comprenant un sélecteur de grain entre l'élément de germination et le moule carapace (30).
  7. Procédé selon l'une des revendications précédentes la pièce étant une aube de turbomachine, la première portée étant dans le prolongement du sommet de la pale de l'aube, la seconde portée étant dans le prolongement du pied de l'aube.
  8. Procédé selon l'une des revendications précédentes dont la sole est mobile verticalement entre une zone chaude où le métal est en fusion est une zone froide de solidification du métal, la sole étant elle-même refroidie.
EP14703143.9A 2013-01-17 2014-01-13 Procédé de fabrication d'une pièce par fonderie à la cire perdue et refroidissement dirigé Active EP2945762B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1350424A FR3000910B1 (fr) 2013-01-17 2013-01-17 Procede de fabrication d'une piece par fonderie a la cire perdue et refroidissement dirige
PCT/FR2014/050061 WO2014111648A1 (fr) 2013-01-17 2014-01-13 Procédé de fabrication d'une pièce par fonderie a la cire perdue et refroidissement dirigé

Publications (2)

Publication Number Publication Date
EP2945762A1 EP2945762A1 (fr) 2015-11-25
EP2945762B1 true EP2945762B1 (fr) 2021-03-03

Family

ID=48289291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14703143.9A Active EP2945762B1 (fr) 2013-01-17 2014-01-13 Procédé de fabrication d'une pièce par fonderie à la cire perdue et refroidissement dirigé

Country Status (9)

Country Link
US (1) US10717128B2 (fr)
EP (1) EP2945762B1 (fr)
JP (1) JP6342427B2 (fr)
CN (1) CN104918731B (fr)
BR (1) BR112015016771B1 (fr)
CA (1) CA2897680C (fr)
FR (1) FR3000910B1 (fr)
RU (1) RU2652526C2 (fr)
WO (1) WO2014111648A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034332A1 (fr) * 2015-04-01 2016-10-07 Saint Jean Ind Procede de moulage en carapace sable pour la realisation d'une piece dans le domaine de l'automobile et de l'aeronautique
FR3067700B1 (fr) 2017-06-18 2021-02-12 Sogeclair Sa Structure metallique a peau renforcee et procede de fabrication de piece metallique raidie
FR3070285B1 (fr) * 2017-08-25 2021-01-22 Safran Aircraft Engines Noyau pour la fafrication d'une aube de turbomachine
CN109570444A (zh) * 2018-09-30 2019-04-05 鹰普航空零部件(无锡)有限公司 一种复杂型腔不锈钢铸件的成形方法
CN109622883B (zh) * 2019-01-08 2021-07-23 中国航发动力股份有限公司 一种陶瓷型芯自由端蜡帽制造方法
FR3100143B1 (fr) * 2019-08-30 2021-11-12 Safran Procédé amélioré de fabrication d’un noyau céramique pour la fabrication d’aubes de turbomachine
CN115069978A (zh) * 2021-03-16 2022-09-20 中国航发商用航空发动机有限责任公司 燃烧室挡溅盘铸造系统及铸造方法
CN113976824B (zh) * 2021-10-20 2023-09-15 中国航发沈阳黎明航空发动机有限责任公司 一种防止联体单晶导向叶片型芯自由端产生杂晶的方法
CN115121768B (zh) * 2022-04-26 2024-04-05 湘潭大学 型壳结构及其制备方法和热裂倾向性判定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659645A (en) * 1965-08-09 1972-05-02 Trw Inc Means for supporting core in open ended shell mold
US6364001B1 (en) * 2000-08-15 2002-04-02 Pcc Airfoils, Inc. Method of casting an article

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2756475A (en) * 1953-02-24 1956-07-31 Gen Motors Corp Investment mold and core assembly
US3722577A (en) * 1971-04-20 1973-03-27 Mellen E Expansible shell mold with refractory slip cover and the method of making same
DE2301105C2 (de) * 1973-01-10 1984-07-05 Sherwood Refractories Inc., Cleveland, Ohio Präzisionsgußform und Verfahren zu deren Herstellung
SU606676A1 (ru) * 1976-12-13 1978-05-15 Пермский Моторостроительный Завод Имени Я.М.Свердлова Литейна форма по выплавл емым модел м
FR2724857B1 (fr) * 1980-12-30 1997-01-03 Snecma Procede de fabrication d'aubes cristallines
US4714101A (en) * 1981-04-02 1987-12-22 United Technologies Corporation Method and apparatus for epitaxial solidification
US4532974A (en) 1981-07-03 1985-08-06 Rolls-Royce Limited Component casting
JPH05138296A (ja) * 1991-11-22 1993-06-01 Toshiba Corp 中空鋳物製造用鋳型
US20050211408A1 (en) * 2004-03-25 2005-09-29 Bullied Steven J Single crystal investment cast components and methods of making same
FR2889088B1 (fr) * 2005-07-29 2008-08-22 Snecma Noyau pour aubes de turbomachine
US7231955B1 (en) * 2006-01-30 2007-06-19 United Technologies Corporation Investment casting mold design and method for investment casting using the same
CN100584973C (zh) * 2007-12-17 2010-01-27 北京航空航天大学 采用籽晶法与螺旋选晶法组合制备Co基单晶高温合金的方法
CN101537485B (zh) * 2009-03-17 2013-01-23 江苏大学 用于制造单晶铸件的薄壳上浮方法及其装置
CN102019354B (zh) * 2010-12-27 2012-11-07 沈阳黎明航空发动机(集团)有限责任公司 带冠超薄细长叶片的定向凝固方法
CN102169518A (zh) * 2011-03-24 2011-08-31 西北工业大学 精铸涡轮叶片模具型腔精确定型方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659645A (en) * 1965-08-09 1972-05-02 Trw Inc Means for supporting core in open ended shell mold
US6364001B1 (en) * 2000-08-15 2002-04-02 Pcc Airfoils, Inc. Method of casting an article

Also Published As

Publication number Publication date
CN104918731A (zh) 2015-09-16
WO2014111648A1 (fr) 2014-07-24
JP2016503729A (ja) 2016-02-08
RU2652526C2 (ru) 2018-04-26
CN104918731B (zh) 2019-12-27
CA2897680C (fr) 2021-03-23
US10717128B2 (en) 2020-07-21
CA2897680A1 (fr) 2014-07-24
RU2015128268A (ru) 2017-02-21
BR112015016771B1 (pt) 2020-01-28
BR112015016771A2 (pt) 2017-07-11
EP2945762A1 (fr) 2015-11-25
US20150352634A1 (en) 2015-12-10
FR3000910B1 (fr) 2015-05-01
FR3000910A1 (fr) 2014-07-18
JP6342427B2 (ja) 2018-06-13

Similar Documents

Publication Publication Date Title
EP2945762B1 (fr) Procédé de fabrication d'une pièce par fonderie à la cire perdue et refroidissement dirigé
CA2885896C (fr) Moule carapace a ecran thermique
EP2092999B1 (fr) Procédé de fabrication d'aubes à solidification dirigée
CA2909031C (fr) Moule de fonderie monocristalline
CA2884458C (fr) Modele de fonderie
EP3134219B1 (fr) Moule pour fonderie monocristalline
FR3033721A1 (fr) Moule a ecran thermique flexible
FR2874340A1 (fr) Procede de fonderie de pieces en carapace, grappe et carapace pour sa mise en oeuvre, aube de turboreacteur obtenue par un tel procede, et moteur d'aeronef comportant de telles aubes
EP3645191B1 (fr) Procede de fonderie avec coulee en moule chaud
CA3029438C (fr) Four de refroidissement par solidification dirigee et procede de refroidissement utilisant un tel four
EP4061557B1 (fr) Moule de fonderie, procédé de fabrication du moule et procédé de fonderie
WO2020240108A1 (fr) Procede de fabrication d'une aube de turbine metallique monocristalline

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1366656

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014075327

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210303

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1366656

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014075327

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

26N No opposition filed

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230103

Year of fee payment: 10

Ref country code: DE

Payment date: 20221220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 11

Ref country code: FR

Payment date: 20231219

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140113