EP2938927A1 - Gas turbine burner assembly equipped with a helmholtz resonator - Google Patents
Gas turbine burner assembly equipped with a helmholtz resonatorInfo
- Publication number
- EP2938927A1 EP2938927A1 EP13831874.6A EP13831874A EP2938927A1 EP 2938927 A1 EP2938927 A1 EP 2938927A1 EP 13831874 A EP13831874 A EP 13831874A EP 2938927 A1 EP2938927 A1 EP 2938927A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner
- outer body
- resonant chamber
- burner assembly
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 claims description 26
- 210000003739 neck Anatomy 0.000 claims description 10
- 230000000712 assembly Effects 0.000 claims description 9
- 238000000429 assembly Methods 0.000 claims description 9
- 238000013016 damping Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000009420 retrofitting Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/343—Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the present invention relates to a turbine burner assembly equipped with a Helmholtz resonator.
- thermoacoustic oscillations which may cause flame instability and a significant degradation in the quality of combustion, needs be solved in large-sized gas turbines, in particular those used in plants for the production of electricity. Therefore, machine performance in terms of power and efficiency, and plant flexibility are highly penalized. Emissions may degrade as well.
- a solution which is becoming popular includes the use of Helmholtz resonators, which have the effect of damping acoustic oscillations in given frequency bands.
- a Helmholtz resonator comprises a resonant chamber placed in fluidic communication with the outside, in particular with the combustion chamber, through fluidic openings or channels. The volume of the resonant chamber and the features of the fluidic channels determine the frequency band in which the resonator is effective.
- the known resonators are generally installed about the combustion chamber either on the burner inserts or directly on the burners.
- the resonators installed aboard the inserts are simple to be applied, but allow to obtain only modest volumes given the small available space.
- the resonators installed aboard the burner are arranged so that the resonant chamber is directly in fluidic continuity with the inside of the burner, in particular with the air and fluid mixing channels.
- the connection is generally obtained by an opening downstream of the fluid injection nozzles. This solution is critical because it acts directly on the pressure oscillations which propagate from the combustion zone into the mixing channels. The pressure oscillations may not be adequately damped, or could even be amplified, if the resonator is not perfectly tuned to the frequency to, be damped.
- figure 2 is a side view, taken along a longitudinal plane, of a burner assembly in accordance with an embodiment of the present invention incorporated in the system in figure 1;
- Compressor 2 and turbine 5 are mounted to the same shaft in order to form a rotor 7 , which is accommodated in a casing 8 and extends along an axis A.
- rotor 7 is provided with a plurality of compressor rotor blades 10 and turbine rotor blades 11, organized in annular arrays, which are arranged in sequence along axis A of the rotor 7 itself .
- Arrays of compressor stator blades 12 and turbine stator blades 13 are fixed to casing 8 and spaced apart between the compressor rotor blade 10 and the turbine rotor blades 11, respectively.
- the combustion chamber 3 is of the toroidal type and arranged about rotor 7 between compressor 2 and turbine 5.
- this must not be considered limitative, because the invention may be advantageously used also with combustion chambers of different type, in particular of the silo type.
- the combustion chamber 3 comprises a plurality of burner assemblies 15, which are arranged on a circumference and are evenly angularly spaced apart.
- the burner assemblies 15 are mounted to respective burner seats 16 of the combustion chamber by respective burner inserts 17.
- FIG. 2 shows in detail one of the burner assemblies 15 used for feeding fuel, in particular a gas, to the combustion chamber 3.
- the burner assembly 15 extends along an axis B and ⁇ comprises a main peripheral burner 20, a central pilot burner 21, coaxial to the main burner 20, and a Helmholtz resonator 22.
- Nozzles 32 arranged close to the inlet 31 of the mixing channels 30, are connected to a premix feeding line (not shown) and allow the injection of a controlled fuel flow rate inside the mixing channels 30 themselves.
- the nozzles 32 are arranged on the blades 28. The air from compressor 2 and the injected fuel through nozzles 32 admix , in the mixing channels 30. The air-fuel mixture flow thus produced develops towards the cylindrical wall 26b, which leads into the combustion chamber 3.
- the Helmholtz resonator 22 comprises a resonant chamber 35 and necks 36 for fluidly connecting the resonant chamber 35 to the outside.
- the resonant chamber 35 is substantially annular in shape and arranged about the frustoconical wall 26a of the -outer body 26, between the inlet 31 of the diagonal swirler 23 and the burner insert 17.
- the resonant chamber 35 is placed in one edge of the outer body 26, adjacent to the inlet 31 of the diagonal swirler 23. More in detail, the resonant chamber 35 is delimited internally by the frustoconical wall 26a of the outer body 26 and externally by, an annular closing wall 38.
- connection ring 39 (figure 3) has a T-shaped crosswise section, and a first portion 39a and a second portion 39b.
- the first portion 39a which is planar and defines a leg of the T-shaped section, substantially extends on a plane perpendicular to axis B of the burner assembly 15 and delimits the resonant chamber 35 in axial direction on the side towards the burner insert 17 and the combustion chamber 3.
- the second portion 39b of the connection ring 39 is substantially cylindrical and extends perpendicular to the first portion 39a on opposite sides thereof.
- the second portion 39a of the connection ring 39 is in contact with the annular closing wall 38, while an outer side surface is coupled to the burner insert 17.
- the resonant chamber 35 is fluidly coupled only to the combustion chamber 3 through the necks 36.
- the Helmholtz resonators 22 may be fitted either on all the burner assemblies 15 or only on some, as needed. Furthermore, the Helmholtz resonators 22 may be mutually different. The band features of each Helmholtz resonator 22 are indeed determined by the geometry of resonant chamber 35, necks 36 and connection holes 37. In order to optimize the thermoacoustic oscillation damping effect on the most . critical frequency bands, the Helmholtz resonators 22 may be tuned to respective frequencies by selecting, for each one, the volume and shape of the resonant chamber 35, the number, length and cross section (area and profile) of the necks 36 and the number, position and diameter of the connection holes 37. In one embodiment, for example, each Helmholtz resonator 22 has a respective damping band, and the damping bands of Helmholtz resonators of different burner assemblies do not coincide, although they may be partially overlapping.
- the burner assemblies of the described type have various advantages. Firstly, large volume resonant chambers may be obtained without major modifications to the combustion chamber (also for retrofitting interventions) and without significantly bearing on the- structure. Indeed, on one hand, the available space about the main burner up to the inlet of the swirler is wide, and thus Helmholtz resonators of relatively large volume can be manufactured. On the other hand, the resonant chamber is partially delimited by structural elements which belong to the main burner. The addition of the annular closing wall only allows to complete the resonant chamber without noticeable changes to the burner assembly and without a significant increase of weight. Minor adaptations are thus sufficient to accommodate the necks of the Helmholtz resonator. Furthermore, the described solution allows to select the most appropriate geometries for the Helmholtz resonator, with a wide margin of flexibility.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
- Gas Burners (AREA)
- Cyclones (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT002265A ITMI20122265A1 (en) | 2012-12-28 | 2012-12-28 | BURNER GROUP FOR A GAS TURBINE PROVIDED WITH A HELMHOLTZ RESONATOR |
PCT/IB2013/061378 WO2014102749A1 (en) | 2012-12-28 | 2013-12-27 | Gas turbine burner assembly equipped with a helmholtz resonator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2938927A1 true EP2938927A1 (en) | 2015-11-04 |
EP2938927B1 EP2938927B1 (en) | 2019-02-06 |
Family
ID=47780155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13831874.6A Active EP2938927B1 (en) | 2012-12-28 | 2013-12-27 | Gas turbine burner assembly equipped with a helmholtz resonator |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2938927B1 (en) |
KR (1) | KR20150103032A (en) |
CN (1) | CN105121961B (en) |
IT (1) | ITMI20122265A1 (en) |
WO (1) | WO2014102749A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150362189A1 (en) * | 2014-06-13 | 2015-12-17 | Siemens Aktiengesellschaft | Burner system with resonator |
US20190093562A1 (en) * | 2017-09-28 | 2019-03-28 | Solar Turbines Incorporated | Scroll for fuel injector assemblies in gas turbine engines |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644918A (en) * | 1994-11-14 | 1997-07-08 | General Electric Company | Dynamics free low emissions gas turbine combustor |
DE19839085C2 (en) * | 1998-08-27 | 2000-06-08 | Siemens Ag | Burner arrangement with primary and secondary pilot burner |
DE19851636A1 (en) * | 1998-11-10 | 2000-05-11 | Asea Brown Boveri | Damping device for reducing vibration amplitude of acoustic waves for burner for internal combustion engine operation is preferably for driving gas turbo-group, with mixture area for air and fuel |
WO2003060381A1 (en) * | 2002-01-16 | 2003-07-24 | Alstom Technology Ltd | Combustion chamber and damper arrangement for reduction of combustion chamber pulsations in a gas turbine plant |
EP1342952A1 (en) * | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Burner, process for operating a burner and gas turbine |
EP1342953A1 (en) * | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Gas turbine |
US8127546B2 (en) * | 2007-05-31 | 2012-03-06 | Solar Turbines Inc. | Turbine engine fuel injector with helmholtz resonators |
EP2187125A1 (en) * | 2008-09-24 | 2010-05-19 | Siemens Aktiengesellschaft | Method and device for damping combustion oscillation |
US20110165527A1 (en) * | 2010-01-06 | 2011-07-07 | General Electric Company | Method and Apparatus of Combustor Dynamics Mitigation |
US9341375B2 (en) * | 2011-07-22 | 2016-05-17 | General Electric Company | System for damping oscillations in a turbine combustor |
-
2012
- 2012-12-28 IT IT002265A patent/ITMI20122265A1/en unknown
-
2013
- 2013-12-27 KR KR1020157017809A patent/KR20150103032A/en not_active Application Discontinuation
- 2013-12-27 WO PCT/IB2013/061378 patent/WO2014102749A1/en active Application Filing
- 2013-12-27 CN CN201380068658.XA patent/CN105121961B/en active Active
- 2013-12-27 EP EP13831874.6A patent/EP2938927B1/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2014102749A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP2938927B1 (en) | 2019-02-06 |
CN105121961B (en) | 2017-05-31 |
CN105121961A (en) | 2015-12-02 |
KR20150103032A (en) | 2015-09-09 |
WO2014102749A1 (en) | 2014-07-03 |
ITMI20122265A1 (en) | 2014-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8789372B2 (en) | Injector with integrated resonator | |
US8104286B2 (en) | Methods and systems to enhance flame holding in a gas turbine engine | |
US8438851B1 (en) | Combustor assembly for use in a turbine engine and methods of assembling same | |
US6438959B1 (en) | Combustion cap with integral air diffuser and related method | |
US9347669B2 (en) | Variable length combustor dome extension for improved operability | |
KR101690446B1 (en) | Combustor and gas turbine | |
US9341375B2 (en) | System for damping oscillations in a turbine combustor | |
JP5855049B2 (en) | Burner arrangement | |
CN105371300B (en) | Downstream nozzle and late lean injector for a combustor of a gas turbine engine | |
JP5947515B2 (en) | Turbomachine with mixing tube element with vortex generator | |
RU2467252C2 (en) | Combustion chamber dynamics reducing system | |
US20090111063A1 (en) | Lean premixed, radial inflow, multi-annular staged nozzle, can-annular, dual-fuel combustor | |
KR20130041207A (en) | Gas turbine combustor and gas turbine | |
US20110023493A1 (en) | Fuel nozzle for a turbine combustor, and methods of forming same | |
EP3290805B1 (en) | Fuel nozzle assembly with resonator | |
US11041625B2 (en) | Fuel nozzle with narrow-band acoustic damper | |
US11371707B2 (en) | Combustor and gas turbine including the same | |
US20020157400A1 (en) | Gas turbine with combined can-type and annular combustor and method of operating a gas turbine | |
EP3002518B1 (en) | Combustor front panel | |
US8800288B2 (en) | System for reducing vibrational motion in a gas turbine system | |
EP2938927B1 (en) | Gas turbine burner assembly equipped with a helmholtz resonator | |
US20240254916A1 (en) | Gas turbine combustor | |
CN115355534B (en) | Gas turbine fuel mixing system and gas turbine | |
US20230194094A1 (en) | Combustor with a fuel injector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RIZZO, SERGIO Inventor name: ZITO, DOMENICO Inventor name: CANEPA, GIUSEPPE Inventor name: FASCE, SERGIO |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180711 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1095148 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013050596 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190506 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1095148 Country of ref document: AT Kind code of ref document: T Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190506 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013050596 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
26N | No opposition filed |
Effective date: 20191107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191227 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191227 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240130 Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240430 |