EP2936545B1 - Verschachtelung zur verbesserung der abtastung von daten beim sortieren von parametern - Google Patents

Verschachtelung zur verbesserung der abtastung von daten beim sortieren von parametern Download PDF

Info

Publication number
EP2936545B1
EP2936545B1 EP13865744.0A EP13865744A EP2936545B1 EP 2936545 B1 EP2936545 B1 EP 2936545B1 EP 13865744 A EP13865744 A EP 13865744A EP 2936545 B1 EP2936545 B1 EP 2936545B1
Authority
EP
European Patent Office
Prior art keywords
values
ramped
mass spectrometer
scans
desired range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13865744.0A
Other languages
English (en)
French (fr)
Other versions
EP2936545A1 (de
EP2936545A4 (de
Inventor
David M. Cox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DH Technologies Development Pte Ltd
Original Assignee
DH Technologies Development Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DH Technologies Development Pte Ltd filed Critical DH Technologies Development Pte Ltd
Publication of EP2936545A1 publication Critical patent/EP2936545A1/de
Publication of EP2936545A4 publication Critical patent/EP2936545A4/de
Application granted granted Critical
Publication of EP2936545B1 publication Critical patent/EP2936545B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes

Definitions

  • the fragmentation or the separation of a compound may be dependent upon a parameter of the mass spectrometer or the separation device.
  • WO 2011/091023 A1 discloses techniques for performing mass spectroscopy.
  • a system for interlacing ramped mass spectrometer parameter values during data acquisition in order to maintain a desired range and step size for the values.
  • the system includes a mass spectrometer and a processor.
  • the mass spectrometer is capable of repeatedly acquiring ions from a sample within a cycle time, Ct. Also, the mass spectrometer is capable of performing, within each Ct, two or more scans of the acquired ions using two or more ramped values for a parameter of mass spectrometer. Each of the two or more scans occurs within a step time, St, and each of the two or more ramped values vary by a step size, Ss.
  • the processor calculates if scans for a desired range of ramped values for the parameter can be performed within the cycle time, Ct, of the mass spectrometer.
  • the processor performs the calculation using the desired range of ramped values, step time, St, and step size, Ss. If the scans for the desired range cannot be performed within Ct, the processor divides the desired range of ramped values into at least two interlaced groups of ramped values. Each of the ramped values in each of the at least two interlaced groups of ramped values vary by a step size of at least 2Ss.
  • the processor instructs the mass spectrometer to perform scans for each of the at least two interlaced groups within two or more separate cycle times. Finally, the processor combines spectra from the scans for each of the at least two interlaced groups. Combined spectra for the two or more separate cycle times are produced that span the desired range and have an effective step size of Ss across the desired range.
  • a method for interlacing ramped mass spectrometer parameter values during data acquisition in order to maintain a desired range and step size for the values is disclosed. Ions from a sample are repeatedly acquired within a cycle time, Ct, using a mass spectrometer. Within each Ct, two or more scans of the acquired ions are performed using two or more ramped values for a parameter of the mass spectrometer. Each of the two or more scans occurs within a step time, St, and each of the two or more ramped values vary by a step size, Ss.
  • a calculation is made to determine if scans for a desired range of ramped values for the parameter can be performed within Ct using the desired range of ramped values, St, and Ss and using a processor. If it is determined that scans for the desired range cannot be performed within Ct, the desired range of ramped values is divided into at least two interlaced groups of ramped values using the processor. Each of the ramped values in each of the at least two interlaced groups of ramped values vary by a step size of at least 2Ss.
  • the mass spectrometer is instructed to perform scans for each of the at least two interlaced groups within two or more separate cycle times using the processor. Spectra from the scans for each of the at least two interlaced groups are combined using the processor. Combined spectra for the two or more separate cycle times are produced that span the desired range and have an effective step size of Ss across the desired range.
  • a computer program product includes a non-transitory and tangible computer-readable storage medium whose contents include a program with instructions being executed on a processor so as to perform a method for interlacing ramped mass spectrometer parameter values during data acquisition in order to maintain a desired range and step size for the values.
  • the method includes providing a system, wherein the system comprises one or more distinct software modules, and wherein the distinct software modules comprise a control module and an analysis module.
  • the control module instructs a mass spectrometer to repeatedly acquire ions from a sample within a cycle time, Ct.
  • the control module also instructs the mass spectrometer to perform two or more scans of the acquired ions within each Ct using two or more ramped values for a parameter of the mass spectrometer.
  • Each of the two or more scans occurs within a step time, St, and each of the two or more ramped values vary by a step size, Ss.
  • the analysis module calculates if scans for a desired range of ramped values for the parameter can be performed within Ct.
  • the analysis module performs the calculation using the desired range of ramped values, St, and Ss.
  • the analysis module divides the desired range of ramped values into at least two interlaced groups of ramped values. Each of the ramped values in each of the at least two interlaced groups of ramped values vary by a step size of at least 2Ss. Then the control module instructs the mass spectrometer to perform scans for each of the at least two interlaced groups within two or more separate cycle times. The analysis module combines spectra from the scans for each of the at least two interlaced groups. The analysis module produces combined spectra for the two or more separate cycle times that span the desired range and have an effective step size of Ss across the desired range.
  • FIG. 1 is a block diagram that illustrates a computer system 100, upon which embodiments of the present teachings may be implemented.
  • Computer system 100 includes a bus 102 or other communication mechanism for communicating information, and a processor 104 coupled with bus 102 for processing information.
  • Computer system 100 also includes a memory 106, which can be a random access memory (RAM) or other dynamic storage device, coupled to bus 102 for storing instructions to be executed by processor 104.
  • Memory 106 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 104.
  • Computer system 100 further includes a read only memory (ROM) 108 or other static storage device coupled to bus 102 for storing static information and instructions for processor 104.
  • a storage device 110 such as a magnetic disk or optical disk, is provided and coupled to bus 102 for storing information and instructions.
  • Computer system 100 may be coupled via bus 102 to a display 112, such as a cathode ray tube (CRT) or liquid crystal display (LCD), for displaying information to a computer user.
  • a display 112 such as a cathode ray tube (CRT) or liquid crystal display (LCD)
  • An input device 114 is coupled to bus 102 for communicating information and command selections to processor 104.
  • cursor control 116 is Another type of user input device, such as a mouse, a trackball or cursor direction keys for communicating direction information and command selections to processor 104 and for controlling cursor movement on display 112.
  • This input device typically has two degrees of freedom in two axes, a first axis ( i . e ., x) and a second axis ( i . e ., y), that allows the device to specify positions in a plane.
  • a computer system 100 can perform the present teachings. Consistent with certain implementations of the present teachings, results are provided by computer system 100 in response to processor 104 executing one or more sequences of one or more instructions contained in memory 106. Such instructions may be read into memory 106 from another computer-readable medium, such as storage device 110. Execution of the sequences of instructions contained in memory 106 causes processor 104 to perform the process described herein. Alternatively hard-wired circuitry may be used in place of or in combination with software instructions to implement the present teachings. Thus implementations of the present teachings are not limited to any specific combination of hardware circuitry and software.
  • Non-volatile media includes, for example, optical or magnetic disks, such as storage device 110.
  • Volatile media includes dynamic memory, such as memory 106.
  • Transmission media includes coaxial cables, copper wire, and fiber optics, including the wires that comprise bus 102.
  • Computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, digital video disc (DVD), a Blu-ray Disc, any other optical medium, a thumb drive, a memory card, a RAM, PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, or any other tangible medium from which a computer can read.
  • Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to processor 104 for execution.
  • the instructions may initially be carried on the magnetic disk of a remote computer.
  • the remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem.
  • a modem local to computer system 100 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal.
  • An infra-red detector coupled to bus 102 can receive the data carried in the infra-red signal and place the data on bus 102.
  • Bus 102 carries the data to memory 106, from which processor 104 retrieves and executes the instructions.
  • the instructions received by memory 106 may optionally be stored on storage device 110 either before or after execution by processor 104.
  • instructions configured to be executed by a processor to perform a method are stored on a computer-readable medium.
  • the computer-readable medium can be a device that stores digital information.
  • a computer-readable medium includes a compact disc read-only memory (CD-ROM) as is known in the art for storing software.
  • CD-ROM compact disc read-only memory
  • the computer-readable medium is accessed by a processor suitable for executing instructions configured to be executed.
  • a separation device when used together with a fast liquid chromatography (LC) system, the ramping of a parameter of the separation device can become the limiting factor.
  • One exemplary separation device is a differential mobility separation (DMS) device. Separations can be varied for one or more compounds using a DMS device by ramping the compensation voltage (CoV) of the DMS.
  • CoV compensation voltage
  • LC liquid chromatography
  • the speed at which data can be acquired at each step of the ramp is the limiting factor. In order to maintain an adequate cycle time for fast LC separations requires sacrificing the DMS separation range.
  • the most common application of this workflow is combining a CoV ramp of the DMS with scans from a time-of-flight (TOF) instrument at each step during an LC acquisition.
  • TOF time-of-flight
  • the resulting data can be used for qualitative analysis of compounds, analysis of unknowns, or optimization of DMS settings for quantitation on the TOF instrument.
  • the CoV parameter of the DMS affects how a compound is separated. It is not known beforehand how the separation of a particular compound varies with the CoV parameter. As a result, it is common to try to scan through a range of CoV values to determine the optimum value for one or more compounds, or to see how two different compounds separate. A brute force approach is to ramp the CoV parameter on every cycle across a range. However, as described above, it may not be possible to acquire data fast enough to adequately sample the ramp of the CoV parameter. Consequently, the ramping of the CoV parameter is conventionally performed with a larger step size or the range of CoV values is reduced.
  • interlacing is used to maintain the effective step size and range of the ramp of a fragmentation or separation parameter.
  • the interlacing allows the ramp of the fragmentation or separation parameter to effectively keep up with the acquisitions of a fast scanning instrument.
  • the CoV ramp of a DMS device can be interlaced as follows. On cycle 1, CoVs of 0, 2, 4, 6, 8, and 10 are acquired. On cycle 2, CoVs of 1, 3, 5, 7, 9, and 11 are acquired. Interlacing enables faster cycle times, while preserving a high resolution sampling of the CoV space. If it currently takes 2 seconds to ramp the CoV across the desired range, interlacing would enable the same CoV range to be covered in 1 second. Or put another way, this effectively increases the resolution in the CoV domain (smaller effective step size) without increasing cycle time.
  • the combined signal has a higher resolution that the scanning rate.
  • the signal of the LC is not changing too quickly, the interlaced signals can be combined without significant error.
  • interlacing is used to avoid the tradeoffs of a larger effective step size or a reduced range of CoV values.
  • interlacing of the ramping of a mass spectrometer parameter has been described with respect to a DMS device and the CoV parameter.
  • the method is not limited to any device or instrument, and the parameter is not limited to any separation or fragmentation parameter.
  • interlacing can also be applied to the ramping of the collision energy parameter of a collision cell of a mass spectrometer.
  • FIG. 2 is a schematic diagram showing a system 200 for interlacing ramped mass spectrometer parameter values during data acquisition in order to maintain a desired range and step size for the values, in accordance with various embodiments.
  • System 200 includes mass spectrometer 210 and processor 220.
  • Mass spectrometer 210 can include one or more physical mass analyzers that perform one or more mass analyses.
  • a mass analyzer of a tandem mass spectrometer can include , but is not limited to, a time-of-flight (TOF), quadrupole, an ion trap, a linear ion trap, an orbitrap, or a Fourier transform mass analyzer.
  • Mass spectrometer 210 can also include a one or more separation devices (not shown). The separation device can perform a separation technique that includes, but is not limited to, liquid chromatography, gas chromatography, capillary electrophoresis, or ion mobility.
  • Mass spectrometer 210 can include separating mass spectrometry stages or steps in space or time, respectively.
  • Processor 220 can be, but is not limited to, a computer, microprocessor, or any device capable of sending and receiving control signals and data to and from mass spectrometer 210 and processing data. Processor 220 is in communication with mass spectrometer 210.
  • Mass spectrometer 210 is capable of repeatedly acquiring ions from a sample within a cycle time, Ct. Also, mass spectrometer 210 is capable of performing, within each Ct, two or more scans of the acquired ions using two or more ramped values for a parameter of mass spectrometer 210. Each of the two or more scans occurs within a step time, St, and each of the two or more ramped values vary by a step size, Ss. Ramped values for a parameter can be an increasing or decreasing series of values, for example.
  • each Ct mass spectrometer 210 performs two or more scans of the acquired ions using two or more ramped values for a parameter of a fragmentation device of mass spectrometer 210.
  • the parameter affects the fragmentation of the acquired ions.
  • the parameter can be a collision energy (CE) and the fragmentation device can be a collision cell of mass spectrometer 210, for example.
  • CE collision energy
  • each Ct mass spectrometer 210 performs two or more scans of the acquired ions using two or more ramped values for a parameter of a separation device of mass spectrometer 210.
  • the parameter affects the separation of the acquired ions.
  • the parameter can be a compensation voltage (CoV) and the separation device can be a differential mobility (DMS) separation device of mass spectrometer 210, for example.
  • CoV compensation voltage
  • DMS differential mobility
  • Processor 220 calculates if scans for a desired range of ramped values for the parameter can be performed within the cycle time, Ct, of mass spectrometer 210. Processor 220 performs the calculation using the desired range of ramped values, step time, St, and step size, Ss. A desired range for the ramped values is received from a user or generated by default by the processor, for example.
  • processor 220 divides the desired range of ramped values into at least two interlaced groups of ramped values. Each of the ramped values in each of the at least two interlaced groups of ramped values vary by a step size of at least 2Ss. Processor 220 instructs mass spectrometer 210 to perform scans for each of the at least two interlaced groups within two or more separate cycle times. Finally, processor 220 combines spectra from the scans for each of the at least two interlaced groups. Combined spectra for the two or more separate cycle times are produced that span the desired range and have an effective step size of Ss across the desired range. As a result, by interlacing the ramped values for the parameter there is no reduction in the desired range or effective step size of the ramped values.
  • Figure 3 is an exemplary flowchart showing a method 300 for interlacing ramped mass spectrometer parameter values during data acquisition in order to maintain a desired range and step size for the values, in accordance with various embodiments.
  • step 310 of method 300 ions from a sample are repeatedly acquired within a cycle time, Ct, using a mass spectrometer. Within each Ct, two or more scans of the acquired ions are performed using two or more ramped values for a parameter of the mass spectrometer. Each of the two or more scans occurs within a step time, St, and each of the two or more ramped values vary by a step size, Ss.
  • step 320 a calculation is made to determine if scans for a desired range of ramped values for the parameter can be performed within Ct using the desired range of ramped values, St, and Ss and using a processor.
  • step 330 it is determined that scans for the desired range cannot be performed within Ct.
  • step 340 the desired range of ramped values is divided into at least two interlaced groups of ramped values using the processor.
  • Each of the ramped values in each of the at least two interlaced groups of ramped values vary by a step size of at least 2Ss.
  • step 350 the mass spectrometer is instructed to perform scans for each of the at least two interlaced groups within two or more separate cycle times using the processor.
  • step 360 spectra from the scans for each of the at least two interlaced groups are combined using the processor. Combined spectra for the two or more separate cycle times are produced that span the desired range and have an effective step size of Ss across the desired range.
  • computer program products include a tangible computer-readable storage medium whose contents include a program with instructions being executed on a processor so as to perform a method for interlacing ramped mass spectrometer parameter values during data acquisition in order to maintain a desired range and step size for the values. This method is performed by a system that includes one or more distinct software modules.
  • FIG. 4 is a schematic diagram of a system 400 that includes one or more distinct software modules that performs a method for interlacing ramped mass spectrometer parameter values during data acquisition in order to maintain a desired range and step size for the values, in accordance with various embodiments.
  • System 400 includes control module 410 and analysis module 420.
  • Control module 410 instructs a mass spectrometer to repeatedly acquire ions from a sample within a cycle time, Ct. Control module 410 also instructs the mass spectrometer to perform two or more scans of the acquired ions within each Ct using two or more ramped values for a parameter of the mass spectrometer. Each of the two or more scans occurs within a step time, St, and each of the two or more ramped values vary by a step size, Ss.
  • Analysis module 420 calculates if scans for a desired range of ramped values for the parameter can be performed within Ct. Analysis module 420 performs the calculation using the desired range of ramped values, St, and Ss.
  • analysis module 420 divides the desired range of ramped values into at least two interlaced groups of ramped values. Each of the ramped values in each of the at least two interlaced groups of ramped values vary by a step size of at least 2Ss. Then control module 410 instructs the mass spectrometer to perform scans for each of the at least two interlaced groups within two or more separate cycle times. Analysis module 420 combines spectra from the scans for each of the at least two interlaced groups. Analysis module 420 produces combined spectra for the two or more separate cycle times that span the desired range and have an effective step size of Ss across the desired range.
  • the specification may have presented a method and/or process as a particular sequence of steps.
  • the method or process should not be limited to the particular sequence of steps described.
  • other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims.
  • the claims directed to the method and/or process should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the scope of the various embodiments. The scope is defined in the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Claims (15)

  1. System zum Verschachteln von Rampenwerten von Massenspektrometer-Parametern während Datenerfassung, um einen gewünschten Bereich und Schrittgröße für die Werte beizubehalten, umfassend:
    ein Massenspektrometer, das konfiguriert ist, um wiederholt Ionen von einer Probe innerhalb einer Zykluszeit Ct und innerhalb jeder Ct zu erfassen, um zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter des Massenspektrometers durchzuführen, wobei jeder von den zwei oder mehr Scans innerhalb einer Schrittzeit St auftritt, und jeder der zwei oder mehr Rampenwerte um eine Schrittgröße Ss variiert, und
    einen Prozessor in Kommunikation mit dem Massenspektrometer, der konfiguriert ist, um
    zu berechnen, ob Scans für einen gewünschten Bereich von Rampenwerten für den Parameter innerhalb von Ct unter Verwendung des gewünschten Bereichs von Rampenwerten, St und Ss, durchgeführt werden können, und
    wenn die Scans für den gewünschten Bereich nicht innerhalb von Ct durchgeführt werden können,
    den gewünschten Bereich von Rampenwerten in mindestens zwei verschachtelte Gruppen von Rampenwerten zu teilen, wobei jeder der Rampenwerte in jeder der mindestens zwei verschachtelten Gruppen von Rampenwerten um eine Schrittgröße von mindestens 2Ss variiert und wobei die mindestens zwei verschachtelte Gruppen von Rampenwerten unterschiedliche alternierende Werte innerhalb des gewünschten Bereichs aufweisen,
    das Massenspektrometer anzuweisen, Scans für jede der mindestens zwei verschachtelten Gruppen innerhalb von zwei oder mehr getrennten Zykluszeiten durchzuführen, und
    Spektren aus den Scans für jede der mindestens zwei verschachtelten Gruppen zu kombinieren, um kombinierte Spektren für die zwei oder mehr getrennten Zykluszeiten zu erzeugen, die den gewünschten Bereich überspannen und eine effektive Schrittgröße von Ss über den gewünschten Bereich aufweisen.
  2. System einer beliebigen Kombination der vorhergehenden Systemansprüche, wobei das Massenspektrometer konfiguriert ist, um innerhalb jeder Ct zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter einer Fragmentierungsvorrichtung des Massenspektrometers durchzuführen.
  3. System einer beliebigen Kombination der vorhergehenden Systemansprüche, wobei der Parameter Kollisionsenergie (CE) umfasst und die Fragmentierungsvorrichtung eine Kollisionszelle umfasst.
  4. System einer beliebigen Kombination der vorhergehenden Systemansprüche, wobei das Massenspektrometer konfiguriert ist, um innerhalb jeder Ct zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter einer Trennungsvorrichtung des Massenspektrometers durchzuführen.
  5. System einer beliebigen Kombination der vorhergehenden Systemansprüche, wobei der Parameter eine Kompensationsspannung (CoV) umfasst und die Trennungsvorrichtung eine differentielle Mobilität (DMS) umfasst.
  6. Verfahren zum Verschachteln von Rampenwerten von Massenspektrometer-Parametern während Datenerfassung, um einen gewünschten Bereich und Schrittgröße für die Werte beizubehalten, umfassend:
    wiederholtes Erfassen von Ionen von einer Probe innerhalb einer Zykluszeit Ct und innerhalb jeder Ct Durchführen von zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter des Massenspektrometers, wobei jeder von den zwei oder mehr Scans innerhalb einer Schrittzeit St auftritt, und jeder der zwei oder mehr Rampenwerte um eine Schrittgröße Ss variiert, und
    Berechnen, ob Scans für einen gewünschten Bereich von Rampenwerten für den Parameter innerhalb von Ct unter Verwendung des gewünschten Bereichs von Rampenwerten, St und Ss, durchgeführt werden können und unter Verwendung eines Prozessors, und
    wenn die Scans für den gewünschten Bereich nicht innerhalb von Ct durchgeführt werden können,
    Teilen des gewünschten Bereichs von Rampenwerten in mindestens zwei verschachtelte Gruppen von Rampenwerten unter Verwendung des Prozessors, wobei jeder der Rampenwerte in jeder der mindestens zwei verschachtelten Gruppen von Rampenwerten um eine Schrittgröße von mindestens 2Ss variiert und wobei die mindestens zwei verschachtelten Gruppen von Rampenwerten unterschiedliche alternierende Werte innerhalb des gewünschten Bereichs aufweisen,
    Anweisen des Massenspektrometers, Scans für jede der mindestens zwei verschachtelten Gruppen innerhalb von zwei oder mehr getrennten Zykluszeiten unter Verwendung des Prozessors durchzuführen, und
    Kombinieren von Spektren aus den Scans für jede der mindestens zwei verschachtelten Gruppen unter Verwendung des Prozessors, um kombinierte Spektren für die zwei oder mehr getrennten Zykluszeiten zu erzeugen, die den gewünschten Bereich überspannen und eine effektive Schrittgröße von Ss über den gewünschten Bereich aufweisen.
  7. Verfahren einer beliebigen Kombination der vorhergehenden Verfahrensansprüche, wobei das Massenspektrometer innerhalb jeder Ct zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter einer Fragmentierungsvorrichtung des Massenspektrometers durchführt.
  8. Verfahren einer beliebigen Kombination der vorhergehenden Verfahrensansprüche, wobei der Parameter Kollisionsenergie (CE) umfasst und die Fragmentierungsvorrichtung eine Kollisionszelle umfasst.
  9. Verfahren einer beliebigen Kombination der vorhergehenden Verfahrensansprüche, wobei das Massenspektrometer innerhalb jeder Ct zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter einer Trennungsvorrichtung des Massenspektrometers durchführt.
  10. Verfahren einer beliebigen Kombination der vorhergehenden Verfahrensansprüche, wobei der Parameter eine Kompensationsspannung (CoV) umfasst und die Trennungsvorrichtung eine differentielle Mobilität (DMS) umfasst.
  11. Computerprogrammprodukt, umfassend ein nichtflüchtiges und materielles computerlesbares Speichermedium, dessen Inhalte ein Programm mit Anweisungen beinhalten, die auf einem Prozessor ausgeführt werden, um ein Verfahren zum Verschachteln von Rampenwerten von Massenspektrometer-Parametern während Datenerfassung, um einen gewünschten Bereich und Schrittgröße für die Werte beizubehalten, das Verfahren umfassend:
    Bereitstellen eines Systems, wobei das System ein oder mehrere eindeutige Softwaremodule umfasst, und wobei die eindeutigen Softwaremodule ein Steuermodul und ein Analysenmodul umfassen;
    Anleiten eines Massenspektrometers, wiederholt Ionen von einer Probe innerhalb einer Zykluszeit Ct und innerhalb jeder Ct zu erfassen, um zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter des Massenspektrometers unter Verwendung des Steuermodus durchzuführen, wobei jeder von den zwei oder mehr Scans innerhalb einer Schrittzeit St auftritt, und jeder der zwei oder mehr Rampenwerte um eine Schrittgröße Ss variiert, und
    Berechnen, ob Scans für einen gewünschten Bereich von Rampenwerten für den Parameter innerhalb von Ct unter Verwendung des gewünschten Bereichs von Rampenwerten, St und Ss, durchgeführt werden können und unter Verwendung des Steuermoduls, und
    wenn die Scans für den gewünschten Bereich nicht innerhalb von Ct durchgeführt werden können,
    Teilen des gewünschten Bereichs von Rampenwerten in mindestens zwei verschachtelte Gruppen von Rampenwerten unter Verwendung des Analysenmoduls, wobei jeder der Rampenwerte in jeder der mindestens zwei verschachtelten Gruppen von Rampenwerten um eine Schrittgröße von mindestens 2Ss variiert und wobei die mindestens zwei verschachtelte Gruppen von Rampenwerten unterschiedliche alternierende Werte innerhalb des gewünschten Bereichs aufweisen,
    Anweisen des Massenspektrometers, Scans für jede der mindestens zwei verschachtelten Gruppen innerhalb von zwei oder mehr getrennten Zykluszeiten unter Verwendung des Steuermoduls durchzuführen, und
    Kombinieren von Spektren aus den Scans für jede der mindestens zwei verschachtelten Gruppen unter Verwendung des Analysenmoduls, um kombinierte Spektren für die zwei oder mehr getrennten Zykluszeiten zu erzeugen, die den gewünschten Bereich überspannen und eine effektive Schrittgröße von Ss über den gewünschten Bereich aufweisen.
  12. Computerprogrammprodukt einer beliebigen Kombination der vorhergehenden Computerprogrammproduktansprüche, wobei das Massenspektrometer innerhalb jeder Ct zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter einer Fragmentierungsvorrichtung des Massenspektrometers durchführt.
  13. Computerprogrammprodukt einer beliebigen Kombination der vorhergehenden Computerprogrammproduktansprüche, wobei der Parameter Kollisionsenergie (CE) umfasst und die Fragmentierungsvorrichtung eine Kollisionszelle umfasst.
  14. Computerprogrammprodukt einer beliebigen Kombination der vorhergehenden Computerprogrammproduktansprüche, wobei das Massenspektrometer innerhalb jeder Ct zwei oder mehr Scans der erfassten Ionen unter Verwendung von zwei oder mehr Rampenwerten für einen Parameter einer Trennungsvorrichtung des Massenspektrometers durchführt.
  15. Computerprogrammprodukt einer beliebigen Kombination der vorhergehenden Computerprogrammproduktansprüche, wobei der Parameter eine Kompensationsspannung (CoV) umfasst und die Trennungsvorrichtung eine differentielle Mobilität (DMS) umfasst.
EP13865744.0A 2012-12-20 2013-11-21 Verschachtelung zur verbesserung der abtastung von daten beim sortieren von parametern Active EP2936545B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261740380P 2012-12-20 2012-12-20
PCT/IB2013/002613 WO2014096916A1 (en) 2012-12-20 2013-11-21 Interlacing to improve sampling of data when ramping parameters

Publications (3)

Publication Number Publication Date
EP2936545A1 EP2936545A1 (de) 2015-10-28
EP2936545A4 EP2936545A4 (de) 2016-08-10
EP2936545B1 true EP2936545B1 (de) 2019-10-30

Family

ID=50977694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13865744.0A Active EP2936545B1 (de) 2012-12-20 2013-11-21 Verschachtelung zur verbesserung der abtastung von daten beim sortieren von parametern

Country Status (3)

Country Link
US (1) US9620342B2 (de)
EP (1) EP2936545B1 (de)
WO (1) WO2014096916A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2903619A1 (en) * 2013-03-06 2014-09-12 Micromass Uk Limited Time shift for improved ion mobility spectrometry or separation digitisation
US10204770B2 (en) * 2015-08-31 2019-02-12 Dh Technologies Development Pte. Ltd. Method to improve MS/MS spectral quality from MRM triggered IDA

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2142942A1 (de) * 1970-08-28 1972-03-02 Aei Verfahren und Vorrichtung zur Massen spektrometrie

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08129002A (ja) * 1994-10-31 1996-05-21 Shimadzu Corp Sim法を用いたクロマトグラフ質量分析装置
US6348688B1 (en) * 1998-02-06 2002-02-19 Perseptive Biosystems Tandem time-of-flight mass spectrometer with delayed extraction and method for use
US20070090287A1 (en) * 2005-10-20 2007-04-26 Foote James D Intelligent SIM acquisition
US7554339B2 (en) * 2006-12-01 2009-06-30 The Boeing Company Electromagnetic testing of an enclosure or cavity using a discrete frequency stir method
JP5226292B2 (ja) * 2007-12-25 2013-07-03 日本電子株式会社 タンデム型飛行時間型質量分析法
US8138961B2 (en) * 2009-03-24 2012-03-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Step frequency ISAR
US8053723B2 (en) * 2009-04-30 2011-11-08 Thermo Finnigan Llc Intrascan data dependency
WO2011091023A1 (en) 2010-01-20 2011-07-28 Waters Technologies Corporation Techniques for efficient fragmentation of peptides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2142942A1 (de) * 1970-08-28 1972-03-02 Aei Verfahren und Vorrichtung zur Massen spektrometrie

Also Published As

Publication number Publication date
EP2936545A1 (de) 2015-10-28
EP2936545A4 (de) 2016-08-10
US9620342B2 (en) 2017-04-11
US20150311051A1 (en) 2015-10-29
WO2014096916A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US11107666B2 (en) Systems and methods for using variable mass selection window widths in tandem mass spectrometry
JP6335200B2 (ja) スキャン内ダイナミックレンジを改善するための可変窓バンドパスフィルタリングを使用する調査スキャンからのイオンの除去
US9842729B2 (en) Systems and methods for using interleaving window widths in tandem mass spectrometry
US20160268111A1 (en) Systems and Methods for Identifying Precursor ions from Product Ions Using Arbitrary Transmission Windowing
US9691595B2 (en) Modulation of instrument resolution dependant upon the complexity of a previous scan
JP6276196B2 (ja) インテリジェントなバックグラウンドデータの取得および減算
EP2936545B1 (de) Verschachtelung zur verbesserung der abtastung von daten beim sortieren von parametern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20160708

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 49/00 20060101ALI20160704BHEP

Ipc: H01J 49/26 20060101AFI20160704BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190517

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DH TECHNOLOGIES DEVELOPMENT PTE. LTD.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1197058

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013062359

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013062359

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1197058

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191030

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230928

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230929

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230926

Year of fee payment: 11