EP2935641B1 - Process for coating a substrate with an abradable ceramic material - Google Patents

Process for coating a substrate with an abradable ceramic material Download PDF

Info

Publication number
EP2935641B1
EP2935641B1 EP13811188.5A EP13811188A EP2935641B1 EP 2935641 B1 EP2935641 B1 EP 2935641B1 EP 13811188 A EP13811188 A EP 13811188A EP 2935641 B1 EP2935641 B1 EP 2935641B1
Authority
EP
European Patent Office
Prior art keywords
ceramic compounds
solid particles
ceramic
coating
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13811188.5A
Other languages
German (de)
French (fr)
Other versions
EP2935641A1 (en
Inventor
Aurélie QUET
Luc Bianchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2935641A1 publication Critical patent/EP2935641A1/en
Application granted granted Critical
Publication of EP2935641B1 publication Critical patent/EP2935641B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/34Applying different liquids or other fluent materials simultaneously
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • the invention relates to a method of coating at least one surface of a substrate with at least one ceramic compound.
  • the technical field of the invention can be defined, in particular, as that of the coating of substrates with an abradable material, and more particularly of the coating of substrates with a ceramic abradable material.
  • the coatings of an abradable ceramic material find their utility mainly in devices in which moving parts must be located as close as possible to fixed parts.
  • the deposition of a coating of an abradable ceramic material such as that produced according to the invention makes it possible, when the coating is brought into contact with a moving part, to use it in a preferential manner over the moving part.
  • the invention is likely to find its application, in general, in the field of mechanical engineering, and more particularly in the field of aeronautical design, such as, for example, for the protection of the integrity of the surface condition of fixed turbojet engine parts, such as low and high pressure compressors, turbines or stators.
  • the deposition, on a substrate, of a coating comprising at least one layer of an abradable material, or more simply the deposition of an “abradable coating”, is a technique frequently used in applications. fields such as mechanical engineering and aeronautical design.
  • abradable coating abradable material is generally meant that this coating or material wears preferentially with respect to the part located opposite, and is capable of being easily machined by moving parts.
  • Such coatings are, for example, used in automotive turbochargers, or else in the walls of land turbines and gas turbines of aeronautical engines.
  • the function of the abradable coating is the constitution of dynamic seals, which make it possible to minimize the play existing between the top of the rotating blades and the casing of the compressor or of the turbine ring.
  • the coating which is deposited on a stationary turbine element, the stator, wears out during contact with the top of the blades, whether the latter occurs during the running-in turns of the rotor or in the event of contact. accidental during service.
  • This coating then makes it possible to promote optimal operation of the turbojets, with reduced clearance and without damaging the structure of the blades.
  • thermal spraying A technique often used for the production of abradable coatings is thermal spraying.
  • thermal spraying processes are used in particular in research laboratories and in industry for the production, on very diverse substrates in terms of nature and shape, of deposits of ceramic, metallic and polymer materials, but also combinations of those. -this.
  • the compounds or precursors of compounds entering into the constitution of the coating are injected into a heat source which is produced by a projection gas, for example a mixture of a combustible gas and an oxidizing gas or a gas. ionized plasma type.
  • a projection gas for example a mixture of a combustible gas and an oxidizing gas or a gas. ionized plasma type.
  • the solid particles which are introduced or generated within the flame are partially or totally melted, then accelerated towards a substrate to form, on the surface of the latter, a coating by stacking solid particles and molten particles also called " Lamellae " (or " splats " in English terminology).
  • thermal spraying techniques to the production of abradable coatings makes it possible to generate two types of coating.
  • a first type of coating which is very porous, can be made by including unmelted particles in the coating.
  • this type of coating which turns out to be difficult to reproduce, does not have satisfactory properties for use as an abradable coating, namely correct mechanical strength and a porosity greater than or equal to. 20 percent (%).
  • the thermal spraying of solid particles which have an average particle size greater than 5 ⁇ m, for example by plasma spraying conventionally makes it possible to achieve porosities of between 5 and 20%.
  • a second type of coating, more dense, can be obtained, the porosity then being generated by the introduction of solid sacrificial particles, of organic or ceramic nature within the coating.
  • the document [4] of Clingman et al. describes a method for producing an abradable coating for turbine engine components, such as a compressor or a turbine shell.
  • the coating consists of a zirconium (IV) oxide matrix stabilized with an oxide chosen from among yttrium (III) oxide (Y 2 O 3 ), magnesium oxide (MgO) and oxide.
  • calcium (CaO) in which are dispersed particles of an easily decomposable crystalline aromatic polyester at a temperature above about 500 ° C.
  • the porosity of the coating obtained by this process is evaluated between 20 and 33%.
  • Rangaswamy et al. describes an abradable coating for gas turbine elements, comprising a matrix consisting of a metal or a mixture of metals chosen from aluminum, cobalt, copper, iron, nickel and silicon , a solid lubricant such as calcium fluoride (CaF 2 ), molybdenum disulfide (MoS 2 ) or boron nitride, and a pore-forming agent in the form of solid particles of graphite or of a polymer, such as an aromatic polyimide or a polyester selected from a p -oxy-benzoyl homopolyester and a poly ( p- oxybenzoylmethyl) ester.
  • a solid lubricant such as calcium fluoride (CaF 2 ), molybdenum disulfide (MoS 2 ) or boron nitride
  • MoS 2 molybdenum disulfide
  • boron nitride boronitride
  • the porosity within coatings of the second type can still be generated by combining the inclusion of ceramic particles and the creation of a network of cavities on the surface of the coating after thermal spraying.
  • the document [7] of Le Biez et al. discloses an abradable coating for gas turbine elements, comprising a matrix of a nickel-chromium-aluminum alloy in which hollow balls of an aluminum-silicate material are dispersed. A network of cavities is machined on the surface of the coating, which then has a porosity of at least 40%.
  • the document [9] of Lima et al. describes a process for preparing a coating for elements such as compressors or combustion chambers, which comprises thermal spraying of ceramic particles of YSZ in the form of agglomerates of nanometric size.
  • the projection parameters are controlled so that the particles, once deposited on the substrate to be coated, form porous agglomerates of micrometric size and made up of unmelted YSZ particles and included in a matrix of molten YSZ particles.
  • Allen's document [10] describes a process for producing an abradable coating for elements such as turbine shell sections. This process comprises the thermal spraying of an aqueous suspension comprising a precursor of a ceramic material, for example YSZ, and a lubricant in solid form, chosen from boron trichloride, urea, guanidine and others. organic nitrogen compounds.
  • a coating of an entirely ceramic abradable material makes it possible to achieve high operating temperatures, typically greater than 1000 ° C., which are frequently reached in fields such as aeronautics.
  • the inventors have therefore set themselves the goal of developing a process for preparing a coating which meets the criteria set out above in order to be able to be used as an abradable coating, namely in particular: an ability to be easily abraded while at the same time with a slow wear mechanism as well as resistance to erosion and at elevated temperatures while maintaining suitable mechanical properties.
  • a coating must have a porosity greater than or equal to 20%, while having a homogeneous thickness and structure.
  • the aim of the present invention is also to provide such a method which is simple, reliable, easy to implement, and in particular avoids the use of additives.
  • the aim of the present invention is also to provide a process for preparing an abradable coating which does not present the drawbacks, defects and disadvantages of the processes of the prior art and which resolves the problems of the processes of the prior art.
  • the method of the invention differs from the prior art because it combines the advantages provided on the one hand by the dry injection of solid particles of n ceramic compounds S 1 , ..., S n in a jet thermal and, on the other hand, by the simultaneous injection of a liquid phase conveying solid particles of p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of p ceramic compounds L 1 , ..., L p .
  • the general and preferred operating conditions of the process of the invention are set out below.
  • the substrate can be organic, inorganic or mixed, that is to say that the same surface of the substrate, in particular the surface to be coated by the method according to the invention, can be both organic and inorganic.
  • the substrate withstands the operating conditions of the process of the invention.
  • the substrate consists of a TiAIV alloy (alloy of titanium, aluminum and vanadium), for example of TiAl 6 V (alloy composed of 90% by mass of Ti, 6% by mass of aluminum and 4% by mass of vanadium).
  • a TiAIV alloy alloy of titanium, aluminum and vanadium
  • TiAl 6 V alloy composed of 90% by mass of Ti, 6% by mass of aluminum and 4% by mass of vanadium
  • the surface of the substrate that is to be coated is optionally prepared and / or cleaned in order to remove organic and / or inorganic contaminants which would be liable to damage. 'to prevent the deposition or even fixation of the coating on the surface, and in order to improve the adhesion of the coating.
  • the method of preparing the surface may consist of creating a surface roughness by sandblasting.
  • the cleaning process used depends on the nature of the substrate and can be carried out by one or more technique (s) chosen from among the physical, chemical and mechanical techniques known to those skilled in the art.
  • the cleaning process can be carried out, for example, by a technique chosen from immersion in an organic solvent, laundry cleaning, acid pickling and the combination of two or more of these techniques, this or these techniques which can also be assisted by ultrasound.
  • the cleaning can optionally be followed by rinsing with tap water, then by rinsing with deionized water, the rinses optionally being followed by drying by a technique chosen from the “ lift-out ” technique. , an alcohol spray, a blast of compressed air, a blast of hot air, or infrared rays.
  • the expression “chemical element” designates an element of the periodic table of chemical elements, also known under the names of the periodic table of the elements or the Mendele ⁇ ev table, while the expression “compound chemical ”denotes an ionic molecule or compound formed from at least two different chemical elements.
  • ceramic compound In the context of the present invention, the definition of the expression “ceramic compound” is not repeated and is well known to a person skilled in the art.
  • metal and metalic refer to the elements which are classically considered as metals in the periodic table of the elements, in particular the transition elements (such as, for example, titanium, zirconium, niobium, yttrium, vanadium, chromium, cobalt and molybdenum), other metals (such as aluminum, gallium, germanium and tin), lanthanides and actinides. These terms also refer to metalloid elements such as, for example, silicon.
  • the process comprises, in step a), the simultaneous injection of solid particles of n ceramic compounds S 1 , ..., S n suitably chosen, and of a liquid phase comprising a solvent, solid particles of p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of p ceramic compounds L 1 , ..., L p suitably chosen.
  • each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p comprises at least one element chosen in the periodic table of elements from the elements of transition, metalloids and lanthanides.
  • each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from oxides, silicates and zirconates of at least one element chosen in the periodic table of elements from among the transition elements, metalloids and lanthanides.
  • each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from simple oxides, silicates and zirconates of at least one selected element among aluminum, silicon, titanium, strontium, zirconium, barium, hafnium and elements of the “rare earth” family as defined by the International Union of Pure and Applied Chemistry (cf. [11] ), ie scandium, yttrium and lanthanides.
  • solid particle is used to designate a particle in solid form, at ambient pressure and temperature, the ambient temperature being defined as being the temperature at which the particle is located when that it is not subjected either to cooling or to any heating.
  • the ambient temperature is generally 15 to 30 ° C, for example 20 to 25 ° C.
  • the solid particles of the n ceramic compounds S 1 , ..., S n are particles which can be of any shape, but of which at least 90% by number have a greater dimension greater than 5 ⁇ m and less than 100 ⁇ m.
  • the largest dimension of a particle corresponds to the diameter of the latter when it is established, for example by a reproducible particle size analysis, that the particle has or has substantially the shape of a sphere.
  • the liquid phase results from bringing a solvent into contact with solid particles of the p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .
  • precursor is generally meant at least one chemical compound used in any one of the chemical reactions by which the p ceramic compounds L 1 , ..., L p (which are in the form of solid particles) are obtained.
  • the liquid phase can advantageously result from placing in solution or, as a variant, suspending, in a solvent, solid particles of p ceramic compounds L 1 , ..., L p and / or d 'at least one solid particle precursor of the p ceramic compounds L 1 , ..., L p , it being specified that at least 90% by number of the solid particles of each of the p compounds L 1 , ..., L p has a greater dimension less than or equal to 5 ⁇ m .
  • the liquid phase obtained can be a true solution or, as a variant, a colloidal solution of the solid particles of the p ceramic compounds L 1 , ..., L p and / or at least a precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .
  • a chemical compound and in particular, a ceramic compound or a ceramic compound precursor, is soluble in a solvent when it is able to form a true solution or a colloidal solution with this solvent.
  • a true solution when the solute is a small molecule
  • we speak more of a colloidal solution when the solute is a macromolecule size ranging from 5 nanometers (nm) to 1 ⁇ m, cf. [12] ).
  • the solvent is chosen from water, organic solvents (for example, ethanol), mixtures of water and at least one organic solvent miscible with water (for example, a water-ethanol mixture ) and mixtures of organic solvents miscible with one another.
  • organic solvents for example, ethanol
  • mixtures of water and at least one organic solvent miscible with water for example, a water-ethanol mixture
  • the liquid phase is a colloidal aqueous solution of the solid particles of the p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .
  • integers n and p which are identical or different, are chosen one independently of the other. These integers n and p are chosen from an interval ranging from 1 to 10, better still, from an interval ranging from 1 to 5, all the intermediate values included in the intervals thus defined being considered.
  • the n ceramic compounds S 1 , ..., S n can all be identical to the p ceramic compounds L 1 , ..., L p , and the integer n is then equal to the integer p.
  • the n ceramic compounds S 1 , ..., S n injected by the first injection means are exactly the same as the p ceramic compounds L 1 , ..., L p which are injected by the second injection means, or which are obtained in the thermal jet after the chemical reaction (s) of formation of the p ceramic compounds L 1 , ..., L p (in the case where they are precursors of these p ceramic compounds L 1 , ..., L p which are injected by the second injection means).
  • n and p are both equal to 1
  • the ceramic compounds S 1 and L 1 are both mullite.
  • It is a crystalline aluminosilicate existing in the form of a solid solution of composition Al 2 [Al 2 + 2 x Si 2-2 x ] O 10- x with 0.17 ⁇ x ⁇ 0.5.
  • the composition of this aluminosilicate can thus change between the “3: 2 mullite” (3 Al 2 O 3 ⁇ 2 SiO 2 ) and “2: 1 mullite” (2 Al 2 O 3 ⁇ SiO 2 ) forms, the different stoichiometries being obtained by substitution of silicon atoms by aluminum atoms within the crystal.
  • the liquid phase is an aqueous colloidal mullite solution, which can be prepared, for example, by suspending solid particles of aluminum nitrate, an aqueous suspension of colloidal particles of silica and water. deionized.
  • the n ceramic compounds S 1 , ..., S n may be partially or totally different from the p ceramic compounds L 1 , ..., L p , the integer n then not necessarily being equal to the whole p.
  • the combination of ceramic compounds exhibiting various intrinsic properties can be carried out for the purpose of optimizing the in situ behavior of the coating obtained by the process of the invention (for example, by conferring properties of mechanical resistance at temperatures high ie typically greater than 1000 ° C).
  • step a) the injection of step a) is carried out in a thermal jet, whereby a mixture of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase is obtained in the thermal jet.
  • the nature of the projection gas is chosen as a function of the thermal jet projection technique which is used.
  • the projection gas can be a mono- or polyatomic gas or else a mixture of gases, as defined below.
  • the simultaneous injection of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase can be carried out by any suitable means of injection of solids and liquids.
  • a first injection means can be connected to a reservoir (s) containing the solid particles of the n ceramic compounds S 1 , ..., S n
  • a second injection means can be connected to a reservoir (s) containing the liquid phase.
  • the solid particles of the n ceramic compounds S 1 , ..., S n can be injected into the thermal jet in the form of a jet of these particles, and the liquid phase can be injected in the form of 'a jet or drops, preferably with a quantity of movement adapted to be substantially identical to that of the thermal jet.
  • the rate of porosity can be adjusted by varying the distance D S -D L.
  • the mobilization of the energy of the thermal jet is greater for the vaporization of the liquid phase than for the fusion of the solid particles of the n ceramic compounds S 1 , ..., S n .
  • the liquid phase is injected into the thermal jet at a distance from the substrate which is less than or equal to the distance from the substrate at which the solid particles of the n ceramic compounds S 1 , ..., S n are injected into the substrate. the thermal jet.
  • the injection distances into the thermal jet are preferably chosen so as to satisfy the following inequality: D S ⁇ D L.
  • the vaporization of a solvent in fact mobilizes a large amount of the energy of the jet and promotes faster extinction of the plasma jet, i.e., the length of the plasma jet decreases (variable depending on the nature of the jet. solvent, ethanol mobilizing less energy than water for example).
  • the injection of the liquid phase is done upstream, there is not enough energy available to melt the solid particles downstream.
  • Sufficient energy remains available downstream for the vaporization of the solvent and the treatment of the liquid phase.
  • the temperature of the solid particles of the n ceramic compounds S 1 , ..., S n during their injection into the thermal jet can be the ambient temperature as already defined above, for example 20 ° C.
  • the temperature of these particles can be controlled and modified for their injection into the thermal jet, for example so that it is within a range of 20 to 150 ° C.
  • the solid particles can in particular be preheated before injection in order to overcome any problems of relative humidity which can cause the solid particles to agglomerate and reduce the flowability of the powder.
  • the temperature of the liquid phase during its injection into the thermal jet can range, for example, from ambient temperature, for example 20 ° C., to a temperature below the boiling point of this liquid phase.
  • it is possible to control and modify the temperature of the liquid phase for its injection into the thermal jet for example to be from 1 to 99 ° C.
  • the liquid phase then has a different surface tension, which results in a more or less rapid and effective fragmentation mechanism when it arrives in the thermal jet. The temperature can therefore have an effect on the quality of the coating obtained.
  • the method also comprises a step b), in which a projection of the thermal jet, which contains the mixture of the solid particles of the n ceramic compounds S 1 , ..., S n and the liquid phase, is carried out. on the substrate, whereby, a layer comprising at least one ceramic compound is formed on the substrate.
  • the projection of the thermal jet groups together all the processes by which the solid constituents of a material (or “filler material”), here the solid particles of the n compounds ceramics S 1 , ..., S n and those possibly in suspension in the liquid phase, are melted or brought to the plastic state by means of a heat source or enthalpy source.
  • the mixture formed in the thermal jet is then projected onto the substrate to be coated onto which it adheres mechanically and solidifies (without causing the substrate melting phenomenon).
  • the latter can be deposited on the substrate in the form of a layer by the implementation of thermal spraying processes as stated below. -after.
  • the deposition can be carried out by a flame projection process using a projection gas.
  • the flame projection process is chosen from a flame-powder projection process and a hypersonic flame projection process, with continuous or discontinuous firing (HVOF or “ High Velocity Oxy Fuel ” process, HVAF or “ High Velocity Air Fuel ” process. ).
  • the projection gas is brought to a temperature of between 3,000 and 3,500 Kelvin (K).
  • the deposition can be carried out by a plasma arc blown projection process using a plasma gas.
  • the thermal jet which is then a plasma jet, can be generated by a plasma gas which is advantageously chosen from argon, helium, dinitrogen, dihydrogen, binary mixtures thereof, such as an argon-helium mixture or an argon-dihydrogen mixture, and ternary mixtures of these, such as an argon-helium-dihydrogen mixture, the latter mixture being very particularly preferred.
  • a plasma gas which is advantageously chosen from argon, helium, dinitrogen, dihydrogen, binary mixtures thereof, such as an argon-helium mixture or an argon-dihydrogen mixture, and ternary mixtures of these, such as an argon-helium-dihydrogen mixture, the latter mixture being very particularly preferred.
  • the plasma generation method is chosen from an arc plasma, blown or not, an inductive or radiofrequency plasma, for example in supersonic mode.
  • the generated plasma can operate at atmospheric pressure or at lower pressure.
  • the device which is used to generate the plasma is an arc plasma torch.
  • the projection gas is brought to a temperature of between 5,000 and 15,000 K.
  • the projection gas has a viscosity ranging from 10 -4 to 5.10 -4 kilograms per meter second (kg / m ⁇ s).
  • the deposition is carried out by a blown arc plasma projection process.
  • the solid particles of the n ceramic compounds S 1 , ..., S n and the liquid phase simultaneously enter the thermal jet.
  • the kinetic and thermal energies of the thermal jet serve on the one hand to partially or totally melt the solid particles of the n ceramic compounds S 1 , ..., S n , and on the other hand, to split the liquid phase into a plurality of droplets under the effect of the shear forces of the thermal jet, vaporize the solvent from the liquid phase and lead to obtaining solid particles of the p ceramic compounds L 1 , ..., L p which are partially or totally melted .
  • the mixture formed by the partially solid particles or completely molten ceramic compounds S 1 , ..., S n , L 1 , ..., L p and the droplets of solvent of the liquid phase is accelerated to be collected on the substrate, in the form of a deposit which constitutes the coating.
  • the temperature of the thermal jet is chosen as a function of the chemical nature of the species which make up the mixture and of the desired coating.
  • the temperature can be chosen so as to be in a melting configuration partial solid particles of the mixture, in order to best conserve the starting properties within the layer (s) which make up the coating.
  • the total fusion of the particles makes it possible to obtain a non-transformable and therefore stable phase, generally very interesting for the targeted applications.
  • the substrate to be coated is, for obvious reasons, preferably positioned relative to the thermal jet so that the projection of the mixture is directed onto the surface to be coated. Positioning is adjusted for each application, depending on the selected spray conditions and the desired deposit microstructure.
  • the or each of the layers comprising at least one ceramic compound which can be deposited by the method of the invention may have a thickness ranging from 10 ⁇ m to 2 mm.
  • the inventors have also observed that the porosity of the deposited layer (s) was closely linked to parameters relating to the liquid phase, such as the volume proportion of solid particles of the p ceramic compounds L 1 , ... , L p and / or precursors of these ceramic compounds in the liquid phase, or the rate with which the liquid phase is injected into the thermal jet.
  • the volume proportion of solid particles of p ceramic compounds L 1 , ..., L p and / or of precursors of these ceramic compounds in the liquid phase is between 2% and 20%.
  • the ratio of the volume of the solid particles of the n ceramic compounds S 1 , ..., S n to the volume of the solid particles of the p ceramic compounds L 1 , ..., L p is within a range of 0.4 to 3.
  • the flow rate with which the liquid phase is injected into the thermal jet is (0.05 ⁇ 0.03) liters per minute (L / min).
  • the or each of the layers comprising at least one ceramic compound has a plurality of pores having a size of between 0.001 and 50 micrometers.
  • the physicochemical characteristics of the plurality of pores are described later.
  • the inventors have further observed that by subjecting a coating as obtained by the process of the invention to temperatures above 1000 ° C. - typically operating temperatures of the devices in which these coatings are integrated - the porosity of the coating was not reduced.
  • the inventors have in fact observed that consolidation of the coating was observed at such temperatures.
  • the consolidation which is caused by the phenomena of sintering and coalescence of the solid particles included in the deposit and of the pores formed within the deposit, is a reorganization of the areas of material and of the porous areas, without reducing the total volume. porous.
  • the process of the invention thus makes it possible to obtain a coating resistant to erosion, while retaining very appreciable mechanical properties at high temperatures. It also makes it possible to obtain a coating of controlled porosity greater than or equal to 20%, which allows the latter to be used as an abradable coating.
  • the overall porosity of the coating ie the porosity of the layer (s) comprising at least one ceramic compound, which is / are deposited by carrying out the method of the invention
  • the overall porosity of the coating must not be too greater than 20%, because a coating having too high a porosity is subject to too rapid wear of the deposits of ceramic abradable material and hardly constitutes a durable solution for use as an abradable coating in the aforementioned fields.
  • the or each of the layers comprising at least one ceramic compound has a porosity at least equal to 20%; preferably at least equal to 20%, and at most equal to 40%, for example 35%.
  • each of the layers must have a porosity at least equal to 20%; and preferably between 20% and 40%, for example 35%, so that the assembly can be used as an abradable coating.
  • the method of the invention also makes it possible to obtain a structured coating while advantageously controlling other properties, such as a thickness of the homogeneous deposit on a substrate of complex shape, or the possibility of depositing on any type of substrate. , whatever their nature and roughness.
  • an R 1 coating is produced on a substrate made of TiAIV (alloy of titanium, aluminum and vanadium) by blown arc plasma projection of solid mullite particles, but without injection of a liquid phase, all the other parameters. otherwise remaining identical to those used for the production of R m .
  • an R 2 coating is produced on a substrate made of TiAIV (alloy of titanium, aluminum, and vanadium) by plasma arc projection blown from a colloidal aqueous solution containing precursors of solid mullite particles, but without injection of solid mullite particles.
  • TiAIV alloy of titanium, aluminum, and vanadium
  • an R 3 coating is produced on a substrate consisting of TiAIV (alloy of titanium, aluminum, and vanadium) by blown arc plasma projection of a mixture produced by simultaneous injection, into the plasma jet, of a on the one hand solid mullite particles and on the other hand deionized water containing neither solid mullite particles nor precursors of solid mullite particles, the injection of water into the plasma jet being carried out at a distance D L from the substrate such that the following inequality is satisfied: D S ⁇ D L.
  • an R 4 coating is produced by depositing, on the surface of a substrate made of TiAIV (alloy of titanium, aluminum, and vanadium), a first layer having the composition of R 1 , then of a second layer having the composition of the coating R m in accordance with the invention.
  • TiAIV alloy of titanium, aluminum, and vanadium
  • the spraying process of the present invention can be easily industrialized since its specificity and its innovative character reside in particular in the injection system, which can be adapted to all thermal spraying machines already present in industry; in the nature of the species which are injected simultaneously into the thermal jet; but also in the choice of the operating conditions imposed on the thermal jet, to obtain a structured coating which has the properties of the ceramic compound (s) constituting it.
  • each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p comprises at least one element chosen in the periodic classification of the elements from among transition elements, metalloids and lanthanides.
  • each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from simple oxides, silicates and zirconates of at least an element selected in the periodic table of elements from among the transition elements, metalloids and lanthanides.
  • each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from simple oxides, silicates and zirconates of at least one selected element among aluminum, silicon, titanium, strontium, zirconium, barium, hafnium and elements of the "rare earth" family as defined by the International Union of Pure and Applied Chemistry, it ie scandium, yttrium and lanthanides.
  • each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from the ceramic compounds which are usually used in the composition of thermal barriers and which have been previously cited in the description of the process of the invention.
  • the or each of the layers comprising at least one ceramic compound which is / are included in the coating according to the invention has a thickness ranging from 10 ⁇ m to 2 mm.
  • said or each of said layer (s) of the coating as defined above always has a porosity at least equal to 20%, preferably at least equal to 20% and at most equal to 40%, for example 35%, after submission of that (s) -ci at a temperature above 1000 ° C.
  • the torch is a plasma torch and the thermal jet is a plasma jet.
  • plasma gases are given above, reservoirs for these gases are commercially available. The reasons for these advantageous choices have been explained above.
  • the plasma torch is capable of producing a plasma jet having a temperature ranging from 5,000 to 15,000 K.
  • the plasma torch is capable of producing a plasma jet having a viscosity ranging from 10 -4 to 5.10 -4 kg / m s.
  • the device of the invention comprises two reservoirs, the first containing the solid particles of the n ceramic compounds S 1 , ..., S n , the second containing the liquid phase being pressurized and comprising solid particles of the p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .
  • the device of the invention further comprises a cleaning tank containing a solution for cleaning the piping and the injection means.
  • a cleaning tank containing a solution for cleaning the piping and the injection means.
  • the injection system comprises pipes making it possible to convey the solid particles of the n ceramic compounds S 1 , ..., S n from the first reservoir to the first injection means. The same is true for the routing of the liquid phase from the second reservoir to the second injection means.
  • the first reservoir which contains the solid particles of the n ceramic compounds S 1 , ..., S n is connected to a carrier gas, which is for example argon, under the effect of which these particles are conveyed to the first means injection.
  • a carrier gas which is for example argon
  • the reservoir which contains the liquid phase is connected to a compressed air network by means of pipes and to a source of compression gas, for example compressed air.
  • a pressure regulator makes it possible to adjust the pressure inside the liquid phase tank, generally to a pressure less than or equal to 600 kilopascals (kPa).
  • a pump is also usable.
  • the liquid phase is conveyed to the second injection means by pipes and then leaves the second injection means, for example in the form of a jet of liquid which breaks up mechanically under the droplet form.
  • the flow rate and the amount of movement of the liquid phase at the outlet of the second injection means depend in particular on the pressure in the reservoir used and / or on the pump, on the characteristics of the dimensions of the nozzle of the injection means, and on the rheological properties of the liquid phase (for example, the mass proportion of solid particles of p ceramic compounds L 1 , ..., L p and / or precursors of these ceramic compounds).
  • the two injection means make it possible to inject the solid particles of the n ceramic compounds S 1 , ..., S n and the liquid phase into the thermal jet.
  • the device can be provided with a number of injection means greater than two, for example according to the quantities or the composition of the solid particles of the n ceramic compounds S 1 , ..., S n and phase liquid to be injected.
  • the injection of the solid particles of the first ceramic compound and of the liquid phase is carried out at an angle ⁇ with respect to the longitudinal axis of the thermal jet.
  • the angles ⁇ S and ⁇ L defined above in relation to the method are between 70 ° and 105 °, for example 90 °.
  • the injection line for the solid particles of the first ceramic compound and of the liquid phase can be thermostatically controlled so as to control, and optionally modify, the injection temperature of the latter. This temperature control and this modification can be carried out at the level of the pipes and / or at the level of the tanks (or compartments).
  • the device may include a means for fixing and moving the substrate relative to the torch.
  • This means can consist of clamps, screws, adhesives or equivalent system making it possible to fix the substrate and to maintain it during thermal spraying in a chosen position, and in a means making it possible to move in rotation and in translation the surface of the substrate facing the thermal jet and in the longitudinal direction of the plasma jet.
  • the device makes it possible to carry out direct and simultaneous injection thanks to a well-suited injection system, for example by using the device of the invention, of solid particles of the first ceramic compound and of a liquid phase containing at least one. second ceramic compound, the nature of the elements injected and the simultaneity of the injections contributing to the constitution of a ceramic coating having a porosity greater than 20%.
  • the scale worn on the Figure 13 represents 100 ⁇ m.
  • the porosity of the coating R m is then compared with that of the coatings R 1 , R 2 and R 3 prepared according to the processes according to the prior art.
  • the stability of the coating R m is evaluated after being subjected to a heat treatment at a temperature of 1300 ° C.
  • solid mullite particles and a liquid phase in the form of a colloidal aqueous solution comprising precursor compounds of solid mullite particles are injected simultaneously into a plasma of arc blown from a ternary argon-helium-dihydrogen mixture, the composition of which is specified below.
  • the injection system 13 involves a first reactor 14 composed of solid mullite particles 15 which come from the tank 17.
  • the assembly formed of the reactor 14 and the tank 17 is of the type of that of the particle distributors. solids which are marketed by the company Sulzer-Metco.
  • the particle size analysis of the solid particles of mullite 15 is carried out by laser particle size distribution using a Mastersizer 2000 device (Malvern company), and is shown on Figure 2 .
  • the cumulative rejections relating to a larger particle size of 49.0; 27.6 and 10.5 ⁇ m are respectively 10; 50 and 90%.
  • 10%; 50% and 90% by number of the solid mullite particles respectively have a greater dimension greater than 49.0; 27.6 and 10.5 ⁇ m.
  • the solid particles of mullite 15 are driven from the reactor 14 under the effect of a flow of carrier gas, in this case argon, with a flow rate of 4 ⁇ 10 -3 cubic meters per minute ( m 3 / min), the supply of which is provided via an inlet pipe 19.
  • the solid mullite particles 15 are then conducted, via an outlet pipe 20, from the reactor 14 to a first means of injection 21 which has an injection nozzle 22 at its end.
  • the injection system 13 involves a second reactor 23, intended for mixing a liquid phase which comprises compounds which are precursors of solid mullite particles.
  • the liquid phase is, in this case, a colloidal aqueous solution 24 comprising compounds which are precursors of solid mullite particles.
  • An aqueous colloidal sol of mullite is prepared.
  • the colloidal aqueous solution 24 which is placed in the reactor 23 has a mass proportion of compounds which are precursors of solid mullite particles of 15%. It is then homogenized using a magnetic stirring device 25.
  • the second reactor 23 is also equipped with a pressure regulator 26 which makes it possible to adjust the pressure inside the latter, and which is connected to a compression gas, here compressed air, the input of which is provided by means of a hose 27.
  • a pressure regulator 26 which makes it possible to adjust the pressure inside the latter, and which is connected to a compression gas, here compressed air, the input of which is provided by means of a hose 27.
  • the second reactor 23 is also equipped with a valve 28, as well as a pipe 29 connecting the interior of the reactor 23 to a tank 30 containing a cleaning liquid 31, here deionized water.
  • the valve 28 is closed and the colloidal aqueous solution 24 is expelled from the reactor 23 under the effect of a pressure of 300 kPa which is imposed by the pressure regulator 26 and the compression gas circulating via the pipe 27.
  • the colloidal aqueous solution 24 is then conducted, via an outlet pipe 32, from the reactor 23 to a second injection means 33 which has an injection nozzle 34 at its end.
  • the simultaneous injection of the solid particles of mullite 15, and of the colloidal aqueous solution 24 is carried out in a plasma jet 35, generated by an arc plasma blown at an intensity of 650 amperes (A) and coming from the plasma torch 10 by the projection nozzle 36, the latter being located at a distance D of 100 millimeters (mm) relative to the substrate 11.
  • the plasma gas, from which the plasma jet 35 is generated, is a ternary mixture composed in volume proportions of 50.8% argon, 23% helium and 8% dihydrogen.
  • the injection of the solid mullite particles 15 into the thermal jet 35 is carried out via the outlet orifice of the injection nozzle 22 of the first injection means 21, with a diameter of 1.5 mm, which implies, in light of the preceding data, a flow rate of solid mullite particles of 15 grams per minute (g / min).
  • This injection is carried out with an angle ⁇ S formed by the directions of the axis of inclination of the first injection means 21 and of the longitudinal axis of the plasma jet 35, equal to 90 °, and at a distance D S of 94 mm with respect to the substrate 11.
  • the injection of the colloidal aqueous solution 24 into the thermal jet 35 is carried out via the outlet orifice of the injection nozzle 34 of the second injection means 33, with a diameter of 250 ⁇ m.
  • This injection is carried out with an angle ⁇ L formed by the directions of the axis of inclination of the second injection means 33 and of the longitudinal axis of the plasma jet 35, equal to 90 °, and at a distance D L of 80 mm from the substrate 11.
  • the thickness of the deposits obtained is between 50 and 1000 ⁇ m.
  • the Figure 3 is a schematic representation of the structure of the coating R m , which includes solid mullite particles 37 defining a network of macropores 38 of size between 1 and 50 ⁇ m and said macropores being at least partially occupied by solid mullite particles which are generated within the plasma jet 35 from the mullite precursors contained in the colloidal aqueous solution 24, and which define a network 39 of micropores of size between 0.001 and 1 ⁇ m.
  • the cliché of the Figure 6 performed by SEM makes it possible to observe a structured deposit with two networks of pores (macro- and micropores) such as just described to comment on the Figure 3 .
  • the network 39 of micropores exhibits poor mechanical integrity, disrupts the arrangement of particles 37 and contributes significantly to the overall porosity of the coating R m .
  • Three coatings R 1 , R 2 and R 3 based on mullite are prepared by implementing methods of the prior art, in order to compare the properties of these coatings with those of the coating R m in accordance with the invention, in particular by terms of porosity.
  • the plasma projection parameters which are used to produce R 1 , R 2 and R 3 are identical to those used to produce R m .
  • the only modified parameter is the nature of the compounds which are injected into the plasma jet 35, before impact on the substrate 11 on which the coating is applied.
  • R 1 is produced by blown arc plasma projection of solid mullite particles 15, but without injection of a liquid phase into the plasma jet 35.
  • R 2 is produced by blown arc plasma spraying of an aqueous colloidal solution 24 which contains precursors of solid mullite particles, but without injection of solid mullite particles 15 into the plasma jet.
  • R 3 is produced by blown arc plasma spraying of a mixture obtained within the plasma jet 35, by simultaneous injection of solid particles of mullite 15, and deionized water containing neither solid particles of mullite nor particle precursors mullite solids.
  • the injection of the deionized water into the plasma jet 35 is carried out at a distance D L from the substrate such that the following inequality is satisfied: D S ⁇ D L.
  • the overall porosity of the R 1 , R 2 , R 3 and R m coatings is determined by the hydrostatic thrust method, in accordance with standard NF EN 623-2 (entitled “Advanced technical ceramics - Monolithic ceramics - General and textural properties”, in particular method n ° 1 under vacuum of part 2 entitled: “Determination of density and porosity”).
  • the overall porosity of 7% measured for R 1 is low and characteristic of a coating obtained by plasma spraying of solid particles on a substrate, without injection of a liquid phase.
  • the overall porosity measured for R 3 is 15%, i.e. almost double that of R 1 .
  • the deionized water which is injected into the plasma jet 35 appears to constitute a disturbing element of the lamellae of solid mullite particles 15 which are deposited on the substrate 11.
  • the disturbance then constitutes a factor in increasing the overall porosity of the coating.
  • the R 2 coating which is obtained is finely structured in the form of a very porous network.
  • the overall porosity of the coating R m in accordance with the invention is 35%, and is thus even greater than those of R 1 and R 3 .
  • the R m coating applied to a substrate made of TiAIV is subjected to a heat treatment for 24 hours at a temperature of 1300 ° C.
  • the Figure 12 is a schematic representation of the microstructure of the coating R m after heat treatment, which includes a first network of pores 44, formed within the stack of solid mullite particles in molten form 43. Around the pores 44, articulates a network 45 of pores, of smaller size, which results from the reorganization, at the end of the heat treatment, of the network 39 of pores ( Figure 3 ).
  • the cliché of the Figure 15 (carried out by SEM) makes it possible to observe a structured deposit with two networks of pores (macro- and micropores), which includes solid particles of mullite in molten form 43 defining a network of macropores 44 and said macropores being at least partly occupied by solid mullite particles which are generated within the plasma jet 35 from the mullite precursors contained in the colloidal aqueous solution 24, and which define a network 45 of micropores.
  • the network 45 of micropores has poor mechanical integrity, disrupts the arrangement of the network of macropores 44 and contributes significantly to the overall porosity of the coating R m .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

L'invention concerne un procédé de revêtement d'au moins une surface d'un substrat par au moins un composé céramique.The invention relates to a method of coating at least one surface of a substrate with at least one ceramic compound.

Le domaine technique de l'invention peut être défini, notamment, comme celui du revêtement de substrats par un matériau abradable, et plus particulièrement du revêtement de substrats par un matériau abradable céramique.The technical field of the invention can be defined, in particular, as that of the coating of substrates with an abradable material, and more particularly of the coating of substrates with a ceramic abradable material.

Les revêtements en un matériau abradable céramique trouvent principalement leur utilité dans des dispositifs dans lesquels des pièces mobiles doivent se trouver au plus près de pièces fixes.The coatings of an abradable ceramic material find their utility mainly in devices in which moving parts must be located as close as possible to fixed parts.

Ainsi, le dépôt d'un revêtement en un matériau abradable céramique tel que celui réalisé selon l'invention permet, lorsque le revêtement est mis en contact avec une pièce mobile, d'user celui-ci de manière préférentielle à la pièce mobile.Thus, the deposition of a coating of an abradable ceramic material such as that produced according to the invention makes it possible, when the coating is brought into contact with a moving part, to use it in a preferential manner over the moving part.

De ce fait, l'invention est susceptible de trouver son application, de manière générale, dans le domaine de l'ingénierie mécanique, et plus particulièrement dans le domaine de la conception aéronautique, comme par exemple, pour la protection de l'intégrité de l'état de surface de pièces fixes de turboréacteurs, telles que des compresseurs basse et haute pression, des turbines ou encore des stators.As a result, the invention is likely to find its application, in general, in the field of mechanical engineering, and more particularly in the field of aeronautical design, such as, for example, for the protection of the integrity of the surface condition of fixed turbojet engine parts, such as low and high pressure compressors, turbines or stators.

Les références situées entre crochets ([ ]) renvoient à la liste des références bibliographiques qui est présentée à la suite de l'exposé détaillé d'un mode de réalisation particulier de l'invention.The references located between square brackets ([]) refer to the list of bibliographic references which is presented following the detailed description of a particular embodiment of the invention.

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

De manière générale, lorsqu'un appareillage est en fonctionnement, il arrive que certains éléments d'appareillage soient amenés à entrer en contact de manière accidentelle et à une vitesse non négligeable, entraînant alors une usure de ces éléments, par exemple par abrasion, voire même rendant ceux-ci et l'appareillage inutilisables. Ces éléments peuvent par exemple être un élément fixe et un élément mobile, ou encore deux éléments mobiles et chacun en mouvement.In general, when a device is in operation, it happens that certain elements of the device are brought into contact accidentally and at a not insignificant speed, then causing wear of these elements, for example by abrasion, or even even rendering them and the equipment unusable. These elements can for example be a fixed element and a mobile element, or else two mobile elements and each in motion.

Pour remédier à ce problème, le dépôt, sur un substrat, d'un revêtement comprenant au moins une couche d'un matériau abradable, ou plus simplement le dépôt d'un « revêtement abradable », est une technique fréquemment mise en œuvre dans des domaines tels que l'ingénierie mécanique et la conception aéronautique.To remedy this problem, the deposition, on a substrate, of a coating comprising at least one layer of an abradable material, or more simply the deposition of an “abradable coating”, is a technique frequently used in applications. fields such as mechanical engineering and aeronautical design.

Par revêtement abradable, matériau abradable, on entend généralement que ce revêtement ou matériau s'use de façon préférentielle par rapport à la pièce située en vis-à-vis, est susceptible d'être usiné facilement par des pièces mobiles.By abradable coating, abradable material is generally meant that this coating or material wears preferentially with respect to the part located opposite, and is capable of being easily machined by moving parts.

De tels revêtements sont, par exemple, utilisés au sein de turbocompresseurs automobiles, ou encore au niveau des parois de turbines terrestres et de turbines à gaz de moteurs aéronautiques.Such coatings are, for example, used in automotive turbochargers, or else in the walls of land turbines and gas turbines of aeronautical engines.

Dans ce dernier exemple, la fonction du revêtement abradable est la constitution de joints dynamiques, qui permettent de minimiser le jeu existant entre le sommet des aubes rotatives et le carter du compresseur ou de l'anneau de turbine.In the latter example, the function of the abradable coating is the constitution of dynamic seals, which make it possible to minimize the play existing between the top of the rotating blades and the casing of the compressor or of the turbine ring.

Ainsi, le revêtement, qui est déposé sur un élément fixe de turbine, le stator, s'use lors d'un contact avec le sommet des aubes, que ce dernier se produise lors des tours de rodage du rotor ou bien en cas de contact accidentel durant le service. L'existence de ce revêtement permet alors de favoriser un fonctionnement optimal des turboréacteurs, à jeu réduit et sans endommager la structure des aubes.Thus, the coating, which is deposited on a stationary turbine element, the stator, wears out during contact with the top of the blades, whether the latter occurs during the running-in turns of the rotor or in the event of contact. accidental during service. The existence of this coating then makes it possible to promote optimal operation of the turbojets, with reduced clearance and without damaging the structure of the blades.

Afin de pouvoir être appliqué sur de tels éléments, un revêtement doit satisfaire aux exigences suivantes :

  • une capacité à s'user facilement, ce qui se traduit par une faible cohésion structurale, par exemple pour ne pas endommager le sommet des aubes ;
  • un mécanisme d'usure graduelle, afin de permettre une bonne durée de vie du revêtement ;
  • une résistance à l'érosion générée par les flux de gaz à haute pression, par exemple les flux de gaz de combustion, et les flux de particules circulant à des vitesses élevées ;
  • une résistance à des températures élevées, typiquement supérieures à 1 000 degrés Celsius (°C), avec conservation des propriétés mécaniques du revêtement, mais également une résistance à des phénomènes chimiques tels que l'oxydation et la corrosion.
In order to be able to be applied to such elements, a coating must meet the following requirements:
  • a capacity to wear easily, which results in a weak structural cohesion, for example not to damage the top of the blades;
  • a gradual wear mechanism, in order to allow a good service life of the coating;
  • resistance to erosion generated by high pressure gas streams, eg, flue gas streams, and particle streams circulating at high velocities;
  • resistance to high temperatures, typically greater than 1000 degrees Celsius (° C), with conservation of the mechanical properties of the coating, but also resistance to chemical phenomena such as oxidation and corrosion.

On connaît un certain nombre de techniques permettant de réaliser des revêtements présentant de telles propriétés.A certain number of techniques are known which make it possible to produce coatings having such properties.

Ces propriétés peuvent notamment être obtenues, selon les documents [1] de Cowden et al. et [2] de Rigney et al., en associant au sein du revêtement, des éléments tels que :

  • une matrice métallique, par exemple réalisée en un superalliage tel que CoNiCrAlY (qui est obtenu en associant un alliage nickel-chrome et un alliage cobalt-aluminium-yttrium), ou une matrice céramique, telle que l'oxyde de zirconium(IV) stabilisé à l'oxyde d'yttrium(III) qui est encore noté YSZ (ou « yttria-stabilised zirconia » selon la terminologie anglaise). Cette matrice confère une résistance à l'oxydation et une intégrité mécanique aux températures élevées définies plus haut, ce qui permet ainsi d'assurer un compromis entre le caractère abradable et la résistance à l'érosion ;
  • une porosité importante localisée dans la partie externe du revêtement abradable, susceptible d'interagir avec les sommets des aubes. Une porosité importante permet de rendre le revêtement suffisamment friable pour favoriser une usure de celui-ci au moment du contact avec le sommet des aubes. Rappelons que la porosité du revêtement est définie par le pourcentage du volume du revêtement occupé par les évidements ou « pores » ; et
  • éventuellement, un lubrifiant solide céramique, tel que le nitrure de bore (BN) ou encore le graphite, afin de limiter l'échauffement généré lors du passage des aubes.
These properties can in particular be obtained, according to documents [1] by Cowden et al. and [2] by Rigney et al., by associating within the coating, elements such as:
  • a metal matrix, for example made of a superalloy such as CoNiCrAlY (which is obtained by combining a nickel-chromium alloy and a cobalt-aluminum-yttrium alloy), or a ceramic matrix, such as stabilized zirconium (IV) oxide with yttrium (III) oxide which is also denoted YSZ (or “ yttria-stabilized zirconia ” according to English terminology). This matrix confers resistance to oxidation and mechanical integrity at the high temperatures defined above, which thus makes it possible to ensure a compromise between abradability and resistance to erosion;
  • significant porosity located in the external part of the abradable coating, capable of interacting with the tops of the blades. A high porosity makes it possible to make the coating sufficiently friable to promote wear of the latter at the time of contact with the top of the blades. Remember that the porosity of the coating is defined by the percentage of the volume of the coating occupied by the recesses or “pores”; and
  • optionally, a solid ceramic lubricant, such as boron nitride (BN) or even graphite, in order to limit the heating generated during the passage of the blades.

Une technique souvent utilisée pour la réalisation de revêtements abradables est la projection thermique. Plusieurs procédés de projection thermique sont notamment utilisés en laboratoire de recherche et dans l'industrie pour la réalisation, sur des substrats très divers en termes de nature et de forme, de dépôts de matériaux céramiques, métalliques, polymères, mais également des combinaisons de ceux-ci.A technique often used for the production of abradable coatings is thermal spraying. Several thermal spraying processes are used in particular in research laboratories and in industry for the production, on very diverse substrates in terms of nature and shape, of deposits of ceramic, metallic and polymer materials, but also combinations of those. -this.

Les revêtements réalisés par projection thermique peuvent être obtenus à partir de composés à déposer ou de précurseurs de composés à déposer, ces composés ou précurseurs pouvant se présenter :

  • sous forme solide, par exemple sous la forme de particules solides qui présentent une taille moyenne de particules typiquement comprise entre 5 et 100 micromètres (µm), ou encore de particules agglomérées à l'échelle nanométrique ; ou bien
  • sous forme gazeuse ou sous forme liquide, par exemple sous la forme de solutions, de suspensions, ou encore de sols colloïdaux des composés ou précurseurs des composés comme décrits dans le document [3].
The coatings produced by thermal spraying can be obtained from compounds to be deposited or from precursors of compounds to be deposited, these compounds or precursors possibly being:
  • in solid form, for example in the form of solid particles which have an average particle size typically between 5 and 100 micrometers (μm), or else particles agglomerated at the nanometric scale; or
  • in gaseous form or in liquid form, for example in the form of solutions, suspensions, or else colloidal sols of the compounds or precursors of the compounds as described in document [3].

Dans cette technique, les composés ou précurseurs de composés entrant dans la constitution du revêtement sont injectés dans une source de chaleur qui est produite par un gaz de projection, par exemple un mélange d'un gaz combustible et d'un gaz comburant ou un gaz ionisé de type plasma. Les particules solides qui sont introduites ou générées au sein de la flamme sont fondues de manière partielle ou totale, puis accélérées vers un substrat pour former, sur la surface de celui-ci, un revêtement par empilement de particules solides et de particules fondues encore appelées « lamelles » (ou « splats » en terminologie anglaise).In this technique, the compounds or precursors of compounds entering into the constitution of the coating are injected into a heat source which is produced by a projection gas, for example a mixture of a combustible gas and an oxidizing gas or a gas. ionized plasma type. The solid particles which are introduced or generated within the flame are partially or totally melted, then accelerated towards a substrate to form, on the surface of the latter, a coating by stacking solid particles and molten particles also called " Lamellae " (or " splats " in English terminology).

L'application des techniques de projection thermique à la réalisation de revêtements abradables permet de générer deux types de revêtement.The application of thermal spraying techniques to the production of abradable coatings makes it possible to generate two types of coating.

Un premier type de revêtement, très poreux, peut être réalisé en incluant des particules non fondues dans le revêtement.A first type of coating, which is very porous, can be made by including unmelted particles in the coating.

Toutefois, ce type de revêtement, qui s'avère être difficilement reproductible, ne présente pas de propriétés satisfaisantes pour une utilisation en tant que revêtement abradable, à savoir une tenue mécanique correcte et une porosité supérieure ou égale à 20 pour cent (%). En effet, la projection thermique de particules solides qui présentent une taille moyenne de particules supérieure à 5 µm, par exemple par projection plasma, permet d'atteindre de façon classique que des porosités comprises entre 5 et 20%.However, this type of coating, which turns out to be difficult to reproduce, does not have satisfactory properties for use as an abradable coating, namely correct mechanical strength and a porosity greater than or equal to. 20 percent (%). Indeed, the thermal spraying of solid particles which have an average particle size greater than 5 μm, for example by plasma spraying, conventionally makes it possible to achieve porosities of between 5 and 20%.

Un second type de revêtement, plus dense, peut être obtenu, la porosité étant alors générée par l'introduction de particules solides sacrificielles, de nature organique ou céramique au sein du revêtement.A second type of coating, more dense, can be obtained, the porosity then being generated by the introduction of solid sacrificial particles, of organic or ceramic nature within the coating.

Ainsi, le document [4] de Clingman et al. décrit un procédé de réalisation d'un revêtement abradable pour des éléments de turbomachines, tels qu'un compresseur ou une virole de turbine. Le revêtement est constitué d'une matrice d'oxyde de zirconium(IV) stabilisé par un oxyde choisi parmi l'oxyde d'yttrium(III) (Y2O3), l'oxyde de magnésium (MgO) et l'oxyde de calcium (CaO), dans laquelle sont dispersées des particules d'un polyester aromatique cristallin aisément décomposable à une température supérieure à environ 500°C. La porosité du revêtement obtenu par ce procédé est évaluée entre 20 et 33%.Thus, the document [4] of Clingman et al. describes a method for producing an abradable coating for turbine engine components, such as a compressor or a turbine shell. The coating consists of a zirconium (IV) oxide matrix stabilized with an oxide chosen from among yttrium (III) oxide (Y 2 O 3 ), magnesium oxide (MgO) and oxide. calcium (CaO), in which are dispersed particles of an easily decomposable crystalline aromatic polyester at a temperature above about 500 ° C. The porosity of the coating obtained by this process is evaluated between 20 and 33%.

De manière similaire, le document [5] de Vine et al. décrit la possibilité d'associer, au sein d'une matrice de YSZ, des particules solides de poly (méthacrylate de méthyle) (PMMA) et des particules d'un lubrifiant solide, tel que le carbure de silicium (SiC) ou le nitrure de bore, pour la conception d'un revêtement abradable présentant une porosité comprise entre 20 et 35%.Similarly, document [5] by Vine et al. describes the possibility of associating, within a YSZ matrix, solid particles of poly (methyl methacrylate) (PMMA) and particles of a solid lubricant, such as silicon carbide (SiC) or nitride boron, for the design of an abradable coating having a porosity between 20 and 35%.

Le document [6] de Rangaswamy et al. décrit quant à lui un revêtement abradable pour des éléments de turbines à gaz, comprenant une matrice constituée par un métal ou un mélange de métaux choisi(s) parmi l'aluminium, le cobalt, le cuivre, le fer, le nickel et le silicium, un lubrifiant solide tel que le fluorure de calcium (CaF2), le disulfure de molybdène (MoS2) ou le nitrure de bore, et un agent porogène se présentant sous la forme de particules solides de graphite ou d'un polymère, tel qu'un polyimide aromatique ou un polyester choisi parmi un homopolyester de p-oxy-benzoyle et un ester de poly(p-oxybenzoylméthyle).The document [6] of Rangaswamy et al. describes an abradable coating for gas turbine elements, comprising a matrix consisting of a metal or a mixture of metals chosen from aluminum, cobalt, copper, iron, nickel and silicon , a solid lubricant such as calcium fluoride (CaF 2 ), molybdenum disulfide (MoS 2 ) or boron nitride, and a pore-forming agent in the form of solid particles of graphite or of a polymer, such as an aromatic polyimide or a polyester selected from a p -oxy-benzoyl homopolyester and a poly ( p- oxybenzoylmethyl) ester.

La porosité au sein des revêtements du second type peut encore être générée en combinant l'inclusion de particules céramiques et la création d'un réseau de cavités sur la surface du revêtement après projection thermique.The porosity within coatings of the second type can still be generated by combining the inclusion of ceramic particles and the creation of a network of cavities on the surface of the coating after thermal spraying.

Ainsi, le document [7] de Le Biez et al. décrit un revêtement abradable pour des éléments de turbines à gaz, comprenant une matrice d'un alliage nickel-chrome-aluminium dans lequel des billes creuses en un matériau silico-alumineux sont dispersées. Un réseau de cavités est usiné sur la surface du revêtement, qui présente alors une porosité au moins égale à 40%.Thus, the document [7] of Le Biez et al. discloses an abradable coating for gas turbine elements, comprising a matrix of a nickel-chromium-aluminum alloy in which hollow balls of an aluminum-silicate material are dispersed. A network of cavities is machined on the surface of the coating, which then has a porosity of at least 40%.

Si les procédés décrits dans les documents [4], [5], [6] et [7] permettent d'obtenir des revêtements présentant des porosités supérieures à 20%, et qui peuvent donc être utilisés en tant que revêtements abradables, ces procédés mettent toutefois en œuvre la projection thermique conjointe de matériaux aux propriétés thermiques très différentes. Par exemple, dans le document [4], la température de fusion de l'oxyde de zirconium(IV) est de 2 715°C à pression ambiante, alors que celle du polymère constituant les particules solides qui sont dispersées dans le revêtement est d'environ 500°C à la même pression, causant alors une inhomogénéité du revêtement réalisé.If the processes described in documents [4], [5], [6] and [7] make it possible to obtain coatings having porosities greater than 20%, and which can therefore be used as abradable coatings, these processes however implement the joint thermal projection of materials with very different thermal properties. For example, in document [4], the melting point of zirconium (IV) oxide is 2715 ° C at ambient pressure, while that of the polymer constituting the solid particles which are dispersed in the coating is d. 'about 500 ° C at the same pressure, then causing inhomogeneity of the coating produced.

Le document [8] de Pettit, Jr. et al. propose, pour résoudre ce problème d'inhomogénéité, un procédé de réalisation d'un revêtement abradable destiné à des éléments de turbomachines, qui met en œuvre une projection plasma et qui exploite les différentes zones de température du jet thermique :

  • dans la partie centrale du jet thermique sont injectées des particules d'un alliage nickel-chrome ou MCrAlY, M étant choisi parmi le nickel, le cobalt, le fer et les mélanges de ceux-ci ; et
  • dans la partie périphérique du jet thermique sont injectées des particules solides d'un polymère organique tel que le PMMA (Lucite®, société DuPont),
la température à l'intérieur de la partie périphérique du jet thermique étant très inférieure à celle à l'intérieur de la partie centrale du jet.The document [8] by Pettit, Jr. et al. proposes, to solve this problem of inhomogeneity, a method for producing an abradable coating intended for turbine engine components, which uses plasma spraying and which uses the different temperature zones of the thermal jet:
  • particles of a nickel-chromium or MCrAlY alloy are injected into the central part of the thermal jet, M being chosen from nickel, cobalt, iron and mixtures thereof; and
  • solid particles of an organic polymer such as PMMA (Lucite®, DuPont company) are injected into the peripheral part of the thermal jet,
the temperature inside the peripheral part of the thermal jet being much lower than that inside the central part of the jet.

Des procédés de revêtement par un matériau abradable entièrement céramique ont encore été mis au point.Coating processes with an entirely ceramic abradable material have also been developed.

Ainsi, le document [9] de Lima et al. décrit un procédé de préparation d'un revêtement pour des éléments tels que des compresseurs ou des chambres de combustion, qui comprend la projection thermique de particules céramiques de YSZ se présentant sous la forme d'agglomérats de taille nanométrique. Dans ce document, les paramètres de projection sont contrôlés de manière à ce que les particules, une fois déposées sur le substrat à revêtir, forment des agglomérats poreux de taille micrométrique et constitués de particules de YSZ non fondues et incluses dans une matrice de particules de YSZ fondues.Thus, the document [9] of Lima et al. describes a process for preparing a coating for elements such as compressors or combustion chambers, which comprises thermal spraying of ceramic particles of YSZ in the form of agglomerates of nanometric size. In this document, the projection parameters are controlled so that the particles, once deposited on the substrate to be coated, form porous agglomerates of micrometric size and made up of unmelted YSZ particles and included in a matrix of molten YSZ particles.

Le document [10] de Allen décrit, quant à lui, un procédé de réalisation d'un revêtement abradable pour des éléments tels que des tronçons de virole de turbine. Ce procédé comprend la projection thermique d'une suspension aqueuse comprenant un précurseur d'un matériau céramique, par exemple YSZ, et un lubrifiant se présentant sous forme solide, choisi parmi le trichlorure de bore, l'urée, la guanidine et d'autres composés azotés organiques.Allen's document [10] describes a process for producing an abradable coating for elements such as turbine shell sections. This process comprises the thermal spraying of an aqueous suspension comprising a precursor of a ceramic material, for example YSZ, and a lubricant in solid form, chosen from boron trichloride, urea, guanidine and others. organic nitrogen compounds.

Par rapport aux documents [4] à [8], les procédés décrits dans les documents [9] et [10] permettent à la fois de s'affranchir de l'inhomogénéité due à des matériaux possédant des températures de fusion très différentes, et de supprimer le traitement thermique final qui est nécessaire pour éliminer les particules polymériques et organiques utilisées pour créer la porosité.Compared to documents [4] to [8], the processes described in documents [9] and [10] make it possible both to overcome the inhomogeneity due to materials having very different melting temperatures, and to eliminate the final heat treatment which is necessary to remove the polymeric and organic particles used to create the porosity.

Au surplus, un revêtement en un matériau abradable entièrement céramique permet d'atteindre des températures de fonctionnement élevées, typiquement supérieures à 1000°C, qui sont fréquemment atteintes dans des domaines tels que l'aéronautique.In addition, a coating of an entirely ceramic abradable material makes it possible to achieve high operating temperatures, typically greater than 1000 ° C., which are frequently reached in fields such as aeronautics.

Toutefois, certaines limitations peuvent être notées, comme par exemple :

  • la nécessité d'un contrôle précis des paramètres de projection, comme la température dans le procédé décrit dans le document [9], afin d'obtenir une structure bimodale associant des particules solides céramiques non fondues et fondues ; ou encore
  • la nécessité d'utiliser un lubrifiant se présentant sous forme solide, comme le nitrure de bore dans le procédé décrit dans le document [10], afin de diminuer le coefficient de frottement au sein du revêtement.
However, some limitations may be noted, such as for example:
  • the need for precise control of the projection parameters, such as the temperature in the process described in document [9], in order to obtain a bimodal structure combining unmelted and molten ceramic solid particles; or
  • the need to use a lubricant in solid form, such as boron nitride in the process described in document [10], in order to reduce the coefficient of friction within the coating.

Les inventeurs se sont donc fixé pour but de mettre au point un procédé de préparation d'un revêtement qui réponde aux critères énoncés ci-dessus pour pouvoir être utilisé en tant que revêtement abradable, à savoir notamment : une aptitude à être facilement abrasé tout en présentant un mécanisme d'usure lent ainsi qu'une résistance à l'érosion et aux températures élevées tout en conservant des propriétés mécaniques convenables. Typiquement, un tel revêtement doit présenter une porosité supérieure ou égale à 20%, tout en présentant une épaisseur et une structure homogènes.The inventors have therefore set themselves the goal of developing a process for preparing a coating which meets the criteria set out above in order to be able to be used as an abradable coating, namely in particular: an ability to be easily abraded while at the same time with a slow wear mechanism as well as resistance to erosion and at elevated temperatures while maintaining suitable mechanical properties. Typically, such a coating must have a porosity greater than or equal to 20%, while having a homogeneous thickness and structure.

Le but de la présente invention est aussi de fournir un tel procédé qui soit simple, fiable, facile à mettre en œuvre, et évite notamment l'utilisation d'additifs.The aim of the present invention is also to provide such a method which is simple, reliable, easy to implement, and in particular avoids the use of additives.

Le but de la présente invention est encore de fournir un procédé de préparation d'un revêtement abradable qui ne présente pas les inconvénients, défauts et désavantages des procédés de l'art antérieur et qui résolve les problèmes des procédés de l'art antérieur.The aim of the present invention is also to provide a process for preparing an abradable coating which does not present the drawbacks, defects and disadvantages of the processes of the prior art and which resolves the problems of the processes of the prior art.

EXPOSÉ DE L'INVENTIONDISCLOSURE OF THE INVENTION

Ces buts et d'autres encore sont atteints par l'invention qui propose, en premier lieu, un procédé de revêtement d'au moins une surface d'un substrat par au moins une couche (abradable) comprenant au moins un composé céramique, ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes :

  1. a) une injection simultanée :
    • de particules solides de n composés céramiques S1, ..., S n par un premier moyen d'injection, n étant un nombre entier supérieur ou égal à 1, et au moins 90% en nombre des particules solides des n composés céramiques S1, ..., S n présentant une plus grande dimension supérieure à 5 µm et inférieure à 100 µm ; et
    • d'une phase liquide par un deuxième moyen d'injection, la phase liquide comprenant un solvant, des particules solides de p composés céramiques L1, ..., L p et/ou au moins un précurseur des particules solides des p composés céramiques L1, ..., L p , p étant un nombre entier supérieur ou égal à 1, et au moins 90% en nombre des particules solides des p composés céramiques L1, ..., L p présentant une plus grande dimension inférieure ou égale à 5 µm,
    dans un jet thermique, moyennant quoi, un mélange des particules solides des n composés céramiques S1, ..., S n et de la phase liquide est obtenu dans le jet thermique ; puis
  2. b) une projection du jet thermique, qui contient le mélange des particules solides des n composés céramiques S1, ..., S n et de la phase liquide, sur ladite surface du substrat, moyennant quoi, la couche comprenant au moins un composé céramique est constituée sur ladite surface;
éventuellement, l'enchaînement des étapes a) et b) est répété une ou plusieurs fois.These aims and others are achieved by the invention which proposes, first of all, a method of coating at least one surface of a substrate with at least one (abradable) layer comprising at least one ceramic compound, said method being characterized in that it comprises the following steps:
  1. a) simultaneous injection:
    • of solid particles of n ceramic compounds S 1 , ..., S n by a first injection means, n being an integer greater than or equal to 1, and at least 90% by number of the solid particles of n ceramic compounds S 1 , ..., S n having a greater dimension greater than 5 µm and less than 100 µm; and
    • of a liquid phase by a second injection means, the liquid phase comprising a solvent, solid particles of p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of p ceramic compounds L 1 , ..., L p , p being an integer greater than or equal to 1, and at least 90% by number of the solid particles of the p ceramic compounds L 1 , ..., L p having a larger smaller dimension or equal to 5 µm,
    in a thermal jet, whereby, a mixture of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase is obtained in the thermal jet; then
  2. b) a projection of the thermal jet, which contains the mixture of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase, on said surface of the substrate, whereby, the layer comprising at least one compound ceramic is formed on said surface;
optionally, the sequence of steps a) and b) is repeated one or more times.

Ainsi, le procédé de l'invention se fonde sur le constat des inventeurs, selon lequel la projection thermique d'un mélange obtenu par une injection simultanée dans le jet thermique de :

  • n composés céramiques S1, ..., S n qui se présentent sous la forme de particules solides (présentant une taille de particules judicieusement choisie) de ces composés ; et
  • p composés céramiques L1, ..., L p qui se présentent sous la forme de particules solides (présentant également une taille de particules judicieusement choisie et différente de celle des particules solides des n composés céramiques S1, ..., S n ) comprises dans une phase liquide,
permet l'obtention d'un revêtement qui présente des propriétés optimales, notamment en termes de porosité, pour une utilisation en tant que revêtement abradable.Thus, the process of the invention is based on the finding of the inventors, according to which the thermal projection of a mixture obtained by simultaneous injection into the thermal jet of:
  • n ceramic compounds S 1 , ..., S n which are in the form of solid particles (having a carefully chosen particle size) of these compounds; and
  • p ceramic compounds L 1 , ..., L p which are in the form of solid particles (also having a carefully chosen particle size different from that of the solid particles of n ceramic compounds S 1 , ..., S n ) included in a liquid phase,
enables a coating to be obtained which has optimum properties, in particular in terms of porosity, for use as an abradable coating.

Le procédé de l'invention se distingue de l'art antérieur car il combine les avantages procurés d'une part, par l'injection en voie sèche de particules solides de n composés céramiques S1, ..., S n dans un jet thermique et, d'autre part, par l'injection simultanée d'une phase liquide véhiculant des particules solides de p composés céramiques L1, ..., L p et/ou au moins un précurseur des particules solides des p composés céramiques L1, ..., L p . Les conditions opératoires générales et préférées du procédé de l'invention sont exposées ci-après.The method of the invention differs from the prior art because it combines the advantages provided on the one hand by the dry injection of solid particles of n ceramic compounds S 1 , ..., S n in a jet thermal and, on the other hand, by the simultaneous injection of a liquid phase conveying solid particles of p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of p ceramic compounds L 1 , ..., L p . The general and preferred operating conditions of the process of the invention are set out below.

On précise également, dans ce qui suit, la définition de certains des termes utilisés pour décrire l'invention.The definition of some of the terms used to describe the invention is also specified in what follows.

Selon l'invention, le substrat peut être organique, inorganique ou mixte, c'est-à-dire qu'une même surface du substrat, notamment la surface à revêtir par le procédé selon l'invention, peut être à la fois organique et inorganique.According to the invention, the substrate can be organic, inorganic or mixed, that is to say that the same surface of the substrate, in particular the surface to be coated by the method according to the invention, can be both organic and inorganic.

Avantageusement, le substrat supporte les conditions opératoires du procédé de l'invention.Advantageously, the substrate withstands the operating conditions of the process of the invention.

Avantageusement, le substrat est constitué d'au moins un matériau choisi parmi les semi-conducteurs, tels que le silicium ; les polymères organiques, tels que les polyméthacrylates de méthyle (PMMA), les polycarbonates (PC), les polystyrènes (PS), les polypropylènes (PP) et les polychlorures de vinyle (PVC) ; les métaux tels que l'aluminium, le titane, le nickel, le tungstène, le molybdène ; les alliages de métaux tels que NiAI, TiAl, TiAIV, les aciers, les superalliages tels que les alliages MCrAIY (avec M= Fe, Ni, Co, Ni/Co) ; les verres; les oxydes minéraux, par exemple en couche, tels que, par exemple, la silice (SiO2), l'alumine (Al2O3), l'oxyde de zirconium(IV) (ZrO2), l'oxyde de titane(IV) (TiO2), l'oxyde de tantale(V) (Ta2O5) ou encore l'oxyde de magnésium (MgO) ; les carbures, borures, nitrures; les substrats carbonés; et les matériaux composites ou mixtes comprenant plusieurs de ces matériaux.Advantageously, the substrate consists of at least one material chosen from semiconductors, such as silicon; organic polymers, such as polymethyl methacrylates (PMMA), polycarbonates (PC), polystyrenes (PS), polypropylenes (PP) and polyvinylchlorides (PVC); metals such as aluminum, titanium, nickel, tungsten, molybdenum; metal alloys such as NiAl, TiAl, TiAIV, steels, superalloys such as MCrAIY alloys (with M = Fe, Ni, Co, Ni / Co); the glasses; mineral oxides, for example as a layer, such as, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), zirconium (IV) oxide (ZrO 2 ), titanium oxide (IV) (TiO 2 ), tantalum oxide (V) (Ta 2 O 5 ) or even magnesium oxide (MgO); carbides, borides, nitrides; carbonaceous substrates; and composite or mixed materials comprising several of these materials.

Mieux encore, le substrat est constitué de d'un alliage TiAIV (alliage de titane, d'aluminium et de vanadium), par exemple de TiAl6V (alliage composé de 90% en masse de Ti, 6% en masse d'aluminium et 4% en masse de vanadium).Better still, the substrate consists of a TiAIV alloy (alloy of titanium, aluminum and vanadium), for example of TiAl 6 V (alloy composed of 90% by mass of Ti, 6% by mass of aluminum and 4% by mass of vanadium).

Préalablement au revêtement du substrat par au moins une couche par le procédé selon l'invention, la surface du substrat que l'on souhaite revêtir est éventuellement préparée et/ou nettoyée afin d'éliminer les contaminants organiques et/ou inorganiques qui seraient susceptibles d'empêcher le dépôt, voire la fixation, du revêtement sur la surface, et afin d'améliorer l'adhérence du revêtement.Prior to the coating of the substrate with at least one layer by the method according to the invention, the surface of the substrate that is to be coated is optionally prepared and / or cleaned in order to remove organic and / or inorganic contaminants which would be liable to damage. 'to prevent the deposition or even fixation of the coating on the surface, and in order to improve the adhesion of the coating.

Le procédé de préparation de la surface peut consister en la création d'une rugosité de surface par sablage.The method of preparing the surface may consist of creating a surface roughness by sandblasting.

Le procédé de nettoyage utilisé dépend de la nature du substrat et peut être réalisé par une ou plusieurs technique(s) choisie(s) parmi les techniques physiques, chimiques et mécaniques connues de l'homme du métier.The cleaning process used depends on the nature of the substrate and can be carried out by one or more technique (s) chosen from among the physical, chemical and mechanical techniques known to those skilled in the art.

De manière non limitative, le procédé de nettoyage peut être réalisé, par exemple, par une technique choisie parmi l'immersion dans un solvant organique, le nettoyage lessiviel, le décapage acide et la combinaison de deux ou plus de ces techniques, cette ou ces techniques pouvant en outre être assistées par les ultrasons.In a non-limiting manner, the cleaning process can be carried out, for example, by a technique chosen from immersion in an organic solvent, laundry cleaning, acid pickling and the combination of two or more of these techniques, this or these techniques which can also be assisted by ultrasound.

Le nettoyage peut éventuellement être suivi d'un rinçage à l'eau de ville, puis d'un rinçage à l'eau désionisée, les rinçages étant éventuellement suivis d'un séchage par un technique choisie parmi la technique de « lift-out », une pulvérisation d'alcool, un jet d'air comprimé, un jet d'air chaud, ou des rayons infrarouges.The cleaning can optionally be followed by rinsing with tap water, then by rinsing with deionized water, the rinses optionally being followed by drying by a technique chosen from the “ lift-out ” technique. , an alcohol spray, a blast of compressed air, a blast of hot air, or infrared rays.

Dans le cadre de la présente invention, on précise que l'expression « élément chimique » désigne un élément du tableau périodique des éléments chimiques, encore connu sous les noms de classification périodique des éléments ou tableau de Mendeleïev, tandis que l'expression « composé chimique » désigne une molécule ou un composé ionique formé d'au moins deux éléments chimiques différents.In the context of the present invention, it is specified that the expression “chemical element” designates an element of the periodic table of chemical elements, also known under the names of the periodic table of the elements or the Mendeleïev table, while the expression “compound chemical ”denotes an ionic molecule or compound formed from at least two different chemical elements.

Dans le cadre de la présente invention, la définition de l'expression « composé céramique » n'est pas rappelée et est bien connue d'un homme du métier.In the context of the present invention, the definition of the expression “ceramic compound” is not repeated and is well known to a person skilled in the art.

Parmi les composés céramiques pouvant entrer dans la composition des couches préparées par le procédé selon l'invention, on peut notamment citer :

  • les oxydes, tels que les oxydes simples de métal (par exemple, un oxyde d'aluminium ou encore un oxyde de zirconium) ou encore les oxydes mixtes de métal (par exemple, un silicate de métal ou encore un zirconate de métal) ;
  • les non-oxydes, tels que par exemple, les carbures, borures, nitrures, de métaux tels que le tungstène, le magnésium, le platine, le silicium, le zirconium, l'hafnium, le tantale ou encore le titane ; ou encore
  • les céramiques composites, définies généralement comme étant une combinaison d'un ou plusieurs oxydes et d'un ou plusieurs non-oxydes, tels que ceux cités ci-dessus.
Among the ceramic compounds which may enter into the composition of the layers prepared by the process according to the invention, there may be mentioned in particular:
  • oxides, such as simple metal oxides (for example, an aluminum oxide or else a zirconium oxide) or else mixed metal oxides (for example, a metal silicate or else a metal zirconate);
  • non-oxides, such as, for example, carbides, borides, nitrides, of metals such as tungsten, magnesium, platinum, silicon, zirconium, hafnium, tantalum or even titanium; or
  • composite ceramics, generally defined as being a combination of one or more oxides and one or more non-oxides, such as those mentioned above.

À cet égard, on précise que les termes « métal » et « métallique » se réfèrent aux éléments qui sont classiquement considérés comme des métaux dans la classification périodique des éléments, en particulier les éléments de transition (comme, par exemple, le titane, le zirconium, le niobium, l'yttrium, le vanadium, le chrome, le cobalt et le molybdène), les autres métaux (comme l'aluminium, le gallium, le germanium et l'étain), les lanthanides et les actinides. Ces termes se réfèrent également aux éléments métalloïdes comme, par exemple, le silicium.In this regard, it is clarified that the terms "metal" and "metallic" refer to the elements which are classically considered as metals in the periodic table of the elements, in particular the transition elements (such as, for example, titanium, zirconium, niobium, yttrium, vanadium, chromium, cobalt and molybdenum), other metals (such as aluminum, gallium, germanium and tin), lanthanides and actinides. These terms also refer to metalloid elements such as, for example, silicon.

Conformément à l'invention, le procédé comprend, dans l'étape a), l'injection simultanée de particules solides de n composés céramiques S1, ..., S n convenablement choisis, et d'une phase liquide comprenant un solvant, des particules solides de p composés céramiques L1, ..., L p et/ou au moins un précurseur des particules solides des p composés céramiques L1, ..., L p convenablement choisis.According to the invention, the process comprises, in step a), the simultaneous injection of solid particles of n ceramic compounds S 1 , ..., S n suitably chosen, and of a liquid phase comprising a solvent, solid particles of p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of p ceramic compounds L 1 , ..., L p suitably chosen.

Ainsi, de manière avantageuse, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p comporte au moins un élément choisi dans la classification périodique des éléments parmi les éléments de transition, les métalloïdes et les lanthanides.Thus, advantageously, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p comprises at least one element chosen in the periodic table of elements from the elements of transition, metalloids and lanthanides.

De manière encore plus avantageuse, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p est choisi parmi les oxydes, les silicates et les zirconates d'au moins un élément choisi dans la classification périodique des éléments parmi les éléments de transition, les métalloïdes et les lanthanides.Even more advantageously, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from oxides, silicates and zirconates of at least one element chosen in the periodic table of elements from among the transition elements, metalloids and lanthanides.

Mieux encore, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p est choisi parmi les oxydes simples, les silicates et les zirconates d'au moins un élément choisi parmi l'aluminium, le silicium, le titane, le strontium, le zirconium, le baryum, l'hafnium et les éléments de la famille des « terres rares » telle que définie par l'Union Internationale de Chimie Pure et Appliquée (cf. [11]), c'est-à-dire le scandium, l'yttrium et les lanthanides.Better still, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from simple oxides, silicates and zirconates of at least one selected element among aluminum, silicon, titanium, strontium, zirconium, barium, hafnium and elements of the “rare earth” family as defined by the International Union of Pure and Applied Chemistry (cf. [11] ), ie scandium, yttrium and lanthanides.

Avantageusement, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p est choisi parmi les composés céramiques qui sont usuellement utilisés dans la composition de barrières thermiques comme, par exemple :

  • un oxyde simple d'un élément choisi parmi le zirconium (par exemple l'oxyde de zirconium(IV) (ZrO2)), l'hafnium (par exemple l'oxyde d'hafnium(IV) (HfO2)), le scandium (par exemple l'oxyde de scandium(III) (Sc2O3)), l'yttrium (par exemple l'oxyde d'yttrium(III) (Y2O3)) et les lanthanides, les oxydes simples de zirconium et d'hafnium pouvant être stabilisés par un oxyde d'yttrium (par exemple Y2O3, qui permet de préparer l'oxyde YSZ déjà cité plus haut en présence de ZrO2) ;
  • un silicate d'au moins un élément choisi parmi l'aluminium (par exemple la mullite), l'yttrium, le scandium et les lanthanides, le silicate pouvant être dopé par au moins un oxyde d'au moins un élément de la deuxième colonne de la classification périodique des éléments (ou élément de la famille des « alcalino-terreux ») ;
  • un zirconate d'au moins un élément choisi parmi l'yttrium, le scandium et les lanthanides, le zirconate étant choisi parmi ceux qui cristallisent selon une structure pyrochlore (par exemple le zirconate de lanthane (La2Zr2O7), le zirconate de gadolinium (Gd2Zr2O7), le zirconate de niobium (Nb2Zr2O7)) ou selon une structure pérovskite (par exemple les zirconates de strontium (SrZrO3) et de baryum (BaZrO3)) ;
et les mélanges de ces composés céramiques.Advantageously, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from the ceramic compounds which are usually used in the composition of thermal barriers such as, for example :
  • a simple oxide of an element selected from zirconium (for example zirconium (IV) oxide (ZrO 2 )), hafnium (for example hafnium (IV) oxide (HfO 2 )), scandium (e.g. scandium (III) oxide (Sc 2 O 3 )), yttrium (e.g. yttrium (III) oxide (Y 2 O 3 )) and lanthanides, simple oxides of zirconium and hafnium which can be stabilized with an yttrium oxide (for example Y 2 O 3 , which makes it possible to prepare the YSZ oxide already mentioned above in the presence of ZrO 2 );
  • a silicate of at least one element chosen from aluminum (for example mullite), yttrium, scandium and lanthanides, the silicate possibly being doped with at least one oxide of at least one element from the second column of the Periodic Table of the Elements (or element of the “alkaline earth” family);
  • a zirconate of at least one element chosen from yttrium, scandium and lanthanides, the zirconate being chosen from those which crystallize according to a pyrochlore structure (for example lanthanum zirconate (La 2 Zr 2 O 7 ), zirconate gadolinium (Gd 2 Zr 2 O 7 ), niobium zirconate (Nb 2 Zr 2 O 7 )) or according to a perovskite structure (for example strontium (SrZrO 3 ) and barium (BaZrO 3 ) zirconates);
and mixtures of these ceramic compounds.

On précise que l'on désigne, par l'expression « particule solide », une particule se présentant sous forme solide, à une pression et une température ambiantes, la température ambiante étant définie comme étant la température à laquelle la particule se situe lorsque celle-ci n'est soumise, ni à un refroidissement, ni à un chauffage quelconque. La température ambiante est généralement de 15 à 30°C, par exemple de 20 à 25°C.It is specified that the expression “solid particle” is used to designate a particle in solid form, at ambient pressure and temperature, the ambient temperature being defined as being the temperature at which the particle is located when that it is not subjected either to cooling or to any heating. The ambient temperature is generally 15 to 30 ° C, for example 20 to 25 ° C.

Les particules solides des n composés céramiques S1, ..., S n sont des particules qui peuvent être de forme quelconque, mais dont au moins 90% en nombre présentent une plus grande dimension supérieure à 5 µm et inférieure à 100 µm.The solid particles of the n ceramic compounds S 1 , ..., S n are particles which can be of any shape, but of which at least 90% by number have a greater dimension greater than 5 μm and less than 100 μm.

On précise que la plus grande dimension d'une particule correspond au diamètre de celle-ci lorsqu'il est établi, par exemple par une analyse granulométrique reproductible, que la particule possède ou possède sensiblement la forme d'une sphère.It is specified that the largest dimension of a particle corresponds to the diameter of the latter when it is established, for example by a reproducible particle size analysis, that the particle has or has substantially the shape of a sphere.

Avantageusement, la phase liquide résulte de la mise en contact d'un solvant, de particules solides des p composés céramiques L1, ..., L p et/ou d'au moins un précurseur des particules solides des p composés céramiques L1, ..., L p .Advantageously, the liquid phase results from bringing a solvent into contact with solid particles of the p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .

Par le terme « précurseur », on entend généralement au moins un composé chimique utilisé dans l'une quelconque des réactions chimiques par lesquelles les p composés céramiques L1, ..., L p (qui se présentent sous la forme de particules solides) sont obtenus.By the term “precursor” is generally meant at least one chemical compound used in any one of the chemical reactions by which the p ceramic compounds L 1 , ..., L p (which are in the form of solid particles) are obtained.

Ainsi, la phase liquide peut avantageusement résulter d'une mise en solution ou, en variante, d'une mise en suspension, dans un solvant, de particules solides des p composés céramiques L1, ..., L p et/ou d'au moins un précurseur de particules solides des p composés céramiques L1, ..., L p , étant précisé qu'au moins 90% en nombre des particules solides de chacun des p composés L1, ..., L p présente une plus grande dimension inférieure ou égale à 5 µm.Thus, the liquid phase can advantageously result from placing in solution or, as a variant, suspending, in a solvent, solid particles of p ceramic compounds L 1 , ..., L p and / or d 'at least one solid particle precursor of the p ceramic compounds L 1 , ..., L p , it being specified that at least 90% by number of the solid particles of each of the p compounds L 1 , ..., L p has a greater dimension less than or equal to 5 µm .

Dans le cas d'une mise en suspension, la phase liquide obtenue peut être une solution vraie ou, en variante, une solution colloïdale des particules solides des p composés céramiques L1, ..., L p et/ou d'au moins un précurseur des particules solides des p composés céramiques L1, ..., L p .In the case of suspension, the liquid phase obtained can be a true solution or, as a variant, a colloidal solution of the solid particles of the p ceramic compounds L 1 , ..., L p and / or at least a precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .

On considère qu'un composé chimique, et en particulier, un composé céramique ou un précurseur de composé céramique, est soluble dans un solvant lorsqu'il est apte à former une solution vraie ou une solution colloïdale avec ce solvant. On parle de solution vraie lorsque le soluté est une molécule de petite taille, alors qu'on parle plutôt de solution colloïdale lorsque le soluté est une macromolécule (taille allant de 5 nanomètres (nm) à 1 µm, cf. [12]).It is considered that a chemical compound, and in particular, a ceramic compound or a ceramic compound precursor, is soluble in a solvent when it is able to form a true solution or a colloidal solution with this solvent. We speak of a true solution when the solute is a small molecule, whereas we speak more of a colloidal solution when the solute is a macromolecule (size ranging from 5 nanometers (nm) to 1 µm, cf. [12] ).

Avantageusement, le solvant est choisi parmi l'eau, les solvants organiques (par exemple, l'éthanol), les mélanges d'eau et d'au moins un solvant organique miscible à l'eau (par exemple, un mélange eau-éthanol) et les mélanges de solvants organiques miscibles entre eux.Advantageously, the solvent is chosen from water, organic solvents (for example, ethanol), mixtures of water and at least one organic solvent miscible with water (for example, a water-ethanol mixture ) and mixtures of organic solvents miscible with one another.

Mieux encore, la phase liquide est une solution aqueuse colloïdale des particules solides des p composés céramiques L1, ..., L p et/ou d'au moins un précurseur des particules solides des p composés céramiques L1, ..., L p .Better still, the liquid phase is a colloidal aqueous solution of the solid particles of the p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .

Conformément à l'invention, les entiers n et p, identiques ou différents, sont choisis l'un indépendamment de l'autre. Ces entiers n et p sont choisis dans un intervalle allant de 1 à 10, mieux encore, dans un intervalle allant de 1 à 5, toutes les valeurs intermédiaires comprises dans les intervalles ainsi définis étant considérées.In accordance with the invention, the integers n and p, which are identical or different, are chosen one independently of the other. These integers n and p are chosen from an interval ranging from 1 to 10, better still, from an interval ranging from 1 to 5, all the intermediate values included in the intervals thus defined being considered.

Selon une première variante, les n composés céramiques S1, ..., S n peuvent être tous identiques aux p composés céramiques L1, ..., L p , et l'entier n est alors égal à l'entier p. According to a first variant, the n ceramic compounds S 1 , ..., S n can all be identical to the p ceramic compounds L 1 , ..., L p , and the integer n is then equal to the integer p.

En d'autres termes, les n composés céramiques S1, ..., S n injectés par le premier moyen d'injection sont exactement les mêmes que les p composés céramiques L1, ..., L p qui sont injectés par le deuxième moyen d'injection, ou qui sont obtenus dans le jet thermique après la/les réaction(s) chimique(s) de formation des p composés céramiques L1, ..., L p (dans le cas où ce sont des précurseurs de ces p composés céramiques L1, ..., L p qui sont injectés par le deuxième moyen d'injection).In other words, the n ceramic compounds S 1 , ..., S n injected by the first injection means are exactly the same as the p ceramic compounds L 1 , ..., L p which are injected by the second injection means, or which are obtained in the thermal jet after the chemical reaction (s) of formation of the p ceramic compounds L 1 , ..., L p (in the case where they are precursors of these p ceramic compounds L 1 , ..., L p which are injected by the second injection means).

En particulier, n et p sont tous les deux égaux à 1, et les composés céramiques S1 et L1 sont tous les deux de la mullite. Il s'agit d'un aluminosilicate cristallin existant sous la forme d'une solution solide de composition Al2[Al2+2x Si2-2x ]O10-x avec 0,17 ≤ x ≤ 0,5. La composition de cet aluminosilicate peut ainsi évoluer entre les formes « mullite 3:2 » (3 Al2O3·2 SiO2) et « mullite 2:1 » (2 Al2O3·SiO2), les différentes stœchiométries étant obtenues par substitution d'atomes de silicium par des atomes d'aluminium au sein du cristal.In particular, n and p are both equal to 1, and the ceramic compounds S 1 and L 1 are both mullite. It is a crystalline aluminosilicate existing in the form of a solid solution of composition Al 2 [Al 2 + 2 x Si 2-2 x ] O 10- x with 0.17 ≤ x ≤ 0.5. The composition of this aluminosilicate can thus change between the “3: 2 mullite” (3 Al 2 O 3 · 2 SiO 2 ) and “2: 1 mullite” (2 Al 2 O 3 · SiO 2 ) forms, the different stoichiometries being obtained by substitution of silicon atoms by aluminum atoms within the crystal.

Dans ce cas, la phase liquide est une solution aqueuse colloïdale de mullite, laquelle peut être préparée, par exemple, par mise en suspension de particules solides de nitrate d'aluminium, d'une suspension aqueuse de particules colloïdales de silice et d'eau désionisée.In this case, the liquid phase is an aqueous colloidal mullite solution, which can be prepared, for example, by suspending solid particles of aluminum nitrate, an aqueous suspension of colloidal particles of silica and water. deionized.

Selon une deuxième variante, les n composés céramiques S1, ..., S n peuvent être partiellement ou totalement différents des p composés céramiques L1, ..., L p , l'entier n n'étant alors pas nécessairement égal à l'entier p. Ainsi, l'association de composés céramiques présentant des propriétés intrinsèques variées peut être réalisée à des fins d'optimisation du comportement in situ du revêtement obtenu par le procédé de l'invention (par exemple, en conférant des propriétés de résistance mécanique à des températures élevées i.e. typiquement supérieures à 1 000°C).According to a second variant, the n ceramic compounds S 1 , ..., S n may be partially or totally different from the p ceramic compounds L 1 , ..., L p , the integer n then not necessarily being equal to the whole p. Thus, the combination of ceramic compounds exhibiting various intrinsic properties can be carried out for the purpose of optimizing the in situ behavior of the coating obtained by the process of the invention (for example, by conferring properties of mechanical resistance at temperatures high ie typically greater than 1000 ° C).

Conformément à l'invention, l'injection de l'étape a) est réalisée dans un jet thermique, moyennant quoi, un mélange des particules solides des n composés céramiques S1, ..., S n et de la phase liquide est obtenu dans le jet thermique.According to the invention, the injection of step a) is carried out in a thermal jet, whereby a mixture of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase is obtained in the thermal jet.

Le jet thermique peut être constitué d'un gaz (aussi appelé « gaz de projection ») ou d'un mélange de gaz, et agit en tant que source enthalpique, laquelle permet :

  • d'une part, d'augmenter la température des particules solides des n composés céramiques S1, ..., S n , éventuellement jusqu'au point de fusion de celles-ci, les n composés céramiques S1, ..., S n se présentant alors sous la forme de particules solides fondues partiellement ou totalement dans le jet thermique ; et
  • d'autre part, de vaporiser le solvant de la phase liquide, d'augmenter la température des particules solides des p composés céramiques L1, ..., L p , éventuellement jusqu'au point de fusion de celles-ci et/ou d'augmenter la température du/des précurseur(s) des p composés céramiques L1, ..., L p pour permettre la/les réaction(s) chimique(s) conduisant à la synthèse des p composés céramiques L1, ..., L p , les p composés céramiques L1, ..., L p se présentant alors sous la forme de particules solides fondues partiellement ou totalement dans le jet thermique.
The thermal jet can be made up of a gas (also called "projection gas") or a mixture of gases, and acts as an enthalpy source, which allows:
  • on the one hand, to increase the temperature of the solid particles of the n ceramic compounds S 1 , ..., S n , possibly up to the melting point thereof, the n ceramic compounds S 1 , ..., S n then in the form of solid particles partially or totally melted in the thermal jet; and
  • on the other hand, to vaporize the solvent of the liquid phase, to increase the temperature of the solid particles of the p ceramic compounds L 1 , ..., L p , optionally up to the melting point thereof and / or to increase the temperature of the precursor (s) of the p ceramic compounds L 1 , ..., L p to allow the chemical reaction (s) leading to the synthesis of the p ceramic compounds L 1 ,. .., L p , the p ceramic compounds L 1 , ..., L p then appearing in the form of solid particles partially or totally melted in the thermal jet.

La nature du gaz de projection est choisie en fonction de la technique de projection du jet thermique qui est utilisée. Le gaz de projection peut être un gaz mono-, polyatomique ou encore un mélange de gaz, tels que définis ci-après.The nature of the projection gas is chosen as a function of the thermal jet projection technique which is used. The projection gas can be a mono- or polyatomic gas or else a mixture of gases, as defined below.

L'injection simultanée des particules solides des n composés céramiques S1, ..., S n et de la phase liquide peut être réalisée par tout moyen approprié d'injection de solides et de liquides.The simultaneous injection of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase can be carried out by any suitable means of injection of solids and liquids.

Ainsi, par exemple, un premier moyen d'injection peut être relié à un/des réservoir(s) contenant les particules solides des n composés céramiques S1, ..., S n , tandis qu'un deuxième moyen d'injection peut être relié à un/des réservoir(s) contenant la phase liquide.Thus, for example, a first injection means can be connected to a reservoir (s) containing the solid particles of the n ceramic compounds S 1 , ..., S n , while a second injection means can be connected to a reservoir (s) containing the liquid phase.

Par exemple encore, les particules solides des n composés céramiques S1, ..., S n peuvent être injectées dans le jet thermique sous la forme d'un jet de ces particules, et la phase liquide peut l'être sous la forme d'un jet ou de gouttes, de préférence avec une quantité de mouvement adaptée pour être sensiblement identique à celle du jet thermique.For example again, the solid particles of the n ceramic compounds S 1 , ..., S n can be injected into the thermal jet in the form of a jet of these particles, and the liquid phase can be injected in the form of 'a jet or drops, preferably with a quantity of movement adapted to be substantially identical to that of the thermal jet.

Avantageusement, l'injection des particules solides des n composés céramiques S1, ..., S n et de la phase liquide est réalisée avec un angle α (par exemple de 75° à 105°, notamment de 90°) par rapport à l'axe longitudinal du jet thermique. Autrement dit :

  • l'injection des particules solides des n composés céramiques S1, ..., S n est réalisée, de manière avantageuse, avec un angle αS formé par les directions de l'axe d'inclinaison du moyen d'injection des particules solides des n composés céramiques S1, ..., S n et de l'axe longitudinal du jet thermique, compris entre 75 et 105 degrés (°) (par exemple 90°); et
  • l'injection de la phase liquide est réalisée, de manière avantageuse, avec un angle αL formé par les directions de l'axe d'inclinaison du moyen d'injection de la phase liquide et de l'axe longitudinal du jet thermique, compris entre 75° et 105° (par exemple 90°).
Advantageously, the injection of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase is carried out with an angle α (for example from 75 ° to 105 °, in particular of 90 °) with respect to the longitudinal axis of the thermal jet. In other words :
  • the injection of the solid particles of the n ceramic compounds S 1 , ..., S n is carried out, advantageously, with an angle α S formed by the directions of the axis inclination of the injection means of the solid particles of the n ceramic compounds S 1 , ..., S n and of the longitudinal axis of the thermal jet, between 75 and 105 degrees (°) (for example 90 °); and
  • the injection of the liquid phase is carried out, advantageously, with an angle α L formed by the directions of the axis of inclination of the means for injecting the liquid phase and of the longitudinal axis of the thermal jet, included between 75 ° and 105 ° (for example 90 °).

Par ailleurs, au cours de leurs travaux, les inventeurs ont pu mettre en évidence une influence :

  • d'une distance Ds comprise entre le substrat et le point d'injection des particules solides des n composés céramiques S1, ..., S n dans le jet thermique ; et
  • d'une distance DL comprise entre le substrat et le point d'injection de la phase liquide dans le jet thermique.
In addition, during their work, the inventors were able to highlight an influence:
  • a distance D s between the substrate and the point of injection of the solid particles of the n ceramic compounds S 1 , ..., S n in the thermal jet; and
  • by a distance D L between the substrate and the point of injection of the liquid phase in the thermal jet.

En effet, les inventeurs ont constaté que le taux de porosité peut être ajusté par la variation de la distance DS-DL. La mobilisation de l'énergie du jet thermique est plus importante pour la vaporisation de la phase liquide que pour la fusion des particules solides des n composés céramiques S1, ..., S n .Indeed, the inventors have observed that the rate of porosity can be adjusted by varying the distance D S -D L. The mobilization of the energy of the thermal jet is greater for the vaporization of the liquid phase than for the fusion of the solid particles of the n ceramic compounds S 1 , ..., S n .

Aussi, de préférence, la phase liquide est injectée dans le jet thermique à une distance du substrat qui est inférieure ou égale à la distance du substrat à laquelle les particules solides des n composés céramiques S1, ..., S n sont injectées dans le jet thermique. En d'autres termes, les distances d'injection dans le jet thermique sont de préférence choisies de manière à satisfaire l'inégalité suivante : DS ≥ DL.Also, preferably, the liquid phase is injected into the thermal jet at a distance from the substrate which is less than or equal to the distance from the substrate at which the solid particles of the n ceramic compounds S 1 , ..., S n are injected into the substrate. the thermal jet. In other words, the injection distances into the thermal jet are preferably chosen so as to satisfy the following inequality: D S ≥ D L.

La vaporisation d'un solvant mobilise en effet une quantité importante de l'énergie du jet et favorise une extinction plus rapide du jet plasma, c'est-à-dire, la longueur du jet plasma diminue (variable en fonction de la nature du solvant, l'éthanol mobilisant moins d'énergie que l'eau par exemple). Si l'injection de la phase liquide se fait en amont, il n'a pas assez d'énergie disponible pour fondre les particules solides en aval. En introduisant les particules solides en amont ou à la même distance que la phase liquide, on dispose de suffisamment d'énergie pour assurer la fusion des particules solides, ce qui est nécessaire pour la cohésion du dépôt. Suffisamment d'énergie reste disponible en aval pour la vaporisation du solvant et le traitement de la phase liquide.The vaporization of a solvent in fact mobilizes a large amount of the energy of the jet and promotes faster extinction of the plasma jet, i.e., the length of the plasma jet decreases (variable depending on the nature of the jet. solvent, ethanol mobilizing less energy than water for example). If the injection of the liquid phase is done upstream, there is not enough energy available to melt the solid particles downstream. By introducing the solid particles upstream or at the same distance as the liquid phase, we have enough energy to ensure the fusion of the particles solids, which is necessary for the cohesion of the deposit. Sufficient energy remains available downstream for the vaporization of the solvent and the treatment of the liquid phase.

Par ailleurs, la température des particules solides des n composés céramiques S1, ..., S n lors de leur injection dans le jet thermique peut être la température ambiante telle que déjà définie plus haut, par exemple 20°C. Avantageusement, on peut contrôler et modifier la température de ces particules pour leur injection dans le jet thermique, par exemple pour qu'elle soit comprise dans un intervalle allant de 20 à 150°C.Furthermore, the temperature of the solid particles of the n ceramic compounds S 1 , ..., S n during their injection into the thermal jet can be the ambient temperature as already defined above, for example 20 ° C. Advantageously, the temperature of these particles can be controlled and modified for their injection into the thermal jet, for example so that it is within a range of 20 to 150 ° C.

On peut préchauffer en particulier les particules solides avant l'injection pour s'affranchir d'éventuels problèmes d'humidité relative qui peuvent provoquer l'agglomération des particules solides et diminuer la coulabilité de la poudre.The solid particles can in particular be preheated before injection in order to overcome any problems of relative humidity which can cause the solid particles to agglomerate and reduce the flowability of the powder.

En outre, la température de la phase liquide lors de son injection dans le jet thermique peut aller par exemple de la température ambiante, par exemple 20°C, jusqu'à une température inférieure à la température d'ébullition de cette phase liquide. Avantageusement, on peut contrôler et modifier la température de la phase liquide pour son injection dans le jet thermique, par exemple pour être de 1 à 99°C. Selon la température imposée, la phase liquide présente alors une tension de surface différente, qui entraîne un mécanisme de fragmentation plus ou moins rapide et efficace lorsqu'elle arrive dans le jet thermique. La température peut donc avoir un effet sur la qualité du revêtement obtenu.In addition, the temperature of the liquid phase during its injection into the thermal jet can range, for example, from ambient temperature, for example 20 ° C., to a temperature below the boiling point of this liquid phase. Advantageously, it is possible to control and modify the temperature of the liquid phase for its injection into the thermal jet, for example to be from 1 to 99 ° C. Depending on the temperature imposed, the liquid phase then has a different surface tension, which results in a more or less rapid and effective fragmentation mechanism when it arrives in the thermal jet. The temperature can therefore have an effect on the quality of the coating obtained.

Conformément à l'invention, le procédé comprend également une étape b), dans laquelle une projection du jet thermique, qui contient le mélange des particules solides des n composés céramiques S1, ..., S n et la phase liquide, est réalisée sur le substrat, moyennant quoi, une couche comprenant au moins un composé céramique est constituée sur le substrat.According to the invention, the method also comprises a step b), in which a projection of the thermal jet, which contains the mixture of the solid particles of the n ceramic compounds S 1 , ..., S n and the liquid phase, is carried out. on the substrate, whereby, a layer comprising at least one ceramic compound is formed on the substrate.

Comme évoqué ci-dessus, la projection du jet thermique, ou « projection thermique », regroupe l'ensemble des procédés par lequel les constituants solides d'un matériau (ou « matériau d'apport »), ici les particules solides des n composés céramiques S1, ..., S n et celles éventuellement en suspension dans la phase liquide, sont fondus ou portés à l'état plastique grâce à une source de chaleur ou source enthalpique. Le mélange constitué dans le jet thermique est alors projeté sur le substrat à revêtir sur lequel il adhère de façon mécanique et se solidifie (sans engendrer de phénomène de fusion du substrat).As mentioned above, the projection of the thermal jet, or “thermal projection”, groups together all the processes by which the solid constituents of a material (or “filler material”), here the solid particles of the n compounds ceramics S 1 , ..., S n and those possibly in suspension in the liquid phase, are melted or brought to the plastic state by means of a heat source or enthalpy source. The mixture formed in the thermal jet is then projected onto the substrate to be coated onto which it adheres mechanically and solidifies (without causing the substrate melting phenomenon).

Selon la nature du/des composé(s) céramique(s) compris dans le mélange, celui-ci peut être déposé sur le substrat sous la forme d'une couche par la mise en œuvre de procédés de projection thermique tels qu'énoncés ci-après.Depending on the nature of the ceramic compound (s) included in the mixture, the latter can be deposited on the substrate in the form of a layer by the implementation of thermal spraying processes as stated below. -after.

Selon une première variante, le dépôt peut être réalisé par un procédé de projection flamme à l'aide d'un gaz de projection.According to a first variant, the deposition can be carried out by a flame projection process using a projection gas.

Avantageusement, le procédé de projection flamme est choisi parmi un procédé de projection flamme-poudre et un procédé de projection flamme hypersonique, à tir continu ou discontinu (procédé HVOF ou « High Velocity Oxy Fuel », procédé HVAF ou « High Velocity Air Fuel »).Advantageously, the flame projection process is chosen from a flame-powder projection process and a hypersonic flame projection process, with continuous or discontinuous firing (HVOF or “ High Velocity Oxy Fuel ” process, HVAF or “ High Velocity Air Fuel ” process. ).

Avantageusement, le gaz de projection utilisé dans un procédé de projection flamme est choisi parmi l'acétylène, le propylène, les hydrocarbures (par exemple, le propane) et les mélanges ternaires tels que :

  • un mélange éthylène-acétylène-propylène (par exemple le Crylène®, qui est un mélange de ces gaz en proportions volumiques 73/22/5) ; ou encore
  • un mélange méthylacétylène-propadiène-hydrocarbures (par exemple le Tétrène®, qui est un mélange constitué, en proportions volumiques, de 39% d'un mélange de méthylacétylène et de propadiène, 44% de propylène et 17% d'un mélange de butane, de propane et de dérivés insaturés de ces deux alcanes).
Advantageously, the projection gas used in a flame projection process is chosen from acetylene, propylene, hydrocarbons (for example, propane) and ternary mixtures such as:
  • an ethylene-acetylene-propylene mixture (for example Crylene®, which is a mixture of these gases in 73/22/5 volume proportions); or
  • a methylacetylene-propadiene-hydrocarbon mixture (for example Tétrène®, which is a mixture consisting, in volume proportions, of 39% of a mixture of methylacetylene and propadiene, 44% of propylene and 17% of a mixture of butane , propane and unsaturated derivatives of these two alkanes).

Avantageusement, le gaz de projection est porté à une température comprise entre 3 000 et 3 500 Kelvin (K).Advantageously, the projection gas is brought to a temperature of between 3,000 and 3,500 Kelvin (K).

Selon une deuxième variante, le dépôt peut être réalisé par un procédé de projection plasma d'arc soufflé à l'aide d'un gaz plasmagène.According to a second variant, the deposition can be carried out by a plasma arc blown projection process using a plasma gas.

Dans cette variante, le jet thermique, qui est alors un jet plasma, peut être généré par un gaz plasmagène qui est avantageusement choisi parmi l'argon, l'hélium, le diazote, le dihydrogène, les mélanges binaires de ceux-ci, tels qu'un mélange argon-hélium ou un mélange argon-dihydrogène, et les mélanges ternaires de ceux-ci, tels qu'un mélange argon-hélium-dihydrogène, ce dernier mélange étant tout particulièrement préféré.In this variant, the thermal jet, which is then a plasma jet, can be generated by a plasma gas which is advantageously chosen from argon, helium, dinitrogen, dihydrogen, binary mixtures thereof, such as an argon-helium mixture or an argon-dihydrogen mixture, and ternary mixtures of these, such as an argon-helium-dihydrogen mixture, the latter mixture being very particularly preferred.

Avantageusement, la méthode de génération du plasma est choisie parmi un plasma d'arc, soufflé ou non, un plasma inductif ou radiofréquence, par exemple en mode supersonique. Le plasma généré peut fonctionner à la pression atmosphérique ou à plus basse pression.Advantageously, the plasma generation method is chosen from an arc plasma, blown or not, an inductive or radiofrequency plasma, for example in supersonic mode. The generated plasma can operate at atmospheric pressure or at lower pressure.

Avantageusement, le dispositif qui est utilisé pour générer le plasma est une torche à plasma d'arc.Advantageously, the device which is used to generate the plasma is an arc plasma torch.

Avantageusement, le gaz de projection est porté à une température comprise entre 5 000 et 15 000 K.Advantageously, the projection gas is brought to a temperature of between 5,000 and 15,000 K.

Avantageusement, le gaz de projection présente une viscosité allant de 10-4 à 5.10-4 kilogrammes par mètre seconde (kg/m·s).Advantageously, the projection gas has a viscosity ranging from 10 -4 to 5.10 -4 kilograms per meter second (kg / m · s).

Avantageusement, le dépôt est réalisé par un procédé de projection plasma d'arc soufflé.Advantageously, the deposition is carried out by a blown arc plasma projection process.

Ainsi, lors de la mise en œuvre du procédé de projection thermique, les particules solides des n composés céramiques S1, ..., S n et la phase liquide pénètrent de manière simultanée dans le jet thermique.Thus, during the implementation of the thermal spraying process, the solid particles of the n ceramic compounds S 1 , ..., S n and the liquid phase simultaneously enter the thermal jet.

Les énergies cinétique et thermique du jet thermique servent d'une part à fondre partiellement ou totalement les particules solides des n composés céramiques S1, ..., S n , et d'autre part, à fractionner la phase liquide en une pluralité de gouttelettes sous l'effet des forces de cisaillement du jet thermique, vaporiser le solvant de la phase liquide et mener à l'obtention de particules solides des p composés céramiques L1, ..., L p qui sont fondues de manière partielle ou totale.The kinetic and thermal energies of the thermal jet serve on the one hand to partially or totally melt the solid particles of the n ceramic compounds S 1 , ..., S n , and on the other hand, to split the liquid phase into a plurality of droplets under the effect of the shear forces of the thermal jet, vaporize the solvent from the liquid phase and lead to obtaining solid particles of the p ceramic compounds L 1 , ..., L p which are partially or totally melted .

Une fois le cœur du jet thermique atteint, celui-ci étant un milieu à haute température (par exemple, de 6 000 à 14 000 K pour une projection plasma d'arc soufflé) et haute vitesse, le mélange formé par les particules solides partiellement ou totalement fondues des composés céramiques S1, ..., S n , L1, ..., L p et les gouttelettes de solvant de la phase liquide est accéléré pour être recueilli sur le substrat, sous la forme d'un dépôt qui constitue le revêtement.Once the heart of the thermal jet has been reached, the latter being a medium at high temperature (for example, from 6000 to 14000 K for a blown arc plasma projection) and high speed, the mixture formed by the partially solid particles or completely molten ceramic compounds S 1 , ..., S n , L 1 , ..., L p and the droplets of solvent of the liquid phase is accelerated to be collected on the substrate, in the form of a deposit which constitutes the coating.

On précise que la température du jet thermique est choisie en fonction de la nature chimique des espèces qui composent le mélange et du revêtement souhaité. La température peut être choisie de manière à se placer dans une configuration de fusion partielle des particules solides du mélange, afin de conserver au mieux les propriétés de départ au sein de la ou des couche(s) qui compose(nt) le revêtement.It is specified that the temperature of the thermal jet is chosen as a function of the chemical nature of the species which make up the mixture and of the desired coating. The temperature can be chosen so as to be in a melting configuration partial solid particles of the mixture, in order to best conserve the starting properties within the layer (s) which make up the coating.

Par exemple, il peut être intéressant de conserver une fusion partielle dans le cas de la mullite pour conserver un état cristallisé (le passage de la poudre dans le jet plasma produisant une part de phases amorphes de mullite), dans le cas de la zircone yttriée, la fusion totale des particules permet l'obtention d'une phase non transformable donc stable, généralement très intéressante pour les applications visées.For example, it may be advantageous to keep a partial melting in the case of mullite to keep a crystallized state (the passage of the powder in the plasma jet producing a part of amorphous phases of mullite), in the case of yttria zirconia. , the total fusion of the particles makes it possible to obtain a non-transformable and therefore stable phase, generally very interesting for the targeted applications.

Le substrat à revêtir est, pour des raisons évidentes, préférentiellement positionné par rapport au jet thermique pour que la projection du mélange soit dirigée sur la surface à revêtir. Le positionnement est ajusté pour chaque application, selon les conditions de projection sélectionnées et la microstructure du dépôt souhaitée.The substrate to be coated is, for obvious reasons, preferably positioned relative to the thermal jet so that the projection of the mixture is directed onto the surface to be coated. Positioning is adjusted for each application, depending on the selected spray conditions and the desired deposit microstructure.

Ainsi, la ou chacune des couches comprenant au moins un composé céramique qui peu(ven)t être déposée(s) par le procédé de l'invention peut présenter une épaisseur allant de 10 µm à 2 mm.Thus, the or each of the layers comprising at least one ceramic compound which can be deposited by the method of the invention may have a thickness ranging from 10 μm to 2 mm.

Par ailleurs, les inventeurs ont pu mettre en évidence que le mélange obtenu au sein du jet thermique par injection simultanée des particules solides des n composés céramiques S1, ..., S n et de la phase liquide permettait de créer, après impact sur le substrat à revêtir, un dépôt structuré à deux échelles et présentant une porosité non nulle, le dépôt associant :

  • un premier réseau comprenant des particules solides des n composés céramiques S1, ..., S n , sous forme fondue, et agencées sous la forme de lamelles ; et
  • un deuxième réseau comprenant des particules solides des p composés céramiques L1, ..., L p , sous forme fondue ou non fondue, qui présente une faible intégrité mécanique, qui s'articule autour des particules solides du premier réseau, et qui joue le rôle d'élément perturbateur de l'agencement lamellaire du premier réseau en créant une porosité au sein du dépôt.
Moreover, the inventors were able to demonstrate that the mixture obtained within the thermal jet by simultaneous injection of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase made it possible to create, after impact on the substrate to be coated, a deposit structured on two scales and exhibiting a non-zero porosity, the deposit combining:
  • a first network comprising solid particles of the n ceramic compounds S 1 , ..., S n , in molten form, and arranged in the form of lamellae; and
  • a second network comprising solid particles of the p ceramic compounds L 1 , ..., L p , in molten or unmelted form, which has low mechanical integrity, which articulates around the solid particles of the first network, and which acts the role of disturbing element of the lamellar arrangement of the first network by creating porosity within the deposit.

Les inventeurs ont également constaté que la porosité de la/des couche(s) déposée(s) était étroitement liée à des paramètres relatifs à la phase liquide, tels que la proportion volumique de particules solides des p composés céramiques L1, ..., L p et/ou de précurseurs de ces composés céramiques dans la phase liquide, ou encore le débit avec lequel la phase liquide est injectée dans le jet thermique.The inventors have also observed that the porosity of the deposited layer (s) was closely linked to parameters relating to the liquid phase, such as the volume proportion of solid particles of the p ceramic compounds L 1 , ... , L p and / or precursors of these ceramic compounds in the liquid phase, or the rate with which the liquid phase is injected into the thermal jet.

Avantageusement, la proportion volumique de particules solides des p composés céramiques L1, ..., L p et/ou de précurseurs de ces composés céramiques dans la phase liquide est comprise entre 2% et 20%.Advantageously, the volume proportion of solid particles of p ceramic compounds L 1 , ..., L p and / or of precursors of these ceramic compounds in the liquid phase is between 2% and 20%.

Avantageusement, le rapport du volume des particules solides des n composés céramiques S1, ..., S n au volume des particules solides des p composés céramiques L1, ..., L p est compris dans un intervalle allant de 0,4 à 3.Advantageously, the ratio of the volume of the solid particles of the n ceramic compounds S 1 , ..., S n to the volume of the solid particles of the p ceramic compounds L 1 , ..., L p is within a range of 0.4 to 3.

Avantageusement, le débit avec lequel la phase liquide est injectée dans le jet thermique est de (0,05± 0,03) litres par minute (L/min).Advantageously, the flow rate with which the liquid phase is injected into the thermal jet is (0.05 ± 0.03) liters per minute (L / min).

Avantageusement, la ou chacune des couches comprenant au moins un composé céramique présente une pluralité de pores possédant une taille comprise entre 0,001 et 50 micromètres Les caractéristiques physico-chimiques de la pluralité de pores sont décrites ultérieurement.Advantageously, the or each of the layers comprising at least one ceramic compound has a plurality of pores having a size of between 0.001 and 50 micrometers. The physicochemical characteristics of the plurality of pores are described later.

Les inventeurs ont encore remarqué qu'en soumettant un revêtement tel qu'obtenu par le procédé de l'invention à des températures supérieures à 1 000°C - typiquement des températures de fonctionnement des dispositifs auxquels sont intégrés ces revêtements-, la porosité du revêtement n'était pas réduite.The inventors have further observed that by subjecting a coating as obtained by the process of the invention to temperatures above 1000 ° C. - typically operating temperatures of the devices in which these coatings are integrated - the porosity of the coating was not reduced.

Les inventeurs ont en effet constaté qu'une consolidation du revêtement était observée à de telles températures. En réalité, la consolidation, qui est provoquée par des phénomènes de frittage et de coalescence des particules solides comprises dans le dépôt et des pores formés au sein du dépôt, est une réorganisation des zones de matière et des zones poreuses, sans diminution du volume total poreux.The inventors have in fact observed that consolidation of the coating was observed at such temperatures. In reality, the consolidation, which is caused by the phenomena of sintering and coalescence of the solid particles included in the deposit and of the pores formed within the deposit, is a reorganization of the areas of material and of the porous areas, without reducing the total volume. porous.

Le procédé de l'invention permet ainsi d'obtenir un revêtement résistant à l'érosion, tout en conservant des propriétés mécaniques très appréciables aux températures élevées. Il permet en outre d'obtenir un revêtement de porosité contrôlée et supérieure ou égale à 20%, ce qui permet d'utiliser celui-ci en tant que revêtement abradable.The process of the invention thus makes it possible to obtain a coating resistant to erosion, while retaining very appreciable mechanical properties at high temperatures. It also makes it possible to obtain a coating of controlled porosity greater than or equal to 20%, which allows the latter to be used as an abradable coating.

Il est toutefois à noter que, de préférence, la porosité globale du revêtement (i.e. la porosité de la ou des couche(s) comprenant au moins un composé céramique, qui est/sont déposée(s) par mise en œuvre du procédé de l'invention) ne doit pas être trop supérieure à 20%, car un revêtement présentant une porosité trop élevée est sujet à une usure des dépôts de matériau abradable céramique trop rapide et ne constitue que difficilement une solution durable pour une utilisation en tant que revêtement abradable dans les domaines précités.It should however be noted that, preferably, the overall porosity of the coating ( ie the porosity of the layer (s) comprising at least one ceramic compound, which is / are deposited by carrying out the method of the invention) must not be too greater than 20%, because a coating having too high a porosity is subject to too rapid wear of the deposits of ceramic abradable material and hardly constitutes a durable solution for use as an abradable coating in the aforementioned fields.

Avantageusement, la ou chacune des couches comprenant au moins un composé céramique présente une porosité au moins égale à 20% ; de préférence au moins égale à 20%, et au plus égale à 40%, par exemple 35%.Advantageously, the or each of the layers comprising at least one ceramic compound has a porosity at least equal to 20%; preferably at least equal to 20%, and at most equal to 40%, for example 35%.

Précisons que dans le cas d'un dépôt multicouche, chacune des couches doit présenter une porosité au moins égale à 20% ; et préférentiellement comprise entre 20% et 40%, par exemple 35%, pour que l'ensemble puisse être utilisé comme revêtement abradable.Note that in the case of a multilayer deposit, each of the layers must have a porosity at least equal to 20%; and preferably between 20% and 40%, for example 35%, so that the assembly can be used as an abradable coating.

On peut, en outre, envisager d'alterner le dépôt d'une couche de porosité convenable pour une application abradable, à savoir au moins égale à 20%, de préférence de 20% à 40%, et le dépôt d'une couche de porosité non adaptée pour l'utilisation en tant que revêtement abradable (par exemple une porosité de 5%).It is also possible to envisage alternating the deposition of a layer of suitable porosity for an abradable application, namely at least equal to 20%, preferably from 20% to 40%, and the deposition of a layer of porosity not suitable for use as an abradable coating (eg 5% porosity).

Le procédé de l'invention permet encore l'obtention d'un revêtement structuré en maîtrisant avantageusement d'autres propriétés, telles qu'une épaisseur du dépôt homogène sur un substrat de forme complexe, ou encore la possibilité de dépôt sur tout type de substrat, quelles que soient leur nature et leur rugosité.The method of the invention also makes it possible to obtain a structured coating while advantageously controlling other properties, such as a thickness of the homogeneous deposit on a substrate of complex shape, or the possibility of depositing on any type of substrate. , whatever their nature and roughness.

Dans le cas particulier où les composés céramiques S1 et L1 sont tous deux de la mullite, une évaluation des propriétés d'un revêtement Rm obtenu par mise en œuvre du procédé de l'invention a été réalisée dans le cadre d'un test comparatif avec des revêtements à base de mullite préparés par des procédés selon l'art antérieur.In the particular case where the ceramic compounds S 1 and L 1 are both mullite, an evaluation of the properties of a coating R m obtained by carrying out the method of the invention was carried out within the framework of a comparative test with mullite-based coatings prepared by methods according to the prior art.

Ainsi, par exemple, un revêtement R1 est réalisé sur un substrat constitué de TiAIV (alliage de titane, aluminium et vanadium) par projection plasma d'arc soufflé de particules solides de mullite, mais sans injection de phase liquide, tous les autres paramètres restant par ailleurs identiques à ceux utilisés pour la réalisation de Rm.Thus, for example, an R 1 coating is produced on a substrate made of TiAIV (alloy of titanium, aluminum and vanadium) by blown arc plasma projection of solid mullite particles, but without injection of a liquid phase, all the other parameters. otherwise remaining identical to those used for the production of R m .

Par exemple, un revêtement R2 est réalisé sur un substrat constitué de TiAIV (alliage de titane, aluminium, et vanadium) par projection plasma d'arc soufflé d'une solution aqueuse colloïdale contenant des précurseurs de particules solides de mullite, mais sans injection de particules solides de mullite.For example, an R 2 coating is produced on a substrate made of TiAIV (alloy of titanium, aluminum, and vanadium) by plasma arc projection blown from a colloidal aqueous solution containing precursors of solid mullite particles, but without injection of solid mullite particles.

Par exemple encore, un revêtement R3 est réalisé sur un substrat constitué de TiAIV (alliage de titane, aluminium, et vanadium) par projection plasma d'arc soufflé d'un mélange réalisé par injection simultanée, dans le jet plasma, d'une part de particules solides de mullite et d'autre part d'eau désionisée ne contenant ni particules solides de mullite ni précurseurs de particules solides de mullite, l'injection de l'eau dans le jet plasma étant réalisée à une distance DL du substrat telle que l'inégalité suivante soit satisfaite : DS ≥ DL.For example again, an R 3 coating is produced on a substrate consisting of TiAIV (alloy of titanium, aluminum, and vanadium) by blown arc plasma projection of a mixture produced by simultaneous injection, into the plasma jet, of a on the one hand solid mullite particles and on the other hand deionized water containing neither solid mullite particles nor precursors of solid mullite particles, the injection of water into the plasma jet being carried out at a distance D L from the substrate such that the following inequality is satisfied: D S ≥ D L.

La comparaison des propriétés des revêtements R1, R2, R3 et Rm est effectuée et discutée dans l'exposé d'un mode de réalisation particulier de l'invention figurant ci-après.The comparison of the properties of the coatings R 1 , R 2 , R 3 and R m is carried out and discussed in the description of a particular embodiment of the invention appearing below.

L'invention ne se limite pas au mode de mise en œuvre du procédé de l'invention qui vient d'être décrit. Ainsi, le procédé de l'invention peut être mis en œuvre plusieurs fois sur un même substrat, l'injection simultanée dans le jet thermique faisant alors intervenir :

  • des particules solides de n composés céramiques S1, ..., S n qui peuvent être de nature différente, en termes de composition et/ou de plus grande dimension de particules ; par exemple, n vaut 2, et les composés céramiques S1 et S2 sont la mullite et l'oxyde YSZ ; et
  • une phase liquide comprenant un solvant et des particules solides de p composés céramiques L1, ..., L p et/ou d'au moins un précurseur des particules solides des p composés céramiques L1, ..., L p qui peuvent être de nature différente, en termes de composition et/ou de plus grande dimension de particules,
et ce, afin de réaliser des couches successives qui comprennent différents matériaux céramiques ou bien des dépôts avec des gradients de composition. Ces dépôts de couches successives sont utiles par exemple dans des applications telles que des couches à propriété thermique (conductrice et isolante), des couches barrières de diffusion et/ou des couches à porosité contrôlée.The invention is not limited to the mode of implementation of the method of the invention which has just been described. Thus, the method of the invention can be implemented several times on the same substrate, the simultaneous injection into the thermal jet then involving:
  • solid particles of n ceramic compounds S 1 , ..., S n which may be of a different nature, in terms of composition and / or of larger particle size; for example, n is 2, and the ceramic compounds S 1 and S 2 are mullite and the oxide YSZ; and
  • a liquid phase comprising a solvent and solid particles of p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of p ceramic compounds L 1 , ..., L p which can be of a different nature, in terms of composition and / or larger particle size,
and this, in order to produce successive layers which include different ceramic materials or else deposits with composition gradients. These deposits of successive layers are useful, for example, in applications such as layers with thermal properties (conductive and insulating), diffusion barrier layers and / or layers with controlled porosity.

Ainsi, de manière avantageuse, l'enchaînement des étapes a) et b) du procédé de l'invention est répété une ou plusieurs fois.Thus, advantageously, the sequence of steps a) and b) of the process of the invention is repeated one or more times.

Ainsi, par exemple, un revêtement R4 est réalisé par dépôt, sur la surface d'un substrat constitué de TiAIV (alliage de titane, aluminium, et vanadium), d'une première couche ayant la composition de R1, puis d'une deuxième couche ayant la composition du revêtement Rm conforme à l'invention. Tout comme pour R1, R2, R3 et Rm, l'évaluation des propriétés de R4 est effectuée et discutée dans l'exposé d'un mode de réalisation particulier de l'invention figurant ci-après.Thus, for example, an R 4 coating is produced by depositing, on the surface of a substrate made of TiAIV (alloy of titanium, aluminum, and vanadium), a first layer having the composition of R 1 , then of a second layer having the composition of the coating R m in accordance with the invention. Just as for R 1 , R 2 , R 3 and R m , the evaluation of the properties of R 4 is carried out and discussed in the description of a particular embodiment of the invention appearing below.

Le procédé de projection de la présente invention est facilement industrialisable puisque sa spécificité et son caractère innovant résident notamment dans le système d'injection, qui peut s'adapter sur toutes machines de projection thermiques déjà présentes dans l'industrie ; dans la nature des espèces qui sont injectées de manière simultanée dans le jet thermique ; mais aussi dans le choix des conditions opératoires imposées au jet thermique, pour l'obtention d'un revêtement structuré qui présente les propriétés du/des composé(s) céramique(s) le constituant.The spraying process of the present invention can be easily industrialized since its specificity and its innovative character reside in particular in the injection system, which can be adapted to all thermal spraying machines already present in industry; in the nature of the species which are injected simultaneously into the thermal jet; but also in the choice of the operating conditions imposed on the thermal jet, to obtain a structured coating which has the properties of the ceramic compound (s) constituting it.

Le procédé décrit ci-dessus permet d'obtenir un revêtement abradable comprenant au moins une couche d'au moins un composé céramique, ladite ou chacune desdites couche(s) présentant une porosité au moins égale à 20%, de préférence au moins égale à 20% et au plus égale à 40%, ladite couche comprenant :

  • des particules solides de n composés céramiques S1, ..., S n , n étant un nombre entier supérieur ou égal à 1, et au moins 90% en nombre des particules solides des n composés céramiques S1, ..., S n présentant une plus grande dimension supérieure à 5 µm ; et
  • des particules solides de p composés céramiques L1, ..., L p , p étant un nombre entier supérieur ou égal à 1, et au moins 90% en nombre des particules solides des p composés céramiques L1, ..., L p présentant une plus grande dimension inférieure ou égale à 5 µm.
The method described above makes it possible to obtain an abradable coating comprising at least one layer of at least one ceramic compound, said or each of said layer (s) having a porosity at least equal to 20%, preferably at least equal to 20% and at most equal to 40%, said layer comprising:
  • solid particles of n ceramic compounds S 1 , ..., S n , n being an integer greater than or equal to 1, and at least 90% by number of the solid particles of n ceramic compounds S 1 , ..., S n having a greater dimension greater than 5 µm; and
  • solid particles of p ceramic compounds L 1 , ..., L p , p being an integer greater than or equal to 1, and at least 90% by number of solid particles of p ceramic compounds L 1 , ..., L p having a greater dimension less than or equal to 5 µm.

L'essentiel des caractéristiques de ce revêtement a déjà été décrit lors de la description du procédé permettant d'obtenir celui-ci.Most of the characteristics of this coating have already been described during the description of the process making it possible to obtain it.

On rappelle toutefois que, de manière avantageuse, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p comporte au moins un élément choisi dans la classification périodique des éléments parmi les éléments de transition, les métalloïdes et les lanthanides.It is however recalled that, advantageously, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p comprises at least one element chosen in the periodic classification of the elements from among transition elements, metalloids and lanthanides.

De manière encore plus avantageuse, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p est choisi parmi les oxydes simples, les silicates et les zirconates d'au moins un élément choisi dans la classification périodique des éléments parmi les éléments de transition, les métalloïdes et les lanthanides.Even more advantageously, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from simple oxides, silicates and zirconates of at least an element selected in the periodic table of elements from among the transition elements, metalloids and lanthanides.

Mieux encore, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p est choisi parmi les oxydes simples, les silicates et les zirconates d'au moins un élément choisi parmi l'aluminium, le silicium, le titane, le strontium, le zirconium, le baryum, l'hafnium et les éléments de la famille des « terres rares » telle que définie par l'Union Internationale de Chimie Pure et Appliquée, c'est-à-dire le scandium, l'yttrium et les lanthanides.Better still, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from simple oxides, silicates and zirconates of at least one selected element among aluminum, silicon, titanium, strontium, zirconium, barium, hafnium and elements of the "rare earth" family as defined by the International Union of Pure and Applied Chemistry, it ie scandium, yttrium and lanthanides.

Avantageusement, chacun des n composés céramiques S1, ..., S n et des p composés céramiques L1, ..., L p est choisi parmi les composés céramiques qui sont usuellement utilisés dans la composition de barrières thermiques et qui ont été précédemment cités dans la description du procédé de l'invention.Advantageously, each of the n ceramic compounds S 1 , ..., S n and of the p ceramic compounds L 1 , ..., L p is chosen from the ceramic compounds which are usually used in the composition of thermal barriers and which have been previously cited in the description of the process of the invention.

Avantageusement, la ou chacune des couches comprenant au moins un composé céramique qui est/sont comprise(s) dans le revêtement selon l'invention présente une épaisseur allant de 10 µm à 2 mm.Advantageously, the or each of the layers comprising at least one ceramic compound which is / are included in the coating according to the invention has a thickness ranging from 10 μm to 2 mm.

Avantageusement, la ou chacune des couches comprenant au moins un composé céramique présente une pluralité de pores possédant une taille comprise entre 0,001 et 50 micromètres, la pluralité de pores étant décrite de manière plus spécifique comme comprenant :

  • un réseau de micropores possédant une taille comprise entre 0,001 et 1 µm, lequel réseau de micropores est défini par les particules solides des p composés céramiques L1, ..., L p dont au moins 90% en nombre présentent une plus grande dimension inférieure à 5 µm,
  • et lequel réseau de micropores étant inclus au sein d'un réseau de macropores possédant une taille comprise entre 1 et 50 micromètres, lequel réseau de macropores est défini par les particules solides des n composés céramiques S1, ..., S n dont au moins 90% en nombre présentent une plus grande dimension supérieure ou égale à 5 µm.
Advantageously, the or each of the layers comprising at least one ceramic compound has a plurality of pores having a size between 0.001 and 50 micrometers, the plurality of pores being described more specifically as comprising:
  • a network of micropores having a size between 0.001 and 1 µm, which network of micropores is defined by the solid particles of the p ceramic compounds L 1 , ..., L p of which at least 90% by number have a greater smaller dimension at 5 µm,
  • and which network of micropores being included within a network of macropores having a size between 1 and 50 micrometers, which network of macropores is defined by the solid particles of the n ceramic compounds S 1 , ..., S n of which at less than 90% by number have a greater dimension greater than or equal to 5 µm.

Avantageusement, ladite ou chacune desdites couche(s) du revêtement tel que défini précédemment présente toujours une porosité au moins égale à 20%, de préférence au moins égale à 20% et au plus égale à 40%, par exemple 35%, après soumission de celle(s)-ci à une température supérieure à 1 000°C.Advantageously, said or each of said layer (s) of the coating as defined above always has a porosity at least equal to 20%, preferably at least equal to 20% and at most equal to 40%, for example 35%, after submission of that (s) -ci at a temperature above 1000 ° C.

Également un substrat présentant au moins une surface sur laquelle a été effectué le dépôt d'un revêtement tel que défini précédemment est obtenu.Also a substrate having at least one surface on which the deposition of a coating as defined above is obtained.

Un dispositif de mise en œuvre du procédé tel que défini précédemment, comprends:

  • une torche capable de produire un jet thermique ;
  • un réservoir de gaz de projection ;
  • un premier réservoir, qui contient les particules solides des n composés céramiques S1, ..., S n ;
  • un deuxième réservoir, qui contient la phase liquide ;
  • un moyen de fixation et de positionnement du substrat par rapport à la torche ;
  • un système d'injection permettant l'injection simultanée des particules solides des n composés céramiques S1, ..., S n et de la phase liquide dans le jet thermique généré par la torche, lequel système d'injection relie de manière indépendante :
    • * le premier réservoir et un premier moyen d'injection muni en son extrémité d'une buse d'injection des particules solides des n composés céramiques S1, ..., S n ; et
    • * le deuxième réservoir et un deuxième moyen d'injection muni en son extrémité d'une buse d'injection de la phase liquide ; et
  • un manodétendeur, qui permet d'ajuster la pression à l'intérieur du deuxième réservoir.
A device for implementing the method as defined above, includes:
  • a torch capable of producing a thermal jet;
  • a blast gas tank;
  • a first reservoir, which contains the solid particles of the n ceramic compounds S 1 , ..., S n ;
  • a second reservoir, which contains the liquid phase;
  • a means for fixing and positioning the substrate with respect to the torch;
  • an injection system allowing the simultaneous injection of the solid particles of the n ceramic compounds S 1 , ..., S n and of the liquid phase into the thermal jet generated by the torch, which injection system independently connects:
    • * the first reservoir and a first injection means provided at its end with a nozzle for injecting solid particles of n ceramic compounds S 1 , ..., S n ; and
    • * the second reservoir and a second injection means provided at its end with an injection nozzle of the liquid phase; and
  • a pressure regulator, which adjusts the pressure inside the second tank.

Avantageusement, la torche est une torche à plasma et le jet thermique est un jet plasma. Des exemples de gaz plasmagènes sont donnés ci-dessus, les réservoirs de ces gaz sont disponibles dans le commerce. Les raisons de ces choix avantageux ont été exposées précédemment.Advantageously, the torch is a plasma torch and the thermal jet is a plasma jet. Examples of plasma gases are given above, reservoirs for these gases are commercially available. The reasons for these advantageous choices have been explained above.

Avantageusement, la torche à plasma est capable de produire un jet de plasma ayant une température allant de 5 000 à 15 000 K.Advantageously, the plasma torch is capable of producing a plasma jet having a temperature ranging from 5,000 to 15,000 K.

Avantageusement, la torche à plasma est capable de produire un jet de plasma ayant une viscosité allant de 10-4 à 5.10-4 kg/m s.Advantageously, the plasma torch is capable of producing a plasma jet having a viscosity ranging from 10 -4 to 5.10 -4 kg / m s.

Avantageusement, le dispositif de l'invention comprend deux réservoirs, le premier contenant les particules solides des n composés céramiques S1, ..., S n , le deuxième contenant la phase liquide étant pressurisé et comprenant des particules solides des p composés céramiques L1, ..., L p et/ou au moins un précurseur des particules solides des p composés céramiques L1, ..., L p .Advantageously, the device of the invention comprises two reservoirs, the first containing the solid particles of the n ceramic compounds S 1 , ..., S n , the second containing the liquid phase being pressurized and comprising solid particles of the p ceramic compounds L 1 , ..., L p and / or at least one precursor of the solid particles of the p ceramic compounds L 1 , ..., L p .

Avantageusement, le dispositif de l'invention comprend en outre un réservoir de nettoyage contenant une solution de nettoyage de la tuyauterie et des moyens d'injection. Ainsi, la tuyauterie et les moyens d'injection peuvent être nettoyés entre chaque mise en œuvre du procédé de l'invention.Advantageously, the device of the invention further comprises a cleaning tank containing a solution for cleaning the piping and the injection means. Thus, the piping and the injection means can be cleaned between each implementation of the method of the invention.

Le système d'injection comprend des tuyaux permettant d'acheminer les particules solides des n composés céramiques S1, ..., S n du premier réservoir vers le premier moyen d'injection. Il en est de même pour l'acheminement de la phase liquide du deuxième réservoir vers le deuxième moyen d'injection.The injection system comprises pipes making it possible to convey the solid particles of the n ceramic compounds S 1 , ..., S n from the first reservoir to the first injection means. The same is true for the routing of the liquid phase from the second reservoir to the second injection means.

Le premier réservoir qui contient les particules solides des n composés céramiques S1, ..., S n est relié à un gaz vecteur, qui est par exemple l'argon, sous l'effet duquel ces particules sont acheminées jusqu'au premier moyen d'injection.The first reservoir which contains the solid particles of the n ceramic compounds S 1 , ..., S n is connected to a carrier gas, which is for example argon, under the effect of which these particles are conveyed to the first means injection.

Avantageusement, le réservoir qui contient la phase liquide est relié à un réseau d'air comprimé grâce à des tuyaux et à une source de gaz de compression, par exemple d'air comprimé. Un manodétendeur permet d'ajuster la pression à l'intérieur du réservoir de phase liquide, généralement à une pression inférieure ou égale à 600 kilopascals (kPa). Une pompe est également utilisable. Sous l'effet de la pression, la phase liquide est acheminée jusqu'au deuxième moyen d'injection par des tuyaux puis sort du deuxième moyen d'injection, par exemple sous la forme d'un jet de liquide qui se fragmente mécaniquement sous la forme de gouttelettes.Advantageously, the reservoir which contains the liquid phase is connected to a compressed air network by means of pipes and to a source of compression gas, for example compressed air. A pressure regulator makes it possible to adjust the pressure inside the liquid phase tank, generally to a pressure less than or equal to 600 kilopascals (kPa). A pump is also usable. Under the effect of the pressure, the liquid phase is conveyed to the second injection means by pipes and then leaves the second injection means, for example in the form of a jet of liquid which breaks up mechanically under the droplet form.

Le débit et la quantité de mouvement de la phase liquide en sortie du deuxième moyen d'injection dépendent notamment de la pression dans le réservoir utilisé et/ou de la pompe, des caractéristiques des dimensions de la buse du moyen d'injection, et des propriétés rhéologiques de la phase liquide (par exemple, la proportion massique de particules solides des p composés céramiques L1, ..., L p et/ou de précurseurs de ces composés céramiques).The flow rate and the amount of movement of the liquid phase at the outlet of the second injection means depend in particular on the pressure in the reservoir used and / or on the pump, on the characteristics of the dimensions of the nozzle of the injection means, and on the rheological properties of the liquid phase (for example, the mass proportion of solid particles of p ceramic compounds L 1 , ..., L p and / or precursors of these ceramic compounds).

Les deux moyens d'injection permettent d'injecter les particules solides des n composés céramiques S1, ..., S n et la phase liquide dans le jet thermique.The two injection means make it possible to inject the solid particles of the n ceramic compounds S 1 , ..., S n and the liquid phase into the thermal jet.

Selon l'invention, le dispositif peut être doté d'un nombre de moyens d'injection supérieur à deux, par exemple selon les quantités ou la composition des particules solides des n composés céramiques S1, ..., S n et de phase liquide à injecter.According to the invention, the device can be provided with a number of injection means greater than two, for example according to the quantities or the composition of the solid particles of the n ceramic compounds S 1 , ..., S n and phase liquid to be injected.

Avantageusement, l'injection des particules solides du premier composé céramique et de la phase liquide est réalisée avec un angle α par rapport à l'axe longitudinal du jet thermique. En d'autres termes, et de manière avantageuse, les angles αS et αL définis précédemment en relation avec le procédé sont compris entre 70° et 105°, par exemple 90°.Advantageously, the injection of the solid particles of the first ceramic compound and of the liquid phase is carried out at an angle α with respect to the longitudinal axis of the thermal jet. In other words, and advantageously, the angles α S and α L defined above in relation to the method are between 70 ° and 105 °, for example 90 °.

La ligne d'injection des particules solides du premier composé céramique et de la phase liquide peut être thermostatée de façon à contrôler, et éventuellement modifier, la température d'injection de ces derniers. Ce contrôle de la température et cette modification peuvent être réalisés au niveau des tuyaux et/ou au niveau des réservoirs (ou compartiments).The injection line for the solid particles of the first ceramic compound and of the liquid phase can be thermostatically controlled so as to control, and optionally modify, the injection temperature of the latter. This temperature control and this modification can be carried out at the level of the pipes and / or at the level of the tanks (or compartments).

Le dispositif peut comprendre un moyen de fixation et de déplacement du substrat par rapport à la torche.The device may include a means for fixing and moving the substrate relative to the torch.

Ce moyen peut consister en des pinces, vis, adhésifs ou système équivalent permettant de fixer le substrat et de le maintenir lors de la projection thermique en une position choisie, et en un moyen permettant de déplacer en rotation et en translation la surface du substrat face au jet thermique et dans le sens longitudinal du jet de plasma. Ainsi, on peut optimiser la position de la surface à revêtir, par rapport au jet thermique, pour obtenir un revêtement homogène.This means can consist of clamps, screws, adhesives or equivalent system making it possible to fix the substrate and to maintain it during thermal spraying in a chosen position, and in a means making it possible to move in rotation and in translation the surface of the substrate facing the thermal jet and in the longitudinal direction of the plasma jet. Thus, it is possible to optimize the position of the surface to be coated, relative to the thermal jet, to obtain a homogeneous coating.

Ainsi, le dispositif permet de réaliser une injection directe et simultanée grâce à un système d'injection bien adapté, par exemple en utilisant le dispositif de l'invention, de particules solides du premier composé céramique et d'une phase liquide contenant au moins un deuxième composé céramique, la nature des éléments injectés et la simultanéité des injections concourant à la constitution d'un revêtement céramique présentant une porosité supérieure à 20%.Thus, the device makes it possible to carry out direct and simultaneous injection thanks to a well-suited injection system, for example by using the device of the invention, of solid particles of the first ceramic compound and of a liquid phase containing at least one. second ceramic compound, the nature of the elements injected and the simultaneity of the injections contributing to the constitution of a ceramic coating having a porosity greater than 20%.

D'autres caractéristiques et avantages de l'invention ressortiront du complément de description qui suit, qui se rapporte à un exemple de mise en œuvre du procédé de l'invention et à des tests d'évaluation des propriétés d'un revêtement Rm conforme à l'invention, ce complément de description se référant aux figures annexées.Other characteristics and advantages of the invention will emerge from the additional description which follows, which relates to an example of implementation of the method of the invention and to tests for evaluating the properties of a coating R m in accordance with to the invention, this additional description referring to the appended figures.

Il va de soi que ces exemples ne sont donnés qu'à titre d'illustration des objets de l'invention et ne constituent en aucun cas une limitation de ces objets.It goes without saying that these examples are given only by way of illustration of the objects of the invention and in no way constitute a limitation of these objects.

Pour des raisons de clarté, les dimensions des différents éléments représentés sur les Figures 1, 3 et 12 ne sont pas en proportion avec leurs dimensions réelles.For reasons of clarity, the dimensions of the various elements shown on the Figures 1 , 3 and 12 are not in proportion to their actual dimensions.

BRÈVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

  • La Figure 1 présente un schéma simplifié d'un dispositif de mise en œuvre du procédé de l'invention permettant d'injecter simultanément les particules solides d'au moins un premier composé céramique et la phase liquide dans un jet plasma, avec une représentation schématique de la torche à plasma.The Figure 1 presents a simplified diagram of a device for implementing the method of the invention making it possible to simultaneously inject the solid particles of at least a first ceramic compound and the liquid phase in a plasma jet, with a schematic representation of the torch plasma.
  • La Figure 2 illustre l'analyse granulométrique des particules solides de mullite telles qu'utilisées dans un mode particulier de mise en œuvre du procédé selon l'invention, par représentation du refus cumulé RC en fonction de l'ouverture Ø.The Figure 2 illustrates the particle size analysis of the solid mullite particles as used in a particular mode of implementation of the method according to the invention, by representing the cumulative residue RC as a function of the opening Ø.
  • La Figure 3 constitue une représentation schématique de la structure microscopique d'une coupe d'un revêtement conforme à l'invention et non soumis à un traitement thermique après la projection thermique, cette coupe étant réalisée selon un plan perpendiculaire à la surface du revêtement.The Figure 3 constitutes a schematic representation of the microscopic structure of a section of a coating in accordance with the invention and not subjected to a heat treatment after thermal spraying, this section being made along a plane perpendicular to the surface of the coating.
  • La Figure 4 est un cliché obtenu par microscopie optique (MO) d'une coupe polie d'un revêtement conforme à l'invention et non soumis à un traitement thermique après la projection thermique ; cette coupe est réalisée selon un plan perpendiculaire à la surface du revêtement.
    L'échelle portée sur la Figure 4 représente 100 µm.
    The Figure 4 is a photograph obtained by optical microscopy (OM) of a polished section of a coating in accordance with the invention and not subjected to a thermal treatment after thermal spraying; this cut is made along a plane perpendicular to the surface of the coating.
    The scale worn on the Figure 4 represents 100 µm.
  • La Figure 5 est un cliché d'agrandissement par MO du cliché de la Figure 4.
    L'échelle portée sur la Figure 5 représente 50 µm.
    The Figure 5 is an enlargement photograph by MO of the photograph of the Figure 4 .
    The scale worn on the Figure 5 represents 50 µm.
  • La Figure 6 est un cliché obtenu par microscopie électronique à balayage (MEB) avec un détecteur d'électrons rétrodiffusés d'une coupe polie d'un revêtement conforme à l'invention, et réalisée selon un plan perpendiculaire à la surface du revêtement.The Figure 6 is a photograph obtained by scanning electron microscopy (SEM) with a backscattered electron detector of a polished section of a coating in accordance with the invention, and taken in a plane perpendicular to the surface of the coating.
  • La Figure 7 est un cliché obtenu par MO d'une coupe polie d'un revêtement R1 tel que décrit précédemment, et réalisée selon un plan perpendiculaire à la surface du revêtement.
    L'échelle portée sur la Figure 7 représente 50 µm.
    The Figure 7 is a photograph obtained by MO of a polished section of a coating R 1 as described above, and taken in a plane perpendicular to the surface of the coating.
    The scale worn on the Figure 7 represents 50 µm.
  • La Figure 8 est un cliché obtenu par MEB d'une fracture du revêtement R1 tel que décrit précédemment.
    La fracture est une coupe obtenue par rupture fragile du revêtement, elle permet d'observer la microstructure en coupe sans polissage.
    The Figure 8 is an image obtained by SEM of a fracture of the coating R 1 as described above.
    The fracture is a section obtained by brittle fracture of the coating, it makes it possible to observe the microstructure in section without polishing.
  • La Figure 9 est un cliché obtenu par MEB d'une fracture d'un revêtement R2 tel que décrit précédemment.The Figure 9 is an image obtained by SEM of a fracture of an R 2 coating as described above.
  • La Figure 10 est un cliché d'agrandissement par MEB du cliché de la Figure 9.The Figure 10 is an enlargement image by SEM of the image of the Figure 9 .
  • La Figure 11 est un cliché obtenu par MO d'une coupe polie d'un revêtement R4 tel que décrit précédemment, et réalisée selon un plan perpendiculaire à la surface du revêtement.
    L'échelle portée sur la Figure 11 représente 50 µm.
    The Figure 11 is a photograph obtained by MO of a polished section of an R 4 coating as described above, and taken along a plane perpendicular to the surface of the coating.
    The scale worn on the Figure 11 represents 50 µm.
  • La Figure 12 constitue une représentation schématique de la structure microscopique d'une coupe d'un revêtement conforme à l'invention après soumission à un traitement thermique à une température de 1 300°C après la projection thermique, cette coupe étant réalisée selon un plan perpendiculaire à la surface du revêtement.The Figure 12 constitutes a schematic representation of the microscopic structure of a section of a coating in accordance with the invention after being subjected to a heat treatment at a temperature of 1300 ° C after thermal spraying, this section being made in a plane perpendicular to the coating surface.
  • Les Figures 13, 14 et 15 sont des clichés obtenus par MO (pour les Figures 13 et 14) ou MEB (pour la Figure 15) de coupes polies des revêtements présentés respectivement aux Figures 4, 5 et 6 soumis à un traitement thermique à une température de 1 300°C effectué après projection thermique ; ces coupes sont réalisées selon un plan perpendiculaire à la surface de chacun des revêtements.The Figures 13 , 14 and 15 are images obtained by MO (for Figures 13 and 14 ) or SEM (for Figure 15 ) of polished sections of the coatings presented respectively to Figures 4, 5 and 6 subjected to a heat treatment at a temperature of 1300 ° C carried out after thermal spraying; these cuts are made along a plane perpendicular to the surface of each of the coverings.

L'échelle portée sur la Figure 13 représente 100 µm.The scale worn on the Figure 13 represents 100 µm.

EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PARTICULIERDETAILED PRESENTATION OF A PARTICULAR EMBODIMENT

Les sections numérotées suivantes se rapportent à la description d'un mode de réalisation particulier de l'invention.The following numbered sections relate to the description of a particular embodiment of the invention.

Dans un premier temps, il est procédé à la description d'un mode de mise en œuvre du procédé de l'invention, et à la réalisation d'un revêtement Rm en un matériau abradable céramique conforme à l'invention.First, there is a description of an embodiment of the method of the invention, and the production of a coating R m in a ceramic abradable material in accordance with the invention.

Il est ensuite procédé à la comparaison de la porosité du revêtement Rm avec celles des revêtements R1, R2 et R3 préparés selon des procédés selon l'art antérieur.The porosity of the coating R m is then compared with that of the coatings R 1 , R 2 and R 3 prepared according to the processes according to the prior art.

Il est enfin procédé à l'évaluation de la stabilité du revêtement Rm après soumission à un traitement thermique à une température de 1 300°C.Finally, the stability of the coating R m is evaluated after being subjected to a heat treatment at a temperature of 1300 ° C.

1. Procédé de l'invention et réalisation d'un revêtement R m conforme à l'invention 1. Method of the invention and production of a coating R m in accordance with the invention

Dans un mode de réalisation particulier de l'invention, des particules solides de mullite et une phase liquide se présentant sous la forme d'une solution aqueuse colloïdale comprenant des composés précurseurs de particules solides de mullite sont injectés de manière simultanée dans un plasma d'arc soufflé d'un mélange ternaire argon-hélium-dihydrogène, dont la composition est précisée ci-après.In a particular embodiment of the invention, solid mullite particles and a liquid phase in the form of a colloidal aqueous solution comprising precursor compounds of solid mullite particles are injected simultaneously into a plasma of arc blown from a ternary argon-helium-dihydrogen mixture, the composition of which is specified below.

1.1. Procédé de l'invention 1.1. Method of the invention

On se réfère tout d'abord à la Figure 1, qui illustre schématiquement le montage expérimental qui a permis de réaliser les dépôts de mullite. Ce montage est constitué :

  • d'une torche à plasma à courant continu Sulzer Metco F4VB® équipée d'une anode de diamètre interne 6 mm, 10 ;
  • d'un substrat TiAIV, 11 ;
  • d'un dispositif 12 permettant de fixer et de déplacer le substrat 11 à revêtir par rapport à la torche à plasma 10 à une distance donnée ; et
  • d'un système d'injection 13 de particules solides de mullite et d'une solution aqueuse colloïdale comprenant des composés précurseurs de particules solides de mullite.
We first refer to the Figure 1 , which schematically illustrates the experimental set-up which made it possible to carry out the mullite deposits. This assembly consists of:
  • a Sulzer Metco F4VB® direct current plasma torch equipped with an anode with an internal diameter of 6 mm, 10;
  • a TiAIV substrate, 11;
  • a device 12 for fixing and moving the substrate 11 to be coated relative to the plasma torch 10 at a given distance; and
  • an injection system 13 of solid mullite particles and of an aqueous colloidal solution comprising precursor compounds of solid mullite particles.

En premier lieu, le système d'injection 13 fait intervenir un premier réacteur 14 composé des particules solides de mullite 15 qui sont issues du réservoir 17. L'ensemble formé du réacteur 14 et du réservoir 17 est du type de celui des distributeurs de particules solides qui sont commercialisés par la société Sulzer-Metco.First, the injection system 13 involves a first reactor 14 composed of solid mullite particles 15 which come from the tank 17. The assembly formed of the reactor 14 and the tank 17 is of the type of that of the particle distributors. solids which are marketed by the company Sulzer-Metco.

L'analyse granulométrique des particules solides de mullite 15 est réalisée par granulométrie laser à l'aide d'un appareil Mastersizer 2000 (société Malvern), et est représentée à la Figure 2.The particle size analysis of the solid particles of mullite 15 is carried out by laser particle size distribution using a Mastersizer 2000 device (Malvern company), and is shown on Figure 2 .

Comme il peut être déterminé par lecture des données de la Figure 2, les refus cumulés relatifs à une plus grande dimension de particules de 49,0 ; 27,6 et 10,5 µm valent respectivement 10 ; 50 et 90%. En d'autres termes, 10% ; 50% et 90% en nombre des particules solides de mullite 15 possèdent respectivement une plus grande dimension supérieure à 49,0 ; 27,6 et 10,5 µm.As can be determined by reading data from the Figure 2 , the cumulative rejections relating to a larger particle size of 49.0; 27.6 and 10.5 µm are respectively 10; 50 and 90%. In other words, 10%; 50% and 90% by number of the solid mullite particles respectively have a greater dimension greater than 49.0; 27.6 and 10.5 µm.

Lors des essais, les particules solides de mullite 15 sont chassées du réacteur 14 sous l'effet d'un flux de gaz vecteur, en l'occurrence de l'argon, avec un débit de 4·10-3 mètres cubes par minute (m3/min), dont l'apport est assuré par l'intermédiaire d'un tuyau d'arrivée 19. Les particules solides de mullite 15 sont alors conduites, via un tuyau de sortie 20, du réacteur 14 à un premier moyen d'injection 21 qui possède une buse d'injection 22 à son extrémité.During the tests, the solid particles of mullite 15 are driven from the reactor 14 under the effect of a flow of carrier gas, in this case argon, with a flow rate of 4 · 10 -3 cubic meters per minute ( m 3 / min), the supply of which is provided via an inlet pipe 19. The solid mullite particles 15 are then conducted, via an outlet pipe 20, from the reactor 14 to a first means of injection 21 which has an injection nozzle 22 at its end.

En second lieu, le système d'injection 13 fait intervenir un deuxième réacteur 23, destiné au mélange d'une phase liquide qui comprend des composés précurseurs de particules solides de mullite. La phase liquide est, en l'occurrence, une solution aqueuse colloïdale 24 comprenant des composés précurseurs de particules solides de mullite.Secondly, the injection system 13 involves a second reactor 23, intended for mixing a liquid phase which comprises compounds which are precursors of solid mullite particles. The liquid phase is, in this case, a colloidal aqueous solution 24 comprising compounds which are precursors of solid mullite particles.

Un sol colloïdal aqueux de mullite est préparé.An aqueous colloidal sol of mullite is prepared.

La solution aqueuse colloïdale 24 qui est placée dans le réacteur 23 présente une proportion massique de composés précurseurs de particules solides de mullite valant 15%. Elle est ensuite homogénéisée à l'aide d'un dispositif d'agitation magnétique 25.The colloidal aqueous solution 24 which is placed in the reactor 23 has a mass proportion of compounds which are precursors of solid mullite particles of 15%. It is then homogenized using a magnetic stirring device 25.

Le deuxième réacteur 23 est également équipé d'un manodétendeur 26 qui permet d'ajuster la pression à l'intérieur de celui-ci, et qui est relié à un gaz de compression, ici de l'air comprimé, dont l'apport est assuré par l'intermédiaire d'un tuyau 27.The second reactor 23 is also equipped with a pressure regulator 26 which makes it possible to adjust the pressure inside the latter, and which is connected to a compression gas, here compressed air, the input of which is provided by means of a hose 27.

Le deuxième réacteur 23 est encore équipé d'une soupape 28, ainsi que d'un tuyau 29 reliant l'intérieur du réacteur 23 à un réservoir 30 contenant un liquide de nettoyage 31, ici de l'eau désionisée.The second reactor 23 is also equipped with a valve 28, as well as a pipe 29 connecting the interior of the reactor 23 to a tank 30 containing a cleaning liquid 31, here deionized water.

Lors des essais, la soupape 28 est fermée et la solution aqueuse colloïdale 24 est chassée du réacteur 23 sous l'effet d'une pression de 300 kPa qui est imposée par le manodétendeur 26 et le gaz de compression circulant via le tuyau 27. La solution aqueuse colloïdale 24 est alors conduite, via un tuyau de sortie 32, du réacteur 23 à un deuxième moyen d'injection 33 qui possède une buse d'injection 34 à son extrémité.During the tests, the valve 28 is closed and the colloidal aqueous solution 24 is expelled from the reactor 23 under the effect of a pressure of 300 kPa which is imposed by the pressure regulator 26 and the compression gas circulating via the pipe 27. The colloidal aqueous solution 24 is then conducted, via an outlet pipe 32, from the reactor 23 to a second injection means 33 which has an injection nozzle 34 at its end.

L'injection simultanée des particules solides de mullite 15, et de la solution aqueuse colloïdale 24 est réalisée dans un jet plasma 35, généré par un plasma d'arc soufflé à une intensité de 650 ampères (A) et issu de la torche à plasma 10 par la buse de projection 36, cette dernière étant située à une distance D de 100 millimètres (mm) par rapport au substrat 11.The simultaneous injection of the solid particles of mullite 15, and of the colloidal aqueous solution 24 is carried out in a plasma jet 35, generated by an arc plasma blown at an intensity of 650 amperes (A) and coming from the plasma torch 10 by the projection nozzle 36, the latter being located at a distance D of 100 millimeters (mm) relative to the substrate 11.

Le gaz plasmagène, à partir duquel est généré le jet plasma 35, est un mélange ternaire composé en proportions volumiques de 50,8% d'argon, 23% d'hélium et 8% de dihydrogène.The plasma gas, from which the plasma jet 35 is generated, is a ternary mixture composed in volume proportions of 50.8% argon, 23% helium and 8% dihydrogen.

D'une part, l'injection des particules solides de mullite 15 dans le jet thermique 35 est réalisée via l'orifice de sortie de la buse d'injection 22 du premier moyen d'injection 21, d'un diamètre de 1,5 mm, ce qui implique, à la lumière des données précédentes, un débit de particules solides de mullite 15 de 15 grammes par minute (g/min). Cette injection est réalisée avec un angle αS formé par les directions de l'axe d'inclinaison du premier moyen d'injection 21 et de l'axe longitudinal du jet plasma 35, valant 90°, et à une distance DS de 94 mm par rapport au substrat 11.On the one hand, the injection of the solid mullite particles 15 into the thermal jet 35 is carried out via the outlet orifice of the injection nozzle 22 of the first injection means 21, with a diameter of 1.5 mm, which implies, in light of the preceding data, a flow rate of solid mullite particles of 15 grams per minute (g / min). This injection is carried out with an angle α S formed by the directions of the axis of inclination of the first injection means 21 and of the longitudinal axis of the plasma jet 35, equal to 90 °, and at a distance D S of 94 mm with respect to the substrate 11.

D'autre part, l'injection de la solution aqueuse colloïdale 24 dans le jet thermique 35 est réalisée via l'orifice de sortie de la buse d'injection 34 du deuxième moyen d'injection 33, d'un diamètre de 250 µm. Cette injection est réalisée avec un angle αL formé par les directions de l'axe d'inclinaison du deuxième moyen d'injection 33 et de l'axe longitudinal du jet plasma 35, valant 90°, et à une distance DL de 80 mm par rapport au substrat 11.On the other hand, the injection of the colloidal aqueous solution 24 into the thermal jet 35 is carried out via the outlet orifice of the injection nozzle 34 of the second injection means 33, with a diameter of 250 μm. This injection is carried out with an angle α L formed by the directions of the axis of inclination of the second injection means 33 and of the longitudinal axis of the plasma jet 35, equal to 90 °, and at a distance D L of 80 mm from the substrate 11.

1.2. Revêtement R m conforme à l'invention 1.2. Coating R m according to the invention

En mettant en œuvre le procédé selon l'invention tel que décrit au point 1.1., un revêtement Rm conforme à l'invention et à base de mullite est obtenu.By implementing the method according to the invention as described in point 1.1., A coating R m in accordance with the invention and based on mullite is obtained.

Le revêtement Rm est obtenu sur un substrat 11 constitué de TiAlV, qui est situé à la fois :

  • à une distance D de 100 mm de la buse de projection 36 de la torche à plasma 10 ;
  • à une distance DS de 94 mm du point d'injection des particules solides de mullite 15 dans le jet plasma 35 ; et
  • à une distance DL de 80 mm du point d'injection de la solution aqueuse colloïdale 24 dans le jet plasma 35.
The coating R m is obtained on a substrate 11 made of TiAlV, which is located at the same time:
  • at a distance D of 100 mm from the projection nozzle 36 of the plasma torch 10;
  • at a distance D S of 94 mm from the point of injection of the solid mullite particles 15 into the plasma jet 35; and
  • at a distance D L of 80 mm from the point of injection of the colloidal aqueous solution 24 into the plasma jet 35.

Selon la durée de la projection plasma, l'épaisseur des dépôts obtenus est comprise entre 50 et 1000µm.Depending on the duration of the plasma spraying, the thickness of the deposits obtained is between 50 and 1000 μm.

La Figure 3 est une représentation schématique de la structure du revêtement Rm, qui inclut des particules solides de mullite 37 définissant un réseau de macropores 38 de taille comprise entre 1 et 50 µm et lesdits macropores étant au moins en partie occupés par des particules solides de mullite qui sont générées au sein du jet plasma 35 à partir des précurseurs de mullite contenus dans la solution aqueuse colloïdale 24, et qui définissent un réseau 39 de micropores de taille comprise entre 0,001 et 1 µm.The Figure 3 is a schematic representation of the structure of the coating R m , which includes solid mullite particles 37 defining a network of macropores 38 of size between 1 and 50 µm and said macropores being at least partially occupied by solid mullite particles which are generated within the plasma jet 35 from the mullite precursors contained in the colloidal aqueous solution 24, and which define a network 39 of micropores of size between 0.001 and 1 μm.

Les clichés présentés aux Figures 4, 5 et 6 mettent en évidence la microstructure du revêtement Rm conforme à l'invention.The photos presented to Figures 4, 5 and 6 demonstrate the microstructure of the coating R m in accordance with the invention.

En particulier, le cliché de la Figure 6 réalisé par MEB permet d'observer un dépôt structuré à deux réseaux de pores (macro- et micropores) tel que venant d'être décrit pour commenter la Figure 3.In particular, the cliché of the Figure 6 performed by SEM makes it possible to observe a structured deposit with two networks of pores (macro- and micropores) such as just described to comment on the Figure 3 .

Le réseau 39 de micropores présente une faible intégrité mécanique, perturbe l'agencement des particules 37 et contribue de manière importante à la porosité globale du revêtement Rm.The network 39 of micropores exhibits poor mechanical integrity, disrupts the arrangement of particles 37 and contributes significantly to the overall porosity of the coating R m .

2. Évaluation des propriétés de R m par rapport à celles de R 1 , R 2 et R 3 2. Evaluation of the properties of R m compared to those of R 1 , R 2 and R 3 2.1. Comparaison des propriétés de R 1 , R 2 et R 3 avec celles de R m 2.1. Comparison of the properties of R 1 , R 2 and R 3 with those of R m

Trois revêtements R1, R2 et R3 à base de mullite sont préparés en mettant en œuvre des procédés de l'art antérieur, afin de comparer les propriétés de ces revêtements avec celles du revêtement Rm conforme à l'invention, notamment en termes de porosité.Three coatings R 1 , R 2 and R 3 based on mullite are prepared by implementing methods of the prior art, in order to compare the properties of these coatings with those of the coating R m in accordance with the invention, in particular by terms of porosity.

Préparation de RPreparation of R 11 , R, R 22 et Rand R 33

Les paramètres de projection plasma qui sont utilisés pour la réalisation de R1, R2 et R3 sont identiques à ceux utilisés pour réaliser Rm. Le seul paramètre modifié est la nature des composés qui sont injectés dans le jet plasma 35, avant impact sur le substrat 11 sur lequel le revêtement est appliqué.The plasma projection parameters which are used to produce R 1 , R 2 and R 3 are identical to those used to produce R m . The only modified parameter is the nature of the compounds which are injected into the plasma jet 35, before impact on the substrate 11 on which the coating is applied.

Ainsi, R1 est réalisé par projection plasma d'arc soufflé de particules solides de mullite 15, mais sans injection de phase liquide dans le jet plasma 35.Thus, R 1 is produced by blown arc plasma projection of solid mullite particles 15, but without injection of a liquid phase into the plasma jet 35.

R2 est réalisé par projection plasma d'arc soufflé d'une solution aqueuse colloïdale 24 qui contient des précurseurs de particules solides de mullite, mais sans injection de particules solides de mullite 15 dans le jet plasma.R 2 is produced by blown arc plasma spraying of an aqueous colloidal solution 24 which contains precursors of solid mullite particles, but without injection of solid mullite particles 15 into the plasma jet.

R3 est réalisé par projection plasma d'arc soufflé d'un mélange obtenu au sein du jet plasma 35, par injection simultanée de particules solides de mullite 15, et d'eau désionisée ne contenant ni particules solides de mullite, ni précurseurs de particules solides de mullite. L'injection de l'eau désionisée dans le jet plasma 35 est réalisée à une distance DL du substrat telle que l'inégalité suivante soit satisfaite : DS ≥ DL.R 3 is produced by blown arc plasma spraying of a mixture obtained within the plasma jet 35, by simultaneous injection of solid particles of mullite 15, and deionized water containing neither solid particles of mullite nor particle precursors mullite solids. The injection of the deionized water into the plasma jet 35 is carried out at a distance D L from the substrate such that the following inequality is satisfied: D S ≥ D L.

La porosité globale des revêtements R1, R2, R3 et Rm est déterminée par la méthode de poussée hydrostatique, conformément à la norme NF EN 623-2 (intitulée « Céramiques techniques avancées - Céramiques monolithiques - Propriétés générales et texturales », en particulier la méthode n°1 sous vide de la partie 2 intitulée : « Détermination de la masse volumique et de la porosité »).The overall porosity of the R 1 , R 2 , R 3 and R m coatings is determined by the hydrostatic thrust method, in accordance with standard NF EN 623-2 (entitled “Advanced technical ceramics - Monolithic ceramics - General and textural properties”, in particular method n ° 1 under vacuum of part 2 entitled: “Determination of density and porosity”).

Les résultats des mesures de porosité globale sont présentés dans le Tableau 1. TABLEAU 1 Revêtement R1 R2 R3 Rm Porosité globale 7 - 13 35 The results of the overall porosity measurements are presented in Table 1. TABLE 1 Coating R 1 R 2 R 3 R m Overall porosity 7 - 13 35

Porosité globale de ROverall porosity of R 11

La porosité globale de 7% mesurée pour R1 est faible et caractéristique d'un revêtement obtenu par projection plasma de particules solides sur un substrat, sans injection de phase liquide.The overall porosity of 7% measured for R 1 is low and characteristic of a coating obtained by plasma spraying of solid particles on a substrate, without injection of a liquid phase.

Cette porosité globale relativement faible se traduit dans le revêtement par une répartition dense de particules solides de mullite 15 à l'état fondu, tel qu'observé sur le cliché obtenu par MO qui est présenté à la Figure 7. La géométrie lamellaire et compacte des particules solides de mullite est particulièrement visible en MEB (repère 40, Figure 8).This relatively low overall porosity results in the coating as a dense distribution of solid mullite particles in the molten state, as seen in the image obtained by MO which is shown in Figure. Figure 7 . The lamellar and compact geometry of solid mullite particles is particularly visible in SEM (reference 40, Figure 8 ).

Porosité globale de ROverall porosity of R 33

La porosité globale mesurée pour R3 est de 15%, soit près du double de celle de R1.The overall porosity measured for R 3 is 15%, i.e. almost double that of R 1 .

L'eau désionisée qui est injectée dans le jet plasma 35 semble constituer un élément perturbateur des lamelles de particules solides de mullite 15 qui sont déposées sur le substrat 11. La perturbation constitue alors un facteur d'augmentation de la porosité globale du revêtement.The deionized water which is injected into the plasma jet 35 appears to constitute a disturbing element of the lamellae of solid mullite particles 15 which are deposited on the substrate 11. The disturbance then constitutes a factor in increasing the overall porosity of the coating.

Porosité globale de ROverall porosity of R 22

Le revêtement R2 qui est obtenu est finement structuré sous la forme d'un réseau très poreux.The R 2 coating which is obtained is finely structured in the form of a very porous network.

Porosité globale de ROverall porosity of R mm

La porosité globale du revêtement Rm conforme à l'invention est de 35%, et est ainsi encore plus importante que celles de R1, et R3.The overall porosity of the coating R m in accordance with the invention is 35%, and is thus even greater than those of R 1 and R 3 .

De la même manière que pour R3, les éléments du mélange obtenu au sein du jet plasma 35 semblent constituer des éléments perturbateurs du réseau de lamelles de particules solides de mullite 15 se trouvant au sein du revêtement Rm, ces éléments étant :

  • l'eau désionisée qui constitue le solvant de la solution aqueuse colloïdale 24 ;
  • mais également les particules solides de mullite véhiculées par la solution aqueuse colloïdale 24 et créant un réseau poreux 39 de faible cohésion mécanique.
In the same way as for R 3 , the elements of the mixture obtained within the plasma jet 35 seem to constitute disturbing elements of the network of lamellae of solid mullite particles 15 located within the coating R m , these elements being:
  • deionized water which constitutes the solvent of the colloidal aqueous solution 24;
  • but also the solid particles of mullite conveyed by the colloidal aqueous solution 24 and creating a porous network 39 of low mechanical cohesion.

Les clichés des Figures 4 à 6 montrent bien que la porosité globale du revêtement Rm et, partant, le caractère abradable de ce revêtement, sont majoritairement voire exclusivement créés par le réseau 39 de micropores, tandis que les particules solides de mullite 37 qui sont issues du premier moyen d'injection définissent un réseau de macropores 38, de taille plus élevée.The pictures of Figures 4 to 6 clearly show that the overall porosity of the coating R m and, therefore, the abradability of this coating, are mainly or even exclusively created by the network 39 of micropores, while the solid mullite particles 37 which come from the first injection means define a network of macropores 38, larger in size.

2.2. Revêtement R m comprenant au moins une couche d'un matériau céramique 2.2. Coating R m comprising at least one layer of a ceramic material

Un revêtement R4 à base de mullite, dont le cliché obtenu par MO est présenté à la Figure 11, est préparé :

  • par dépôt d'une première couche céramique 41 comprenant des particules solides de mullite, la couche présentant la composition du revêtement R1 et étant réalisée par une technique telle que décrite plus haut ; puis
  • par dépôt, sur la première couche céramique 41, d'une deuxième couche céramique 42 comprenant des particules solides de mullite, la couche présentant la composition du revêtement Rm conforme à l'invention et étant réalisée par mise en œuvre du procédé selon l'invention.
A mullite-based R 4 coating, the photograph of which obtained by MO is presented in Figure 11 , is prepared:
  • by depositing a first ceramic layer 41 comprising solid mullite particles, the layer having the composition of the coating R 1 and being produced by a technique as described above; then
  • by depositing, on the first ceramic layer 41, a second ceramic layer 42 comprising solid mullite particles, the layer having the composition of the coating R m according to the invention and being produced by implementing the method according to invention.

Il est ainsi réalisé un revêtement aux propriétés « hybrides », celui-ci associant :

  • une couche 41, qui présente une répartition très compacte de particules solides de mullite à l'état fondu, telle qu'observée au sein de R1 (Figure 8) ; et
  • une couche 42, qui est caractérisée par l'existence d'une structure beaucoup plus poreuse, constituée de particules solides de mullite de dimensions différentes, et telle qu'observée au sein de Rm (Figures 4 à 6).
A coating with “hybrid” properties is thus produced, combining:
  • a layer 41, which has a very compact distribution of solid particles of mullite in the molten state, as observed in R 1 ( Figure 8 ); and
  • a layer 42, which is characterized by the existence of a much more porous structure, consisting of solid mullite particles of different dimensions, and as observed within R m ( Figures 4 to 6 ).

3. Évaluation des propriétés de R m après traitement thermique à 1 300°C 3. Evaluation of the properties of R m after heat treatment at 1300 ° C

Il est procédé à l'évaluation de la stabilité de Rm à des températures élevées de fonctionnement des dispositifs incluant des substrats sur lesquels le revêtement est déposé, les températures en question étant typiquement supérieures à 1 000°C.An evaluation is made of the stability of R m at high operating temperatures of devices including substrates on which the coating is deposited, the temperatures in question being typically above 1000 ° C.

Pour ce faire, le revêtement Rm appliqué sur un substrat constitué de TiAIV est soumis à un traitement thermique de 24 heures à une température de 1 300°C.To do this, the R m coating applied to a substrate made of TiAIV is subjected to a heat treatment for 24 hours at a temperature of 1300 ° C.

La Figure 12 est une représentation schématique de la microstructure du revêtement Rm après traitement thermique, qui inclut un premier réseau de pores 44, formé au sein de l'empilement des particules solides de mullite sous forme fondue 43. Autour des pores 44, s'articule un réseau 45 de pores, de taille inférieure, qui est issu de la réorganisation, à l'issue du traitement thermique, du réseau 39 de pores (Figure 3).The Figure 12 is a schematic representation of the microstructure of the coating R m after heat treatment, which includes a first network of pores 44, formed within the stack of solid mullite particles in molten form 43. Around the pores 44, articulates a network 45 of pores, of smaller size, which results from the reorganization, at the end of the heat treatment, of the network 39 of pores ( Figure 3 ).

Les clichés présentés aux Figures 13, 14 et 15, qui correspondent aux structures présentées aux Figures 4, 5 et 6 respectivement après traitement thermique, mettent en évidence la microstructure réorganisée de Rm.The photos presented to Figures 13 , 14 and 15 , which correspond to the structures presented in Figures 4, 5 and 6 respectively after heat treatment, demonstrate the reorganized microstructure of R m .

Le cliché de la Figure 15 (réalisé par MEB) permet d'observer un dépôt structuré à deux réseaux de pores (macro- et micropores), qui inclut des particules solides de mullite sous forme fondue 43 définissant un réseau de macropores 44 et lesdits macropores étant au moins en partie occupés par des particules solides de mullite qui sont générées au sein du jet plasma 35 à partir des précurseurs de mullite contenus dans la solution aqueuse colloïdale 24, et qui définissent un réseau 45 de micropores.The cliché of the Figure 15 (carried out by SEM) makes it possible to observe a structured deposit with two networks of pores (macro- and micropores), which includes solid particles of mullite in molten form 43 defining a network of macropores 44 and said macropores being at least partly occupied by solid mullite particles which are generated within the plasma jet 35 from the mullite precursors contained in the colloidal aqueous solution 24, and which define a network 45 of micropores.

Le réseau 45 de micropores présente une faible intégrité mécanique, perturbe l'agencement du réseau de macropores 44 et contribue de manière importante à la porosité globale du revêtement Rm.The network 45 of micropores has poor mechanical integrity, disrupts the arrangement of the network of macropores 44 and contributes significantly to the overall porosity of the coating R m .

En comparant les clichés des Figures 6 et 15, on remarque que la réorganisation de la structure de Rm à l'issue du traitement thermique se traduit par la coalescence et/ou l'écrasement des particules solides de mullite 43, des macropores 44 et du réseau 45 de micropores au sein du revêtement.By comparing the pictures of Figures 6 and 15 , we notice that the reorganization of the structure of R m at the end of the heat treatment results in the coalescence and / or the crushing of the solid particles of mullite 43, of the macropores 44 and of the network 45 of micropores within the coating .

Ceci étant, la détermination de la porosité globale de Rm après traitement thermique ne permet de mettre en évidence aucun phénomène significatif de densification du revêtement, la porosité globale de Rm étant inchangée et valant 35%.This being the case, the determination of the overall porosity of R m after heat treatment does not make it possible to demonstrate any significant phenomenon of densification of the coating, the overall porosity of R m being unchanged and equal to 35%.

Ainsi, il ressort de ces études que la consolidation du revêtement, par l'intermédiaire de mécanismes de frittage profitables à l'augmentation de la résistance à l'érosion, n'engendre pas de diminution du volume poreux global et permet la conservation du caractère abradable propre à un revêtement Rm conforme à l'invention.Thus, it emerges from these studies that the consolidation of the coating, by means of sintering mechanisms beneficial to the increase in resistance to erosion, does not cause a reduction in the overall pore volume and allows the conservation of the character. abradable suitable for an R m coating in accordance with the invention.

RÉFÉRENCES CITÉESREFERENCES CITED

  1. [1] Brevet US 3,084,064 . [1] Patent US 3,084,064 .
  2. [2] Brevet US 3,879,831 . [2] Patent US 3,879,831 .
  3. [3] Demandes de brevet FR-A1-2877015 et
    US-A1-2008/0090071
    [3] Patent applications FR-A1-2877015 and
    US-A1-2008 / 0090071
  4. [4] Brevet US 4,269,903 . [4] Patent US 4,269,903 .
  5. [5] Brevet US 4,936,745 . [5] Patent US 4,936,745 .
  6. [6] Brevet US 5,434,210 . [6] Patent US 5,434,210 .
  7. [7] Demande de brevet FR-A1-2 832 180 . [7] Patent application FR-A1-2 832 180 .
  8. [8] Brevet US 4,696,855 . [8] Patent US 4,696,855 .
  9. [9] Demande de brevet US 2008/0167173 . [9] Patent application US 2008/0167173 .
  10. [10] Demande de brevet US 2010/0015350 . [10] Patent application US 2010/0015350 .
  11. [11] Base terminologique « Red Book » de l'Union Internationale de Chimie Pure et appliquée,section IR-3.5 : http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf. [11] International Union of Pure and Applied Chemistry “ Red Book ” terminology base, section IR-3.5: http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf.
  12. [12] Kirk-Othmer, Concise Encyclopedia of Chemical Technology, 1985, Wiley-Interscience . [12] Kirk-Othmer, Concise Encyclopedia of Chemical Technology, 1985, Wiley-Interscience .

Claims (9)

  1. A method for coating at least one surface of a substrate with at least one layer comprising at least one ceramic compound, said method being characterized in that it comprises the following steps:
    a) simultaneous injection:
    - of solid particles (15) of n ceramic compounds S1, ..., S n through a first injection means (21), n being an integer greater than or equal to 1, and at least 90 percent (%) by number of the solid particles (15) of the n ceramic compounds S1, ..., S n having a greatest dimension of more than 5 micrometers (µm) and less than 100 µm ; and
    - of a liquid phase (24) through a second injection means (33), the liquid phase comprising a solvent, solid particles of p ceramic compounds L1, ..., L p and/or at least one precursor of the solid particles of the p ceramic compounds L1, ..., L p , p being an integer greater than or equal to 1, and at least 90% by number of the solid particles of the p ceramic compounds L1, ..., L p having a greatest dimension of less than or equal to 5 µm,
    into a thermal jet (35), whereby a mixture of the solid particles (15) of the n ceramic compounds S1, ..., S n and of the liquid phase (24) is obtained in the thermal jet (35); and then
    b) a projection of the thermal jet (35), which contains the mixture of the solid particles (15) of the n ceramic compounds S1, ..., S n and of the liquid phase (24), on said surface of the substrate (11), whereby the layer comprising at least one ceramic compound is formed on said surface;
    optionally, the sequence of steps a) and b) is repeated one or several times;
    the granulometric analysis being carried out by laser granulometry.
  2. The method according to claim 1, wherein each of the n ceramic compounds S1, ..., S n and of the p ceramic compounds L1, ..., L p includes at least one element selected from the Periodic Classification of the Elements from among transition elements, metalloids and lanthanides; preferably, each of the n ceramic compounds S1, ..., S n and of the p ceramic compounds L1, ..., L p is selected from oxides, silicates and zirconates of at least one element selected from the Periodic Classification of the Elements from among transition elements, metalloids and lanthanides; more preferably, each of the n ceramic compounds S1, ..., S n and of the p ceramic compounds L1, ..., L p is selected from simple oxides, silicates and zirconates of at least one element selected from among aluminum, silicon, titanium, strontium, zirconium, barium, hafnium, scandium, yttrium and lanthanides; better,
    each of the n ceramic compounds S1, ..., S n and of the p ceramic compounds L1, ..., L p is selected from the following ceramic compounds:
    - a simple oxide of an element selected from zirconium, hafnium, scandium, yttrium and lanthanides, wherein the simple oxides of zirconium and hafnium may be stabilized by an yttrium oxide;
    - a silicate of at least one element selected from among aluminum, yttrium, scandium and lanthanides, wherein the silicate may be doped with at least one oxide of at least one element of the second column of the Periodic Classification of the Elements;
    - a zirconate of at least one element selected from among yttrium, scandium and lanthanides, the zirconate being selected from among those which crystallize according to a pyrochlore or perovskite structure;
    and mixtures of these ceramic compounds.
  3. The method according to any one of the preceding claims, wherein the liquid phase (24) is a colloidal aqueous solution of the solid particles of the p ceramic compounds L1, ..., L p and/or of at least one precursor of the solid particles of the p ceramic compounds L1, ..., L p .
  4. The method according to any one of the preceding claims, wherein the n ceramic compounds S1, ..., S n are all identical with the p ceramic compounds L1, ..., L p ; preferably, n and p are both equal to 1, and the ceramic compounds S1 and L1 are both mullite.
  5. The method according to any one of the preceding claims, wherein:
    - the injection of the solid particles of the n ceramic compounds S1, ..., S n is carried out with an angle αS formed by the directions of the tilt axis of the means for injecting the solid particles of the n ceramic compounds S1, ..., S n and of the longitudinal axis of the thermal jet, comprised between 75 and 105 degrees (°); and
    - the injection of the liquid phase is carried out with an angle αL formed by the directions of the tilt axis of the means for injecting the liquid phase and of the longitudinal axis of the thermal jet, comprised between 75° and 105°.
  6. The method according to any one of the preceding claims, wherein the liquid phase is injected into the thermal jet at a distance from the substrate which is less than or equal to the distance from the substrate at which the solid particles of the n ceramic compounds S1, ..., S n are injected into the thermal jet.
  7. The method according to any one of the preceding claims, wherein deposition of the layer is achieved with a blown arc plasma projection method by means of a plasma-forming gas; preferably, the plasma-forming gas is selected from argon, helium, dinitrogen, dihydrogen, binary mixtures of the latter such as an argon-helium mixture or an argon-dihydrogen mixture, and the ternary mixtures of the latter, such as an argon-helium-dihydrogen ternary mixture.
  8. The method according to any one of the preceding claims, wherein said layer or each of the layers comprising at least one ceramic compound has a thickness ranging from 10 µm to 2 mm; and/or the volume proportion of solid particles of the p ceramic compounds L1, ..., L p and/or of precursors of said ceramic compounds in the liquid phase is comprised between 2% and 20%; and/or the ratio of the volume of the solid particles of the n ceramic compounds S1, ..., S n to the volume of the solid particles of the p ceramic compounds L1, ..., L p is comprised in an interval ranging from 0.4 to 3; and/or the flow rate with which the liquid phase is injected into the thermal jet, is 0.05 ± 0.03 liters per minute (L/min).
  9. The method according to any one of the preceding claims, wherein said layer or each of the layers comprising at least one ceramic compound has a porosity at least equal to 20%, preferably at least equal to 20% and at most equal to 40%; the porosity being determined by measuring the hydrostatic thrust in accordance with NF EN 623-3 standard.
EP13811188.5A 2012-12-18 2013-12-17 Process for coating a substrate with an abradable ceramic material Active EP2935641B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262250A FR2999457B1 (en) 2012-12-18 2012-12-18 METHOD FOR COATING A SUBSTRATE WITH A CERAMIC ABRADABLE MATERIAL, AND COATING THUS OBTAINED
PCT/EP2013/076934 WO2014095887A1 (en) 2012-12-18 2013-12-17 Process for coating a substrate with an abradable ceramic material, and coating thus obtained

Publications (2)

Publication Number Publication Date
EP2935641A1 EP2935641A1 (en) 2015-10-28
EP2935641B1 true EP2935641B1 (en) 2020-07-22

Family

ID=48521042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13811188.5A Active EP2935641B1 (en) 2012-12-18 2013-12-17 Process for coating a substrate with an abradable ceramic material

Country Status (5)

Country Link
US (1) US20150329954A1 (en)
EP (1) EP2935641B1 (en)
ES (1) ES2825054T3 (en)
FR (1) FR2999457B1 (en)
WO (1) WO2014095887A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2851633A1 (en) * 2014-05-12 2015-11-12 Unknown Nanostructured tio2-cr2o3 thermal sprayed coatings
US10745793B2 (en) * 2015-06-04 2020-08-18 Raytheon Technologies Corporation Ceramic coating deposition
US10697464B2 (en) * 2016-07-29 2020-06-30 Raytheon Technologies Corporation Abradable material
CN112639155B (en) * 2018-08-27 2023-03-14 东华隆株式会社 Method for forming thermal spray coating
GB2625083A (en) * 2022-12-05 2024-06-12 Siemens Energy Global Gmbh & Co Kg Method of applying an abrasive and protective armor overlay and tool

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3084064A (en) 1959-08-06 1963-04-02 Union Carbide Corp Abradable metal coatings and process therefor
US3879831A (en) 1971-11-15 1975-04-29 United Aircraft Corp Nickle base high temperature abradable material
FR2432717A1 (en) * 1978-04-27 1980-02-29 Commissariat Energie Atomique PROCESS FOR MANUFACTURING SENSITIVE PLATES FOR ELECTRON DOSIMETERS
US4269903A (en) 1979-09-06 1981-05-26 General Motors Corporation Abradable ceramic seal and method of making same
JPS60140693A (en) * 1983-12-28 1985-07-25 日立金属株式会社 Resistance film heating implement
DE3662409D1 (en) * 1985-04-30 1989-04-20 Yamauchi Corp Press roll for paper machines
US4696855A (en) 1986-04-28 1987-09-29 United Technologies Corporation Multiple port plasma spray apparatus and method for providing sprayed abradable coatings
US4936745A (en) 1988-12-16 1990-06-26 United Technologies Corporation Thin abradable ceramic air seal
US5196471A (en) 1990-11-19 1993-03-23 Sulzer Plasma Technik, Inc. Thermal spray powders for abradable coatings, abradable coatings containing solid lubricants and methods of fabricating abradable coatings
US6465090B1 (en) * 1995-11-30 2002-10-15 General Electric Company Protective coating for thermal barrier coatings and coating method therefor
FR2832180B1 (en) 2001-11-14 2005-02-18 Snecma Moteurs ABRADABLE COATING FOR WALLS OF GAS TURBINES
FR2877015B1 (en) 2004-10-21 2007-10-26 Commissariat Energie Atomique NANOSTRUCTURE COATING AND COATING PROCESS.
JP4885445B2 (en) * 2004-12-21 2012-02-29 株式会社フジミインコーポレーテッド Thermal spray powder
US20060222777A1 (en) * 2005-04-05 2006-10-05 General Electric Company Method for applying a plasma sprayed coating using liquid injection
US20080167173A1 (en) 2006-04-25 2008-07-10 Lima Rogerio S Thermal spray coating of porous nanostructured ceramic feedstock
FR2900351B1 (en) * 2006-04-26 2008-06-13 Commissariat Energie Atomique PROCESS FOR PREPARING A NANOPOROUS LAYER OF NANOPARTICLES AND THE LAYER THUS OBTAINED
US7998604B2 (en) * 2007-11-28 2011-08-16 United Technologies Corporation Article having composite layer
US20100015350A1 (en) * 2008-07-16 2010-01-21 Siemens Power Generation, Inc. Process of producing an abradable thermal barrier coating with solid lubricant
CN102005254A (en) * 2010-09-15 2011-04-06 合肥左天电子科技有限公司 Electric insulation material for lamellar detection element of gas sensor and preparation method thereof
ZA201202480B (en) * 2011-10-17 2012-11-28 Int Advanced Res Centre For Power Metallurgy And New Mat (Arci) Dept Of Science And Tech Govt Of Ind An improved hybrid methodology for producing composite,multi-layered and graded coatings by plasma spraying utitilizing powder and solution precurrsor feedstock

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2999457B1 (en) 2015-01-16
WO2014095887A1 (en) 2014-06-26
EP2935641A1 (en) 2015-10-28
ES2825054T3 (en) 2021-05-14
FR2999457A1 (en) 2014-06-20
US20150329954A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
EP2935641B1 (en) Process for coating a substrate with an abradable ceramic material
EP3529395B1 (en) Method of coating a solid substrate with a layer of a ceramic compound and coated substrate
EP2545198B1 (en) Method for manufacturing a thermal barrier protection and multilayercoating suitable as thermal barrier
EP2561110B1 (en) Thermal spray method for the application of a multilayer coating on a substrate
EP2917502B1 (en) Rotor-stator assembly for a gas turgine engine
Aghasibeig et al. A review on suspension thermal spray patented technology evolution
FR2967204A1 (en) METHOD FOR MANUFACTURING A COMPONENT USING A FUGITIVE COATING
CA3066848A1 (en) Coated turbomachine part and associated method of production
FR2981286A1 (en) IMPROVED HYBRID METHODOLOGY FOR PRODUCING COMPOSITE, MULTILAYER AND GRADIENT COATINGS BY PLASMA SPRAY USING POWDER AND SOLVENT PRECURSOR LOAD
EP1522533B1 (en) Target destined for electron beam evaporation and its process of manufacture.
CA3066302A1 (en) Coated turbomachine part and associated method of production
FR3013996A1 (en) PROCESS FOR THE LOCAL REPAIR OF THERMAL BARRIERS
FR2994397A1 (en) COATING IN ABRADABLE MATERIAL WITH LOW SURFACE ROUGHNESS
WO2017080948A1 (en) Multilayer ceramic coating for high-temperature thermal protection, in particular for aeronautical application, and method for producing same
Shao et al. Surface oxidation behavior and anti-ablation mechanism of plasma sprayed ZrC-ZrSi2-Al2O3 composite coating under plasma torch ablation
WO2000036181A1 (en) METHOD FOR PRODUCING A METAL ALLOY POWDER SUCH AS MCrALY AND COATINGS OBTAINED WITH SAME
WO2017006069A1 (en) Part coated with a coating for protection against cmas
WO1995007768A1 (en) Method for the production of composite materials or coatings and system for implementing it
Di Girolamo et al. Thermally sprayed coatings for high-temperature applications
FR3118096A1 (en) BLADE IN COMPOSITE MATERIAL WITH AT LEAST PARTLY CERAMIC MATRIX
FR3135214A1 (en) CORD FOR THERMAL PROJECTION
HUE035690T2 (en) Process of fabricating thermal barrier coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: QUET, AURELIE

Inventor name: BIANCHI, LUC

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180522

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/12 20160101AFI20200123BHEP

INTG Intention to grant announced

Effective date: 20200218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013070961

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1293453

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013070961

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2825054

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210514

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 11

Ref country code: DE

Payment date: 20231219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 11