EP2929144B1 - Streuungsdetektion in einem bohrloch aufgrund optischer spektren - Google Patents

Streuungsdetektion in einem bohrloch aufgrund optischer spektren Download PDF

Info

Publication number
EP2929144B1
EP2929144B1 EP13860663.7A EP13860663A EP2929144B1 EP 2929144 B1 EP2929144 B1 EP 2929144B1 EP 13860663 A EP13860663 A EP 13860663A EP 2929144 B1 EP2929144 B1 EP 2929144B1
Authority
EP
European Patent Office
Prior art keywords
wavelength
scattering
formation fluid
optical density
downhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13860663.7A
Other languages
English (en)
French (fr)
Other versions
EP2929144A4 (de
EP2929144A1 (de
Inventor
Kai Hsu
Kentaro Indo
Julian Pop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Services Petroliers Schlumberger SA
Schlumberger Technology BV
Schlumberger Holdings Ltd
Original Assignee
Services Petroliers Schlumberger SA
Schlumberger Technology BV
Schlumberger Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Services Petroliers Schlumberger SA, Schlumberger Technology BV, Schlumberger Holdings Ltd filed Critical Services Petroliers Schlumberger SA
Publication of EP2929144A1 publication Critical patent/EP2929144A1/de
Publication of EP2929144A4 publication Critical patent/EP2929144A4/de
Application granted granted Critical
Publication of EP2929144B1 publication Critical patent/EP2929144B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/088Well testing, e.g. testing for reservoir productivity or formation parameters combined with sampling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/0875Well testing, e.g. testing for reservoir productivity or formation parameters determining specific fluid parameters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/081Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals

Definitions

  • These fluid analyzers each provide ten channels that correspond to different wavelengths of light for a measured spectrum ranging from visible to near infrared wavelengths.
  • the output of each channel represents an optical density (i.e., the logarithm of the ratio of incident light intensity to transmitted light intensity), where an optical density (OD) of zero (0) corresponds to 100% light transmission, and an OD of one (1) corresponds to 10% light transmission.
  • the combined OD output of the channels provides spectral information that can be used in determining the composition and various other parameters of formation fluids.
  • the present invention resides in a method as defined in claim 1 and in a method as defined in claim 2.
  • detector 4 depicts only one detector 415, other configurations within the scope of the present disclosure may comprise more than one detector 415, such as where multiple detectors 415 are disposed adjacent or proximate one another along the flowline 405.
  • the detector(s) 415 senses light that has transmitted through the formation fluid 430 in the flowline 405, resulting in optical spectra that may be utilized according to one or more aspects of the present disclosure.
  • one or more controller(s) 420 associated with the downhole fluid analyzer 400 and/or the downhole tool may utilize measured optical spectra to determine or estimate scattering intensity within the formation fluid 430 in the flowline 405 according to one or more aspects of DFA introduced herein.
  • FIGS. 9 and 10 depict another set of multi-channel spectrometer data in an "oil" station and the processing results based on a method within the scope of the present disclosure. Based on the results shown therein, the scattering events were detected sparsely over the entire interval. The data also depicts the results for when the sample bottle was opened at about 3200 seconds.
  • the method 700 incorporates the option to determine scattering intensity either by determining the variance of the scattering coefficients, as in the step 525 of the method 500, or by determining the semblance of the corrected and uncorrected spectral data, as in the step 635 of the method 600. If, during a particular iteration of the method 700, the scattering coefficient variance exceeds a predetermined threshold or otherwise indicates an undesirable intensity of scattering within the fluid in the flowline of the downhole sampling tool, then an operating parameter of the downhole sampling tool may be adjusted during the step 550, perhaps in proportion to or otherwise based on the magnitude or other extent by which the predetermined threshold is exceeded.
  • the wavelength-dependent and wavelength-independent scattering coefficients are related to the size of scattering objects. Therefore, at least according to one or more aspects of the present disclosure, the coefficients may be also or alternatively be used to identify the size of the scattering objects flowing within the flowline.
  • the system 1000 comprises a processor 1012 such as, for example, a general-purpose programmable processor.
  • the processor 1012 includes a local memory 1014, and executes coded instructions 1032 present in the local memory 1014 and/or in another memory device.
  • the processor 1012 may execute, among other things, machine readable instructions to implement the processes represented in FIGS. 11-14 .
  • the processor 1012 may be, comprise or be implemented by any type of processing unit, such as one or more INTEL microprocessors, one or more microcontrollers from the ARM and/or PICO families of microcontrollers, one or more embedded soft/hard processors in one or more FPGAs, etc. Of course, other processors from other families are also appropriate.
  • the determining means may comprise means for determining a variance of the wavelength-independent scattering coefficient and the wavelength-dependent scattering coefficient in real-time.
  • the determining means may comprise means for detecting at least one of: the variance of the wavelength-independent scattering coefficient exceeding a first predetermined threshold; and the variance of the wavelength-dependent scattering coefficient exceeding a second predetermined threshold.
  • the determining means may comprise means for determining in real-time a semblance of the first and second optical spectral data before and after correcting the first and second optical spectral data based on the determined wavelength-independent scattering coefficient and the determined wavelength-dependent scattering coefficient.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (13)

  1. Verfahren, das umfasst:
    Ermitteln, in situ, zu einem ersten Zeitpunkt t, erster spektraler optischer Dichtedaten ODλ (t) bei mehreren Wellenlängen λ, die einem durch eine Bohrloch-Formationsfluidprobenahmevorrichtung (400) strömenden Formationsfluid (430) zugeordnet sind;
    Ermitteln, in situ, zu einem zweiten Zeitpunkt t+1 nach dem ersten Zeitpunkt, zweiter spektraler optischer Dichtedaten ODλ (t + 1) bei den mehreren Wellenlängen λ, die dem durch die Bohrloch-Formationsfluidprobenahmevorrichtung strömenden Formationsfluid (430) zugeordnet sind;
    Fitten der Differenz zwischen den ersten und zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen λ gemäß dem Verhältnis a(t) + b(t)λ α(t), um einen ersten wellenlängenunabhängigen Streuparameter a(t) und einen zweiten wellenlängenabhängigen Streuparameter b(t) zu schätzen, wobei a(t) die Differenz eines wellenlängenunabhängigen Streukoeffizienten (a) zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, b(t) die Differenz eines wellenlängenabhängigen Streukoeffizienten b zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, und a (t) der dem Typ der Streuung entsprechende Exponent ist;
    Ermitteln der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und des zweiten wellenlängenabhängigen Streuparameters b(t) zum ersten und zweiten Zeitpunkt t und t+1;
    Identifizieren des Beginns und des Vorhandenseins von Streuung basierend auf den ermittelten Varianzen des ersten wellenlängenunabhängigen Streuparameters a(t) und des zweiten wellenlängenabhängigen Streuparameters b(t).
  2. Verfahren, das umfasst:
    Ermitteln, in situ, zu einem ersten Zeitpunkt t, erster spektraler optischer Dichtedaten ODλ (t) bei mehreren Wellenlängen λ, die einem durch eine Bohrloch-Formationsfluidprobenahmevorrichtung strömenden Formationsfluid zugeordnet sind;
    Ermitteln, in situ, zu einem zweiten Zeitpunkt t+1 nach dem ersten Zeitpunkt, zweiter spektraler optischer Dichtedaten ODλ (t + 1) bei den mehreren Wellenlängen λ, die dem durch die Bohrloch-Formationsfluidprobenahmevorrichtung (400) strömenden Formationsfluid zugeordnet sind;
    Fitten der Differenz zwischen den ersten und zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen λ gemäß dem Verhältnis a(t) + b(t)λ α(t), um einen ersten wellenlängenunabhängigen Streuparameter a(t) und einen zweiten wellenlängenabhängigen Streuparameter b(t) zu schätzen, wobei a(t) die Differenz eines wellenlängenunabhängigen Streukoeffizienten (a) zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, b(t) die Differenz eines wellenlängenabhängigen Streukoeffizienten b zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, und a (t) der dem Typ der Streuung entsprechende Exponent ist;
    Berichtigen der ersten spektralen optischen Dichtedaten ODλ (t) bei den mehreren Wellenlängen λ basierend auf den geschätzten ersten wellenlängenunabhängigen und zweiten wellenlängenabhängigen Streuparametern a(t), b(t);
    Ermitteln der Ähnlichkeit ρ(t) der ersten und zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen ODλ (t) und ODλ (t + 1) und der Ähnlichkeit ρ(t) der berichtigten ersten spektralen optischen Dichtedaten und der zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen,
    wobei die Ähnlichkeit definiert ist als: ρ t = λ OD λ t + 1 + OD λ t 2 2 λ OD λ t + 1 2 + OD λ t 2 ;
    Figure imgb0007
    Identifizieren des Beginns und Vorhandenseins von Streuung basierend auf den ermittelten Ähnlichkeiten.
  3. Verfahren nach Anspruch 1 oder 2, ferner umfassend ein Einstellen eines der Bohrloch-Formationsfluidprobenahmevorrichtung zugeordneten Betriebsparameters basierend auf wenigstens einem aus der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t), der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) und der ermittelten Ähnlichkeiten ρ(t).
  4. Verfahren nach Anspruch 3, wobei der Betriebsparameter ein Betriebsparameter einer Pumpe der Bohrloch-Formationsfluidprobenahmevorrichtung ist.
  5. Verfahren nach Anspruch 4, wobei das Einstellen des Betriebsparameters der Pumpe ein Verringern eines Durchsatzes der Pumpe basierend auf wenigstens einem aus der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t), der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) und der ermittelten Ähnlichkeiten ist.
  6. Verfahren nach Anspruch 1, wobei ein unerwünschtes Niveau an Streuung angezeigt wird, falls die Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) einen ersten vorbestimmten Schwellenwert überschreitet oder falls die Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) einen zweiten vorbestimmten Schwellenwert überschreitet.
  7. Verfahren nach Anspruch 2, wobei ein unerwünschtes Niveau an Streuung angezeigt wird, falls die ermittelte Ähnlichkeit ρ(t) der ersten und zweiten spektralen optischen Dichtedaten ODλ (t) und ODλ (t + 1) und die ermittelte Ähnlichkeit ρ(t) der berichtigten ersten spektralen optischen Dichtedaten und der zweiten spektralen optischen Dichtedaten einen vorbestimmten Schwellenwert überschreiten.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die ersten und zweiten spektralen optischen Dichtedaten wenigstens teilweise über einen mehrkanaligen optischen Sensor (415) der Bohrloch-Formationsfluidprobenahmevorrichtung (400) gewonnen werden, und wobei der mehrkanalige optische Sensor (415) der Bohrloch-Formationsfluidprobenahmevorrichtung (400) wenigstens ein Spektrometer umfasst.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Bohrloch-Formationsfluidprobenahmevorrichtung ein erstes Spektrometer und ein zweites Spektrometer umfasst, wobei das Ermitteln der ersten spektralen optischen Dichtedaten das erste Spektrometer nutzt und wobei das Ermitteln der zweiten spektralen optischen Dichtedaten das zweite Spektrometer nutzt.
  10. Verfahren nach Anspruch 1, ferner umfassend ein Bewerten der Qualität wenigstens eines Antwortprodukts basierend auf wenigstens einer aus der ermittelten Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t).
  11. Verfahren nach Anspruch 10, wobei das Bewerten der Qualität wenigstens eines Antwortprodukts ein Schätzen eines Gas-zu-Öl-Verhältnisses GOR des durch die Bohrloch-Formationsfluidprobenahmevorrichtung strömenden Formationsfluids basierend auf wenigstens einer aus der ermittelten Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) umfasst.
  12. Verfahren nach Anspruch 1, ferner umfassend ein Identifizieren der Größe von innerhalb der Bohrloch-Formationsfluidprobenahmevorrichtung (400) strömenden Streuobjekte basierend auf wenigstens einer aus der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t).
  13. Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend ein Befördern der Bohrloch-Formationsfluidprobenahmevorrichtung innerhalb eines sich in die Formation erstreckenden Bohrlochs (212), wobei das Befördern über wenigstens eines aus einem Drahtseil (222) und einem Rohrstrang erfolgt.
EP13860663.7A 2012-12-04 2013-11-05 Streuungsdetektion in einem bohrloch aufgrund optischer spektren Active EP2929144B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/693,782 US9169727B2 (en) 2012-12-04 2012-12-04 Scattering detection from downhole optical spectra
PCT/US2013/068372 WO2014088743A1 (en) 2012-12-04 2013-11-05 Scattering detection from downhole optical spectra

Publications (3)

Publication Number Publication Date
EP2929144A1 EP2929144A1 (de) 2015-10-14
EP2929144A4 EP2929144A4 (de) 2016-08-10
EP2929144B1 true EP2929144B1 (de) 2019-05-22

Family

ID=50824110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13860663.7A Active EP2929144B1 (de) 2012-12-04 2013-11-05 Streuungsdetektion in einem bohrloch aufgrund optischer spektren

Country Status (5)

Country Link
US (2) US9169727B2 (de)
EP (1) EP2929144B1 (de)
AU (1) AU2013356580B2 (de)
BR (1) BR112015013155A2 (de)
WO (1) WO2014088743A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169727B2 (en) 2012-12-04 2015-10-27 Schlumberger Technology Corporation Scattering detection from downhole optical spectra
US9347314B2 (en) * 2013-06-07 2016-05-24 Schlumberger Technology Corporation System and method for quantifying uncertainty of predicted petroleum fluid properties
US10794890B2 (en) 2013-12-19 2020-10-06 Schlumberger Technology Corporation Method of obtaining asphaltene content of crude oils
US9612154B2 (en) 2014-12-19 2017-04-04 Schlumberger Technology Corporation Method for diagnosing optical spectrometers of downhole tools
BR112017010684B1 (pt) * 2014-12-29 2022-01-25 Halliburton Energy Services, Inc Métodos de linearização de sensor cruzado
US10317875B2 (en) * 2015-09-30 2019-06-11 Bj Services, Llc Pump integrity detection, monitoring and alarm generation
WO2017079179A1 (en) 2015-11-05 2017-05-11 Schlumberger Technology Corporation Method to estimate saturation pressure of flow-line fluid with its associated uncertainty during sampling operations downhole and application thereof
US10948621B2 (en) 2015-11-13 2021-03-16 Halliburton Energy Services, Inc. Microstrip antenna-based logging tool and method
US10704388B2 (en) 2016-03-31 2020-07-07 Schlumberger Technology Corporation Systems and methods for pump control based on non-linear model predictive controls
US10287880B2 (en) 2016-03-31 2019-05-14 Schlumberger Technology Corporation Systems and methods for pump control based on estimated saturation pressure of flow-line fluid with its associated uncertainty during sampling operations and application thereof
NO20211409A1 (en) * 2019-07-08 2021-11-19 Halliburton Energy Services Inc Pad Alignment with a Multi-Frequency-Band, Multi-Window Semblance Processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2315000A2 (de) * 2009-10-20 2011-04-27 Schlumberger Technology B.V. Verfahren und Vorrichtung zur Bestimmung von Phasenwechseldrücken

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473939A (en) 1992-06-19 1995-12-12 Western Atlas International, Inc. Method and apparatus for pressure, volume, and temperature measurement and characterization of subsurface formations
US5266800A (en) * 1992-10-01 1993-11-30 Schlumberger Technology Corporation Method of distinguishing between crude oils
US5329811A (en) 1993-02-04 1994-07-19 Halliburton Company Downhole fluid property measurement tool
US6350986B1 (en) * 1999-02-23 2002-02-26 Schlumberger Technology Corporation Analysis of downhole OBM-contaminated formation fluid
US6334489B1 (en) 1999-07-19 2002-01-01 Wood Group Logging Services Holding Inc. Determining subsurface fluid properties using a downhole device
US6841778B1 (en) * 2001-11-09 2005-01-11 Environmental Systems Products Holdings Inc. Method and apparatus for measuring particulates in vehicle emissions
GB2401430B (en) 2003-04-23 2005-09-21 Sensor Highway Ltd Fluid flow measurement
BRPI0410776B1 (pt) 2003-05-21 2016-01-19 Baker Hughes Inc aparelho e método para determinar taxa de bombeamento para amostra de fluido de formação
US6992768B2 (en) * 2003-05-22 2006-01-31 Schlumberger Technology Corporation Optical fluid analysis signal refinement
BRPI0411672A (pt) 2003-06-20 2006-08-08 Baker Hughes Inc testes aperfeiçoados de pv de fundo de furo para pressão de ponto de bolha
US7074064B2 (en) 2003-07-22 2006-07-11 Pathfinder Energy Services, Inc. Electrical connector useful in wet environments
US7040415B2 (en) 2003-10-22 2006-05-09 Schlumberger Technology Corporation Downhole telemetry system and method
WO2005047647A1 (en) * 2003-11-10 2005-05-26 Baker Hughes Incorporated A method and apparatus for a downhole spectrometer based on electronically tunable optical filters
JP4451696B2 (ja) 2004-03-30 2010-04-14 富士通株式会社 微細構造ファイバの非線形係数の波長依存性をキャンセルする装置
US7461547B2 (en) 2005-04-29 2008-12-09 Schlumberger Technology Corporation Methods and apparatus of downhole fluid analysis
US7428925B2 (en) 2005-11-21 2008-09-30 Schlumberger Technology Corporation Wellbore formation evaluation system and method
US7379180B2 (en) 2006-01-26 2008-05-27 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7336356B2 (en) * 2006-01-26 2008-02-26 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7996153B2 (en) 2006-07-12 2011-08-09 Baker Hughes Incorporated Method and apparatus for formation testing
JP2009544017A (ja) 2006-07-18 2009-12-10 ティーアイアール テクノロジー エルピー 光の輝度及びピーク波長を決定する方法及び装置
US7711488B2 (en) * 2006-12-28 2010-05-04 Schlumberger Technology Corporation Methods and apparatus to monitor contamination levels in a formation fluid
US20130167628A1 (en) * 2007-02-15 2013-07-04 Hifi Engineering Inc. Method and apparatus for detecting an acoustic event along a channel
US7966273B2 (en) 2007-07-27 2011-06-21 Schlumberger Technology Corporation Predicting formation fluid property through downhole fluid analysis using artificial neural network
WO2009025688A1 (en) 2007-08-20 2009-02-26 Halliburton Energy Services, Inc. Apparatus and method for fluid property measurements
US7644610B2 (en) 2007-08-24 2010-01-12 Baker Hughes Incorporated Automated formation fluid clean-up to sampling switchover
US8068226B2 (en) 2008-01-16 2011-11-29 Baker Hughes Incorporated Methods and apparatus for estimating a downhole fluid property
US7774141B2 (en) 2008-01-17 2010-08-10 Baker Hughes Incorporated Methods for the identification of bubble point pressure
US8061444B2 (en) * 2008-05-22 2011-11-22 Schlumberger Technology Corporation Methods and apparatus to form a well
US8146415B2 (en) 2008-05-27 2012-04-03 Baker Hughes Incorporated Downhole gas chromatograph
US8082780B2 (en) 2008-08-28 2011-12-27 Schlumberger Technology Corporation Methods and apparatus for decreasing a density of a downhole fluid
US8622128B2 (en) * 2009-04-10 2014-01-07 Schlumberger Technology Corporation In-situ evaluation of reservoir sanding and fines migration and related completion, lift and surface facilities design
US9249659B2 (en) 2009-04-15 2016-02-02 Halliburton Energy Services, Inc. Formation fluid property determination
US8763696B2 (en) 2010-04-27 2014-07-01 Sylvain Bedouet Formation testing
US8672026B2 (en) 2010-07-23 2014-03-18 Halliburton Energy Services, Inc. Fluid control in reservior fluid sampling tools
MX2013009208A (es) 2011-02-11 2013-12-06 Halliburton Energy Serv Inc Metodo y aparato para utilizar multiples envolventes espectroscopicas para determinar componentes con mayor precision y rango dinamico.
US8910514B2 (en) * 2012-02-24 2014-12-16 Schlumberger Technology Corporation Systems and methods of determining fluid properties
US9334729B2 (en) * 2012-10-04 2016-05-10 Schlumberger Technology Corporation Determining fluid composition downhole from optical spectra
US9115567B2 (en) 2012-11-14 2015-08-25 Schlumberger Technology Corporation Method and apparatus for determining efficiency of a sampling tool
US9169727B2 (en) 2012-12-04 2015-10-27 Schlumberger Technology Corporation Scattering detection from downhole optical spectra
US20140268156A1 (en) 2013-03-13 2014-09-18 Schlumberger Technology Corporation Method and system for determining bubble point pressure
US9334724B2 (en) 2013-07-09 2016-05-10 Schlumberger Technology Corporation System and method for operating a pump in a downhole tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2315000A2 (de) * 2009-10-20 2011-04-27 Schlumberger Technology B.V. Verfahren und Vorrichtung zur Bestimmung von Phasenwechseldrücken

Also Published As

Publication number Publication date
AU2013356580A1 (en) 2015-06-04
BR112015013155A2 (pt) 2017-07-11
US9169727B2 (en) 2015-10-27
WO2014088743A1 (en) 2014-06-12
US10358918B2 (en) 2019-07-23
EP2929144A4 (de) 2016-08-10
US20160032721A1 (en) 2016-02-04
AU2013356580B2 (en) 2017-10-19
EP2929144A1 (de) 2015-10-14
US20140150545A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
EP2929144B1 (de) Streuungsdetektion in einem bohrloch aufgrund optischer spektren
US10975693B2 (en) Estimating contamination during focused sampling
US10295522B2 (en) Determining properties of OBM filtrates
US9733389B2 (en) Multi-sensor contamination monitoring
EP2904207B1 (de) Bestimmung einer fluidzusammensetzung aus optischen spektren in einem bohrloch
US9784101B2 (en) Estimation of mud filtrate spectra and use in fluid analysis
US11384637B2 (en) Systems and methods for formation fluid sampling
US10294785B2 (en) Data extraction for OBM contamination monitoring
US10352160B2 (en) Method of estimating uncontaminated fluid properties during sampling
US11692991B2 (en) Methods and systems for correction of oil-based mud filtrate contamination on saturation pressure
US10012074B2 (en) Asphaltene content of heavy oil
US10352162B2 (en) Cleanup model parameterization, approximation, and sensitivity
EP3004543A1 (de) System und verfahren zur quantifizierung der unsicherheit von vorhergesagten erdölfluideigenschaften
US8717549B2 (en) Methods and apparatus to detect contaminants on a fluid sensor
US10352161B2 (en) Applying shrinkage factor to real-time OBM filtrate contamination monitoring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160712

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 29/34 20060101ALI20160706BHEP

Ipc: G01N 29/032 20060101ALI20160706BHEP

Ipc: E21B 49/08 20060101AFI20160706BHEP

Ipc: G01N 21/53 20060101ALI20160706BHEP

17Q First examination report despatched

Effective date: 20160908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013055906

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E21B0049080000

Ipc: G01N0021530000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 49/08 20060101ALI20181122BHEP

Ipc: G01N 21/53 20060101AFI20181122BHEP

Ipc: G01N 29/34 20060101ALI20181122BHEP

Ipc: E21B 49/10 20060101ALI20181122BHEP

Ipc: G01N 29/032 20060101ALI20181122BHEP

INTG Intention to grant announced

Effective date: 20181213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013055906

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1136712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190522

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190823

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1136712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013055906

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

26N No opposition filed

Effective date: 20200225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191105

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191105

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231108

Year of fee payment: 11

Ref country code: DE

Payment date: 20230912

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240912

Year of fee payment: 12