EP2929144B1 - Streuungsdetektion in einem bohrloch aufgrund optischer spektren - Google Patents
Streuungsdetektion in einem bohrloch aufgrund optischer spektren Download PDFInfo
- Publication number
- EP2929144B1 EP2929144B1 EP13860663.7A EP13860663A EP2929144B1 EP 2929144 B1 EP2929144 B1 EP 2929144B1 EP 13860663 A EP13860663 A EP 13860663A EP 2929144 B1 EP2929144 B1 EP 2929144B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wavelength
- scattering
- formation fluid
- optical density
- downhole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 79
- 238000001228 spectrum Methods 0.000 title description 8
- 238000001514 detection method Methods 0.000 title description 4
- 239000012530 fluid Substances 0.000 claims description 161
- 230000015572 biosynthetic process Effects 0.000 claims description 119
- 238000000034 method Methods 0.000 claims description 99
- 238000005070 sampling Methods 0.000 claims description 86
- 230000003595 spectral effect Effects 0.000 claims description 71
- 230000001419 dependent effect Effects 0.000 claims description 66
- 238000011065 in-situ storage Methods 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 238000005755 formation reaction Methods 0.000 description 101
- 238000000424 optical density measurement Methods 0.000 description 26
- 239000000523 sample Substances 0.000 description 19
- 238000012545 processing Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 12
- 238000005553 drilling Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000009102 absorption Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 4
- 238000003908 quality control method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/087—Well testing, e.g. testing for reservoir productivity or formation parameters
- E21B49/088—Well testing, e.g. testing for reservoir productivity or formation parameters combined with sampling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/087—Well testing, e.g. testing for reservoir productivity or formation parameters
- E21B49/0875—Well testing, e.g. testing for reservoir productivity or formation parameters determining specific fluid parameters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/081—Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
- E21B49/10—Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/534—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/032—Analysing fluids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/34—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
- G01N29/348—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
Definitions
- These fluid analyzers each provide ten channels that correspond to different wavelengths of light for a measured spectrum ranging from visible to near infrared wavelengths.
- the output of each channel represents an optical density (i.e., the logarithm of the ratio of incident light intensity to transmitted light intensity), where an optical density (OD) of zero (0) corresponds to 100% light transmission, and an OD of one (1) corresponds to 10% light transmission.
- the combined OD output of the channels provides spectral information that can be used in determining the composition and various other parameters of formation fluids.
- the present invention resides in a method as defined in claim 1 and in a method as defined in claim 2.
- detector 4 depicts only one detector 415, other configurations within the scope of the present disclosure may comprise more than one detector 415, such as where multiple detectors 415 are disposed adjacent or proximate one another along the flowline 405.
- the detector(s) 415 senses light that has transmitted through the formation fluid 430 in the flowline 405, resulting in optical spectra that may be utilized according to one or more aspects of the present disclosure.
- one or more controller(s) 420 associated with the downhole fluid analyzer 400 and/or the downhole tool may utilize measured optical spectra to determine or estimate scattering intensity within the formation fluid 430 in the flowline 405 according to one or more aspects of DFA introduced herein.
- FIGS. 9 and 10 depict another set of multi-channel spectrometer data in an "oil" station and the processing results based on a method within the scope of the present disclosure. Based on the results shown therein, the scattering events were detected sparsely over the entire interval. The data also depicts the results for when the sample bottle was opened at about 3200 seconds.
- the method 700 incorporates the option to determine scattering intensity either by determining the variance of the scattering coefficients, as in the step 525 of the method 500, or by determining the semblance of the corrected and uncorrected spectral data, as in the step 635 of the method 600. If, during a particular iteration of the method 700, the scattering coefficient variance exceeds a predetermined threshold or otherwise indicates an undesirable intensity of scattering within the fluid in the flowline of the downhole sampling tool, then an operating parameter of the downhole sampling tool may be adjusted during the step 550, perhaps in proportion to or otherwise based on the magnitude or other extent by which the predetermined threshold is exceeded.
- the wavelength-dependent and wavelength-independent scattering coefficients are related to the size of scattering objects. Therefore, at least according to one or more aspects of the present disclosure, the coefficients may be also or alternatively be used to identify the size of the scattering objects flowing within the flowline.
- the system 1000 comprises a processor 1012 such as, for example, a general-purpose programmable processor.
- the processor 1012 includes a local memory 1014, and executes coded instructions 1032 present in the local memory 1014 and/or in another memory device.
- the processor 1012 may execute, among other things, machine readable instructions to implement the processes represented in FIGS. 11-14 .
- the processor 1012 may be, comprise or be implemented by any type of processing unit, such as one or more INTEL microprocessors, one or more microcontrollers from the ARM and/or PICO families of microcontrollers, one or more embedded soft/hard processors in one or more FPGAs, etc. Of course, other processors from other families are also appropriate.
- the determining means may comprise means for determining a variance of the wavelength-independent scattering coefficient and the wavelength-dependent scattering coefficient in real-time.
- the determining means may comprise means for detecting at least one of: the variance of the wavelength-independent scattering coefficient exceeding a first predetermined threshold; and the variance of the wavelength-dependent scattering coefficient exceeding a second predetermined threshold.
- the determining means may comprise means for determining in real-time a semblance of the first and second optical spectral data before and after correcting the first and second optical spectral data based on the determined wavelength-independent scattering coefficient and the determined wavelength-dependent scattering coefficient.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Claims (13)
- Verfahren, das umfasst:Ermitteln, in situ, zu einem ersten Zeitpunkt t, erster spektraler optischer Dichtedaten ODλ (t) bei mehreren Wellenlängen λ, die einem durch eine Bohrloch-Formationsfluidprobenahmevorrichtung (400) strömenden Formationsfluid (430) zugeordnet sind;Ermitteln, in situ, zu einem zweiten Zeitpunkt t+1 nach dem ersten Zeitpunkt, zweiter spektraler optischer Dichtedaten ODλ (t + 1) bei den mehreren Wellenlängen λ, die dem durch die Bohrloch-Formationsfluidprobenahmevorrichtung strömenden Formationsfluid (430) zugeordnet sind;Fitten der Differenz zwischen den ersten und zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen λ gemäß dem Verhältnis a(t) + b(t)λ α(t), um einen ersten wellenlängenunabhängigen Streuparameter a(t) und einen zweiten wellenlängenabhängigen Streuparameter b(t) zu schätzen, wobei a(t) die Differenz eines wellenlängenunabhängigen Streukoeffizienten (
a ) zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, b(t) die Differenz eines wellenlängenabhängigen Streukoeffizientenb zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, und a (t) der dem Typ der Streuung entsprechende Exponent ist;Ermitteln der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und des zweiten wellenlängenabhängigen Streuparameters b(t) zum ersten und zweiten Zeitpunkt t und t+1;Identifizieren des Beginns und des Vorhandenseins von Streuung basierend auf den ermittelten Varianzen des ersten wellenlängenunabhängigen Streuparameters a(t) und des zweiten wellenlängenabhängigen Streuparameters b(t). - Verfahren, das umfasst:Ermitteln, in situ, zu einem ersten Zeitpunkt t, erster spektraler optischer Dichtedaten ODλ (t) bei mehreren Wellenlängen λ, die einem durch eine Bohrloch-Formationsfluidprobenahmevorrichtung strömenden Formationsfluid zugeordnet sind;Ermitteln, in situ, zu einem zweiten Zeitpunkt t+1 nach dem ersten Zeitpunkt, zweiter spektraler optischer Dichtedaten ODλ (t + 1) bei den mehreren Wellenlängen λ, die dem durch die Bohrloch-Formationsfluidprobenahmevorrichtung (400) strömenden Formationsfluid zugeordnet sind;Fitten der Differenz zwischen den ersten und zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen λ gemäß dem Verhältnis a(t) + b(t)λ α(t), um einen ersten wellenlängenunabhängigen Streuparameter a(t) und einen zweiten wellenlängenabhängigen Streuparameter b(t) zu schätzen, wobei a(t) die Differenz eines wellenlängenunabhängigen Streukoeffizienten (
a ) zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, b(t) die Differenz eines wellenlängenabhängigen Streukoeffizientenb zum ersten Zeitpunkt t und zum zweiten Zeitpunkt t+1 ist, und a (t) der dem Typ der Streuung entsprechende Exponent ist;Berichtigen der ersten spektralen optischen Dichtedaten ODλ (t) bei den mehreren Wellenlängen λ basierend auf den geschätzten ersten wellenlängenunabhängigen und zweiten wellenlängenabhängigen Streuparametern a(t), b(t);Ermitteln der Ähnlichkeit ρ(t) der ersten und zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen ODλ (t) und ODλ (t + 1) und der Ähnlichkeit ρ(t) der berichtigten ersten spektralen optischen Dichtedaten und der zweiten spektralen optischen Dichtedaten bei den mehreren Wellenlängen,Identifizieren des Beginns und Vorhandenseins von Streuung basierend auf den ermittelten Ähnlichkeiten. - Verfahren nach Anspruch 1 oder 2, ferner umfassend ein Einstellen eines der Bohrloch-Formationsfluidprobenahmevorrichtung zugeordneten Betriebsparameters basierend auf wenigstens einem aus der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t), der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) und der ermittelten Ähnlichkeiten ρ(t).
- Verfahren nach Anspruch 3, wobei der Betriebsparameter ein Betriebsparameter einer Pumpe der Bohrloch-Formationsfluidprobenahmevorrichtung ist.
- Verfahren nach Anspruch 4, wobei das Einstellen des Betriebsparameters der Pumpe ein Verringern eines Durchsatzes der Pumpe basierend auf wenigstens einem aus der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t), der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) und der ermittelten Ähnlichkeiten ist.
- Verfahren nach Anspruch 1, wobei ein unerwünschtes Niveau an Streuung angezeigt wird, falls die Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) einen ersten vorbestimmten Schwellenwert überschreitet oder falls die Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) einen zweiten vorbestimmten Schwellenwert überschreitet.
- Verfahren nach Anspruch 2, wobei ein unerwünschtes Niveau an Streuung angezeigt wird, falls die ermittelte Ähnlichkeit ρ(t) der ersten und zweiten spektralen optischen Dichtedaten ODλ (t) und ODλ (t + 1) und die ermittelte Ähnlichkeit ρ(t) der berichtigten ersten spektralen optischen Dichtedaten und der zweiten spektralen optischen Dichtedaten einen vorbestimmten Schwellenwert überschreiten.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die ersten und zweiten spektralen optischen Dichtedaten wenigstens teilweise über einen mehrkanaligen optischen Sensor (415) der Bohrloch-Formationsfluidprobenahmevorrichtung (400) gewonnen werden, und wobei der mehrkanalige optische Sensor (415) der Bohrloch-Formationsfluidprobenahmevorrichtung (400) wenigstens ein Spektrometer umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die Bohrloch-Formationsfluidprobenahmevorrichtung ein erstes Spektrometer und ein zweites Spektrometer umfasst, wobei das Ermitteln der ersten spektralen optischen Dichtedaten das erste Spektrometer nutzt und wobei das Ermitteln der zweiten spektralen optischen Dichtedaten das zweite Spektrometer nutzt.
- Verfahren nach Anspruch 1, ferner umfassend ein Bewerten der Qualität wenigstens eines Antwortprodukts basierend auf wenigstens einer aus der ermittelten Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t).
- Verfahren nach Anspruch 10, wobei das Bewerten der Qualität wenigstens eines Antwortprodukts ein Schätzen eines Gas-zu-Öl-Verhältnisses GOR des durch die Bohrloch-Formationsfluidprobenahmevorrichtung strömenden Formationsfluids basierend auf wenigstens einer aus der ermittelten Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t) umfasst.
- Verfahren nach Anspruch 1, ferner umfassend ein Identifizieren der Größe von innerhalb der Bohrloch-Formationsfluidprobenahmevorrichtung (400) strömenden Streuobjekte basierend auf wenigstens einer aus der Varianz des ersten wellenlängenunabhängigen Streuparameters a(t) und der Varianz des zweiten wellenlängenabhängigen Streuparameters b(t).
- Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend ein Befördern der Bohrloch-Formationsfluidprobenahmevorrichtung innerhalb eines sich in die Formation erstreckenden Bohrlochs (212), wobei das Befördern über wenigstens eines aus einem Drahtseil (222) und einem Rohrstrang erfolgt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/693,782 US9169727B2 (en) | 2012-12-04 | 2012-12-04 | Scattering detection from downhole optical spectra |
PCT/US2013/068372 WO2014088743A1 (en) | 2012-12-04 | 2013-11-05 | Scattering detection from downhole optical spectra |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2929144A1 EP2929144A1 (de) | 2015-10-14 |
EP2929144A4 EP2929144A4 (de) | 2016-08-10 |
EP2929144B1 true EP2929144B1 (de) | 2019-05-22 |
Family
ID=50824110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13860663.7A Active EP2929144B1 (de) | 2012-12-04 | 2013-11-05 | Streuungsdetektion in einem bohrloch aufgrund optischer spektren |
Country Status (5)
Country | Link |
---|---|
US (2) | US9169727B2 (de) |
EP (1) | EP2929144B1 (de) |
AU (1) | AU2013356580B2 (de) |
BR (1) | BR112015013155A2 (de) |
WO (1) | WO2014088743A1 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9169727B2 (en) | 2012-12-04 | 2015-10-27 | Schlumberger Technology Corporation | Scattering detection from downhole optical spectra |
US9347314B2 (en) * | 2013-06-07 | 2016-05-24 | Schlumberger Technology Corporation | System and method for quantifying uncertainty of predicted petroleum fluid properties |
US10794890B2 (en) | 2013-12-19 | 2020-10-06 | Schlumberger Technology Corporation | Method of obtaining asphaltene content of crude oils |
US9612154B2 (en) | 2014-12-19 | 2017-04-04 | Schlumberger Technology Corporation | Method for diagnosing optical spectrometers of downhole tools |
BR112017010684B1 (pt) * | 2014-12-29 | 2022-01-25 | Halliburton Energy Services, Inc | Métodos de linearização de sensor cruzado |
US10317875B2 (en) * | 2015-09-30 | 2019-06-11 | Bj Services, Llc | Pump integrity detection, monitoring and alarm generation |
WO2017079179A1 (en) | 2015-11-05 | 2017-05-11 | Schlumberger Technology Corporation | Method to estimate saturation pressure of flow-line fluid with its associated uncertainty during sampling operations downhole and application thereof |
US10948621B2 (en) | 2015-11-13 | 2021-03-16 | Halliburton Energy Services, Inc. | Microstrip antenna-based logging tool and method |
US10704388B2 (en) | 2016-03-31 | 2020-07-07 | Schlumberger Technology Corporation | Systems and methods for pump control based on non-linear model predictive controls |
US10287880B2 (en) | 2016-03-31 | 2019-05-14 | Schlumberger Technology Corporation | Systems and methods for pump control based on estimated saturation pressure of flow-line fluid with its associated uncertainty during sampling operations and application thereof |
NO20211409A1 (en) * | 2019-07-08 | 2021-11-19 | Halliburton Energy Services Inc | Pad Alignment with a Multi-Frequency-Band, Multi-Window Semblance Processing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2315000A2 (de) * | 2009-10-20 | 2011-04-27 | Schlumberger Technology B.V. | Verfahren und Vorrichtung zur Bestimmung von Phasenwechseldrücken |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5473939A (en) | 1992-06-19 | 1995-12-12 | Western Atlas International, Inc. | Method and apparatus for pressure, volume, and temperature measurement and characterization of subsurface formations |
US5266800A (en) * | 1992-10-01 | 1993-11-30 | Schlumberger Technology Corporation | Method of distinguishing between crude oils |
US5329811A (en) | 1993-02-04 | 1994-07-19 | Halliburton Company | Downhole fluid property measurement tool |
US6350986B1 (en) * | 1999-02-23 | 2002-02-26 | Schlumberger Technology Corporation | Analysis of downhole OBM-contaminated formation fluid |
US6334489B1 (en) | 1999-07-19 | 2002-01-01 | Wood Group Logging Services Holding Inc. | Determining subsurface fluid properties using a downhole device |
US6841778B1 (en) * | 2001-11-09 | 2005-01-11 | Environmental Systems Products Holdings Inc. | Method and apparatus for measuring particulates in vehicle emissions |
GB2401430B (en) | 2003-04-23 | 2005-09-21 | Sensor Highway Ltd | Fluid flow measurement |
BRPI0410776B1 (pt) | 2003-05-21 | 2016-01-19 | Baker Hughes Inc | aparelho e método para determinar taxa de bombeamento para amostra de fluido de formação |
US6992768B2 (en) * | 2003-05-22 | 2006-01-31 | Schlumberger Technology Corporation | Optical fluid analysis signal refinement |
BRPI0411672A (pt) | 2003-06-20 | 2006-08-08 | Baker Hughes Inc | testes aperfeiçoados de pv de fundo de furo para pressão de ponto de bolha |
US7074064B2 (en) | 2003-07-22 | 2006-07-11 | Pathfinder Energy Services, Inc. | Electrical connector useful in wet environments |
US7040415B2 (en) | 2003-10-22 | 2006-05-09 | Schlumberger Technology Corporation | Downhole telemetry system and method |
WO2005047647A1 (en) * | 2003-11-10 | 2005-05-26 | Baker Hughes Incorporated | A method and apparatus for a downhole spectrometer based on electronically tunable optical filters |
JP4451696B2 (ja) | 2004-03-30 | 2010-04-14 | 富士通株式会社 | 微細構造ファイバの非線形係数の波長依存性をキャンセルする装置 |
US7461547B2 (en) | 2005-04-29 | 2008-12-09 | Schlumberger Technology Corporation | Methods and apparatus of downhole fluid analysis |
US7428925B2 (en) | 2005-11-21 | 2008-09-30 | Schlumberger Technology Corporation | Wellbore formation evaluation system and method |
US7379180B2 (en) | 2006-01-26 | 2008-05-27 | Schlumberger Technology Corporation | Method and apparatus for downhole spectral analysis of fluids |
US7336356B2 (en) * | 2006-01-26 | 2008-02-26 | Schlumberger Technology Corporation | Method and apparatus for downhole spectral analysis of fluids |
US7996153B2 (en) | 2006-07-12 | 2011-08-09 | Baker Hughes Incorporated | Method and apparatus for formation testing |
JP2009544017A (ja) | 2006-07-18 | 2009-12-10 | ティーアイアール テクノロジー エルピー | 光の輝度及びピーク波長を決定する方法及び装置 |
US7711488B2 (en) * | 2006-12-28 | 2010-05-04 | Schlumberger Technology Corporation | Methods and apparatus to monitor contamination levels in a formation fluid |
US20130167628A1 (en) * | 2007-02-15 | 2013-07-04 | Hifi Engineering Inc. | Method and apparatus for detecting an acoustic event along a channel |
US7966273B2 (en) | 2007-07-27 | 2011-06-21 | Schlumberger Technology Corporation | Predicting formation fluid property through downhole fluid analysis using artificial neural network |
WO2009025688A1 (en) | 2007-08-20 | 2009-02-26 | Halliburton Energy Services, Inc. | Apparatus and method for fluid property measurements |
US7644610B2 (en) | 2007-08-24 | 2010-01-12 | Baker Hughes Incorporated | Automated formation fluid clean-up to sampling switchover |
US8068226B2 (en) | 2008-01-16 | 2011-11-29 | Baker Hughes Incorporated | Methods and apparatus for estimating a downhole fluid property |
US7774141B2 (en) | 2008-01-17 | 2010-08-10 | Baker Hughes Incorporated | Methods for the identification of bubble point pressure |
US8061444B2 (en) * | 2008-05-22 | 2011-11-22 | Schlumberger Technology Corporation | Methods and apparatus to form a well |
US8146415B2 (en) | 2008-05-27 | 2012-04-03 | Baker Hughes Incorporated | Downhole gas chromatograph |
US8082780B2 (en) | 2008-08-28 | 2011-12-27 | Schlumberger Technology Corporation | Methods and apparatus for decreasing a density of a downhole fluid |
US8622128B2 (en) * | 2009-04-10 | 2014-01-07 | Schlumberger Technology Corporation | In-situ evaluation of reservoir sanding and fines migration and related completion, lift and surface facilities design |
US9249659B2 (en) | 2009-04-15 | 2016-02-02 | Halliburton Energy Services, Inc. | Formation fluid property determination |
US8763696B2 (en) | 2010-04-27 | 2014-07-01 | Sylvain Bedouet | Formation testing |
US8672026B2 (en) | 2010-07-23 | 2014-03-18 | Halliburton Energy Services, Inc. | Fluid control in reservior fluid sampling tools |
MX2013009208A (es) | 2011-02-11 | 2013-12-06 | Halliburton Energy Serv Inc | Metodo y aparato para utilizar multiples envolventes espectroscopicas para determinar componentes con mayor precision y rango dinamico. |
US8910514B2 (en) * | 2012-02-24 | 2014-12-16 | Schlumberger Technology Corporation | Systems and methods of determining fluid properties |
US9334729B2 (en) * | 2012-10-04 | 2016-05-10 | Schlumberger Technology Corporation | Determining fluid composition downhole from optical spectra |
US9115567B2 (en) | 2012-11-14 | 2015-08-25 | Schlumberger Technology Corporation | Method and apparatus for determining efficiency of a sampling tool |
US9169727B2 (en) | 2012-12-04 | 2015-10-27 | Schlumberger Technology Corporation | Scattering detection from downhole optical spectra |
US20140268156A1 (en) | 2013-03-13 | 2014-09-18 | Schlumberger Technology Corporation | Method and system for determining bubble point pressure |
US9334724B2 (en) | 2013-07-09 | 2016-05-10 | Schlumberger Technology Corporation | System and method for operating a pump in a downhole tool |
-
2012
- 2012-12-04 US US13/693,782 patent/US9169727B2/en active Active
-
2013
- 2013-11-05 BR BR112015013155A patent/BR112015013155A2/pt not_active IP Right Cessation
- 2013-11-05 EP EP13860663.7A patent/EP2929144B1/de active Active
- 2013-11-05 WO PCT/US2013/068372 patent/WO2014088743A1/en active Application Filing
- 2013-11-05 AU AU2013356580A patent/AU2013356580B2/en not_active Ceased
-
2015
- 2015-10-15 US US14/884,623 patent/US10358918B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2315000A2 (de) * | 2009-10-20 | 2011-04-27 | Schlumberger Technology B.V. | Verfahren und Vorrichtung zur Bestimmung von Phasenwechseldrücken |
Also Published As
Publication number | Publication date |
---|---|
AU2013356580A1 (en) | 2015-06-04 |
BR112015013155A2 (pt) | 2017-07-11 |
US9169727B2 (en) | 2015-10-27 |
WO2014088743A1 (en) | 2014-06-12 |
US10358918B2 (en) | 2019-07-23 |
EP2929144A4 (de) | 2016-08-10 |
US20160032721A1 (en) | 2016-02-04 |
AU2013356580B2 (en) | 2017-10-19 |
EP2929144A1 (de) | 2015-10-14 |
US20140150545A1 (en) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2929144B1 (de) | Streuungsdetektion in einem bohrloch aufgrund optischer spektren | |
US10975693B2 (en) | Estimating contamination during focused sampling | |
US10295522B2 (en) | Determining properties of OBM filtrates | |
US9733389B2 (en) | Multi-sensor contamination monitoring | |
EP2904207B1 (de) | Bestimmung einer fluidzusammensetzung aus optischen spektren in einem bohrloch | |
US9784101B2 (en) | Estimation of mud filtrate spectra and use in fluid analysis | |
US11384637B2 (en) | Systems and methods for formation fluid sampling | |
US10294785B2 (en) | Data extraction for OBM contamination monitoring | |
US10352160B2 (en) | Method of estimating uncontaminated fluid properties during sampling | |
US11692991B2 (en) | Methods and systems for correction of oil-based mud filtrate contamination on saturation pressure | |
US10012074B2 (en) | Asphaltene content of heavy oil | |
US10352162B2 (en) | Cleanup model parameterization, approximation, and sensitivity | |
EP3004543A1 (de) | System und verfahren zur quantifizierung der unsicherheit von vorhergesagten erdölfluideigenschaften | |
US8717549B2 (en) | Methods and apparatus to detect contaminants on a fluid sensor | |
US10352161B2 (en) | Applying shrinkage factor to real-time OBM filtrate contamination monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150527 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160712 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 29/34 20060101ALI20160706BHEP Ipc: G01N 29/032 20060101ALI20160706BHEP Ipc: E21B 49/08 20060101AFI20160706BHEP Ipc: G01N 21/53 20060101ALI20160706BHEP |
|
17Q | First examination report despatched |
Effective date: 20160908 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013055906 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: E21B0049080000 Ipc: G01N0021530000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E21B 49/08 20060101ALI20181122BHEP Ipc: G01N 21/53 20060101AFI20181122BHEP Ipc: G01N 29/34 20060101ALI20181122BHEP Ipc: E21B 49/10 20060101ALI20181122BHEP Ipc: G01N 29/032 20060101ALI20181122BHEP |
|
INTG | Intention to grant announced |
Effective date: 20181213 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013055906 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1136712 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190522 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190922 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190822 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190823 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1136712 Country of ref document: AT Kind code of ref document: T Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013055906 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
26N | No opposition filed |
Effective date: 20200225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191105 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191105 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231208 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20231108 Year of fee payment: 11 Ref country code: DE Payment date: 20230912 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240912 Year of fee payment: 12 |