EP2928591A1 - Capsule à membrane étanche aux liquides et perméable aux gaz, procédé de fabrication et utilisation pour l'élevage d'arthropodes in vitro - Google Patents

Capsule à membrane étanche aux liquides et perméable aux gaz, procédé de fabrication et utilisation pour l'élevage d'arthropodes in vitro

Info

Publication number
EP2928591A1
EP2928591A1 EP13815400.0A EP13815400A EP2928591A1 EP 2928591 A1 EP2928591 A1 EP 2928591A1 EP 13815400 A EP13815400 A EP 13815400A EP 2928591 A1 EP2928591 A1 EP 2928591A1
Authority
EP
European Patent Office
Prior art keywords
capsule
chitosan
film
membrane
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13815400.0A
Other languages
German (de)
English (en)
Inventor
Angélique VETILLARD
Jérémy TABARDT-DOUZOU
Marc-Edouard COLIN
Cyril VIDAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Universitaire Jean Francois Champollion
Centre International dEtudes Superieures en Sciences Agronomiques Montpellier Sup Agro
Original Assignee
Centre Universitaire Jean Francois Champollion
Centre International dEtudes Superieures en Sciences Agronomiques Montpellier Sup Agro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Universitaire Jean Francois Champollion, Centre International dEtudes Superieures en Sciences Agronomiques Montpellier Sup Agro filed Critical Centre Universitaire Jean Francois Champollion
Publication of EP2928591A1 publication Critical patent/EP2928591A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/105Aliphatic or alicyclic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/30Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/90Feeding-stuffs specially adapted for particular animals for insects, e.g. bees or silkworms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/08Simple coacervation, i.e. addition of highly hydrophilic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening

Definitions

  • the present invention is in the field of liquid-tight and gas-permeable outer membrane type capsules for the encapsulation of a material of interest. More particularly, it relates to a capsule with such characteristics, as well as a method of manufacturing such a capsule. The invention also relates to the use of this capsule for the in vitro rearing of arthropods, in particular insects and arachnids, especially so-called biting-sucking insects, as well as a system for this breeding, incorporating a such capsule.
  • the capsule according to the invention finds application in all the fields in which it may be desired to encapsulate a material of interest in liquid or semi-solid form, such as an active ingredient having a nutritional or therapeutic interest, by prohibiting the transfer of liquids into or out of the capsule.
  • a particularly preferred field of application of this capsule which will be more particularly detailed in the present description, although in no way limiting, is that of in vitro breeding of arthropods, in particular so-called biting-sucking, entomophagous or parasitoids, in particular for the use of insects in the control of insect pests of crops and / or vectors of human and animal diseases.
  • arthropods in particular so-called biting-sucking, entomophagous or parasitoids
  • insects in the control of insect pests of crops and / or vectors of human and animal diseases.
  • the main instrument for the control of crop pests and vectors of human and animal diseases is the use of chemical insecticides. These compounds undoubtedly contributed to the improvement of agricultural yields and the control of several vector-borne diseases.
  • their massive and exclusive use in the fields is at the origin of health and ecological problems so worrying that they led several countries to carry out a policy of reduction of the quantities of insecticides used.
  • vector-borne diseases including malaria and dengue, kill hundreds of thousands of people each year, mostly in Africa and India.
  • pathogens responsible for these diseases are transmitted and transmitted to humans by mosquitoes of the genus Aedes, which decades of chemical control have made resistant to most families of insecticides.
  • auxiliary parasitic insects therefore represents a considerable potential.
  • the treatments are also carried out by flood releases consisting of dispersing massively (at the rate of several hundreds of thousands of individuals per hectare) and regularly auxiliaries in the larval or adult state in the culture to be protected.
  • flood releases therefore require a large number of individuals, making the mass rearing of parasitoids a prerequisite for the development of their use.
  • Such synthetic Bs proposed by the prior art consist primarily of capsules containing a liquid nutrient medium in a membrane of Parafilm ® or gangue consisting of a hydrophobic mixture including various materials such as wax, Paraplast ®, the Vaseline, alkenes or polyethylene.
  • a hydrophobic mixture including various materials such as wax, Paraplast ®, the Vaseline, alkenes or polyethylene.
  • the biopolymer beads described in the patent document WO 03/000047 do not allow the integration of olfactory macromolecules, stimulators of oviposition and / or appetizing, in the nutrient medium, or the maintenance, when they are placed in the open air, with a degree of hydration of the nutrient medium sufficient to provide satisfactory performance, in terms of female spawning yield and larval feeding, necessary for mass rearing, and low cost, of parasitoid insects.
  • the present invention aims at providing a capsule encapsulating a material of interest, in particular a nutritive medium for an arthropod, in particular an insect or an arachnid, and which allows the breeding of this arthropod, by overcoming the drawbacks of the host systems.
  • the present invention aims that this capsule allows oviposition and / or feeding arthropods disposed on its outer surface, including species whose ovipositor apparatus and / or stinger-sucker is of low power and of short length.
  • a further object of the invention is that this capsule has a low production cost, in particular so as to allow the production cost of a synthetic system for the in vitro breeding of arthropods in which it is implemented, less than that of a natural or substitution host.
  • capsule means a closed volume, also called heart, delimited externally by at least one membrane acting as envelope.
  • a capsule according to the present invention comprises:
  • Such a membrane is advantageously liquid-tight and gas permeable, so that the capsule according to the invention has a dry outer surface and a heart that can be wet, the transfer through the membrane of volatile molecules in the gaseous state being still allowed.
  • the impregnation rate of the chitosan polymer membrane with the hydrophobic compound (s) is preferably between 5 and 10 ⁇ g of hydrophobic compound (s) / mm 3 of membrane.
  • Chitosan a copolymer of N-acetylglucosamine and glucosamine, is a linear polysaccharide, a deacetylated derivative of chitin, a biopolymer present especially in crustacean shells such as crabs or shrimps. This biopolymer has the advantages of being natural, non-toxic, biodegradable and harmless to the environment.
  • the capsule according to the invention for the breeding of arthropods, it also has the advantage of a chemical composition similar to that of compounds involved in the constitution of cuticles of insects.
  • the polymer membrane of chitosan enveloping the heart of the capsule is advantageously an artificial cuticle promoting its recognition by arthropods to raise.
  • the term chitosan is used in the present description both to designate chitosan itself, and its derivatives such as esters, ethers, amines, amides or any other derivatives formed by interaction with the hydroxyl or amine groups of chitosan.
  • the chitosan used to obtain the polymer membrane according to the invention preferably has a high degree of deacetylation, in particular greater than or equal to 70%.
  • the small thickness of the chitosan membrane allows it in particular to be easily pierced by weak chelic Anlagen and short, as small as 10 ⁇ , without being damaged, in particular torn, by the removal and movement of an arthropod, in particular an insect or an arachnid, on its surface.
  • the heart of the capsule is in the form of a gel, in particular a hydrogel, by example based on alginate.
  • the core has a sufficiently high mechanical strength to be able to withstand, without excessive deformation, the weight of the arthropod placed on the outer surface of the capsule.
  • the material of interest contained in the heart of the capsule can be of any type. It may, for example, be a compound or a mixture of compounds of particular interest, for example a nutritive medium for an arthropod, where appropriate supplemented with one or more stimulating and / or appetizing olfactory molecules. , or any compound or mixture of compounds with a therapeutic, nutritive or cosmetic effect.
  • this solution is gelled by conventional means. themselves, to form the semi-solid heart of the capsule.
  • the hydrophobic compound is selected from styrenic polymers, in particular polystyrene, and alkanes, preferably C20 to C40 alkanes.
  • the polymer membrane of chitosan is impregnated with a mixture of C20 to C40 alkanes.
  • the polymer membrane of chitosan may, in addition, be impregnated with one or more compounds of interest, for example stimulating oviposition and / or appetizing, such as alkanes, fatty acids, products of insect metabolism, etc.
  • the capsule according to the invention may have any shape, for example cylindrical, parallelepipedal, ovoid, spherical ... It preferably has a substantially spherical shape. Its dimensions, especially its diameter in the case of a substantially spherical capsule, may for example vary from 1 to 20 mm or even more.
  • the capsule according to the invention can advantageously be manufactured at low cost, and it has good stability over time.
  • a further object of the invention is a method of manufacturing a capsule having one or more of the above features.
  • a capsule according to the invention is capable of being obtained by a manufacturing process comprising the steps of:
  • a semi-solid particle in particular a gel, preferably a hydrogel, containing a material of interest to be encapsulated,
  • the particle intended to form the heart of the capsule is formed by gelation of a liquid solution containing the material of interest to be encapsulated, for example a nutritive medium for an arthropod, and alginate, or agarose, chitosan or gelatin, or any other compound or mixture of compounds of interest, according to a conventional method in itself.
  • This particle may have any shape, for example an ovoid or substantially spherical shape.
  • the particle thus formed is preferably subjected to a drying step, in order to remove the excess liquid on its surface, prior to the step of forming the outer chitosan membrane.
  • the aqueous solution of chitosan for example an acetic acid solution, comprises a concentration of between 2 and 30 mg / ml, preferably substantially equal to 10 mg / ml, of chitosan. It preferably has a low viscosity, preferably less than 200 mPa.s.
  • the formation of the chitosan membrane is preferably carried out by immersing, for a few seconds, the particles in the acidic aqueous solution of chitosan and surfactant (s), followed by drying and treatment under basic conditions.
  • the surfactant, or the mixture of surfactants is advantageously used in a concentration capable of allowing a reduction of the surface tension of the aqueous solution sufficient to ensure that the amount of chitosan deposited on the surface of the particle to form, after drying, an envelope around the latter, so small that the chitosan membrane has the very small thickness in accordance with the invention.
  • the surfactant is of the nonionic type. It may especially consist of an octylphenol ethoxylate, for example as marketed under the name Triton X-100®. This surfactant lowers the surface tension of water by 33 dynes / cm at a concentration of 1% at 25 ° C. Such a surfactant is preferably used in a concentration of between 0.005 and 0.05% by volume relative to the total volume of the solution, preferably about 0.01% v / v. The choice of such a particular surfactant is however not limited to the invention, and other surfactants or mixtures of surfactants can be implemented within the scope of the invention.
  • the agent (s) surfactant (s) are advantageously chosen to exhibit no toxicity, in trace amounts, for the insect to be raised.
  • the treatment in basic conditions can in particular be carried out by a solution of sodium hydroxide.
  • the solution containing the hydrophobic compound (s) contains a total concentration of said compounds of between 1 and 10 mg / ml.
  • the impregnation can in particular be carried out by immersing the capsule in a bath of a solution containing the hydrophobic compound (s) for a period of a few minutes, for example of about 2 minutes.
  • the placing in the presence of the capsule with this solution is preferably preceded by a step of gradual dehydration of the chitosan membrane, for example by soaking the capsule in successive baths of alcoholic solutions, then in a bath of an organic solvent apolar, such as hexane.
  • the membrane is formed around the semi-solid particle intended to form the core of the capsule after formation of the latter, advantageously makes it easy to integrate into the core of the capsule any compound of interest. desired, for example for nutritional purposes and / or spawning and / or feeding stimulation, including macromolecules, such as complex proteins, even larger than 10 kDa.
  • the method of manufacturing the capsule comprises an intermediate step of forming, around the semi-solid particle, a liquid-tight and gas-permeable film, said interlayer film.
  • a film of a styrenic polymer preferably polystyrene, having a thickness of less than 50 nm, for example approximately 10 nm, prior to the step of forming the polymer membrane of chitosan.
  • the capsule comprises a liquid-tight and gas-permeable film, called interlayer film, preferably a film of a styrenic polymer, preferably polystyrene, with a thickness of less than 50.
  • this interlayer film does not advantageously prevent the transfer of molecules in the gaseous state contained in the core of the capsule. Its very small thickness also allows it to be easily pierced by the ovipositor device and / or picker-sucker arthropods, regardless of the length and power of this device. It has been found by the present inventors that in practice, during the final stages of manufacture of the membrane of the capsule, depending on the chemical composition of the interlayer film, it could occur at the interface of this film and the chitosan membrane, a fusion between the film and the membrane.
  • the formation of the interlayer film around the core of the capsule may for example be carried out by immersion of the semi-solid particle in a solution of suitable composition, for example in a solution containing polystyrene.
  • the polystyrene concentration in the solution is preferably between 1 and 50 g / l, for example about 10 g / l.
  • the immersion is preferably carried out for a very short time, less than 10 s, so as to minimize the exchanges between the heart of the capsule and the solvent (s) contained in this solution, and thus prevent their penetration into the heart.
  • the process may comprise a step of drying the capsule, and then heating at a temperature between 70 and 75 ° C for a period of between about 30 seconds and 20 minutes.
  • the capsule according to the invention thus obtained can be stored at low temperature, for example at about 4 ° C., in a humid chamber, protected from light, for several months. In particular, it always keeps a dry external surface.
  • Such a method advantageously makes it possible to manufacture a capsule according to the invention easily, quickly and with good reproducibility. Its various steps can also be implemented in a fully automated manner, allowing mass production, and moreover at low cost.
  • the capsule comprises, inserted between the semi-solid core and the polymer membrane of chitosan, a film, said mixed film, which can be obtained by polymerizing a mixture comprising a styrenic polymer and a lipophilic additive, in particular beeswax, in solution in an organic solvent.
  • This mixed film is liquid-tight, and it advantageously has a degree of gas permeability that is flexible, depending on its specific composition, and more particularly the process used for its formation.
  • the presence of this mixed film in the capsule according to the invention thus advantageously makes it possible to regulate the degree of gas-tightness of the capsule, in particular of sealing against water vapor, according to the particular application aimed at.
  • This advantageously makes it possible to control the rate of dehydration of the semi-solid core of the capsule, and to adapt it to each specific application.
  • the mixed film according to the invention also advantageously resists, at least partially, attack by organic solvents at room temperature.
  • this interlayer film is also permeable to vapors loaded with olfactory compounds stimulating oviposition for the founder and / or appetizing to the larva, and it does not change the behavior advantageously feeding arthropods.
  • a process for forming a capsule comprising such a mixed film according to the invention comprises an intermediate step of forming, around the semi-solid particle, prior to the step of forming the polymer membrane of chitosan, with a film , said mixed film, by polymerization reaction of a mixture comprising a styrenic polymer and a lipophilic additive, in particular beeswax, in solution in an organic solvent.
  • the organic solvent may for example consist of dichloromethane, trichloromethane, limonene, etc., or a mixture of such solvents.
  • limonene is particularly advantageous, particularly because of its low impact on the environment and its reduced cost.
  • the operating conditions of this stage of the process according to the invention advantageously make it possible to control the degree of gas permeability of the mixed film.
  • the polymerization reaction to form the mixed film is catalyzed by an ionic catalyst polymerization, preferably two-component.
  • the respective concentrations of these two components in the reaction medium make it possible to influence the polymerization rate, the nature and the characteristics of the mixed film obtained, in particular its degree of permeability to gases.
  • couples that can form the ionic catalyst there may be mentioned Ca7Na + couples, Ca CI " , Mg 2 7HC0 3 " , etc.
  • these characteristics of the mixed film also influence the concentrations of styrenic polymer and of lipophilic additive in the reaction medium, as well as the temperature and the reaction time.
  • the polymerization reaction is carried out at a temperature between 10 and 40 ° C, preferably at about 30 ° C.
  • the duration of the polymerization reaction is approximately equal to 1 hour.
  • the step of forming the mixed film and the step of forming the semi-solid particle are carried out simultaneously, for example, a method according to the invention can thus understand, prior to the formation step of the chitosan membrane:
  • aqueous solution of the material of interest to be encapsulated, for example a nutritive medium; a gelling substance, such as alginate, or agarose, chitosan or gelatin; and ionic catalyst, to form a precursor of the semi-solid core.
  • a gelling substance such as alginate, or agarose, chitosan or gelatin
  • ionic catalyst to form a precursor of the semi-solid core.
  • this ionic catalyst is a pair Mg 2 7HC0 3 "
  • the respective concentrations of these ions in the solution are between 0.1 and 2 g / l, and 1 and 20 g / L.
  • This step is preferably carried out at a temperature of which is determined according to the gelling substance, and which is greater than the polymerization temperature of the latter, for example between 40 and 60 ° C for the case of agarose;
  • a reaction mixture comprising a styrenic polymer, for example polystyrene, at a concentration of between 10 and 160 g / l, and a lipophilic additive, for example beeswax, at a concentration of between 0, 2 and 20 g / l, in an organic solvent such as D-limonene, optionally mixed with dichloromethane;
  • a styrenic polymer for example polystyrene
  • a lipophilic additive for example beeswax
  • precursor of the semi-solid core for example in the form of drop (s), into the reaction mixture, followed by incubation for a time and at a temperature suitable for causing the polymerization of the styrenic polymer and the lipophilic additive, and training of a mixed film according to the invention around gelled cores forming simultaneously.
  • the capsule comprising a semi-solid core containing a material of interest to be encapsulated and a mixed film meeting the characteristics stated above, the mixed film being capable of being obtained by polymerization of a mixture comprising a styrenic polymer and a lipophilic additive, in particular beeswax, in solution in an organic solvent, is devoid of the polymer membrane of chitosan.
  • a capsule has a shelf life and implementation in time less than that of the capsule according to the invention comprising the chitosan membrane. It is however of interest for applications in which efficiency is required only for a shorter duration.
  • a method of manufacturing this capsule then comprises the steps of forming a semi-solid particle containing a material of interest to be encapsulated, as described above, and forming, around this semi-solid particle, a film , said mixed film, by polymerization reaction of a mixture comprising a styrenic polymer and a lipophilic additive, dissolved in an organic solvent, meeting the characteristics described above. It does not include a subsequent step of forming the chitosan film.
  • the capsule according to the invention has a wide range of applications.
  • an object of the present invention is the use of a capsule corresponding to one or more of the above characteristics for the encapsulation, and optionally the programmed release, of a material of interest, for example a compound or a mixture of compounds of therapeutic or nutritional interest, in the gaseous state.
  • a preferred field of application of the capsule according to the invention is its use for the in vitro rearing of an arthropod, in particular an insect or an arachnid.
  • the material of interest contained in the heart of the capsule is then a nutrient medium for arthropod, in gelled form.
  • this nutritive medium is supplemented with one or more molecules stimulating oviposition and / or appetizing for larvae, for example a haemolymph extract of bee larvae.
  • the chitosan membrane can also, or alternatively, be impregnated with such molecule (s).
  • This breeding can be carried out in particular to produce a large quantity of so-called auxiliary insects used in the fight against insect pests of crops and / or vectors of human and animal diseases. Otherwise, this breeding can for example be made for the study of interactions between a parasite and its host, aimed in particular at developing means to make the parasite harmless vis-à-vis its natural host.
  • breeding is intended to mean both the obtaining of larvae from a founder and the feeding of this founder and / or the larvae until they reach the desired stage of development, in particular in the adult stage.
  • the individuals thus raised can in particular be used for carrying out flood releases on cultivation areas and / or in which disease-carrying insects are likely to develop.
  • the present invention is also embodied in the terms of a process for the in vitro rearing of an arthropod, in particular an insect or an arachnid, using a capsule according to the invention containing a nutrient medium for arthropod, as a support for spawning and / or larval feeding.
  • a nutrient medium for arthropod for arthropod, as a support for spawning and / or larval feeding.
  • the polymer membrane of chitosan interposed between the arthropod and its nutrient medium, ensures a tight confinement of the latter. It thus acts as a water barrier and antimicrobial preserving the degree of hydration and sterility of the nutrient medium.
  • it advantageously allows the volatile molecules contained in this nutrient medium, particularly olfactory molecules stimulating oviposition and / or appetizing, to reach the arthropod.
  • the mechanical characteristics and the great fineness of the chitosan film allow any arthropod to pierce it to access the nutritive medium.
  • the nutrient medium may advantageously be complemented by any molecule of interest, for example in order to study its action with respect to the arthropod.
  • a further object of the invention is a synthetic system for the breeding of an arthropod, in particular an insect or an arachnid, comprising a capsule corresponding to one or more of the characteristics described above, in as breeding medium, and means for maintaining, in the atmosphere surrounding this capsule, an ambient humidity level sufficient to prevent the capsule from drying out, preferably a relative humidity level of at least 34%.
  • These means of maintaining a sufficient moisture content can take any conventional form in itself. It may for example be a simple container containing water placed near the capsule, or an air humidifier.
  • This system can be both manufactured and used at the laboratory scale, for the study of interactions between a parasite and its host, on a large scale, for example for mass production of auxiliary insects used in the fight against insect pests of crops and / or vectors of human and animal diseases, particularly by the technique of flood releases. It can also be implemented for the same control, in addition to the flood releases, to remedy one of the major problems related to the implementation of flood releases, residing in the prey-predatory dynamic that develops after these releases. Indeed, in the case of a massive infestation by the host, crop pest insect and / or disease vector, the parasitoid released will initially encounter a very large reproductive success. This success will be accompanied by a drastic reduction in the number of hosts, which is the desired effect.
  • the reservoir is delimited by peripheral walls, at least one of which is pierced with orifices of sufficiently large size to allow the passage of the female arthropod, and preferably low enough to prohibit the passage of other insects, such as ants, flies, etc.
  • the capsule and the system according to the invention can be used for breeding a large variety of arthropods, for example, but not limited to, parasitoids of the Trichogramma family (Trichogramma brassicae, Trichogramma cacoeciae, Trichogramma evanescens , Trichogramma voegelei, Trichogramma chilonis, ...), of the genus Toxorhynchites (Toxorhynchites rutilus, Toxorhynchites brevipalpis, Toxorhynchites amboinensis), Psyttalia lounsburyi, Venturia canescens, Lariophagus distinguendus, Torymus sinensis, Psyttalia fletcheri, Fopus arisanus, or ectoparasite mite Varroa destructor, the main parasite of the bee.
  • the capsule comprising the mixed film and devoid of chitosan membrane finds similar fields of
  • FIGS. 1a and 1b show a gel particle containing a nutrient medium, observed under a binocular microscope, with a magnification of 1.25 times for FIG. 1a, and 8 times for FIG. 1b;
  • FIGS. 2a and 2b show the particle of FIG. 1 covered with a polystyrene film, observed under a binocular magnifying glass, with a magnification of 1.25 ⁇ for FIG. 2a and 8 ⁇ for FIG. 2b;
  • FIGS. 3a and 3b show the particle of FIG. 2a covered with a Paraplast®-impregnated chitosan polymer membrane, observed with a binocular magnifying glass, with a magnification of 1.25 times for FIG. 3a, and 8 times with Figure 3b;
  • FIG. 4 shows an adult female of the Varroa destructor species being fed through the outer membrane of the capsule of FIG. 3a, observed under the binocular microscope, with a magnification of 12 times;
  • FIG. 5 shows a graph illustrating, as a function of the incubation time at 25 ° C. and 55% humidity, the mass percentage of different agar cores wrapped in a mixed film according to the invention, obtained from compositions comprising different proportions of ionic polymerization catalyst of the mixed film;
  • FIG. 6 shows adult females of the Varroa destructor species evolving, respectively, a) on an agaric heart containing nutrient medium and wrapped with a mixed film according to the invention, and b) on a capsule conforming to the invention.
  • invention containing the same nutrient medium and having a same mixed film under the chitosan membrane, these females being observed with a binocular magnifying glass, with a magnification of 12 times;
  • FIG. 7 shows adult females of the Varroa destructor species being fed, respectively, a) on the agar core of FIG. 6a), and b) on the capsule FIG. 6b), these females being observed at the binocular loupe, with a magnification of 12 times.
  • Capsules according to a particular embodiment of the invention containing a nutritive medium for an arthropod, are formed in the following manner.
  • Agar nutrient solution particles in the form of beads 1 to 20 mm in diameter, are formed in sterile 1 M calcium chloride (CaCl 2 ) solution, dripping into this solution, using a calibrated tip, 1 to 5 mm in diameter, a mixture of:
  • the beads thus formed are then harvested with a sterile skimmer and arranged in a single layer on a rigid support resistant to organic solvents, for example a glass slide.
  • the assembly is then briefly dried under laminar flow host in order to remove the excess liquid on the surface of the balls, and to promote their adhesion to the support.
  • An example of a ball thus formed is shown in Figures 1a and 1b. We note in these figures their perfectly smooth outer wall.
  • the bead / support assembly is then immersed in a chloroform bath containing 10 g / l of polystyrene in solution, and immediately removed from the bath. After drying for one minute at room temperature, the support is incubated at 72 ° C. for 45 seconds and then cooled to room temperature. Balls coated with an interposed polystyrene film are thus obtained, an example of which is shown in FIGS. 2a and 2b. We observe that the surface outer of the interlayer film is smooth and uniform.
  • the beads thus coated with polystyrene are immersed, always on the support, in a bath of an acidic aqueous solution of chitosan comprising, in solution in ultra-pure water: - 10 g / 1 of a solution of chitosan extracted from shrimp shells in acetic acid, with a viscosity of less than 200 mPa.s (20 ° C) (Sigma Aldrich),
  • This acidic aqueous solution was degassed beforehand for 1 h with stirring at 200 rpm.
  • the bead / support assembly is then immediately removed from the bath of acidic aqueous solution, and driped and dried vertically for 20 min in a laminar flow hood. It is then immersed in a solution of sodium hydroxide (NaOH) 1 M, and immediately rinsed in three successive baths of distilled water. It is finally immersed in four successive baths, respectively containing 70% ethanol, then 95%, then pure, then hexane, for 30 s for each, before being immersed for 2 min in a solution. of hexane containing 10 g / L of Paraplast ® or beeswax.
  • NaOH sodium hydroxide
  • the bead / support assembly is finally dried for 5 min in a laminar flow hood and incubated at 72 ° C. for 45 s.
  • the substantially spherical capsules thus formed are stored at 4 ° C. in a humid chamber.
  • An example is shown in Figures 3a and 3b. In this last figure, it is distinguished that the chitosan membrane surrounding the heart of the capsule is devoid of pores and that it has on its surface crystal structures characteristic of salts and alkanes.
  • An adult female of the Varroa destructor species is obtained from a breeding on bee colonies Apis mellifera, under conventional conditions in themselves. This female has a piercing-sucking device about 10 ⁇ long and low power.
  • This female is placed on a capsule as described above, in which the polymer membrane of chitosan is impregnated with Paraplast®. Direct and continuous observation of the whole is made at room temperature to determine when the female bites through the capsule membrane, and the duration of this bite.
  • the capsule according to the invention provides a surface that allows the female Varroa destructor to develop a normal search behavior of a feeding site, characterized by the classic behavioral sequence and resulting in efficient feeding.
  • this capsule can quite advantageously integrate stimulating substances in the membrane and / or in its heart, so that it effectively reproduces the parasite / host interface.
  • This capsule is a powerful support, easy and fast to obtain and at low cost, for breeding an arthropod, including a mite of the species Varroa destructor, very demanding in terms of host specificity and membrane resistance.
  • an agarose solution (Sigma-Aldrich) at 20 g / L is heated to 100 ° C. in a water bath, then cooled in a bath thermostated at 60 ° C. and an ionic catalyst.
  • MgCl 2 and NaHCO 3 two-component, MgCl 2 and NaHCO 3 , is added to form 5 precursor solutions of distinct ionic concentrations, as shown in Table 1 below.
  • a reaction mixture is prepared by incorporating, at 110 ° C., polystyrene at 80 g / L (VWR) and beeswax at 4 g / L (Apirem) in solution in limonene (Sigma-Aldrich) and dichloromethane. .
  • the formation of the semi-solid core and the wrap-around composite film is then carried out as follows.
  • the different agarose solutions are transferred to a 10 ml syringe preincubated at 60 ° C.
  • Three hundred drops of each solution with an average mass of 4.3 mg are deposited with a needle at the surface of 50 ml of the above reaction mixture at 25 ° C.
  • the reaction mixture is then incubated for 1 h at 30 ° C.
  • agar cores covered with the mixed film are then washed in two successive baths of limonene to remove the excess reaction mixture on their surface. Finally, they are spread in monolayer on a glass support and dried for 30 min at 25 ° C and 55% humidity in order to evaporate the traces of solvent. Enveloped agar cores are respectively obtained P1, P2, P3, P4 and P5 (each bearing the name of the solution precursor used to obtain it). Some of these agar cores wrapped with the mixed film are then subjected to the steps of formation of the chitosan membrane, and then impregnation thereof, which are described above in Example A. The others are used directly for the test. hereinafter.
  • the dehydration rate of the enveloped agar cores of the mixed film is measured in triplicate by differential weighing of the glass supports 0 h, 1 h and 12 h after incubation at 25 ° C. and 55% humidity, using a precision balance (Sartorius TE124S, VWR). The mass of dry matter is added to the tare after opening each of the agar hearts with a scalpel blade and dehydrating them at 50 ° C for 1 hour.
  • the statistical analysis of the results is done using the R (Cran Project) software.
  • the nonparametric Kuskal-Wallis test is used and the probabilities obtained are corrected according to the Bonferroni method, in order to determine the probability that the dehydration speed difference of the agar hearts over time is not linked to their ionic composition.
  • the reaction mixture is prepared by incorporating, at 110 ° C., polystyrene at 80 g / L (VWR) and beeswax at 4 g / L (Apirem) in solution in limonene (Sigma -Aldrich) in a mixture with dichloromethane.
  • a sterile solution of Agarose (Sigma-Aldrich) at 20 g / L, MgCl 2 at 200 mg / L and NaHCO 3 at 20 g / L is prepared using sterile distilled water heated to 100 ° C. C in a water bath, then brought back into a thermostatically controlled bath at 60 ° C, and a nutrient solution composed of 75% Hunter's medium (Sigma) and 25% haemolymph extract, previously incubated at 60 ° C., and is added up to 50% by volume.
  • This solution is dripped with a syringe to the surface of 50 ml of the reaction mixture at 25 ° C.
  • the reaction mixture is then incubated for 1 h at 30 ° C.
  • the agar cores covered with the mixed film are then washed in two successive baths of limonene to remove the excess reaction mixture on their surface. These cores are then either dried for 30 min at 25 ° C. at a humidity of 55%, or covered by a chitosan membrane.
  • the agar cores wrapped in the mixed film are immersed in a bath of chitosan (low viscosity chitosan 10 g / l (Sigma), 0.1% Triton X100, 1% acetic acid), degassed beforehand for 1 hour with stirring. 200 rpm.
  • the particles obtained are then immediately washed for 2 min with stirring at 200 rpm in a pure ethanol bath, before being dried for 20 min in a laminar flow hood, and then immersed in a 1 M NaOH solution and immediately rinsed in three successive baths of distilled water.
  • the capsules are immersed for 30 seconds in four successive baths containing 70 °, 95 ° ethanol, respectively, and hexane, respectively, before being immersed for 2 min in a hexane solution containing 10 g / l of beeswax.
  • the capsules are finally dried for 30 minutes in a laminar flow hood and incubated for 45 seconds at 72 ° C.
  • the capsules thus formed are finally dried for 30 min at 25 ° C. at a humidity of 55%.
  • Varroa females are collected from nurse bees from naturally infested colonies untreated against this parasite.
  • the harvested females are placed immediately after harvesting in the experimental device composed of a 34 ° C thermostated petri dish containing the test capsules (capsules according to the invention, comprising the mixed film and the chitosan membrane, or enveloped agar cores. only mixed film), in order to carry out the feeding tests. These tests are carried out as described in Example A above.
  • Varroa females evolve without difficulty on the surface of the capsules, and do not adopt leakage behavior but a characteristic behavior of recognition of their host, in the presence of both the agglomerated hearts wrapped in the mixed film and the capsules according to the invention.
  • invention comprising the chitosan membrane, as illustrated respectively in Figure 6, a) and b), on which one observes a cleaning behavior of the Haller organ, pedipalpes and stylets characteristic of the imminence of an attempt feeding.
  • the feeding which in both cases lasts more than 5 minutes, is observed following the rapid piercing of the capsules / cores by the stylets arranged by the mite perpendicular to the surface of the capsule, as shown in the figure. 7, a) for the wrapped agar core and b) for the capsule according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Birds (AREA)
  • Insects & Arthropods (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne une capsule comportant un cœur semi-solide contenant un matériau d'intérêt à encapsuler, et une membrane polymère de chitosan enveloppant ce cœur, d'épaisseur inférieure à 1 μm, et imprégnée d'au moins un composé hydrophobe, notamment d'un mélange d'alcanes en C20 à C40. Cette capsule trouve une utilité particulière en tant que support pour l'élevage in vitro d'un arthropode, un milieu nutritif pour cet arthropode étant alors encapsulé, sous forme gélifiée, dans la membrane.

Description

CAPSULE À MEMBRANE ÉTANCHE AUX LIQUIDES ET PERMÉABLE AUX GAZ, PROCÉDÉ DE FABRICATION ET UTILISATION POUR L'ÉLEVAGE
D'ARTHROPODES IN VITRO
La présente invention s'inscrit dans le domaine des capsules du type à membrane externe étanche aux liquides et perméable aux gaz, pour l'encapsulation d'un matériau d'intérêt. Plus particulièrement, elle concerne une capsule répondant à de telles caractéristiques, ainsi qu'un procédé de fabrication d'une telle capsule. L'invention concerne également l'utilisation de cette capsule pour l'élevage in vitro d'arthropodes, en particulier d'insectes et d'arachnides, notamment des insectes dits piqueurs-suceurs, ainsi qu'un système pour cet élevage, intégrant une telle capsule.
La capsule selon l'invention trouve application dans tous les domaines dans lesquels il peut être souhaité d'encapsuler un matériau d'intérêt sous forme liquide ou semi-solide, tel qu'un principe actif ayant un intérêt nutritionnel ou thérapeutique, en interdisant le transfert de liquides dans ou hors de la capsule.
Un domaine d'application particulièrement préféré de cette capsule, qui sera plus particulièrement détaillé dans la présente description, bien que nullement limitatif, est celui de l'élevage in vitro d'arthropodes, notamment dits piqueurs-suceurs, entomophages ou parasitoïdes, en particulier en vue de l'utilisation d'insectes dans la lutte contre les insectes ravageurs de cultures et/ou vecteurs de maladies humaines et animales. A l'heure actuelle, le principal instrument de lutte contre les insectes ravageurs des cultures et les vecteurs de maladies humaines et animales est la mise en œuvre d'insecticides chimiques. Ces composés ont incontestablement participé à l'amélioration des rendements agricoles et au contrôle de plusieurs maladies vectorielles. Pour autant, leur utilisation massive et exclusive dans les champs est à l'origine de problèmes sanitaires et écologiques si préoccupants qu'ils ont conduit plusieurs pays à mener une politique de réduction des quantités d'insecticides utilisés. De même, l'emploi d'insecticide dans la lutte contre les maladies vectorielles montre des limites, en particulier à cause de l'apparition de résistances chez les insectes vecteurs. De telles maladies vectorielles, notamment le paludisme et la dengue, font plusieurs centaines de milliers de victimes chaque année, principalement en Afrique et en Inde. Les agents pathogènes responsables de ces maladies sont véhiculés et transmis à l'homme par des moustiques du genre Aedes, que des décennies de lutte chimique ont rendus résistants à la plupart des familles d'insecticides.
Des alternatives aux insecticides ont ainsi été développées, reposant sur l'utilisation d'organismes prédateurs ou entomopathogènes, couramment appelés auxiliaires des cultures. L'utilisation de tels auxiliaires de culture dans les exploitations conduites en agriculture biologique offre plusieurs avantages. Ces auxiliaires de culture ont en effet une bonne capacité de dispersion, de découverte de l'hôte et d'établissement dans un nouvel habitat. De plus, ils sont d'une innocuité totale pour l'homme et ont une grande spécificité d'hôte, donc présentent peu de risques vis-à-vis des organismes non-cibles. Sur un plan sanitaire, des expérimentations ont montré que la lutte biologique à l'aide d'insectes parasitoïdes constituait également un moyen avantageux pour pallier l'apparition de résistances aux insecticides chez les insectes vecteurs de maladies.
L'utilisation des insectes parasitoïdes auxiliaires représente donc un potentiel considérable. Cependant, à l'heure actuelle, seules quelques dizaines d'espèces d'insectes parasitoïdes sont réellement utilisées à ces effets, car leur élevage s'avère difficile à réaliser. Dans la plupart des cas, les traitements sont en outre effectués par lâchers inondatifs consistant à disperser massivement (à raison de plusieurs centaines de milliers d'individus par hectare) et régulièrement des auxiliaires à l'état larvaire ou adulte dans la culture à protéger. Les lâchers inondatifs nécessitent par conséquent un grand nombre d'individus, faisant de l'élevage en masse de parasitoïdes un prérequis indispensable au développement de leur utilisation.
Des méthodes d'élevage en masse d'insectes parasitoïdes existent mais leur mise en œuvre implique des contraintes techniques ne permettant pas de les commercialiser à bas prix. En effet, ces méthodes de production prévoient l'élevage des insectes parasitoïdes en laboratoire sur leur hôte naturel ou sur un hôte de substitution. Or l'obtention et l'élevage des insectes hôtes présentent des difficultés techniques, qui exacerbent les coûts de production. Pour pallier ces difficultés et diminuer les coûts de productions, il a été proposé par l'art antérieur d'élever des insectes parasitoïdes in vitro sur des hôtes synthétiques permettant l'oviposition et/ou le nourrissage des larves. De tels hôtes synthétiques proposés par l'art antérieur consistent principalement en des capsules contenant un milieu nutritif liquide dans une membrane de Parafilm® ou dans des gangues constituées par un mélange hydrophobe incluant divers matériaux tels que de la cire, du Paraplast®, de la vaseline, des alcènes ou du polyéthylène. On peut citer, à titre d'exemple, le système décrit dans le document de brevet WO 03/000047, qui se présente sous forme de billes biopolymères, notamment en chitosan, contenant une solution nutritive. Aucun de ces systèmes synthétiques reproduisant l'hôte naturel ne présente cependant de performance satisfaisante. En effet, aucun ne combine l'ensemble des caractéristiques nécessaires à la mise en place de conditions d'élevage optimales, c'est-à-dire ne permet à la fois : d'isoler de l'environnement extérieur, par une barrière étanche, le milieu nutritif adapté au nourrissage, de sorte à préserver son degré d'hydratation et sa stérilité ; d'autoriser le transfert à travers cette barrière de composés olfactifs, stimulateurs de l'oviposition pour la fondatrice et/ou appétants pour la larve, que doit contenir ce milieu, pour permettre que le système soit reconnu comme hôte potentiel ; d'autoriser la pénétration à travers cette barrière d'un appareil ovipositeur ou piqueur-suceur de faible puissance et de petite longueur, pouvant être aussi faible que 10 μιτι. Il a en particulier été constaté que des membranes présentant une épaisseur importante ne pouvaient être percées par les chélicères de certains arthropodes. En particulier, les billes biopolymères décrites dans le document de brevet WO 03/000047 ne permettent ni l'intégration de macromolécules olfactives, stimulatrices de l'oviposition et/ou appétantes, dans le milieu nutritif, ni le maintien, lorsqu'elles sont placées à l'air libre, d'un degré d'hydratation du milieu nutritif suffisant pour présenter des performances satisfaisantes, en termes de rendement de ponte des femelles et de nourrissage des larves, nécessaires à l'élevage en masse, et à bas coût, d'insectes parasitoïdes. La présente invention vise à proposer une capsule encapsulant un matériau d'intérêt, notamment un milieu nutritif pour un arthropode, en particulier un insecte ou un arachnide, et qui permette l'élevage de cet arthropode, en remédiant aux inconvénients des systèmes d'hôtes synthétiques proposés par l'art antérieur, notamment à ceux exposés ci-avant. En particulier, la présente invention vise à ce que cette capsule permette l'oviposition et/ou le nourrissage d'arthropodes disposés sur sa surface externe, y compris pour les espèces dont l'appareil ovipositeur et/ou piqueur- suceur est de faible puissance et de petite longueur.
Un objectif supplémentaire de l'invention est que cette capsule présente un coût de production faible, en particulier de sorte à permettre que le coût de production d'un système synthétique pour l'élevage in vitro des arthropodes dans lequel elle est mise en œuvre, soit inférieur à celui d'un hôte naturel ou de substitution.
Dans toute la présente description, on entend, par le terme capsule, un volume fermé, également nommé cœur, délimité extérieurement par au moins une membrane jouant le rôle d'enveloppe.
Une capsule selon la présente invention comporte :
- un cœur semi-solide contenant un matériau d'intérêt à encapsuler,
- et une membrane polymère de chitosan enveloppant ce cœur, d'épaisseur inférieure à 1 μιτι, et imprégnée d'au moins un composé hydrophobe, cette imprégnation étant de préférence sensiblement continue sur toute la surface de la membrane.
Une telle membrane est avantageusement étanche aux liquides et perméable aux gaz, si bien que la capsule selon l'invention présente une surface externe sèche et un cœur pouvant être humide, le transfert à travers la membrane de molécules volatiles à l'état gazeux étant tout de même permis.
Le taux d'imprégnation de la membrane polymère de chitosan par le ou les composés hydrophobes est de préférence compris entre 5 et 10 μg de composé(s) hydrophobe(s) / mm3 de membrane. Le chitosan, copolymère de N-acétylglucosamine et glucosamine, est un polysaccharide linéaire, dérivé désacétylé de la chitine, un biopolymère présent notamment dans les carapaces de crustacés tels que les crabes ou les crevettes. Ce biopolymère présente notamment les avantages d'être naturel, non-toxique, biodégradable et inoffensif pour l'environnement. Dans le contexte particulier de l'application préférentielle de la capsule selon l'invention pour l'élevage d'arthropodes, il présente en outre l'avantage d'une composition chimique proche de celle de composés entrant dans la constitution des cuticules des insectes. Ainsi, la membrane polymère de chitosan enveloppant le cœur de la capsule constitue avantageusement une cuticule artificielle favorisant sa reconnaissance par les arthropodes à élever. Le terme chitosan est utilisé dans la présente description aussi bien pour désigner le chitosan en lui-même, que ses dérivés tels que des esters, éthers, aminés, amides ou tous autres dérivés formés par interaction avec les groupements hydroxyle ou aminé du chitosan. Le chitosan mis en œuvre pour l'obtention de la membrane polymère selon l'invention présente préférentiellement un degré de désacétylation élevé, notamment supérieur ou égal à 70 %.
La faible épaisseur de la membrane de chitosan, inférieure à 1 μιτι, de préférence comprise entre 90 et 130 nm, et préférentiellement sensiblement égale à 100 nm, associée à ses propriétés mécaniques, lui permet notamment de pouvoir être facilement transpercée par des chélicères peu puissants et de courte taille, aussi faible que 10 μιτι, sans pour autant être détériorée, notamment déchirée, par la dépose et les déplacements d'un arthropode, en particulier d'un insecte ou d'un arachnide, sur sa surface.
Dans des modes de réalisation particuliers de l'invention, le cœur de la capsule se présente sous forme d'un gel, notamment d'un hydrogel, par exemple à base d'alginate. Dans le contexte de l'application préférée de la capsule selon l'invention à l'élevage d'arthropodes, dans lequel la capsule est mise en œuvre en tant que support de ponte et/ou de nourrissage pour l'arthropode, il est avantageusement prévu selon l'invention que le cœur présente une résistance mécanique suffisamment élevée pour pouvoir supporter, sans déformation excessive, le poids de l'arthropode posé sur la surface externe de la capsule.
Le matériau d'intérêt contenu dans le cœur de la capsule peut être de tout type. Il peut par exemple s'agir d'un composé ou d'un mélange de composés d'intérêt particulier, par exemple d'un milieu nutritif pour un arthropode, le cas échéant additionné d'une ou plusieurs molécules olfactives stimulantes et/ou appétantes, ou encore de tout composé ou mélange de composés à effet thérapeutique, nutritif, cosmétique... Lorsque le(s) composé(s) d'intérêt se présentent sous forme de solution liquide, cette solution est gélifiée, par des moyens classiques en eux-mêmes, pour former le cœur semi-solide de la capsule.
Dans des modes de réalisation particuliers de l'invention, le composé hydrophobe est choisi parmi les polymères styréniques, en particulier le polystyrène, et les alcanes, de préférence les alcanes en C20 à C40. Préférentiellement, la membrane polymère de chitosan est imprégnée d'un mélange d'alcanes en C20 à C40.
Selon une caractéristique avantageuse de l'invention, la membrane polymère de chitosan peut en outre être imprégnée d'un ou plusieurs composés d'intérêt, par exemple stimulant l'oviposition et/ou appétants, tels que des alcanes, des acides gras, des produits du métabolisme des insectes, etc.
La capsule selon l'invention peut présenter toute forme, par exemple cylindrique, parallélépipédique, ovoïde, sphérique... Elle présente préférentiellement une forme sensiblement sphérique. Ses dimensions, notamment son diamètre dans le cas d'une capsule sensiblement sphérique, peuvent par exemple varier de 1 à 20 mm ou même plus. La capsule selon l'invention peut avantageusement être fabriquée à bas coût, et elle présente une bonne stabilité dans le temps.
Un objet supplémentaire de l'invention est un procédé de fabrication d'une capsule présentant l'une ou plusieurs des caractéristiques ci-avant. Une capsule selon l'invention est susceptible d'être obtenue par un procédé de fabrication comprenant les étapes de :
- formation d'une particule semi-solide, notamment d'un gel, de préférence d'un hydrogel, contenant un matériau d'intérêt à encapsuler,
- formation d'une membrane polymère de chitosan autour de la particule ainsi formée, à partir d'une solution aqueuse acide de chitosan contenant un agent tensioactif, ou un mélange d'agents tensioactifs, dans une concentration suffisante pour obtenir, après séchage puis traitement en conditions basiques, entraînant la déprotonation des groupements aminés du chitosan et conférant ainsi à ce dernier un caractère insoluble dans la solution aqueuse, une membrane polymère de chitosan d'épaisseur inférieure à 1 μιτι,
- et imprégnation de la membrane de chitosan ainsi obtenue par une solution contenant ledit/lesdits composé(s) hydrophobe(s).
Dans des modes de mise en œuvre particuliers de l'invention, la particule destinée à former le cœur de la capsule est formée par gélification d'une solution liquide contenant le matériau d'intérêt à encapsuler, par exemple un milieu nutritif pour un arthropode, et de l'alginate, ou de l'agarose, du chitosan ou de la gélatine, ou tout autre composé ou mélange de composés d'intérêt, selon un procédé classique en lui-même. Cette particule peut présenter toute forme, par exemple une forme ovoïde ou sensiblement sphérique.
La particule ainsi formée est de préférence soumise à une étape de séchage, afin d'éliminer l'excès de liquide à sa surface, préalablement à l'étape de formation de la membrane externe de chitosan.
Dans des modes de mise en œuvre particuliers de l'invention, la solution aqueuse de chitosan, par exemple une solution d'acide acétique, comprend une concentration comprise entre 2 et 30 mg/ml, de préférence sensiblement égale à 10 mg/ml, de chitosan. Elle présente de préférence une faible viscosité, préférentiellement inférieure à 200 mPa.s.
La formation de la membrane de chitosan est préférentiellement réalisée par immersion, pendant quelques secondes, des particules dans la solution aqueuse acide de chitosan et d'agent(s) tensioactif(s), puis séchage et traitement en conditions basiques. L'agent tensioactif, ou le mélange d'agents tensioactifs, est avantageusement mis en œuvre dans une concentration apte à permettre une diminution de la tension de surface de la solution aqueuse suffisante pour assurer que la quantité de chitosan se déposant sur la surface de la particule pour former, après séchage, une enveloppe autour de cette dernière, soit suffisamment faible pour que la membrane de chitosan présente la très faible épaisseur conforme à l'invention. Il est du ressort de l'homme du métier de déterminer une telle concentration, de manière théorique ou expérimentale, en fonction de la concentration en chitosan dans la solution aqueuse acide et des caractéristiques particulières du ou des agent(s) tensioactif(s) mis en œuvre.
Dans des modes de mise en œuvre particuliers de l'invention, l'agent tensioactif est de type non-ionique. Il peut notamment consister en un éthoxylate d'octylphénol, par exemple tel que commercialisé sous le nom Triton X-100®. Cet agent tensioactif abaisse la tension superficielle de l'eau de 33 dynes/cm à une concentration de 1 % à 25 °C. Un tel agent tensioactif est préférentiellement mis en œuvre dans une concentration comprise entre 0,005 et 0,05 %, en volume par rapport au volume total de la solution, de préférence d'environ 0,01 % v/v. Le choix d'un tel agent tensioactif particulier n'est cependant nullement limitatif de l'invention, et d'autres agents tensioactifs ou mélanges d'agents tensioactifs peuvent être mis en œuvre dans le cadre de l'invention. Pour l'application préférentielle de la capsule à l'élevage d'arthropodes, le ou les agent(s) tensioactif(s) sont avantageusement choisis pour ne présenter aucune toxicité, à l'état de traces, pour l'insecte à élever.
Le traitement en conditions basiques peut notamment être réalisé par une solution d'hydroxyde de sodium.
Dans des modes de mise en œuvre particuliers de l'invention, la solution contenant le ou les composé(s) hydrophobes contient une concentration totale en lesdits composés comprise entre 1 et 10 mg/ml. L'imprégnation peut notamment être réalisée par immersion de la capsule dans un bain d'une solution contenant le ou les composé(s) hydrophobe(s), pendant une durée de quelques minutes, par exemple d'environ 2 minutes.
La mise en présence de la capsule avec cette solution est préférentiellement précédée d'une étape de déshydratation progressive de la membrane de chitosan, par exemple par trempage de la capsule dans des bains successifs de solutions alcooliques, puis dans un bain d'un solvant organique apolaire, tel que l'hexane.
Un tel procédé de fabrication, dans lequel la membrane est formée autour de la particule semi-solide destinée à former le cœur de la capsule après formation de cette dernière, permet avantageusement d'intégrer facilement dans le cœur de la capsule tout composé d'intérêt souhaité, par exemple à des fins nutritives et/ou de stimulation de la ponte et/ou du nourrissage, y compris des macromolécules, telles que des protéines complexes, même de taille supérieure à 10 kDa. Dans des modes de réalisation préférés particulièrement avantageux de l'invention, le procédé de fabrication de la capsule comporte une étape intermédiaire de formation, autour de la particule semi-solide, d'un film étanche aux liquides et perméable aux gaz, dit film intercalaire, de préférence d'un film d'un polymère styrénique, préférentiellement de polystyrène, d'épaisseur inférieure à 50 nm, par exemple d'environ 10 nm, ceci préalablement à l'étape de formation de la membrane polymère de chitosan.
Une telle caractéristique s'avère tout à fait avantageuse notamment en termes d'uniformité et de résistance mécanique de la membrane de chitosan enrobant la particule, en particulier lorsque cette dernière est formée d'un hydrogel. En effet, la présence d'un tel film intercalaire autour de la particule, d'une part, favorise un recouvrement uniforme de la particule par le chitosan, et, d'autre part, forme une barrière étanche aux liquides entre la particule et la membrane de chitosan, permettant un meilleur séchage, et par voie de conséquence une meilleure densification, de cette dernière. Ainsi, dans des modes de réalisation particuliers de l'invention, la capsule comporte un film étanche aux liquides et perméable aux gaz, dit film intercalaire, de préférence un film d'un polymère styrénique, préférentiellement de polystyrène, d'épaisseur inférieure à 50 nm, par exemple d'environ 10 nm, intercalé entre le cœur semi-solide et la membrane polymère de chitosan. De par sa perméabilité aux gaz, ce film intercalaire ne fait avantageusement pas obstacle au transfert de molécules à l'état gazeux contenues dans le cœur de la capsule. Sa très faible épaisseur lui permet en outre d'être facilement transpercé par l'appareil ovipositeur et/ou piqueur-suceur des arthropodes, quelles que soient la longueur et la puissance de cet appareil. II a été constaté par les présents inventeurs que dans la pratique, au cours des étapes finales de fabrication de la membrane de la capsule, selon la composition chimique du film intercalaire, il pouvait se produire, à l'interface de ce film et de la membrane de chitosan, une fusion entre le film et la membrane.
La formation du film intercalaire autour du cœur de la capsule peut par exemple être réalisée par immersion de la particule semi-solide dans une solution de composition adéquate, par exemple dans une solution contenant du polystyrène. Dans un tel mode de mise en œuvre particulier de l'invention, la concentration en polystyrène dans la solution est de préférence comprise entre 1 et 50 g/l, par exemple d'environ 10 g/l. L'immersion est préférentiellement réalisée pendant un temps très bref, inférieur à 10 s, de sorte à minimiser au maximum les échanges entre le cœur de la capsule et le ou les solvant(s) contenus dans cette solution, et prévenir ainsi leur pénétration dans le cœur.
En étapes finales, le procédé peut comporter une étape de séchage de la capsule, puis de chauffage à une température comprise entre 70 et 75 °C, pendant une durée comprise entre 30 secondes et 20 minutes environ. La capsule selon l'invention ainsi obtenue peut être stockée à basse température, par exemple à environ 4 °C, en chambre humide, à l'abri de la lumière, pendant plusieurs mois. Elle conserve notamment toujours une surface externe sèche. Un tel procédé permet avantageusement de fabriquer une capsule conforme à l'invention facilement, rapidement et avec une bonne reproductibilité. Ses différentes étapes peuvent en outre être mises en œuvre de manière entièrement automatisée, permettant ainsi une fabrication en masse, et qui plus est à des faibles coûts de revient. Dans des variantes de l'invention, en lieu et place du film intercalaire décrit ci-avant, la capsule comporte, intercalé entre le cœur semi-solide et la membrane polymère de chitosan, un film, dit film mixte, susceptible d'être obtenu par polymérisation d'un mélange comprenant un polymère styrénique et un additif lipophile, en particulier de la cire d'abeille, en solution dans un solvant organique.
Ce film mixte est étanche aux liquides, et il présente avantageusement un degré de perméabilité aux gaz qui est modulable, en fonction de sa composition spécifique, et plus particulièrement du procédé utilisé pour sa formation. La présence de ce film mixte dans la capsule selon l'invention permet ainsi avantageusement de régler le degré d'étanchéité aux gaz de la capsule, en particulier d'étanchéité à la vapeur d'eau, en fonction de l'application particulière visée. Ceci permet avantageusement de maîtriser la vitesse de déshydratation du cœur semi-solide de la capsule, et de l'adapter à chaque application spécifique.
Le film mixte selon l'invention résiste en outre avantageusement, au moins partiellement, à l'attaque par les solvants organiques à température ambiante.
Sa fine épaisseur et sa constitution autorisent par ailleurs la pénétration d'un appareil ovipositeur ou piqueur-suceur d'arthropode, y compris pour ceux présentant une faible puissance et/ou une petite longueur, Ce film intercalaire est en outre perméable aux vapeurs chargées de composés olfactifs stimulateurs de l'oviposition pour la fondatrice et/ou appétants pour la larve, et il ne modifie avantageusement pas le comportement de nourrissage des arthropodes.
Un procédé de formation d'une capsule comportant un tel film mixte selon l'invention comporte une étape intermédiaire de formation, autour de la particule semi-solide, préalablement à l'étape de formation de la membrane polymère de chitosan, d'un film, dit film mixte, par réaction de polymérisation d'un mélange comprenant un polymère styrénique et un additif lipophile, en particulier de la cire d'abeille, en solution dans un solvant organique.
Le solvant organique peut par exemple consister en du dichlorométhane, du trichlorométhane, du limonène, etc., ou un mélange de tels solvants. Le limonène s'avère en particulier tout à fait avantageux, notamment du fait de son faible impact sur l'environnement et de son coût réduit.
Les conditions opératoires de cette étape du procédé selon l'invention permettent avantageusement de maîtriser le degré de perméabilité aux gaz du film mixte. Dans des modes de mise en œuvre particulièrement avantageux de l'invention, la réaction de polymérisation pour former le film mixte est catalysée par un catalyseur ionique de polymérisation, de préférence à deux composants. En particulier, les concentrations respectives de ces deux composants dans le milieu réactionnel permettent d'influer sur la vitesse de polymérisation, la nature et les caractéristiques du film mixte obtenu, notamment son degré de perméabilité aux gaz. A titre d'exemple de couples pouvant former le catalyseur ionique, on peut notamment citer les couples Ca7Na+, Ca CI", Mg27HC03 ", etc.
Entre autres paramètres opératoires, influent également sur ces caractéristiques du film mixte les concentrations de polymère styrénique et d'additif lipophile dans le milieu réactionnel, ainsi que la température et le temps de réaction.
Dans des modes de mise en œuvre particuliers de l'invention, la réaction de polymérisation est réalisée à une température comprise entre 10 et 40 °C, de préférence à environ 30 °C. La durée de la réaction de polymérisation est quant à elle environ égale à 1 heure.
Dans des modes de mise en œuvre avantageux de l'invention, l'étape de formation du film mixte et l'étape de formation de la particule semi-solide sont réalisées de manière simultanée, Par exemple, un procédé selon l'invention peut ainsi comprendre, préalablement à l'étape de formation de la membrane de chitosan :
- le mélange, en solution aqueuse : du matériau d'intérêt à encapsuler, par exemple un milieu nutritif ; d'une substance gélifiante, telle que de l'alginate, ou de l'agarose, du chitosan ou de la gélatine ; et du catalyseur ionique, pour former un précurseur du cœur semi-solide. Lorsque ce catalyseur ionique est un couple Mg27HC03 ", les concentrations respectives de ces ions dans la solution sont comprises entre 0,1 et 2 g/l, et 1 et 20 g/l. Cette étape est préférentiellement réalisée à une température qui est déterminée en fonction de la substance gélifiante, et qui est supérieure à la température de polymérisation de cette dernière, par exemple comprise entre 40 et 60 °C pour le cas de l'agarose ;
- préparation d'un mélange réactionnel comprenant un polymère styrénique, par exemple du polystyrène, à une concentration comprise entre 10 et 160 g/l, et un additif lipophile, par exemple de la cire d'abeille, à une concentration comprise entre 0,2 et 20 g/l, dans un solvant organique tel que le D-limonène, le cas échéant en mélange avec du dichlorométhane ;
- et introduction de précurseur du cœur semi-solide, par exemple sous forme de goutte(s), dans le mélange réactionnel, suivie d'une incubation pendant un temps et à une température adéquats pour provoquer la polymérisation du polymère styrénique et de l'additif lipophile, et la formation d'un film mixte selon l'invention autour de cœurs gélifiés se formant simultanément.
Selon les applications, on peut en outre envisager que la capsule comportant un cœur semi-solide contenant un matériau d'intérêt à encapsuler et un film mixte répondant aux caractéristiques énoncées ci-avant, le film mixte étant susceptible d'être obtenu par polymérisation d'un mélange comprenant un polymère styrénique et un additif lipophile, en particulier de la cire d'abeille, en solution dans un solvant organique, soit dépourvue de la membrane polymère de chitosan. Une telle capsule présente une durée de conservation et de mise en œuvre dans le temps inférieure à celle de la capsule conforme à l'invention comportant la membrane de chitosan. Elle présente cependant un intérêt pour des applications dans lesquelles une efficacité n'est requise que pendant une durée plus courte.
Un procédé de fabrication de cette capsule comprend alors les étapes de formation d'une particule semi-solide contenant un matériau d'intérêt à encapsuler, comme décrit ci-avant, et formation, autour de cette particule semi- solide, d'un film, dit film mixte, par réaction de polymérisation d'un mélange comprenant un polymère styrénique et un additif lipophile, en solution dans un solvant organique, répondant aux caractéristiques décrites ci-avant. Il ne comprend pas d'étape ultérieure de formation du film de chitosan.
La capsule conforme à l'invention présente un large champ d'applications.
Ainsi, un objet de la présente invention est l'utilisation d'une capsule répondant à l'une ou plusieurs caractéristiques ci-avant pour l'encapsulation, et le cas échéant le relargage programmé, d'un matériau d'intérêt, par exemple d'un composé ou d'un mélange de composés d'intérêt thérapeutique ou nutritif, à l'état gazeux.
Un domaine d'application préféré de la capsule selon l'invention est son utilisation pour l'élevage in vitro d'un arthropode, en particulier d'un insecte ou d'un arachnide. Le matériau d'intérêt contenu dans le cœur de la capsule est alors un milieu nutritif pour l'arthropode, sous forme gélifiée. De préférence, ce milieu nutritif est additionné d'une ou plusieurs molécules stimulant l'oviposition et/ou appétantes pour les larves, par exemple d'un extrait d'hémolymphe de larve d'abeille. La membrane de chitosan peut également, ou alternativement, être imprégnée de telle(s) molécule(s). Cet élevage peut notamment être réalisé en vue de produire une grande quantité d'insectes dits auxiliaires utilisables dans la lutte contre les insectes ravageurs de cultures et/ou vecteurs de maladies humaines et animales. Autrement, cet élevage peut par exemple être réalisé pour l'étude des interactions entre un parasite et son hôte, visant notamment à développer des moyens pour rendre le parasite inoffensif vis-à-vis de son hôte naturel.
On entend dans la présente description, par le terme élevage, aussi bien l'obtention de larves à partir d'une fondatrice, que le nourrissage de cette fondatrice et/ou des larves, jusqu'à les amener au stade de développement souhaité, notamment au stade adulte. Les individus ainsi élevés peuvent notamment être utilisés pour la réalisation de lâchers inondatifs sur des zones de culture et/ou dans lesquelles sont susceptibles de se développer des insectes vecteurs de maladies.
Ainsi, la présente invention se traduit également dans les termes d'un procédé d'élevage in vitro d'un arthropode, en particulier d'un insecte ou d'un arachnide, mettant en œuvre une capsule conforme à l'invention, contenant un milieu nutritif pour l'arthropode, en tant que support pour la ponte et/ou le nourrissage des larves. La membrane polymère de chitosan, interposée entre l'arthropode et son milieu nutritif, assure un confinement étanche de ce dernier. Elle joue ainsi un rôle de barrière hydrique et antimicrobienne préservant le degré d'hydratation et la stérilité du milieu nutritif. Elle permet toutefois avantageusement aux molécules volatiles contenues dans ce milieu nutritif, notamment aux molécules olfactives stimulant l'oviposition et/ou appétantes, de parvenir à l'arthropode. Enfin, les caractéristiques mécaniques et la grande finesse du film de chitosan permettent à tout arthropode de le transpercer pour accéder au milieu nutritif. Le milieu nutritif peut avantageusement être complémenté par toute molécule d'intérêt, par exemple en vue d'étudier son action vis-à-vis de l'arthropode.
Un objet supplémentaire de l'invention est un système synthétique pour l'élevage d'un arthropode, en particulier d'un insecte ou d'un arachnide, comportant une capsule répondant à l'une ou plusieurs des caractéristiques décrites ci-avant, en tant que support d'élevage, et des moyens de maintien, dans l'atmosphère environnant cette capsule, d'un taux d'humidité ambiante suffisant pour éviter le dessèchement de la capsule, de préférence d'un taux d'humidité relative d'au moins 34 %. Ces moyens de maintien d'un taux d'humidité suffisant peuvent prendre toute forme classique en elle-même. Il peut par exemple s'agir d'un simple récipient contenant de l'eau placé à proximité de la capsule, ou encore d'un humidificateur d'air.
Ce système peut aussi bien être fabriqué et utilisé à l'échelle du laboratoire, pour l'étude des interactions entre un parasite et son hôte, qu'à grande échelle, par exemple pour la production en masse d'insectes auxiliaires utilisés dans la lutte contre les insectes ravageurs de cultures et/ou vecteurs de maladies humaines et animales, notamment par la technique de lâchers inondatifs. II peut également être mis en œuvre pour cette même lutte, en complément des lâchers inondatifs, pour remédier à un des problèmes majeurs liés à la mise en œuvre de lâchers inondatifs, résidant dans la dynamique proie-prédateur qui s'instaure à la suite de ces lâchers. En effet, dans le cas d'une infestation massive par l'hôte, insecte ravageur de cultures et/ou vecteur de maladies, le parasitoïde lâché va dans un premier temps rencontrer un succès reproducteur très grand. Ce succès va s'accompagner d'une réduction drastique du nombre d'hôtes, ce qui est l'effet recherché. Malheureusement, cette réduction s'accompagne également d'une réduction du nombre de parasitoïdes qui ne trouvent alors plus d'hôtes pour se reproduire. Une fois les parasitoïdes disparus, il n'est donc pas rare d'assister à une ré-explosion démographique de l'hôte, ce qui contraint à effectuer plusieurs nouveaux lâchers inondatifs et augmente donc d'autant le coût du traitement. Le système selon l'invention permet avantageusement de remédier à ces inconvénients. Placé sur le lieu d'infestation, par exemple sous forme d'un réservoir contenant des milliers de capsules selon l'invention, et des moyens de maintien dans le réservoir d'un taux d'humidité constant et adéquat, il permet tout à fait avantageusement d'attirer le parasitoïde, de provoquer sa ponte et d'assurer le nourrissage des larves, ayant ainsi pour effet de maintenir un nombre minimal de parasitoïdes sur site, et de réduire, par voie de conséquence, la fréquence des lâchers inondatifs nécessaires et les coûts associés. En vue d'une telle application, il est avantageusement prévu selon l'invention que le réservoir soit délimité par des parois périphériques dont au moins une est percée d'orifices de taille suffisamment large pour permettre le passage de l'arthropode femelle, et de préférence suffisamment faible pour interdire le passage d'autres insectes, tels que des fourmis, mouches, etc. La capsule et le système selon l'invention peuvent être mis en œuvre pour l'élevage d'une grande variété d'arthropodes, par exemple, mais non limitativement, de parasitoïdes de la famille des Trichogrammes ( Trichogramma brassicae, Trichogramma cacoeciae, Trichogramma evanescens, Trichogramma voegelei, Trichogramma chilonis,...), du genre des Toxorhynchites (Toxorhynchites rutilus, Toxorhynchites brevipalpis, Toxorhynchites amboinensis), des Psyttalia lounsburyi, Venturia canescens, Lariophagus distinguendus, Torymus sinensis, Psyttalia fletcheri, Fopus arisanus, ou encore de l'acarien ectoparasite Varroa destructor, principal parasite de l'abeille. La capsule comprenant le film mixte et dénuée de membrane de chitosan trouve des champs d'application similaires, pour les applications nécessitant les moins longues durées de conservation et de mise en œuvre.
Les caractéristiques et avantages de l'invention apparaîtront plus clairement à la lumière des exemples de mise en œuvre ci-après, fournis à simple titre illustratif et nullement limitatifs de l'invention, avec l'appui des figures 1 à 7, dans lesquelles : - les figures 1 a et 1 b représentent une particule de gel contenant un milieu nutritif, observée à la loupe binoculaire, avec un grossissement de 1 ,25 fois pour la figure 1 a, et de 8 fois pour la figure 1 b ;
- les figures 2a et 2b montrent la particule de la figure 1 a recouverte d'un film de polystyrène, observée à la loupe binoculaire, avec un grossissement de 1 ,25_fois pour la figure 2a, et de 8 fois pour la figure 2b ;
- les figures 3a et 3b montrent la particule de la figure 2a recouverte d'une membrane polymère de chitosan imprégnée de Paraplast®, observée à la loupe binoculaire, avec un grossissement de 1 ,25 fois pour la figure 3a, et de 8 fois pour la figure 3b ;
- la figure 4 montre une femelle adulte de l'espèce Varroa destructor en cours de nourrissage à travers la membrane externe de la capsule de la figure 3a, observée à la loupe binoculaire, avec un grossissement de 12 fois ;
- la figure 5 montre un graphe illustrant, en fonction du temps d'incubation à 25 °C et 55 % d'humidité, le pourcentage en masse de différents cœurs gélosés enveloppés d'un film mixte conforme à l'invention, obtenus à partir de compositions comprenant différentes proportions de catalyseur ionique de polymérisation du film mixte ;
- la figure 6 montre des femelles adultes de l'espèce Varroa destructor évoluant, respectivement, a) sur un cœur gélosé contenant du milieu nutritif et enveloppé d'un film mixte conforme à l'invention, et b) sur une capsule conforme à l'invention contenant le même milieu nutritif et comportant un même film mixte sous la membrane de chitosan, ces femelles étant observées à la loupe binoculaire, avec un grossissement de 12 fois ; - et la figure 7 montre des femelles adultes de l'espèce Varroa destructor en cours de nourrissage, respectivement, a) sur le cœur gélosé de la figure 6a), et b) sur la capsule la figure 6b), ces femelles étant observées à la loupe binoculaire, avec un grossissement de 12 fois.
A/ Exemple A - Capsules à film intercalaire de polystyrène A.1 / Préparation des capsules
Des capsules conformes à un mode de réalisation particulier de l'invention, contenant un milieu nutritif pour un arthropode, sont formées de la façon suivante. Des particules de solution nutritive gélosée, sous forme de billes de 1 à 20 mm de diamètre, sont formées dans une solution de chlorure de calcium (CaCI2) 1 M stérile, en faisant tomber goutte à goutte dans cette solution, à l'aide d'un embout calibré, de 1 à 5 mm de diamètre, un mélange de :
- milieu nutritif de Hunter (Hunter, W.B., 2010. In Vitro Cellular and Developmental Biology Animal, 46, 83-6), contenant 30 % de milieu de
Schneider, 30 % de CMRL 1066, 0,06 M d'histidine, 10 % de sérum de veau fœtal, 1 % de sels de Hank et 4 % d'insect médium supplément ;
- 25 % (v/v) d'extrait d'hémolymphe de larve d'abeille au stade L5, obtenu par filtration centrifuge sur membrane d'une porosité de 3000 Da, la centrifugation étant réalisée pendant 15 min à 12 000 g, et récupération du filtrat ;
- et de l'alginate à une concentration de 1 M.
Les billes ainsi formées sont ensuite récoltées avec une écumoire stérile et disposées en une seule couche sur un support rigide résistant aux solvants organiques, par exemple une lame de verre. L'ensemble est ensuite brièvement séché sous hôte à flux laminaire afin d'éliminer l'excès de liquide à la surface des billes, et de favoriser leur adhérence au support. Un exemple d'une bille ainsi formée est montré sur les figures 1 a et 1 b. On remarque sur ces figures leur paroi externe parfaitement lisse. L'ensemble billes/support est ensuite immergé dans un bain de chloroforme contenant 10 g/L de polystyrène en solution, et immédiatement retiré du bain. Après 1 min de séchage à température ambiante, le support est incubé à 72 °C pendant 45 s, puis refroidi à température ambiante. On obtient ainsi des billes recouvertes d'un film intercalaire de polystyrène dont un exemple est montré sur les figures 2a et 2b. On y observe que la surface externe du film intercalaire est lisse et uniforme.
Les billes ainsi enrobées de polystyrène sont plongées, toujours sur le support, dans un bain d'une solution aqueuse acide de chitosan comprenant, en solution dans l'eau ultra-pure : - 10 g/1 d'une solution de chitosan extrait de carapaces de crevettes dans l'acide acétique, de viscosité inférieure à 200 mPa.s (20 °C) (Sigma Aldrich),
- 0,1 % (v/v) de Triton X100® (Sigma).
Cette solution aqueuse acide a préalablement été dégazée pendant 1 h sous agitation à 200 tr/min.
L'ensemble billes/support est ensuite immédiatement retiré du bain de solution aqueuse acide, et mis à égoutter et sécher verticalement pendant 20 min sous hotte à flux laminaire. Il est ensuite immergé dans une solution d'hydroxyde de sodium (NaOH) 1 M, et immédiatement rincé dans trois bains successifs d'eau distillée. Il est enfin plongé dans quatre bains successifs, contenant respectivement de l'éthanol à 70 %, puis à 95 %, puis pur, puis de l'hexane, pendant 30 s pour chacun, avant d'être plongé pendant 2 min dans une solution d'hexane contenant 10 g/L de Paraplast® ou de cire d'abeille.
L'ensemble billes/support est enfin séché pendant 5 min sous hotte à flux laminaire et incubé à 72 °C pendant 45 s.
Les capsules sensiblement sphériques ainsi formées sont conservées à 4°C en chambre humide. Un exemple en est montré sur les figures 3a et 3b. Sur cette dernière figure, on distingue que la membrane de chitosan entourant le cœur de la capsule est dépourvue de pores et qu'elle présente à sa surface des structures cristallines caractéristiques de sels et d'alcanes.
A.2/ Nourrissaqe d'une femelle Varroa destructor adulte
Une femelle adulte de l'espèce Varroa destructor est obtenue à partir d'un élevage sur des colonies d'abeilles Apis mellifera, dans des conditions classiques en elles-mêmes. Cette femelle présente un appareil piqueur-suceur d'environ 10 μιη de long et de faible puissance.
Cette femelle est placée sur une capsule telle que décrite ci-avant, dans laquelle la membrane polymère de chitosan est imprégnée par du Paraplast®. On réalise une observation directe et en continu de l'ensemble, à la température ambiante, afin de déterminer le moment où la femelle pique à travers la membrane de la capsule, et la durée de cette piqûre.
On observe qu'il ne se produit aucun transfert de liquide du milieu nutritif à travers la membrane. Ceci s'avère d'autant plus avantageux que les individus de l'espèce Varroa destructor présentent un tropisme négatif vis-à-vis des surfaces humides, et se noient en quelques minutes en présence d'un environnement humide. La surface externe de la membrane reste dénuée de tout liquide.
A l'observation à la loupe binoculaire, on observe que la femelle se nourrit dans le cœur de la capsule, en piquant à travers la membrane de chitosan, comme montré sur la figure 4. On voit parfaitement sur cette figure que ses pédipalpes sont en position physiologique, perpendiculaire à l'axe de l'appareil piqueur-suceur. Ceci démontre notamment que la membrane de la capsule conforme à l'invention permet le transfert des odeurs stimulant le nourrissage en provenance du milieu nutritif. Après perçage de la membrane de chitosan, la femelle se nourrit pendant 1 à 5 minutes, ce qui est conforme à un nourrissage normal.
Cette expérience démontre que la capsule selon l'invention offre une surface qui permet à la femelle Varroa destructor de développer un comportement normal de recherche d'un site de nourrissage, caractérisé par la séquence comportementale classique et aboutissant à un nourrissage efficace.
En particulier, cette capsule peut tout à fait avantageusement intégrer dans la membrane et/ou dans son cœur des substances stimulantes, si bien qu'elle reproduit efficacement l'interface parasite/hôte. Cette capsule constitue un support performant, facile et rapide à obtenir et à bas coût, pour l'élevage d'un arthropode, y compris d'un acarien de l'espèce Varroa destructor, très exigeant en terme de spécificité d'hôte et de résistance de la membrane.
B/ Exemple B - Capsules à film mixte de polystyrène et cire d'abeille B.1/ Préparation des capsules
Pour produire les cœurs semi-solides des capsules, une solution d'agarose (Sigma-AIdrich) à 20 g/L est chauffée à 100 °C dans un bain marie, puis refroidie dans un bain thermostaté à 60 °C et un catalyseur ionique à deux composants, MgCI2 et NaHC03, est ajouté afin de constituer 5 solutions précurseuses de concentrations ioniques distinctes, comme indiqué dans le tableau 1 ci-après.
Tableau 1 - Concentrations en MgCI2 et NaHC03 dans les différentes solutions
Un mélange réactionnel est préparé en incorporant à 1 10 °C du polystyrène à 80 g/L (VWR) et de la cire d'abeille à 4 g/L (Apirem) en solution dans du limonéne (Sigma-AIdrich) et du dichlorométhane.
La formation du cœur semi-solide et du film mixte l'enveloppant est ensuite réalisée comme suit. Les différentes solutions d'agarose sont transférées dans une seringue de 10 ml préincubée à 60 °C. Trois cents gouttes de chaque solution, d'une masse moyenne de 4,3 mg, sont déposées à l'aide d'une aiguille à la surface de 50 ml du mélange réactionnel ci-dessus, à 25 °C. Le mélange réactionnel est ensuite incubé pendant 1 h à 30 °C.
Les cœurs gélosés recouverts du film mixte sont ensuites lavés dans deux bains successifs de limonéne afin d'éliminer l'excès de mélange réactionnel à leur surface. Enfin, ils sont étalés en monocouche sur un support en verre et séchés pendant 30 min à 25 °C et 55 % d'humidité afin d'évaporer les traces de solvant. On obtient des cœurs gélosés enveloppés respectivement P1 , P2, P3, P4 et P5 (chacun portant le nom de la solution précurseuse ayant servi à l'obtenir). Certains de ces cœurs gélosés enveloppés du film mixte sont ensuite soumis aux étapes de formation de la membrane de chitosan, puis d'imprégnation de cette dernière, qui sont décrites ci-avant dans l'Exemple A. Les autres sont utilisées directement pour le test ci- après.
B.2/ Mesure de la vitesse de déshydratation des cœurs gélosés enveloppés du film mixte
La vitesse de déshydratation des cœurs gélosés enveloppés du film mixte est mesurée en triplicat par pesée différentielle des supports de verre 0 h, 1 h et 12 h après incubation à 25 °C et 55 % d'humidité, à l'aide d'une balance de précision (Sartorius TE124S, VWR). La masse de matière sèche est ajoutée à la tare après avoir ouvert à l'aide d'une lame de scalpel chacun des cœurs gélosés et les avoir déshydratés à 50 °C pendant 1 h.
L'analyse statistique des résultats est réalisée à l'aide du logiciel R (Cran Project). Le test non paramétrique de Kuskal-Wallis est employé et les probabilités obtenues sont corrigées selon la méthode de Bonferroni, afin de déterminer la probabilité que la différence de vitesse de déshydratation des cœurs gélosés au cours du temps ne soit pas liée à leur composition ionique. Ces méthodes sont classiques en elles-mêmes et bien connues de l'homme du métier.
Les résultats obtenus sont montrés sur la figure 5. On y observe que la composition ionique des solutions précurseuses utilisées pour la formation des cœurs gélosés enveloppés du film mixte modifie la vitesse de déshydratation de cœurs (p < 0,05) après 12 h d'exposition à 25 °C et à une hygrométrie de 55 %. Ces résultats montrent que la concentration ionique du couple Mg27HCO3 " influence la perméabilité à la vapeur d'eau du film mixte à la surface des cœurs semi-solides des capsules selon l'invention. La même constatation est effectuée lorsque les capsules comportent en outre une membrane de chitosan imprégnée de composé hydrophobe. Les capsules selon l'invention présentent ainsi avantageusement un degré de perméabilité aux gaz qui peut être modulé en fonction de l'application visée. B.3/ Nourrissaqe d'une femelle Varroa destructor adulte
Deux séries d'expériences sont réalisées, dans des conditions opératoires similaires, sur, d'une part, des cœurs gélosés enveloppés du film mixte, et, d'autre part, les capsules conformes à l'invention dans lesquelles ces cœurs sont en outre enveloppés d'une membrane de chitosan imprégnée de composé hydrophobe. Les conditions expérimentales sont les suivantes.
Pour la formation des capsules, le mélange réactionnel est préparé en incorporant à 1 10 °C du polystyrène à 80 g/L (VWR) et de la cire d'abeille à 4 g/L (Apirem) en solution dans du limonéne (Sigma-AIdrich) en mélange avec du dichlorométhane.
Une solution stérile d'agarose (Sigma-AIdrich) à 20 g/L, de MgCI2 à 200 mg/L et de NaHC03 à 20 g/L est préparée à l'aide d'eau distillée stérile et chauffée à 100 °C au bain marie, puis ramenée dans un bain thermostaté à 60 °C, et une solution nutritive composée de 75 % de milieu de Hunter (Sigma) et de 25 % d'extrait d'hémolymphe, préalablement incubée à 60 °C, y est ajoutée à hauteur de 50 % en volume.
Cette solution est déposée goutte à goutte à l'aide d'une seringue à la surface de 50 ml du mélange réactionnel à 25 °C. Le mélange réactionnel est ensuite incubé pendant 1 h à 30 °C. Les cœurs gélosés recouverts du film mixte sont ensuites lavés dans deux bains successifs de limonéne afin d'éliminer l'excès de mélange réactionnel à leur surface. Ces cœurs sont ensuite soit séchés pendant 30 min à 25 °C à une hygrométrie de 55 %, soit recouverts par une membrane de chitosan. Dans ce cas, les cœurs gélosés enveloppés du film mixte sont plongés dans un bain de chitosan (chitosan low viscosity 10 g/l (Sigma), Triton X100 0,1 %, acide acétique 1 %) préalablement dégazé pendant 1 h sous agitation à 200 rpm. Les particules obtenues sont ensuite immédiatement lavées pendant 2 min sous agitation à 200 rpm dans un bain d'éthanol pur, avant d'être séchées pendant 20 min sous hotte à flux laminaire, puis d'être immergées dans une solution de NaOH 1 M et immédiatement rincées dans trois bains successif d'eau distillée. Ensuite, les capsules sont plongées pendant 30 s dans quatre bains successifs contenant respectivement de l'éthanol 70°, 95° et pur, et de l'hexane, avant d'être plongées pendant 2 min dans une solution d'hexane contenant 10 g/L de cire d'abeille. Les capsules sont enfin séchées pendant 30 min sous hotte à flux laminaire et incubées pendant 45 s à 72 °C. Les capsules ainsi constituées sont enfin séchées 30 min à 25 °C à une hygrométrie de 55 %.
Des femelles Varroa sont récoltées sur des abeilles nourrices provenant de colonies infestées naturellement et non traitées contre ce parasite. Les femelles récoltées sont placées immédiatement après récolte dans le dispositif expérimental composé d'une boite de Pétri thermostatée à 34 °C contenant les capsules à tester (capsules selon l'invention, comprenant le film mixte et la membrane de chitosan, ou cœurs gélosés enveloppés seulement du film mixte), afin de procéder aux essais de nourrissage. Ces essais sont réalisés comme exposé dans l'Exemple A ci-avant.
On constate que les femelles Varroa évoluent sans difficulté à la surface des capsules, et n'adoptent pas de comportement de fuite mais un comportement caractéristique de reconnaissance de leur hôte, en présence tant des cœurs gélosés enveloppés du film mixte que des capsules selon l'invention comprenant la membrane de chitosan, comme illustré respectivement sur la figure 6, a) et b), sur laquelle on observe un comportement de nettoyage de l'organe de Haller, des pédipalpes et des stylets caractéristique de l'imminence d'une tentative de nourrissage.
Le nourrissage, qui dure dans les deux cas plus de 5 min, est observé à la suite du perçage rapide et sans délai des capsules / cœurs par les stylets disposés par l'acarien perpendiculairement à la surface de la capsule, comme illustré sur la figure 7, a) pour le cœur gélosé enveloppé et b) pour la capsule conforme à l'invention.
Ces résultats montrent que le film mixte est à la fois étanche aux liquides et perméable aux vapeurs chargées de composés stimulant le nourrissage de l'acarien, et qu'il ne modifie avantageusement pas le comportement de nourrissage de ce dernier.

Claims

REVENDICATIONS
1. Capsule comportant :
- un cœur semi-solide contenant un matériau d'intérêt à encapsuler,
- et une membrane polymère de chitosan enveloppant ledit cœur, d'épaisseur inférieure à 1 μιτι, et imprégnée d'au moins un composé hydrophobe.
2. Capsule selon la revendication 1 , dans laquelle ledit composé hydrophobe est choisi parmi les polymères styréniques et les alcanes, de préférence les alcanes en C20 à C40.
3. Capsule selon l'une des revendications 1 à 2, dans laquelle la membrane polymère de chitosan est imprégnée d'un mélange d'alcanes en
C20 à C40.
4. Capsule selon l'une quelconque des revendications 1 à 3, dans laquelle un film étanche aux liquides et perméable aux gaz, de préférence un film d'un polymère styrénique, préférentiellement de polystyrène, d'épaisseur inférieure à 50 nm, est intercalé entre le cœur et la membrane polymère de chitosan.
5. Capsule selon l'une quelconque des revendications 1 à 3, dans laquelle est intercalé, entre le cœur semi-solide et la membrane polymère de chitosan, un film, dit film mixte, susceptible d'être obtenu par polymérisation d'un mélange comprenant un polymère styrénique et un additif lipophile, en particulier de la cire d'abeille, en solution dans un solvant organique.
6. Capsule selon l'une quelconque des revendications 1 à 5, présentant une forme sensiblement sphérique.
7. Procédé de fabrication d'une capsule selon l'une quelconque des revendications 1 à 6, comprenant les étapes de :
- formation d'une particule semi-solide contenant un matériau d'intérêt à encapsuler,
- formation d'une membrane polymère de chitosan autour de la particule ainsi formée, à partir d'une solution aqueuse acide de chitosan contenant un agent tensioactif dans une concentration suffisante pour obtenir, après séchage puis traitement en conditions basiques, une membrane polymère de chitosan d'épaisseur inférieure à 1 μιτι,
- et imprégnation de la membrane de chitosan ainsi obtenue par une solution contenant ledit/lesdits composé(s) hydrophobe(s).
8. Procédé selon la revendication 7, selon lequel ledit agent tensioactif est de type non-ionique, et consiste de préférence en un éthoxylate d'octylphénol.
9. Procédé selon l'une des revendications 7 à 8, comportant une étape intermédiaire de formation, autour de la particule semi-solide, d'un film étanche aux liquides et perméable aux gaz, de préférence d'un film d'un polymère styrénique, préférentiellement de polystyrène, d'épaisseur inférieure à 50 nm, préalablement à l'étape de formation de ladite membrane polymère de chitosan.
10. Procédé selon l'une quelconque des revendications 7 à 8, comportant, préalablement à l'étape de formation de ladite membrane polymère de chitosan, la formation autour de la particule semi-solide d'un film, dit film mixte, par réaction de polymérisation d'un mélange comprenant un polymère styrénique et un additif lipophile, en particulier de la cire d'abeille, en solution dans un solvant organique.
11. Procédé selon la revendication 10, selon lequel la réaction de polymérisation est catalysée par un catalyseur ionique de polymérisation, de préférence à deux composants.
12. Procédé selon l'une quelconque des revendications 10 à 1 1 , selon lequel la réaction de polymérisation est réalisée à une température comprise entre 10 et 40 °C, de préférence à environ 30 °C.
13. Procédé selon l'une quelconque des revendications 10 à 12, selon lequel la durée de la réaction de polymérisation est d'environ 1 heure.
14. Utilisation d'une capsule selon l'une quelconque des revendications 1 à 6 pour l'élevage in vitro d'un arthropode, selon laquelle le cœur de ladite capsule contient un milieu nutritif pour ledit arthropode.
15. Système pour l'élevage d'un arthropode, comportant une capsule selon l'une quelconque des revendications 1 à 6, et des moyens de maintien, dans l'atmosphère environnant ladite capsule, d'un taux d'humidité ambiante suffisant pour éviter le dessèchement de ladite capsule, de préférence d'un taux d'humidité relative d'au moins 34 %.
EP13815400.0A 2012-12-07 2013-12-05 Capsule à membrane étanche aux liquides et perméable aux gaz, procédé de fabrication et utilisation pour l'élevage d'arthropodes in vitro Withdrawn EP2928591A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1261787A FR2999096B1 (fr) 2012-12-07 2012-12-07 Capsule a membrane etanche aux liquides et permeable aux gaz, procede de fabrication et utilisation pour l'elevage d'arthropodes in vitro
PCT/EP2013/075692 WO2014086932A1 (fr) 2012-12-07 2013-12-05 Capsule à membrane étanche aux liquides et perméable aux gaz, procédé de fabrication et utilisation pour l'élevage d'arthropodes in vitro

Publications (1)

Publication Number Publication Date
EP2928591A1 true EP2928591A1 (fr) 2015-10-14

Family

ID=47833238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13815400.0A Withdrawn EP2928591A1 (fr) 2012-12-07 2013-12-05 Capsule à membrane étanche aux liquides et perméable aux gaz, procédé de fabrication et utilisation pour l'élevage d'arthropodes in vitro

Country Status (3)

Country Link
EP (1) EP2928591A1 (fr)
FR (1) FR2999096B1 (fr)
WO (1) WO2014086932A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046823A1 (fr) 2014-09-22 2016-03-31 Senecio Ltd. Procédé et appareil de distribution artificielle d'insectes ou de pulvérisation
CN107205369B (zh) * 2014-12-04 2021-08-13 塞纳科有限公司 用于存储运输和释放脆弱昆虫和其他脆弱物品的设备和方法
CN104509493A (zh) * 2014-12-09 2015-04-15 江苏省农业科学院 一种灰飞虱产卵装置及其使用方法
CN106719459B (zh) * 2017-01-11 2023-05-30 贵州大学 一种刺吸式口器昆虫流质饲料饲喂架及饲喂方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60235234D1 (de) * 2001-06-22 2010-03-18 Univ Catholique Louvain Hydrogelkugeln oder kapseln als künstliches medium zur eiablage von insekten und zucht von endoparasitoiden
GB2388581A (en) * 2003-08-22 2003-11-19 Danisco Coated aqueous beads
FR2882665B1 (fr) * 2005-03-04 2007-05-25 Univ Claude Bernard Lyon Capsules plurimembranaires de polysaccharides et en particulier de chitosane et leur procede de preparation
EP2111854A1 (fr) * 2008-04-22 2009-10-28 Lek Pharmaceuticals D.D. Système à micro-émulsification automatique intégré dans des microcapsules à coeur liquide
RU2420350C2 (ru) * 2009-02-09 2011-06-10 Общество С Ограниченной Ответственностью "Делси" Микрокапсулы, содержащие воду или водный раствор, (варианты) и способы их получения (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014086932A1 *

Also Published As

Publication number Publication date
FR2999096A1 (fr) 2014-06-13
WO2014086932A1 (fr) 2014-06-12
FR2999096B1 (fr) 2015-01-16

Similar Documents

Publication Publication Date Title
CA1156519A (fr) Procede de preparation de suspensions ou de poudres stables de microcapsules stables et d&#39;une porosite variable et produits ainsi obtenus
ES2339339T3 (es) Perlas o capsulas de hidrogel como medios artificiales para la oviposicion de insectos y la cria de endoparasitoides.
JPS62116501A (ja) ハイドロゲルカプセル化線虫類
WO2014086932A1 (fr) Capsule à membrane étanche aux liquides et perméable aux gaz, procédé de fabrication et utilisation pour l&#39;élevage d&#39;arthropodes in vitro
EP3713665B1 (fr) Procéde de fabrication de capsules formées d&#39;une enveloppe externe d&#39;hydrogel réticulé entourant un noyau central
Ibrahim et al. Chitosan-cellulose nanoencapsulation systems for enhancing the insecticidal activity of citronella essential oil against the cotton leafworm Spodoptera littoralis
EP2194777B1 (fr) Procede de traitement par lutte biologique
CA2977169A1 (fr) Particules contenant des pheromones et procede de fabrication
EP2301357A2 (fr) Composition biologique contre Varroa
Piazzoni et al. Biodegradable floating hydrogel baits as larvicide delivery systems against mosquitoes
US20140302135A1 (en) Microencapsulation as a strategy for implementation and environmental safe-guarding of a paratransgenic approach to control of vector-borne diseases
CN115191429A (zh) 一种斜纹夜蛾性引诱剂
WO2014086922A1 (fr) Membrane étanche aux liquides et perméable aux gaz, procédé de fabrication et utilisation d&#39;une telle membrane pour l&#39;élevage d&#39;arthropodes in vitro
JP5508685B2 (ja) アリのブルード保護行動を利用した駆除技術
WO2019057261A1 (fr) Lutte contre le varroa ( parasite des abeilles ) par un biogel a base de chitosane
FR3040124A1 (fr) Composition comprenant une fraction germe-cotyledon pure de fenugrc et application phytosanitaire
BE659040A (fr)
FR2494717A1 (fr) Perfectionnements apportes aux procedes de preparation de spores durables d&#39;entomophthorales pathogenes d&#39;insectes, preparations de spores ainsi obtenues et compositions phytosanitaires contenant lesdites preparations
WO2000051428A1 (fr) Compositions pour le domaine aquatique dans un vecteur microparticulaire ou nanoparticulaire
Kovačević et al. Effects of norflurazon on green and brown hydra
WO2024003267A1 (fr) Microcapsules contrôlant la diffusion d&#39;un composé organique actif
WO2024003266A1 (fr) Microcapsules comprenant un filtre uv
FR3110048A1 (fr) Procédé de traitement des maladies du bois de la vigne
WO2023194695A1 (fr) Procede biologique de lutte contre les insectes piqueurs
RU2347366C2 (ru) Состав для доставки активных веществ к корням пшеницы

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 13/20 20060101ALI20160502BHEP

Ipc: B01J 13/22 20060101ALI20160502BHEP

Ipc: B01J 13/08 20060101AFI20160502BHEP

INTG Intention to grant announced

Effective date: 20160518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160929