EP2925935A1 - Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau - Google Patents

Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau

Info

Publication number
EP2925935A1
EP2925935A1 EP13808085.8A EP13808085A EP2925935A1 EP 2925935 A1 EP2925935 A1 EP 2925935A1 EP 13808085 A EP13808085 A EP 13808085A EP 2925935 A1 EP2925935 A1 EP 2925935A1
Authority
EP
European Patent Office
Prior art keywords
drill pipe
drilling
cutting tool
tubular element
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13808085.8A
Other languages
German (de)
English (en)
Other versions
EP2925935B1 (fr
Inventor
Jean-Michel DUMAY
Nicole BENZ-COLLANGE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Freyssinet SA
Original Assignee
Soletanche Freyssinet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche Freyssinet SA filed Critical Soletanche Freyssinet SA
Publication of EP2925935A1 publication Critical patent/EP2925935A1/fr
Application granted granted Critical
Publication of EP2925935B1 publication Critical patent/EP2925935B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/808Ground anchors anchored by using exclusively a bonding material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating

Definitions

  • the present invention relates to the field of ground drilling techniques which are carried out for the purpose of improving the characteristics of the soil and of making foundations and retaining structures in the soil.
  • the invention more specifically relates to a method of placing and sealing a tubular element in a soil located behind a screen.
  • screen also called retaining screen, is meant in particular, but not exclusively, the concrete walls and in particular the diaphragm walls.
  • Such a tubular element can be used to inject fluid into the soil to improve its physical characteristics.
  • the tubular element may also constitute a structural element for making a anchor.
  • the invention will find particular application in the case where the soil behind the screen is disposed below a water load, such as a water table.
  • a water load such as a water table.
  • the soil is saturated with water having a very high pressure, which can in some cases go up to 10 MPa.
  • a tubular element for example a tie rod
  • the drilling and the establishment of a tubular element, for example a tie rod, under a sheet are operations that are difficult to execute, particularly because of the large value of the ground water pressure.
  • An object of the present invention is first of all to provide a method of setting up and sealing a tubular element in a soil under water load located behind a retaining wall.
  • the invention achieves its object by the fact that the method according to the invention comprises the following steps:
  • a sealing device comprising a drill pipe having a distal end carrying a detachable cutting tool of the drill pipe;
  • sealing device is secured to the retaining screen; introducing the drilling device into the sealing device secured to the retaining screen;
  • drilling is carried out in the ground by means of the drilling device by vibrating the drill pipe, the drill pipe being brought to a determined depth;
  • a grout is injected into the borehole to seal the tubular element in the soil.
  • Sealing grout is any sealant based on cement, slag or any other binder.
  • distal end means the end of the drill pipe that is intended to be at the bottom of the borehole
  • proximal end means the end of the drill pipe which is opposite the end. distal, and which is on the surface out of the borehole.
  • the sealing device used in the implementation of the method is well known elsewhere. It may in particular be the device marketed by the French company TEC SYSTEM under the name "SAS BOP”.
  • the sealing device makes it possible to seal against the water contained in the soil behind the screen, the pressure of which can be up to 10 MPa.
  • the sealing device makes it possible to seal either by functioning as a valve when no member passes through the sealing device, or by making a sealed contact with the drill pipe or the tubular element passing through the sealing device. sealing device. It is therefore understood that the sealing device prevents the ground water from gushing into the working area in which the operators are.
  • the sealing device is secured to the screen after pre-drilling the screen all or part of its thickness.
  • the pre-perforation of the screen will be finalized after the positioning of the sealing device.
  • the securing of the sealing device consists of fixing by appropriate means, by example of the screws, the sealing device on the screen.
  • the fastening could be achieved by firmly holding the sealing device against the screen.
  • the screen extends vertically and the drilling direction is inclined relative to the vertical.
  • a tubular element is obtained embedded in the grout. It is also understood that the cutting tool, which is not raised to the surface, is found embedded in the grout, preferably while remaining attached to the tubular element.
  • the grout is injected into the drill pipe.
  • the drill pipe is removed while leaving the tubular element and the cutting tool in the borehole, thanks to the fact that the drill pipe is detached from the cutting tool.
  • the drilling device thus serves both as means for excavating the ground, but also means for injecting the grout into the borehole, in addition to keeping the bore open during the insertion of the tubular element.
  • the vibration frequency is chosen so as to vibrate the cutting tool at its resonant frequency or at least at a frequency close to said resonant frequency.
  • the vibration frequency applied to the drill pipe is between 50 Hz and 200 Hz.
  • the speed of implementation of the method according to the invention results in particular from the fact that the drilling is performed by vibrating the drill pipe.
  • the vibration which brings the cutting tool into resonance, or at least at a frequency close to the resonant frequency, has the effect of facilitating the penetration of the drill pipe into the ground.
  • the drill pipe is also rotated to modify the position of the teeth of the cutting tool.
  • a drilling fluid is injected into the drill pipe, the drilling fluid flowing via the cutting tool, and cuttings of the borehole being evacuated via the sealing device.
  • the sealing device comprises for this purpose a discharge pipe for the discharge of cuttings drilling.
  • the cutting tool is preferably provided with orifices permitting the flow of the drilling fluid.
  • the cutting tool is detached from the drill pipe by pushing the cutting tool with the tubular element while maintaining the drill pipe.
  • the drilling device comprises connecting means for detachably securing the cutting tool and the drill pipe.
  • the tubular element is secured to the detachable cutting tool before pushing the cutting tool with the tubular element.
  • This fixing is preferably carried out by screwing the tubular element to the cutting tool. It could however be a fitting by interlocking.
  • An advantage of the fastening by screwing is that the operator can feel if the fixation has correctly occurred.
  • the grout is injected into the borehole while raising the drill pipe.
  • the sealing slurry which flows into the bore, coats the tubular element over at least a portion of its height, whereby the tubular element is sealed in the soil.
  • the drill pipe is vibrated during the injection of the grout.
  • An interest is to improve the flow and distribution of the grout in the borehole.
  • the drill pipe is raised while vibrating said drill pipe. This lift may or may not be accompanied by the injection of grout.
  • An interest in vibrating the drill pipe is to allow the withdrawal of the drill pipe without rotation, which has the effect of substantially reducing the risk of circulation of grout between the drill pipe and the ground.
  • Another advantage of vibrating the drill pipe is to tighten the ground around the drill pipe, which further reduces the risk of circulation of the grout between the drill pipe and the ground.
  • the sealing grout is injected into the tubular element via its proximal end, and flows at the bottom of the borehole via the cutting tool. It is therefore understood that the tubular element serves to bring the grout to the bottom of the borehole, the sealing grout flowing through the orifices in the cutting tool. In this case, it is understood that the sealing slurry flows from the distal end of the borehole and rises towards the proximal end of said borehole.
  • the grout is injected between the tubular member and the drill pipe.
  • the sealing slurry flows into the borehole through the distal end of the drill pipe. Since the drill pipe is progressively extracted, the injection between the drill pipe and the tubular element makes it possible to perform an injection according to the height of the borehole during the raising of the drill pipe, and not only since the distal end of the borehole.
  • the sealing grout is put under pressure, the drill pipe is raised while injecting the pressurized grout into the bore, and while vibrating the drill pipe.
  • a pump is preferably used which makes it possible to inject the grout at a pressure of between 0.1 and 5 MPa.
  • the pressure injection makes it possible to create a grouting bulb with a diameter substantially greater than the diameter of the borehole, which has the effect of further improving the support.
  • the bulb may extend over all or part of the height of the borehole. Of preferably, the bulb extends from the bottom of the borehole to the middle of the borehole.
  • the vibration setting advantageously makes it possible to tighten the ground around the drill pipe.
  • This tightening has the effect of consolidating the soil and thus makes it possible to perform a pressure injection of the grout in many types of soil.
  • the sealing device at the drilling head it is possible to perform the injection under high pressure, for example at a pressure of between 0.5 and 5 MPa.
  • predefined amounts of grout are injected into predefined soil slices, depending on the initial characteristics of the soil and the improvement objective.
  • the direction of drilling is inclined relative to a vertical direction.
  • An interest is to be able to achieve inclined anchors.
  • An advantageous application lies in the manufacture of inclined tie rods, for example to ensure the stability of a diaphragm wall during a terracing operation.
  • a vibration target frequency is calculated, and the drill pipe is vibrated at said vibration target frequency during drilling.
  • This vibration target frequency which is applied to the drill pipe, is optimally selected to facilitate the drilling operation, particularly in particularly hard soils.
  • the computation is carried out starting from a modelization of the phenomena of perforation.
  • the calculation uses the length of the drill pipe.
  • the vibration target frequency is a function of the length of the drill pipe, while being bounded by a predetermined maximum frequency value, denoted Fmax.
  • This predetermined maximum frequency value which preferably corresponds to the maximum frequency that can develop the means for vibrating the drill pipe is preferably between 100 and 160 Hz.
  • the calculation uses a constant value corresponding to the speed of propagation of the compression waves in the drilling tube, this speed depending on the constituent material of the drill pipe.
  • the reference target frequency is equal to:
  • n is an integer greater than or equal to 1 chosen so that
  • This calculation is performed by a computer having appropriate calculation means.
  • tube sections are used that are attached end to end during drilling to increase the length of the borehole.
  • drill pipe is understood to mean a single drill pipe, a plurality of tubular elements attached end to end, for example by screwing.
  • the target frequency of vibration is recalculated with each increase in the length of the drill pipe.
  • An interest is to ensure drilling with optimum efficiency over the entire depth of drilling.
  • the invention furthermore relates to a method for producing a tie rod in which the steps of the method according to the invention are implemented and then cables are sealed in the tubular element placed in the borehole.
  • the invention further relates to an installation for carrying out the method of placing and sealing a tubular element in a floor behind a screen according to the invention, comprising:
  • a drilling device which comprises a drill pipe having a distal end carrying a detachable cutting tool of the drill pipe, a sealing device configured to be secured to a retaining screen and leaktight through the tubular element or the drill pipe;
  • the means for detaching the cutting tool from the drill pipe comprise in particular the tubular element.
  • the cutting tool comprises a fixing sleeve having a diameter smaller than the diameter of the drill pipe, said sleeve being configured to be attached to a distal end of the tubular member.
  • the sleeve has a thread or a thread configured to cooperate with a thread or a complementary thread located at the distal end of the tubular element.
  • the cutting tool comprises a channel connecting the sleeve to one end of the cutting tool provided with a cutting edge and injection orifices, said channel making it possible to feed the injection orifices with fluid, and the cutting tool further comprises a non-return valve arranged to close the channel when no fluid flows from the sleeve to the injection ports.
  • the non-return valve opens to let the grout (or drilling fluid) pass, the latter flowing in the bore through the injection ports.
  • the installation according to the invention comprises releasable holding means for holding together the cutting tool and the drill pipe during drilling.
  • these releasable holding means comprise a pin attached to the cutting tool and engaging in a groove or recess formed at the distal end of the drill pipe or a tool holder attached to the distal end of the drill pipe.
  • the pin is configured to disengage groove when an axial force of predetermined intensity is applied to the cutting tool.
  • the installation comprises an annular sealing member for sealing between the drill pipe and the cutting tool.
  • the sealing member is integral with the drill pipe and bears against the sleeve or the body connected to the sleeve.
  • the sealing member is configured to pass a fluid only in the case where said fluid flows axially towards the distal end of the drill pipe.
  • This fluid can be water, grout, or any other type of fluid. It is thus understood that the sealing member is configured to prevent the fluid from returning to the proximal end of the drill pipe by circulating between the sleeve and the drill pipe.
  • the sealing member is also configured to seal between the drill pipe and the tubular element after attachment of the tubular member to the sleeve and detachment of the cutting tool.
  • the drilling installation further comprises a damper disposed between the sealing device and the drill pipe in order to prevent the transmission of the vibrations of the drill pipe towards the sealing device.
  • a damper disposed between the sealing device and the drill pipe in order to prevent the transmission of the vibrations of the drill pipe towards the sealing device.
  • FIG. 1 illustrates the establishment of a sealing device of the installation according to the invention in a reservation made in a retaining screen
  • FIG. 3 illustrates the drilling step in the soil after introduction of the drilling device in the sealing device
  • FIG. 4 illustrates the introduction of the tubular element into the drill pipe and its attachment to the screw cutting tool
  • FIG. 5 illustrates the step during which the cutting tool is detached from the drill pipe
  • FIG. 8 is a detailed view of the distal end of the drilling device
  • FIG. 9 is a front view of the cutting tool
  • FIG. 10 is a longitudinal sectional view of the distal end of the drilling device showing the cutting tool connected to the drill pipe;
  • FIG. 11 is a longitudinal sectional view of the distal end of the drilling device showing the cutting tool detached from the drill pipe;
  • FIG. 12 schematizes the method for optimizing the vibration frequency applied to the drill pipe. Detailed description of the invention
  • the screen E is a retaining screen consisting of a vertical molded wall.
  • One of the faces El of the screen E is disengaged while the opposite face E2 is located on the side of the soil layer S.
  • the soil layer S which is supported by the screen E is, in this example, disposed below a water load, such as a water table. Since the method of manufacturing the screen E is well known, it will not be described in detail here.
  • the purpose of the method according to the invention is to set up and seal a tubular element 90 in the soil S located behind the screen E.
  • This tubular element may be for example a reinforcement or a perforated tube intended for making injections
  • the method according to the invention can be implemented in order to manufacture a anchor or in order to carry out injections into the ground S.
  • a sealing device 10 which is secured to the screen.
  • the screen E is drilled along part of its thickness in order to make a reservation R in the screen E.
  • the drilling axis A is inclined at an angle relative to the horizontal.
  • the drill axis A is also inclined with respect to the vertical.
  • the sealing device 10 comprises a front tubular end 12 which is introduced into the reservation R. It is found that the diameter of the tubular end 12 is substantially equal to the diameter of the reservation R. The reservation is then drilled according to any the thickness of the screen.
  • the reservation R sets up the reservation R at the time of the execution of the screen E.
  • the reservation R is in the form of a tube and a plate to allow the sealing device 10 to be secured.
  • the reservation R is integral with an armature cage (not shown here) constituting the skeleton of the retaining shield E.
  • the sealing device 10 further comprises a chimney chamber 14 which is connected to the tubular end 12; this chimney chamber has a discharge chimney 16 for evacuating the excavation cuttings.
  • the sealing device 10 further comprises a valve 18 connected to the chimney chamber 14 and a first half-chamber 20 connected to the valve 18.
  • the valve 18 is a pinch valve with elastic deformation, well known elsewhere. Its function is to seal by virtue of the fact that the sleeve engages a tubular member passing through the valve 18. It also makes it possible to close the sealing device when no member passes through the sealing device.
  • the sealing device 10 is part of an installation 100 according to the invention which further comprises a drilling device 30.
  • This drilling device 30 comprises a drilling tube 32 having a distal end 34 which carries a cutting tool 36 According to the invention, this cutting tool 36 is detachable from the drill pipe 32.
  • the drill pipe 32 consists of a string of rods that are attached end to end to increase the length of the drill pipe during drilling.
  • the drilling device 30 is introduced into the sealing device 10.
  • the distal end of the device of the drill pipe is equipped in this example with a stuffing box 38, a second half-chamber 40 which surrounds the drill pipe 32.
  • the second half-chamber 40 is assembled with the first half-chamber 20 of the sealing device 10.
  • the first half-chamber 20 and the second half-chamber 40 are fixed to one another while enclosing a thick rubber ring 42, so that the assembly consisting of the first half-chamber 20, the second half-chamber 40 and the rubber ring 42 constitutes a vibration damper 44.
  • This damper 44 which is disposed between the sealing device 10 and the drill pipe 32, has the role of preventing the transmission of vibrations from the drill pipe to the sealing device.
  • the sealing device and in particular the valve 18, makes it possible to prevent the ground water from spouting on the working area of the operators, this zone being separated from the ground S by the screen E .
  • the installation 100 furthermore comprises means 50 for vibrating the drill pipe 32.
  • the means 50 for vibrating the drill pipe 32 in this case a vibration generator 50, make it possible to generate compressional waves which transmit along the drill pipe 32 to its distal end 34 and to the cutting tool 36.
  • L is the length of the drill pipe 32 between its distal end and the vibration generator 50. The length L of the tube drilling 32 therefore increases during the drilling.
  • a drilling F is carried out in the ground S by means of the installation 100 by means of the drilling device 30 of the installation 100 by vibrating the drill pipe 32 by means of the vibration generator 50.
  • the drill pipe 32 is also rotated about the drill axis A by means of rotational drive means 52.
  • a drilling fluid G is injected into the drill pipe from the proximal end 37 of the drill pipe 32.
  • This drilling fluid G flows into the drill pipe 32 to the tool
  • the cutting tool 36 is provided with orifices 35 enabling the drilling fluid G to be injected at the bottom of the bore F.
  • the drilling fluid G then rises along the borehole, carrying the cuttings, then traverses the borehole.
  • the drilling is performed until the drill pipe, and more precisely the cutting tool is brought to a specific depth H shown in Figure 4.
  • the determined depth H is the distance between the face E2 of the screen E turned towards the ground S and the bottom Fl of the bore F.
  • the detachable cutting tool 36 is initially mounted on a tool holder 37 which is fixed to the distal end 34 of the drill pipe 32.
  • the cutting tool 36 further comprises a fixing sleeve 60 which has a diameter smaller than the inside diameter of the drill pipe 32.
  • the sleeve 60 is integral with a body 64 in which is formed a channel 62 which extends along the axial direction X of the drill pipe. This channel 62 connects the sleeve 60 to the cutting edge 66 of the cutting tool 36. Consequently, the channel 62 makes it possible to feed the injection orifices 35 with fluid, in particular, but not exclusively, with drilling fluid during the step drilling.
  • the cutting tool 36 further comprises a nonreturn valve 68 which is arranged at the downstream end 62a of the channel 62 in order to close off said channel 62 when no fluid is present. flows from the sleeve 60 to the injection ports 35.
  • the check valve 68 consists of a part 70 mounted on a spring 72 so that the non-return valve allows to pass a flow that flows to the orifices 35 of the cutter 66, but prevents a flow from flowing through the channel 62 to the sleeve 60. It is therefore understood that the body 64 in which the channel 62 is formed is disposed between the anti-tamper valve. return 68 and the attachment sleeve 60.
  • the cutting tool 36 is detachable from the tool holder 37 and thus from the drill pipe 32.
  • the cutting tool 36 comprises a pin 74 which extends transversely with respect to the axis of rotation X of the cutting tool so as to be housed in two notches 76 formed in the tool holder 37.
  • the pin 74 is dimensioned so that it is mounted tightly in the notches 76 in order to avoid inadvertent detachment of the cutting tool 36 with respect to the tool holder 37.
  • the notches 76 open axially towards the end distal 37a of the tool holder 37 which is directed towards the cutter 66. It is therefore understood that an axial thrust on the sleeve 60 directed towards the cutter 66 having an intensity greater than a predetermined threshold makes it possible to disengage the pin 74 from the indentations 76 and thus to detach the cutting tool 36 from the drill pipe 32.
  • pin 74 and the notches 76 are releasable holding means for holding together the cutting tool and the drill pipe during drilling.
  • the installation 100 comprises a sealing member 80 for providing an axial seal between the drill pipe 32 and the sleeve body 60.
  • the device 80 is an annular seal which is integral with the drill pipe 32.
  • the sealing member 80 is also integral with the tool holder 37. The sealing member 80 comes therefore bear against the outer surface of the body 64 to seal between the drill pipe 32 and the cutting tool 36.
  • the sealing member 80 is configured to pass a fluid only in the case where said fluid flows axially towards the distal end 34 of the drill pipe 32.
  • the sealing member 80 passes only the flows directed to the cutter 66. It thus makes it possible to prevent a upward circulation of fluid between the sleeve 60 and the drill pipe 32.
  • the sealing member 80 when the cutting tool 36 is attached to the tool holder 37, the sealing member 80 bears against the body 64.
  • the sleeve 60 has an outside diameter which is substantially equal to the outside diameter of the body 64, it is understood from FIG. 11 that when the cutting tool 36 is detached from the tool holder 37, the sealing member 80 moves axially and bears against the sleeve in order to maintain the axial sealing between the drill pipe 32 and the sleeve 60.
  • a tubular element 90 is introduced into the tube of This tubular element 90 also consists of a plurality of portions of tubes which are attached end to end.
  • the tubular element 90 is introduced into the drill pipe 32 until the distal end 90a of the tubular element 90 comes into contact with the end 60a of the sleeve 60.
  • the tubular element 90 is then rotated to screw the distal end 90a of the tubular member 90 to the thread 82 of the sleeve 60.
  • a thrust is exerted on the tubular member 90 to push the cutting tool 36, causing the cutting tool 36 to detach from the drill pipe 32.
  • the drill pipe 32 is held while pushing the tubular member 90 attached to the cutting tool.
  • the separation of the cutting tool 36 from the drill pipe 32 is illustrated in FIG. 5.
  • grout C for example a grout of cement
  • the grout C is injected into the tubular element 90 by its proximal end and flows at the bottom of the bore through the orifices 35 of the cutting tool 36.
  • the injection of the sealing slurry C is carried out by raising the drill pipe 32 while vibrating the drill pipe 32.
  • the vibrations make it possible to tighten the soil S around the drill pipe which avoids a rising circulation of the grout between the drill pipe 32 and the ground S.
  • the vibration frequency of the drill pipe applied during the rise of the drill pipe 32 is of the order of 50 Hz to 130 Hz depending on the length of the drill pipe.
  • the grout C is pressurized by a pump, not shown here, before its injection into the tubular element.
  • a pump not shown here
  • An interest is to be able to form a bulb of grout having a larger diameter.
  • the pressurized sealing slurry may reach a pressure of the order of 0.5 to 5 MPa.
  • the injection of grout could be achieved by an injection between the element tubular and the drill pipe as soon as the sealing member 80 allows the flow of the grout to the cutting edge 66.
  • the vibrations emitted by the vibration generator 50 are transmitted to the drill pipe 32 but not to the sealing device 10 or the screen E.
  • the drill pipe 32 is raised again until the distal end of the drill pipe 32 reaches the sealing device 10. The drill pipe 32 is then removed from the device sealing 10.
  • the tubular element 90 is then sealed in a bulb B of grout.
  • This tubular element 90 can then be used to manufacture a anchor by sealing cables (not shown here) in the tubular element set up and sealed in the borehole.
  • the drill pipe 32 is thus vibrated at the vibration target frequency during the drilling. It is therefore clear that this vibration target frequency is a vibration frequency that is applied to the drill pipe.
  • these vibrations are compressional waves that are transmitted along the drill pipe defining bellies and nodes. These vibration waves bring the drill pipe 32 into resonance, or at least at a frequency close to its resonant frequency, which produces a maximum energy at the cutting tool 36, with the effect of substantially increase the drilling efficiency, and thus the overall efficiency of the process according to the invention.
  • the calculation of the vibration target frequency firstly comprises a step S100 in which the length L of the drill pipe 32 is manually entered or determined automatically. So here assumes that the drill pipe is vibrated along its entire length. Then, from this length, the target frequency of vibration during a step S102 is calculated from the length L of the drill pipe, the speed of propagation of the compression wave in the drill pipe 32
  • the drill pipe 32 is made of steel.
  • the calculation uses a constant value corresponding to the speed of propagation of the compression waves in the drill pipe, this speed depending on the constituent material of the drill pipe.
  • the target vibration frequency is recalculated at each increase in the length of the tube. drilling. This keeps an optimal vibration frequency throughout the duration of the drilling.
  • the vibration target frequency thus calculated is then displayed as a suggestion to the operator. It may also in another embodiment be sent as a setpoint to the vibration generator 50 during a step S104.
  • the reference target frequency is equal to:
  • V is equal to 5000 m / s
  • Fmax is equal to
  • L corresponds to the sum of the lengths of the tubular elements placed end to end.
  • the tubular elements have the same unit length, namely a length of 3 meters.
  • the following result table is obtained:

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)

Abstract

L'invention concerne un procédé de mise en place et de scellement d'un élément tubulaire dans un sol (S) sous charge d'eau situé derrière un écran de soutènement (E), dans lequel : on solidarise un dispositif d'étanchéité (10) à l'écran de soutènement; on introduit un dispositif de forage dans le dispositif d'étanchéité (10); on réalise un forage dans le sol à l'aide du dispositif de forage (30) en faisant vibrer le tube de forage, le tube de forage étant amené à une profondeur déterminée (H); on introduit un élément tubulaire (90) dans le tube de forage (32) après que le tube de forage a atteint la profondeur déterminée; on détache l'outil de coupe (36) du tube de forage (32) et on remonte le tube de forage tout en maintenant l'élément tubulaire (90) dans le forage; et on injecte un coulis de scellement dans le forage afin de sceller l'élément tubulaire (90) dans le sol (S).

Description

Procédé de mise en place et de scellement d'un élément tubulaire dans un sol sous charge d'eau
Arrière-plan de l'invention
La présente invention concerne le domaine des techniques de forages dans le sol qui sont exécutés dans le but d'améliorer les caractéristiques du sol et de réaliser des fondations et des ouvrages de soutènement dans le sol.
L'invention concerne plus précisément un procédé de mise en place et de scellement d'un élément tubulaire dans un sol situé derrière un écran. Par écran, également appelé écran de soutènement, on entend notamment, mais pas exclusivement, les parois en béton et en particulier les parois moulées.
Un tel élément tubulaire peut servir à injecter un fluide dans le sol afin d'en améliorer les caractéristiques physiques.
L'élément tubulaire peut également constituer un élément structurel permettant de fabriquer un tirant d'ancrage.
L'invention trouvera notamment son application dans le cas où le sol situé derrière l'écran est disposé en dessous d'une charge d'eau, telle qu'une nappe phréatique. Dans ce cas, le sol est gorgé d'eau présentant une pression très importante, pouvant aller dans certains cas jusqu'à 10 MPa. Il est connu que le forage et la mise en place d'un élément tubulaire, par exemple un tirant, sous une nappe sont des opérations difficiles à exécuter, notamment en raison de la valeur importante de la pression d'eau du sol.
Obiet et résumé de l'invention
Un objet de la présente invention est tout d'abord de proposer un procédé de mise en place et de scellement d'un élément tubulaire dans un sol sous charge d'eau situé derrière un écran de soutènement.
L'invention atteint son but par le fait que le procédé selon l'invention comporte les étapes suivantes :
on fournit un dispositif d'étanchéité, et un dispositif de forage comprenant un tube de forage qui présente une extrémité distale portant un outil de coupe détachable du tube de forage ;
on solidarise ledit dispositif d'étanchéité à l'écran de soutènement; on introduit le dispositif de forage dans le dispositif d'étanchéité solidarisé à l'écran de soutènement ;
on réalise un forage dans le sol à l'aide du dispositif de forage en faisant vibrer le tube de forage, le tube de forage étant amené à une profondeur déterminée ;
on introduit un élément tubulaire dans le tube de forage après que le tube de forage a atteint la profondeur déterminée ;
on détache l'outil de coupe du tube de forage et on remonte le tube de forage tout en maintenant l'élément tubulaire dans le forage ; et
on injecte un coulis de scellement dans le forage afin de sceller l'élément tubulaire dans le sol.
Par coulis de scellement, on entend tout produit de scellement à base de ciment, de laitier ou de tout autre liant.
Par extrémité « distale », on entend l'extrémité du tube de forage qui est destinée à se trouver au fond du forage, tandis que par extrémité « proximale », on entend l'extrémité du tube de forage qui est opposée à l'extrémité distale, et qui se trouve en surface hors du forage.
Le dispositif d'étanchéité utilisé dans la mise en œuvre du procédé est bien connu par ailleurs. Il pourra notamment s'agir du dispositif commercialisé par la société française TEC SYSTEM sous le nom « SAS BOP ».
Le dispositif d'étanchéité permet d'assurer l'étanchéité vis-à-vis de l'eau contenue dans le sol situé derrière l'écran, dont la pression peut aller jusqu'à 10 MPa. Préférentiellement, le dispositif d'étanchéité permet d'assurer l'étanchéité soit en fonctionnant comme une vanne lorsqu'aucun organe ne traverse le dispositif d'étanchéité, soit en réalisant un contact étanche avec le tube de forage ou l'élément tubulaire traversant le dispositif d'étanchéité. On comprend donc que le dispositif d'étanchéité empêche l'eau du sol de jaillir dans la zone de travail dans laquelle se trouvent les opérateurs.
De préférence, le dispositif d'étanchéité est solidarisé à l'écran après avoir pré-foré l'écran selon tout ou partie de son épaisseur. Eventuellement, le préforage de l'écran sera finalisé après le positionnement du dispositif d'étanchéité.
De préférence, mais pas nécessairement, la solidarisation du dispositif d'étanchéité consiste à fixer par des moyens appropriés, par exemple des vis, le dispositif d'étanchéité à l'écran. Selon une autre variante, la solidarisation pourrait être réalisée en maintenant fermement le dispositif d'étanchéité contre l'écran.
Encore de préférence, l'écran s'étend verticalement et la direction de forage est inclinée par rapport à la verticale.
Ainsi, à l'issue de la mise en uvre du procédé selon l'invention, on obtient un élément tubulaire noyé dans le coulis de scellement. On comprend également que l'outil de coupe, qui n'est pas remonté en surface, se retrouve noyé dans le coulis de scellement, de préférence tout en restant attaché à l'élément tubulaire.
De manière avantageuse, le coulis de scellement est injecté dans le tube de forage.
Ainsi, grâce à l'invention, le tube de forage est retiré tout en laissant l'élément tubulaire et l'outil de coupe dans le forage, grâce au fait que le tube de forage est détaché de l'outil de coupe. Le dispositif de forage sert donc à la fois de moyen pour excaver le sol, mais aussi de moyen pour injecter le coulis de scellement dans le forage, en plus de maintenir le forage ouvert pendant l'insertion de l'élément tubulaire.
De manière avantageuse, la fréquence de vibration est choisie de manière à faire vibrer l'outil de coupe à sa fréquence de résonance ou à tout le moins à une fréquence proche de ladite fréquence de résonance. Un intérêt est d'améliorer l'efficacité du forage.
Avantageusement, lors du forage, la fréquence de vibration appliquée au tube de forage est comprise entre 50 Hz et 200 Hz.
II s'ensuit que la rapidité de la mise en œuvre du procédé selon l'invention résulte notamment du fait que le forage est réalisé en faisant vibrer le tube de forage. La vibration, qui fait entrer l'outil de coupe en résonance, ou à tout le moins à une fréquence proche de la fréquence de résonance, a pour effet de faciliter la pénétration du tube de forage dans le sol.
De préférence, mais non nécessairement, pendant le forage, on fait également tourner le tube de forage pour modifier la position des dents de l'outil de coupe.
Avantageusement, pendant la réalisation du forage, on injecte un fluide de forage dans le tube de forage, le fluide de forage s'écoulant via l'outil de coupe, et les déblais du forage étant évacués par l'intermédiaire du dispositif d'étanchéité.
Le dispositif d'étanchéité comporte à cet effet une conduite d'évacuation permettant le refoulement des déblais du forage.
L'outil de coupe est préférentiellement muni d'orifices permettant l'écoulement du fluide de forage.
Selon un aspect avantageux de l'invention, on détache l'outil de coupe du tube de forage en poussant l'outil de coupe à l'aide de l'élément tubulaire tout en maintenant le tube de forage.
Pour ce faire, le dispositif de forage comporte des moyens de connexion permettant de solidariser de manière détachable l'outil de coupe et le tube de forage.
Alternativement, et sans sortir du cadre de la présente invention, on pourrait détacher l'outil de coupe en tirant sur le tube de forage, et en maintenant ou poussant l'outil de coupe à l'aide de l'élément tubulaire.
Selon un mode de mise en œuvre préféré, on solidarise l'élément tubulaire à l'outil de coupe détachable avant de pousser l'outil de coupe à l'aide de l'élément tubulaire.
Cette fixation est préférentiellement réalisée en vissant l'élément tubulaire à l'outil de coupe. Il pourrait toutefois s'agir d'une fixation par emboîtement. Un intérêt de la fixation par vissage est que l'opérateur peut sentir si la fixation a correctement eu lieu.
Selon un premier mode de mise en œuvre, on injecte le coulis de scellement dans le forage tout en remontant le tube de forage. Pendant cette phase d'injection, on comprend que l'élément tubulaire et l'outil de coupe restent dans le forage. Le coulis de scellement, qui s'écoule dans le forage, enrobe l'élément tubulaire sur au moins une partie de sa hauteur, grâce à quoi on scelle l'élément tubulaire dans le sol.
De manière avantageuse, on fait vibrer le tube de forage pendant l'injection du coulis de scellement.
Un intérêt est d'améliorer l'écoulement et la répartition du coulis de scellement dans le forage.
Ainsi, grâce à la vibration du tube de forage pendant le forage, et pendant l'injection du coulis de scellement, on améliore la vitesse d'exécution du procédé. Selon une variante de mise en œuvre, on remonte le tube de forage tout en faisant vibrer ledit tube de forage. Cette remontée pourra être accompagnée ou pas de l'injection de coulis de scellement.
Un intérêt de la mise en vibration du tube de forage est de permettre le retrait du tube de forage sans rotation, ce qui a pour effet de réduire sensiblement le risque de circulation de coulis de scellement entre le tube de forage et le sol. Un autre intérêt de la mise en vibration du tube de forage est de resserrer le terrain autour du tube de forage, ce qui diminue encore le risque de circulation du coulis de scellement entre le tube de forage et le sol.
Avantageusement, le coulis de scellement est injecté dans l'élément tubulaire via son extrémité proximale, et s'écoule en pied de forage via l'outil de coupe. On comprend donc que l'élément tubulaire sert à amener le coulis de scellement en pied de forage, le coulis de scellement s'écoulant à travers les orifices ménagés dans l'outil de coupe. Dans ce cas, on comprend que le coulis de scellement s'écoule depuis l'extrémité distale du forage et remonte vers l'extrémité proximale dudit forage.
Selon une variante, le coulis de scellement est injecté entre l'élément tubulaire et le tube de forage.
Dans cette variante, le coulis de scellement s'écoule dans le forage par l'extrémité distale du tube de forage. Dans la mesure où le tube de forage est progressivement extrait, l'injection entre le tube de forage et l'élément tubulaire permet de réaliser une injection selon la hauteur du forage pendant la remontée du tube de forage, et non pas uniquement depuis l'extrémité distale du forage.
Selon un mode de mise en œuvre préférentiel, on met le coulis de scellement sous pression, on remonte le tube de forage tout en injectant le coulis de scellement sous pression dans le forage, et tout en faisant vibrer le tube de forage.
Pour effectuer cette mise sous pression, on utilise préférentiellement une pompe permettant d'injecter le coulis de scellement à une pression comprise entre 0,1 et 5 MPa.
L'injection sous pression permet de créer un bulbe de coulis de scellement dont le diamètre est sensiblement supérieur au diamètre du forage, ce qui a pour effet d'améliorer encore le soutènement. Le bulbe pourra s'étendre sur tout ou partie de la hauteur du forage. De préférence, le bulbe s'étend depuis le fond du forage, jusqu'au milieu du forage.
Comme on l'a déjà mentionné plus haut, la mise en vibration permet avantageusement de resserrer le terrain autour du tube de forage. Ce resserrement a pour effet de consolider le sol et permet ainsi de réaliser une injection sous pression du coulis de scellement dans de nombreux types de sols. En outre, grâce à la présence du dispositif d'étanchéité en tête de forage, il est possible de réaliser l'injection sous forte pression, par exemple à une pression comprise entre 0,5 et 5 MPa.
De préférence, on injecte des quantités de coulis prédéfinies dans des tranches de sols prédéfinies, en fonction des caractéristiques initiales du sol et de l'objectif d'amélioration.
Selon une variante, la direction du forage est inclinée par rapport à une direction verticale. Un intérêt est de pouvoir réaliser des ancrages inclinés. Une application avantageuse réside dans la fabrication de tirants d'ancrage inclinés, par exemple pour assurer la stabilité d'une paroi moulée lors d'une opération de terrassement.
Selon un mode de réalisation avantageux, on calcule une fréquence cible de vibration, et on fait vibrer le tube de forage à ladite fréquence cible de vibration lors de la réalisation du forage.
Cette fréquence cible de vibration, qui est appliquée au tube de forage, est choisie de manière optimale afin de faciliter l'opération de forage, notamment dans des sols particulièrement durs. D'une façon générale, le calcul est effectué à partir d'une modélisation des phénomènes de perforation.
De manière avantageuse, le calcul utilise la longueur du tube de forage. De préférence, la fréquence cible de vibration est fonction de la longueur du tube de forage, tout en étant bornée par une valeur de fréquence maximale prédéterminée, notée Fmax.
Cette valeur de fréquence maximale prédéterminée, qui correspond de préférence à la fréquence maximale que peuvent développer les moyens pour faire vibrer le tube de forage est comprise de préférence entre 100 et 160 Hz.
Encore de préférence, le calcul utilise une valeur constante correspondant à la vitesse de propagation des ondes de compression dans le tube de forage, cette vitesse dépendant du matériau constitutif du tube de forage.
De manière préférentielle mais non nécessairement, la fréquence cible de référence est égale à :
· Fmax (la valeur de fréquence maximale prédéterminée) si
Fmax<(V)/(2*L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et L la longueur du tube de forage, OU :
• (n*V)/(2*L) si Fmax>(V)/(2*L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que
(n*V)/(2*L)<=Fmax et ((n+l)*V)/(2*L)>Fmax.
Les inventeurs ont constaté que cette formule permet d'obtenir une fréquence cible de vibration optimale qui accroît sensiblement l'efficacité de l'opération de forage.
Ce calcul est effectué par un ordinateur comportant des moyens de calculs appropriés.
Pour réaliser des forages profonds, on augmente la longueur du tube de forage pendant la réalisation du forage. Pour ce faire, on utilise des portions de tube qui sont fixées bout à bout au cours du forage afin d'augmenter la longueur du forage.
Par conséquent, au sens de l'invention, on entend par tube de forage aussi bien un unique tube de forage, qu'une pluralité d'éléments tubulaires fixés bout à bout, par exemple par vissage.
De manière avantageuse, on recalcule la fréquence cible de vibration à chaque augmentation de la longueur du tube de forage.
Un intérêt est d'assurer un forage ayant une efficacité optimale sur toute la profondeur du forage.
L'invention porte en outre sur un procédé de réalisation d'un tirant d'ancrage dans lequel on met en oeuvre les étapes du procédé selon l'invention puis on scelle des câbles dans l'élément tubulaire mis en place dans le forage.
L'invention concerne en outre une installation pour la mise en œuvre du procédé de mise en place et de scellement d'un élément tubulaire dans un sol situé derrière un écran selon l'invention, comportant :
un élément tubulaire ; un dispositif de forage qui comprend un tube de forage ayant une extrémité distale portant un outil de coupe détachable du tube de forage, un dispositif d'étanchéité configuré pour être solidarisé à écran de soutènement et être traversé de manière étanche par l'élément tubulaire ou le tube de forage;
des moyens pour faire vibrer le tube de forage ;
des moyens pour réaliser un forage dans le sol à l'aide du dispositif de forage, le dispositif de forage traversant le dispositif d'étanchéité, et pour amener le tube de forage à une profondeur prédéterminée ;
des moyens pour introduire l'élément tubulaire dans le tube de forage après que le tube de forage a atteint la profondeur prédéterminée ; des moyens pour détacher l'outil de coupe du tube de forage ;
des moyens pour remonter le tube de forage tout en maintenant l'élément tubulaire dans le forage ; et
des moyens pour injecter un coulis de scellement dans le forage afin de sceller l'élément tubulaire dans le forage.
Les moyens pour détacher l'outil de coupe du tube de forage comportent notamment l'élément tubulaire.
De préférence, l'outil de coupe comporte un manchon de fixation ayant un diamètre inférieur au diamètre du tube de forage, ledit manchon étant configuré pour être fixé à une extrémité distale de l'élément tubulaire. De préférence, le manchon présente un taraudage ou un filetage configuré pour coopérer avec un filetage ou un taraudage complémentaire situé à l'extrémité distale de l'élément tubulaire.
Avantageusement, l'outil de coupe comporte un canal reliant le manchon à une extrémité de l'outil de coupe munie d'un taillant et d'orifices d'injection, ledit canal permettant d'alimenter les orifices d'injection en fluide, et l'outil de coupe comporte en outre un clapet antiretour agencé pour obturer le canal lorsqu'aucun fluide ne s'écoule du manchon vers les orifices d'injection.
Ainsi, lors de l'injection du coulis de scellement (ou du fluide de forage) dans l'élément tubulaire, le clapet anti-retour s'ouvre pour laisser passer le coulis de scellement (ou le fluide de forage), ce dernier s'écoulant dans le forage au travers des orifices d'injection.
Le clapet anti-retour permet d'éviter les remontées de fluide vers l'extrémité proximale du forage. Avantageusement, l'installation selon l'invention comprend des moyens de maintien libérables pour maintenir ensemble l'outil de coupe et le tube de forage pendant le forage.
De préférence, ces moyens de maintien libérables comportent une goupille fixée à l'outil de coupe et venant s'engager dans une rainure ou échancrure ménagée à l'extrémité distale du tube de forage ou d'un porte outil fixé à l'extrémité distale du tube de forage. La goupille est configurée pour dégager de la rainure lorsqu'une force axiale d'intensité prédéterminée est appliquée sur l'outil de coupe.
Selon un aspect avantageux de l'invention, l'installation comporte un organe d'étanchéité annulaire pour assurer une étanchéité entre le tube de forage et l'outil de coupe. De préférence, mais pas exclusivement, l'organe d'étanchéité est solidaire du tube de forage et vient porter contre le manchon ou le corps relié au manchon.
De préférence, l'organe d'étanchéité est configuré pour laisser passer un fluide uniquement dans le cas où ledit fluide s'écoule axialement vers l'extrémité distale du tube de forage. Ce fluide peut être de l'eau, du coulis de scellement, ou tout autre type de fluide. On comprend donc que l'organe d'étanchéité est configuré pour empêcher le fluide de remonter vers l'extrémité proximale du tube de forage en circulant entre le manchon et le tube de forage.
Avantageusement, l'organe d'étanchéité est également configuré pour réaliser l'étanchéité entre le tube de forage et l'élément tubulaire après fixation de l'élément tubulaire au manchon et détachement de l'outil de coupe.
On comprend que lors de la remontée du tube de forage, alors que l'élément tubulaire demeure au fond du forage, l'organe d'étanchéité vient porter contre la surface extérieure du corps ou du manchon puis celle de l'élément tubulaire, grâce à quoi on réalise l'étanchéité entre le tube de forage et l'élément tubulaire tout au long de la remontée du tube de forage. Un intérêt est d'empêcher une circulation remontante du coulis de scellement entre le tube de forage et l'élément tubulaire lors de l'injection du coulis de scellement qui a lieu pendant le retrait du tube de forage.
Selon un autre aspect avantageux de l'invention, l'installation de forage comporte en outre un amortisseur disposé entre le dispositif d'étanchéité et le tube de forage afin d'empêcher la transmission des vibrations du tube de forage vers le dispositif d'étanchéité. Un intérêt est d'éviter de mettre en vibration le dispositif d'étanchéité et l'écran.
Brève description des dessins
L'invention sera mieux comprise à la lecture de la description qui suit de modes de mise en œuvre et de réalisation de l'invention donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
- la figure 1 illustre la mise en place d'un dispositif d'étanchéité de l'installation selon l'invention dans une réservation réalisée dans un écran de soutènement ;
- la figure 2 illustre le montage de l'outil de coupe détachable à l'extrémité distale du tube de forage ;
- la figure 3 illustre l'étape de forage dans le sol après introduction du dispositif de forage dans le dispositif d'étanchéité ;
- la figure 4 illustre l'introduction de l'élément tubulaire dans le tube de forage et sa fixation à l'outil de coupe par vissage ;
- la figure 5 illustre l'étape au cours de laquelle on détache l'outil de coupe du tube de forage ;
- la figure 6 illustre l'étape d'injection de coulis de scellement tout en remontant le tube de forage ;
- la figure 7 illustre le démontage du tube de forage du dispositif d'étanchéité ;
- la figure 8 est une vue de détail de l'extrémité distale du dispositif de forage ;
- la figure 9 est une vue de face de l'outil de coupe ;
- la figure 10 est une vue en coupe longitudinale de l'extrémité distale du dispositif de forage montrant l'outil de coupe connecté au tube de forage ;
- la figure 11 est une vue en coupe longitudinale de l'extrémité distale du dispositif de forage montrant l'outil de coupe détaché du tube de forage ; et
- la figure 12 schématise le procédé d'optimisation de la fréquence de vibration appliquée au tube de forage. Description détaillée de l'invention
A l'aide des figures 1 à 7, on va tout d'abord décrire un mode de mise en œuvre du procédé de mise en place et de scellement d'un élément tubulaire dans un sol S sous charge d'eau qui est situé derrière un écran de soutènement E. Dans cet exemple, l'écran E est un écran de soutènement constitué d'une paroi moulée verticale. L'une des faces El de l'écran E est dégagée tandis que la face opposée E2 est située du côté de la couche de sol S.
La couche de sol S qui est soutenue par l'écran E est, dans cet exemple, disposée en-dessous d'une charge d'eau, telle une nappe phréatique. Le procédé de fabrication de l'écran E étant bien connu par ailleurs, il ne sera pas décrit en détail ici.
On mentionne juste qu'il pourra s'agir d'une paroi moulée réalisée à l'aide d'une benne ou d'une hydrofraise.
Le but du procédé selon l'invention est de mettre en place et de sceller un élément tubulaire 90 dans le sol S situé derrière l'écran E. Cet élément tubulaire peut être par exemple une armature ou bien un tube perforé destiné à réaliser des injections dans le sol S. En d'autres termes, de manière préférentielle, le procédé selon l'invention pourra être mis en œuvre afin de fabriquer un tirant d'ancrage ou bien afin de réaliser des injections dans le sol S.
Selon l'invention, on fournit tout d'abord un dispositif d'étanchéité 10 que l'on solidarise à l'écran.
Pour ce faire, dans cet exemple non limitatif, on fore l'écran E selon une partie de son épaisseur afin de réaliser une réservation R dans l'écran E. Dans cet exemple, l'axe de forage A est incliné d'un angle a par rapport à l'horizontale. L'axe de forage A est également incliné par rapport à la verticale.
Le dispositif d'étanchéité 10 comprend une extrémité tubulaire avant 12 qui est introduite dans la réservation R. On constate que le diamètre de l'extrémité tubulaire 12 est sensiblement égal au diamètre de la réservation R. On achève ensuite de forer la réservation selon toute l'épaisseur de l'écran.
Selon une autre variante, plus traditionnelle, on met en place la réservation R au moment de l'exécution de l'écran E. Dans ce cas la réservation R se présente sous la forme d'un tube et d'une plaque permettant de solidariser le dispositif d'étanchéité 10. La réservation R est solidaire d'une cage d'armature (non représentée ici) constituant le squelette de l'écran de soutènement E.
De manière connue par ailleurs, le dispositif d'étanchéité 10 comporte en outre une chambre cheminée 14 qui est connectée à l'extrémité tubulaire 12 ; cette chambre cheminée comporte une cheminée d'évacuation 16 permettant d'évacuer les déblais d'excavation. Dans cet exemple, le dispositif d'étanchéité 10 comporte en outre une vanne 18 connectée à la chambre cheminée 14 ainsi qu'une première demi-chambre 20 connectée à la vanne 18. Dans cet exemple, la vanne 18 est une vanne à manchon à déformation élastique, bien connue par ailleurs. Elle a pour fonction d'assurer l'étanchéité grâce au fait que le manchon vient enserrer un organe tubulaire traversant la vanne 18. Elle permet par ailleurs d'obturer le dispositif d'étanchéité lorsqu'aucun organe ne traverse le dispositif d'étanchéité.
Le dispositif d'étanchéité 10 fait partie d'une installation 100 conforme l'invention qui comporte en outre un dispositif de forage 30. Ce dispositif de forage 30 comprend un tube de forage 32 ayant une extrémité distale 34 qui porte un outil de coupe 36. Conformément à l'invention, cet outil de coupe 36 est détachable du tube de forage 32.
De manière traditionnelle, le tube de forage 32 est constitué d'un train de tiges qui sont fixées bout à bout afin d'augmenter la longueur du tube de forage au cours du forage. Selon l'invention, on introduit le dispositif de forage 30 dans le dispositif d'étanchéité 10. Pour ce faire, l'extrémité distale du dispositif du tube de forage est équipée dans cet exemple d'un presse-étoupe 38, d'une seconde demi-chambre 40 qui entoure le tube de forage 32. Comme on le comprend à l'aide des figures 2 et 3, la seconde demi-chambre 40 est assemblée avec la première demi-chambre 20 du dispositif d'étanchéité 10.
Selon un aspect avantageux de l'invention, la première demi- chambre 20 et la seconde demi-chambre 40 sont fixées l'une à l'autre tout en enserrant un anneau épais en caoutchouc 42, de sorte que l'ensemble constitué de la première demi-chambre 20, de la seconde demi-chambre 40 et de l'anneau en caoutchouc 42 constitue un amortisseur de vibrations 44. Cet amortisseur 44, qui est disposé entre le dispositif d'étanchéité 10 et le tube de forage 32, a pour rôle d'empêcher la transmission des vibrations du tube de forage vers le dispositif d'étanchéité.
On comprend par ailleurs que le dispositif d'étanchéité, et notamment la vanne 18, permet d'empêcher l'eau du sol de jaillir du côté de la zone de travail des opérateurs, cette zone étant séparée du sol S par l'écran E.
L'installation 100 comporte en outre des moyens 50 pour faire vibrer le tube de forage 32. Les moyens 50 pour faire vibrer le tube de forage 32, en l'espèce un générateur de vibrations 50, permettent de générer des ondes de compression qui se transmettent le long du tube de forage 32 vers son extrémité distale 34 et vers l'outil de coupe 36. On appelle ici L la longueur du tube de forage 32 comprise entre son extrémité distale et le générateur de vibrations 50. La longueur L du tube de forage 32 augmente donc au cours de la réalisation du forage.
Selon l'invention, on réalise un forage F dans le sol S à l'aide de l'installation 100 à l'aide du dispositif de forage 30 de l'installation 100 en faisant vibrer le tube de forage 32 grâce au générateur de vibrations 50.
Dans cet exemple, mais pas nécessairement, au cours de l'étape de forage, on fait également tourner le tube de forage 32 autour de l'axe de forage A grâce à des moyens d'entraînement en rotation 52.
Pendant la réalisation du forage, on injecte un fluide de forage G dans le tube de forage depuis l'extrémité proximale 37 du tube de forage 32. Ce fluide de forage G s'écoule dans le tube de forage 32 jusqu'à l'outil de coupe 36. L'outil de coupe 36 est muni d'orifices 35 permettant l'injection du fluide de forage G au fond du forage F. Le fluide de forage G remonte alors le long du forage en charriant les déblais, puis traverse l'écran E en s'écoulant entre le tube de forage 32 et l'extrémité tubulaire 12 du dispositif d'étanchéité, avant de rejoindre la chambre cheminée 14 et la cheminée d'évacuation 16, cette dernière permettant donc d'évacuer le fluide de forage G.
Le forage est réalisé jusqu'à ce que le tube de forage, et plus précisément l'outil de coupe est amené à une profondeur déterminée H représentée sur la figure 4. Dans cet exemple, par profondeur déterminée H, on entend la distance entre la face E2 de l'écran E tournée vers le sol S et le fond Fl du forage F. Avant de décrire les autres étapes du procédé selon l'invention, on va s'intéresser maintenant plus en détail à l'outil de coupe 36 de l'installation 100.
A l'aide des figures 8 à 11, on constate que l'outil de coupe détachable 36 est initialement monté sur un porte-outil 37 qui est fixé à l'extrémité distale 34 du tube de forage 32.
L'outil de coupe 36 comporte par ailleurs un manchon de fixation 60 qui a un diamètre inférieur au diamètre intérieur du tube de forage 32. Le manchon 60 est solidaire d'un corps 64 dans lequel est ménagé un canal 62 qui s'étend selon la direction axiale X du tube de forage. Ce canal 62 relie le manchon 60 au taillant 66 de l'outil de coupe 36. Par conséquent, le canal 62 permet d'alimenter les orifices à injection 35 en fluide, notamment, mais pas exclusivement, en fluide de forage pendant l'étape de forage.
Selon un aspect avantageux de l'invention, l'outil de coupe 36 comporte en outre un clapet anti-retour 68 qui est agencé à l'extrémité aval 62a du canal 62 afin d'obturer ledit canal 62 lorsqu'aucun fluide ne s'écoule du manchon 60 vers les orifices d'injection 35. Dans cet exemple, le clapet anti-retour 68 est constitué d'une pièce 70 montée sur un ressort 72 de telle manière que le clapet anti-retour permet de laisser passer un flux qui s'écoule vers les orifices 35 du taillant 66, mais empêche un flux de s'écouler au travers du canal 62 vers le manchon 60. On comprend donc que le corps 64 dans lequel est ménagé le canal 62 est disposé entre le clapet anti-retour 68 et le manchon de fixation 60.
L'outil de coupe 36 est détachable du porte-outil 37 et donc du tube de forage 32. Pour assurer le maintien de l'outil de coupe 36 du tube de forage 32 pendant l'opération de forage, l'outil de coupe 36 comprend une goupille 74 qui s'étend transversalement par rapport à l'axe de rotation X de l'outil de coupe de manière à venir se loger dans deux échancrures 76 ménagées dans le porte-outil 37.
La goupille 74 est dimensionnée de manière à ce qu'elle soit montée serrée dans les échancrures 76 afin d'éviter un détachement intempestif de l'outil de coupe 36 par rapport au porte-outil 37. Les échancrures 76 débouchent axialement vers l'extrémité distale 37a du porte-outil 37 qui est dirigée vers le taillant 66. On comprend donc qu'une poussée axiale sur le manchon 60 dirigé vers le taillant 66 ayant une intensité supérieure à un seuil prédéterminé permet de dégager la goupille 74 des échancrures 76 et donc de détacher l'outil de coupe 36 du tube de forage 32.
On comprend donc que la goupille 74 et les échancrures 76 constituent des moyens de maintien libérables pour maintenir ensemble l'outil de coupe et le tube de forage pendant le forage.
En se référant à nouveau aux figures 10 et 11, on constate que l'installation 100 comporte un organe d'étanchéité 80 pour assurer une étanchéité axiale entre le tube de forage 32 et le corps 64 manchon 60. Dans cet exemple, l'organe d'étanchéité 80 est un joint annulaire qui est solidaire du tube de forage 32. Sur l'exemple de la figure 10, l'organe d'étanchéité 80 est également solidaire du porte-outil 37. L'organe d'étanchéité 80 vient donc porter contre la surface extérieure du corps 64 afin d'assurer l'étanchéité entre le tube de forage 32 et l'outil de coupe 36.
Plus précisément, dans cet exemple, l'organe d'étanchéité 80 est configuré pour laisser passer un fluide uniquement dans le cas où ledit fluide s'écoule axialement vers l'extrémité distale 34 du tube de forage 32. En d'autres termes, l'organe d'étanchéité 80 laisse passer uniquement les écoulements dirigés vers le taillant 66. Il permet donc d'empêcher une circulation remontante de fluide entre le manchon 60 et le tube de forage 32.
Dans cet exemple, lorsque l'outil de coupe 36 est attaché au porte- outil 37, l'organe d'étanchéité 80 porte contre le corps 64. Dans la mesure où le manchon 60 présente un diamètre extérieur qui est sensiblement égal au diamètre extérieur du corps 64, on comprend à l'aide de la figure 11 que lorsque l'outil de coupe 36 est détaché du porte- outil 37, l'organe d'étanchéité 80 se déplace axialement et vient porter contre le manchon afin de maintenir l'étanchéité axiale entre le tube de forage 32 et le manchon 60.
En se référant à nouveau à la figure 10, on constate que l'extrémité du manchon 60a qui est opposée au corps 64 présente un filetage 82.
On va maintenant décrire les étapes suivantes du procédé selon l'invention en se référant à nouveau à la figure 4.
Après que le tube de forage 32 a atteint sa profondeur prédéterminée H, on introduit un élément tubulaire 90 dans le tube de forage 32. Cet élément tubulaire 90 est également constitué d'une pluralité de portions de tubes qui sont fixées bout à bout. L'élément tubulaire 90 est introduit dans le tube de forage 32 jusqu'à ce que l'extrémité distale 90a de l'élément tubulaire 90 vienne en contact avec l'extrémité 60a du manchon 60. L'élément tubulaire 90 subit ensuite une rotation afin de visser l'extrémité distale 90a de l'élément tubulaire 90 au filetage 82 du manchon 60. Une fois l'élément tubulaire fixé au manchon 60 de l'outil de coupe détachable 36, on exerce une poussée sur l'élément tubulaire 90 afin de pousser l'outil de coupe 36, ce qui provoque le détachement de l'outil de coupe 36 du tube de forage 32.
De préférence, on maintient le tube de forage 32 tout en poussant l'élément tubulaire 90 fixé à l'outil de coupe. La séparation de l'outil de coupe 36 du tube de forage 32 est illustrée à la figure 5. Dans cet exemple, après le détachement de l'outil de coupe 36, comme on l'a représenté sur la figure 6, on injecte un coulis de scellement C, par exemple un coulis de ciment, dans le forage afin de sceller l'élément tubulaire 90 dans le sol S. Pour ce faire, le coulis de scellement C est injecté dans l'élément tubulaire 90 par son extrémité proximale et s'écoule en pied de forage au travers des orifices 35 de l'outil de coupe 36.
Conformément à l'invention, dans l'exemple de la figure 6, l'injection du coulis de scellement C est réalisée en remontant le tube de forage 32 tout en faisant vibrer le tube de forage 32. Comme mentionné précédemment, les vibrations permettent de resserrer le sol S autour du tube de forage ce qui permet d'éviter une circulation remontante du coulis de scellement entre le tube de forage 32 et le sol S.
Dans cet exemple, la fréquence de vibration du tube de forage appliquée lors de la remontée du tube de forage 32 est de l'ordre de 50 Hz à 130 Hz selon la longueur du tube de forage.
Selon une variante, le coulis de scellement C est mis sous pression grâce à une pompe, non représentée ici, avant son injection dans l'élément tubulaire. Un intérêt est de pouvoir former un bulbe de coulis de scellement ayant un diamètre plus important. Le coulis de scellement mis sous pression pourra atteindre une pression de l'ordre de 0,5 à 5 MPa.
Selon une autre variante, non représentée ici, l'injection de coulis de scellement pourrait être réalisée par une injection entre l'élément tubulaire et le tube de forage dès lors que l'organe d'étanchéité 80 permet l'écoulement du coulis de scellement vers le taillant 66.
Grâce à l'amortisseur 44, les vibrations émises par le générateur de vibration 50 sont transmises au tube de forage 32 mais pas au dispositif d'étanchéité 10 ni à l'écran E.
Comme on l'a représenté sur la figure 7, le tube de forage 32 est remonté jusqu'à ce que l'extrémité distale du tube de forage 32 atteigne le dispositif d'étanchéité 10. Le tube de forage 32 est alors démonté du dispositif d'étanchéité 10.
Comme on le voit sur cette figure 7, l'élément tubulaire 90 est alors scellé dans un bulbe B de coulis de scellement.
Cet élément tubulaire 90 pourra alors être utilisé pour fabriquer un tirant d'ancrage en scellant des câbles (non représentés ici) dans l'élément tubulaire mis en place et scellé dans le forage.
Selon un aspect particulièrement avantageux de l'invention, lors de la réalisation du forage F décrit précédemment, on cherche à optimiser la fréquence de vibration afin de maximiser l'énergie de forage transmise par le tube de forage 32. Pour ce faire, on calcule une fréquence cible de vibrations que l'on applique grâce au générateur de vibrations au tube de forage 32.
On fait donc vibrer le tube de forage 32 à la fréquence cible de vibration lors de la réalisation du forage. On comprend donc que cette fréquence cible de vibration est une fréquence de vibration qui est appliquée au tube de forage. En l'espèce, ces vibrations sont des ondes de compression qui se transmettent le long du tube de forage définissant des ventres et des noeuds. Ces ondes de vibration font entrer le tube de forage 32 en résonance, ou à tout le moins à une fréquence proche de sa fréquence de résonance, ce qui produit une énergie maximale au niveau de l'outil de coupe 36, avec pour effet d'augmenter sensiblement l'efficacité du forage, et donc l'efficacité globale du procédé selon l'invention.
Comme on l'a représenté sur la figure 12, le calcul de la fréquence cible de vibration comporte tout d'abord une étape S100 au cours de laquelle on saisit manuellement ou on détermine de manière automatisée la longueur L du tube de forage 32. On suppose donc ici que le tube de forage est mis en vibration sur toute sa longueur. Puis, à partir de cette longueur, on calcule la fréquence cible de vibration au cours d'une étape S102 à partir de la longueur L du tube de forage, de la vitesse de propagation de l'onde de compression dans le tube de forage 32. Dans cet exemple, le tube de forage 32 est réalisé en acier.
Encore de préférence, le calcul utilise une valeur constante correspondant à la vitesse de propagation des ondes de compression dans le tube de forage, cette vitesse dépendant du matériau constitutif du tube de forage.
Conformément à l'invention, dans la mesure où la longueur du tube de forage 32 augmente pendant la réalisation du forage en raison de l'ajout successif des éléments tubulaires, on recalcule la fréquence cible de vibrations à chaque augmentation de la longueur du tube de forage. Cela permet de conserver une fréquence de vibration optimale pendant toute la durée du forage.
La fréquence cible de vibration ainsi calculée est ensuite affichée en tant que suggestion à l'opérateur. Elle peut aussi dans un autre mode de réalisation être envoyée en tant que consigne au générateur de vibrations 50 au cours d'une étape S104.
De manière préférentielle, mais non nécessairement, la fréquence cible de référence est égale à :
• Fmax (la valeur de fréquence maximale prédéterminée) si Fmax<(V)/(2*L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et L la longueur du tube de forage, OU :
• (n*V)/(2*L) si Fmax>(V)/(2*L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que {n*V)/(2*L)<=Fmax et ((n+l)*V)/(2*L)>Fmax, Dans l'exemple qui suit, V est égal 5000 m/s, Fmax est égal à
130 Hz. L, correspond à la somme des longueurs des éléments tubulaires mis bout à bout.
Dans cet exemple, les éléments tubulaires ont la même longueur unitaire, à savoir une longueur de 3 mètres. On obtient le tableau de résultats suivant :
Nbre de tubes L (m) 2L V/(2*L) n F cible (Hz)
5 15 30 167 130 (Fmax)
6 18 36 139 130 (Fmax)
7 21 42 119 119
1
8 24 48 104 104
1
9 27 54 93 93
1
10 30 60 83 83
1
11 33 66 76 76
1
12 36 72 69 69
1
13 39 78 64 2 128
14 42 84 60 2 120
15 45 90 56 2 112
16 48 96 52 2 104
17 51 102 49 2 98
18 54 108 46 2 93
19 57 114 44 2 88
20 60 120 42 3 126
21 63 126 40 3 120
22 66 132 38 3 114
23 69 138 36 3 108
24 72 144 35 3 105
25 75 150 33 3 99
26 78 156 32 4 128
27 81 162 31 4 124

Claims

REVENDICATIONS
1. Procédé de mise en place et de scellement d'un élément tubulaire dans un sol (S) sous charge d'eau situé derrière un écran de soutènement (E), dans lequel :
on fournit un dispositif d'étanchéité (10), et un dispositif de forage (30) comprenant un tube de forage (32) qui présente une extrémité distale (34) portant un outil de coupe (36) détachable du tube de forage ;
on solidarise ledit dispositif d'étanchéité (10) à l'écran de soutènement ;
on introduit le dispositif de forage (30) dans le dispositif d'étanchéité (10) solidarisé à l'écran de soutènement;
on réalise un forage dans le sol à l'aide du dispositif de forage (30) en faisant vibrer le tube de forage, le tube de forage étant amené à une profondeur déterminée (H) ;
on introduit un élément tubulaire (90) dans le tube de forage (32) après que le tube de forage a atteint la profondeur déterminée ;
on détache l'outil de coupe (36) du tube de forage (32) et on remonte le tube de forage tout en maintenant l'élément tubulaire (90) dans le forage ; et
on injecte un coulis de scellement (C) dans le forage afin de sceller l'élément tubulaire (90) dans le sol (S).
2. Procédé selon la revendication 1, dans lequel, pendant la réalisation du forage, on injecte un fluide de forage (G) dans le tube de forage, le fluide de forage s'écoulant via l'outil de coupe, et les déblais du forage étant évacués par l'intermédiaire du dispositif d'étanchéité (10).
3. Procédé selon la revendication 1 ou 2, dans lequel on détache l'outil de coupe (36) du tube de forage (32) en poussant l'outil de coupe à l'aide de l'élément tubulaire tout en maintenant le tube de forage (32).
4. Procédé selon la revendication 3, dans lequel on solidarise l'élément tubulaire (90) à l'outil de coupe détachable (36) avant de pousser l'outil de coupe (36) à l'aide de l'élément tubulaire (90).
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel on injecte le coulis de scellement (C) dans le forage tout en remontant le tube de forage (32).
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel on fait vibrer le tube de forage (32) pendant l'injection du coulis de scellement.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel on remonte le tube de forage (32) tout en faisant vibrer ledit tube de forage (32).
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le coulis de scellement (C) est injecté dans l'élément tubulaire via son extrémité proximale, et s'écoule en pied de forage
(Fl) via l'outil de coupe.
9. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le coulis de scellement (C) est injecté entre l'élément tubulaire et le tube de forage.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel on met le coulis de scellement (C) sous pression, on remonte le tube de forage tout en injectant le coulis de scellement sous pression dans le forage, et tout en faisant vibrer le tube de forage.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel on calcule une fréquence cible de vibration, et on fait vibrer le tube de forage (12) à ladite fréquence cible de vibration lors de la réalisation du forage (F, Fl, F2).
12. Procédé selon la revendication 11, dans lequel on augmente la longueur du tube de forage (12) pendant la réalisation du forage, et on recalcule la fréquence cible de vibration à chaque augmentation de la longueur du tube de forage.
13. Procédé selon la revendication 11 ou 12, dans lequel, pour calculer la fréquence cible, on utilise au moins la longueur (L) du tube de forage (12), la vitesse de propagation (V) des ondes de compression dans le tube de forage (12), et une valeur de fréquence maximale prédéterminée (Fmax).
14. Procédé selon l'une quelconque des revendications 11 à 13, dans lequel, la fréquence cible de vibration est égale à :
• une valeur de fréquence maximale prédéterminée, notée Fmax, si Fmax<(V)/(2*L), où V est la vitesse de propagation des ondes de compression dans le tube de forage, et où L est la longueur du tube de forage, OU :
• (n*V)/(2*L) si Fmax>(V)/(2*L), où n est un nombre entier supérieur ou égal à 1 choisi de sorte que (n*V)/(2*L)<=Fmax et ((n+l)*V)/(2*L)>Fmax.
15. Procédé de réalisation d'un tirant d'ancrage dans lequel on met en œuvre le procédé selon l'une quelconque des revendications 1 à 14, puis on scelle des câbles dans l'élément tubulaire mis en place dans le forage.
16. Installation (100) pour la mise en œuvre du procédé de mise en place et de scellement d'un élément tubulaire dans un sol (S) sous charge d'eau situé derrière un écran de soutènement (E) selon l'une quelconque des revendications 1 à 15, l'installation comportant :
un élément tubulaire ;
un dispositif de forage (30) qui comprend un tube de forage (32) ayant une extrémité distale (34) portant un outil de coupe (36) détachable du tube de forage ; un dispositif d'étanchéité (10) configuré pour être solidarisé à l'écran de soutènement (E) et être traversé de manière étanche par l'élément tubulaire ou le tube de forage;
des moyens (50) pour faire vibrer le tube de forage (32) ; des moyens pour réaliser un forage (P) dans le sol à l'aide du dispositif de forage, le dispositif de forage traversant le dispositif d'étanchéité, et pour amener le tube de forage à une profondeur prédéterminée ;
des moyens pour introduire l'élément tubulaire dans le tube de forage après que le tube de forage a atteint la profondeur prédéterminée ;
des moyens pour détacher l'outil de coupe du tube de forage ;
des moyens pour remonter le tube de forage tout en maintenant l'élément tubulaire dans le forage ; et
des moyens pour injecter un coulis de scellement dans le forage afin de sceller l'élément tubulaire dans le forage.
17. Installation selon la revendication 16, caractérisée en ce que l'outil de coupe (36) comporte un manchon de fixation (60) ayant un diamètre inférieur au diamètre du tube de forage, ledit manchon étant configuré pour être fixé à une extrémité distale (90a) de l'élément tubulaire (90).
18. Installation selon la revendication 17, caractérisée en ce que l'outil de coupe (36) comporte un canal (62) reliant le manchon (60) à une extrémité de l'outil de coupe munie d'un taillant (66) et d'orifices d'injection (35), ledit canal permettant d'alimenter les orifices d'injection en fluide, et en ce que l'outil de coupe (36) comporte en outre un clapet anti-retour (68) agencé pour obturer le canal (62) lorsqu'aucun fluide ne s'écoule du manchon (60) vers les orifices d'injection (35).
19. Installation selon l'une quelconque des revendications 16 à 18, caractérisée en ce qu'elle comprend des moyens de maintien libérables (74,76) pour maintenir ensemble l'outil de coupe (36) et le tube de forage (32) pendant le forage.
20. Installation selon l'une quelconque des revendications 16 à 19, caractérisée en ce qu'elle comporte un organe d'étanchéité (80) pour assurer une étanchéité entre le tube de forage (32) et l'outil de coupe (36).
21. Installation selon la revendication 20, caractérisée en ce que l'organe d'étanchéité (80) est configuré pour laisser passer un fluide uniquement dans le cas où ledit fluide s'écoule axialement vers l'extrémité distale (34) du tube de forage (32).
22. Installation selon la revendication 17 ou 18 en combinaison avec la revendication 20 ou 21, caractérisée en ce que l'organe d'étanchéité est également configuré pour réaliser l'étanchéité entre le tube de forage et l'élément tubulaire après fixation de l'élément tubulaire au manchon et détachement de l'outil de coupe.
23. Installation de forage selon l'une quelconque des revendications 16 à 22, caractérisée en ce qu'elle comporte en outre un amortisseur (44) disposé entre le dispositif d'étanchéité (10) et le tube de forage (32) afin d'empêcher la transmission des vibrations du tube de forage (32) vers le dispositif d'étanchéité (10).
EP13808085.8A 2012-11-29 2013-11-20 Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau Active EP2925935B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1261442A FR2998593B1 (fr) 2012-11-29 2012-11-29 Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau
PCT/FR2013/052797 WO2014083263A1 (fr) 2012-11-29 2013-11-20 Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau

Publications (2)

Publication Number Publication Date
EP2925935A1 true EP2925935A1 (fr) 2015-10-07
EP2925935B1 EP2925935B1 (fr) 2017-01-11

Family

ID=47754709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13808085.8A Active EP2925935B1 (fr) 2012-11-29 2013-11-20 Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau

Country Status (4)

Country Link
EP (1) EP2925935B1 (fr)
ES (1) ES2622337T3 (fr)
FR (1) FR2998593B1 (fr)
WO (1) WO2014083263A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108755703A (zh) * 2018-07-04 2018-11-06 中建七局第四建筑有限公司 软土基坑的高抗拔锚杆支护结构及其施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3097588B1 (fr) * 2019-06-21 2022-03-18 Soletanche Freyssinet Machine pour forer un sol recouvert d’une couche poreuse, et procédé correspondant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036026A (en) * 1974-07-05 1977-07-19 Kabushiki Kaisha Takechi Koumusho Method and apparatus for establishing an anchor
DE102006059891A1 (de) * 2006-12-19 2008-06-26 Minova International Ltd., Witney Anker mit Spreizelement und Verfüllmantel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014083263A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108755703A (zh) * 2018-07-04 2018-11-06 中建七局第四建筑有限公司 软土基坑的高抗拔锚杆支护结构及其施工方法
CN108755703B (zh) * 2018-07-04 2020-05-05 中建七局第四建筑有限公司 软土基坑的高抗拔锚杆支护结构及其施工方法

Also Published As

Publication number Publication date
EP2925935B1 (fr) 2017-01-11
ES2622337T3 (es) 2017-07-06
FR2998593B1 (fr) 2015-01-23
FR2998593A1 (fr) 2014-05-30
WO2014083263A1 (fr) 2014-06-05

Similar Documents

Publication Publication Date Title
BE1013805A5 (fr) Procede de forage d&#39;une formation souterraine avec utilisation d&#39;un trepan de forage oscillant.
EP0265344B1 (fr) Procédé pour la réalisation d&#39;un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procédé
EP1525371B1 (fr) Conduite de guidage telescopique de forage en mer
FR3026754A1 (fr) Machine et procede pour la realisation de colonnes dans un sol
EP2900876B1 (fr) Procédé de réalisation d&#39;une structure armée dans un sol
EP2925935B1 (fr) Procede de mise en place et de scellement d&#39;un element tubulaire dans un sol sous charge d&#39;eau
EP3030721B1 (fr) Dispositif d&#39;etancheite
EP0441077A1 (fr) Procédé de réalisation de pieux moulés dans le sol et tube-empreinte utilisable pour mettre en oeuvre ledit procédé
EP2900875B1 (fr) Procédé de réalisation d&#39;un ancrage dans un sol
EP3414399B1 (fr) Procede de fabrication d&#39;un tirant d&#39;ancrage et tirant d&#39;ancrage.
EP0413676A1 (fr) Procédé de fixation d&#39;ancrages
EP3172383B1 (fr) Dispositif d&#39;ancrage dans un sol multicouches comprenant une bague de liaison
FR2972737A1 (fr) Dispositif et procede d&#39;ancrage dans un sol multicouches
EP1441076A1 (fr) Micropieu injectable vissé autoforant
EP0596792B1 (fr) Dispositif perfectionné pour le traitement des sols par jet(s) rotatif(s)
EP0441076A1 (fr) Pieu tubulaire métallique équipé d&#39;un dispositif permettant l&#39;injection de coulis au voisinage de la paroi du pieu
EP0437588A1 (fr) Ensemble comportant un tube prolongateur et un conduit de chemisage interne de ce tube.
FR3020089A1 (fr) Dispositif de forage du genre trepan emulseur
FR2869066A1 (fr) Methode et ensemble de forage pour forer des trous de large diametre
FR3031565A1 (fr) Procede de foncage sans tranchee
FR2942248A1 (fr) Dispositif a verin annulaire et methode de determination de la force portante d&#39;un pieu enfonce dans le sol par vibrofoncage
FR3047511A1 (fr) Dispositif et procede d&#39;obturation de forage
FR2615880A1 (fr) Procede pour integrer a un terrain vertical en pente ou en contre-pente des ossatures de consolidation ou autres et outillage pour sa mise en oeuvre
FR3047510A1 (fr) Dispositif de forage de roche en tranchee &#34;forage revolver&#34;
FR2912160A1 (fr) Dispositif et methode de determination de la force portante d&#39;un pieu enfonce dans le sol par vibrofoncage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861419

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013016577

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 861419

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2622337

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013016577

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013016577

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231019

Year of fee payment: 11

Ref country code: FR

Payment date: 20231019

Year of fee payment: 11

Ref country code: DE

Payment date: 20231019

Year of fee payment: 11