EP2923769B1 - Outlet device of a solid bowl worm centrifuge - Google Patents

Outlet device of a solid bowl worm centrifuge Download PDF

Info

Publication number
EP2923769B1
EP2923769B1 EP15157303.7A EP15157303A EP2923769B1 EP 2923769 B1 EP2923769 B1 EP 2923769B1 EP 15157303 A EP15157303 A EP 15157303A EP 2923769 B1 EP2923769 B1 EP 2923769B1
Authority
EP
European Patent Office
Prior art keywords
radius
outlet device
distance
fluid
weir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15157303.7A
Other languages
German (de)
French (fr)
Other versions
EP2923769A1 (en
Inventor
Georg Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flottweg SE
Original Assignee
Flottweg SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flottweg SE filed Critical Flottweg SE
Publication of EP2923769A1 publication Critical patent/EP2923769A1/en
Application granted granted Critical
Publication of EP2923769B1 publication Critical patent/EP2923769B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/2075Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl with means for recovering the energy of the outflowing liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • B04B2001/2083Configuration of liquid outlets

Definitions

  • the invention relates to an outlet device of a solid bowl screw centrifuge for separating a multi-phase material, which is arranged on an end wall of a centrifuge drum rotating about a longitudinal axis at an outlet opening formed in the end wall, and which comprises a deflection device for deflecting the material passed through the outlet opening in the direction of the end wall circumference , in which the deflection device has a distance element which is arranged at a distance from the longitudinal axis and along which the deflected material can be guided in the direction of the end wall circumference before it is laterally thrown off by the outlet device.
  • the invention further relates to the use of such an outlet device.
  • solid bowl screw centrifuges are characterized by a rotatable centrifuge drum, which has a largely closed drum shell with a mostly horizontal axis of rotation or longitudinal axis.
  • the centrifuge drum is rotated at a high rotational speed by means of a drive.
  • a multiphase material to be centrifuged is introduced into the centrifuge drum by means of a mostly centrally arranged inlet tube.
  • the multi-phase material is then subjected to a high centrifugal force by rotating the centrifuge drum, causing it to adhere to the inside Creating a drum jacket as a pond.
  • a phase separation takes place in the material centrifuged in this way, comparatively light material in the pond migrating radially inwards as the light phase and comparatively heavy material migrating radially outwards as the heavy phase.
  • the light phase can be discharged as a fluid radially on the inside by means of an outlet device, while the heavy phase is discharged from the centrifuge drum by means of a screw.
  • a liquid phase outlet connection component arranged on a drum of a decanter centrifuge which has a straight channel.
  • This channel forms a section which is arranged at a distance from a longitudinal axis of the decanter centrifuge by a section radius.
  • the channel is arranged at an acute angle relative to an end-face drum base plate in order to deflect material to the side of the drum through an outlet opening provided in the base plate.
  • each outlet connection device comprises a tube element which has at least one or two bent tube sections or bends.
  • the tube element can generally have pipe sections of different directions between the arcs. The last pipe section following the last bend is always circumferentially directed against a direction of rotation of the drum.
  • the invention has for its object to further develop generic outlet devices of a solid bowl centrifuge in order to achieve a more effective energy recovery.
  • an outlet device of a solid-bowl screw centrifuge for separating a multiphase material which is arranged on an end wall of a centrifuge drum rotating about a longitudinal axis at an outlet opening formed in the end wall, and which has a deflection device for deflecting a fluid of the fluid that has passed through the outlet opening Guts in the direction of the end wall circumference, in which the deflection device has a stretch element arranged at a distance from the longitudinal axis with a deflection path along which the deflected fluid can be directed in the direction of the end wall circumference before it is laterally thrown off the outlet device, the outlet device comprises guide means according to the invention, which are arranged downstream behind the deflection section and by means of which the deflected fluid in the gravitational field of the solid-bowl screw centrifuge before being ejected from the outlet device an energetically lower position potential can be brought, the guide means being designed in such a way that the fluid guided along the deflection path can
  • the outlet device thus comprises guide means by means of which the diverted fluid in the gravitational field of the solid-bowl screw centrifuge can be brought to an energetically lower position potential before being ejected from the outlet device.
  • This makes it possible to additionally accelerate the deflected fluid at the outlet device before it is finally thrown off by the outlet device, which in turn increases the recoil effect on the outlet device and, in particular, can thereby improve the energy saving for driving the centrifuge drum.
  • the effect of the previously known outlet devices is generally based on deflecting the fluid of the material in the centrifuge drum through the outlet opening only once in the direction of the end wall circumference with the aid of the deflection devices.
  • the flow velocity of the fluid which is directed and thrown off in the direction of the end wall circumference, depends to a large extent on the fluid throughput quantity passed through the outlet opening, since previously there was no deliberate, additionally desired acceleration of the fluid.
  • the additional guide means succeed in deflecting the fluid at least twice on its way to a discharge edge in such a way that the effect of an additional acceleration can be achieved as a result.
  • the fluid is deflected at the outlet opening or shortly behind it, in order to deflect the fluid which essentially exits the centrifuge drum in the axial direction in the direction of the end wall circumference.
  • the fluid that has already been deflected in this way and directed further towards the end wall circumference at the outlet device undergoes an additional change in direction in the radial direction of the centrifuge drum, the fluid being accelerated due to centrifugal forces acting on it before it is finally thrown off by the outlet device. This additional change of direction takes place parallel or skewed to the front wall.
  • the object of the invention is also achieved by a method for energy recovery on a solid-bowl screw centrifuge for separating a multiphase material located in a centrifuge drum rotating about a longitudinal axis, in which a phase of the material in the form of a fluid in the direction of the longitudinal axis through a in the end wall of the centrifuge drum formed outlet opening, in which the fluid passed through the outlet opening is deflected in the direction of the end wall circumference by means of a deflection device, and in which the fluid deflected in the direction of the end wall circumference is guided along a deflection path formed by the deflection device before it leaves the
  • the deflecting section is laterally thrown off by the deflecting device, the method being characterized in that the fluid guided along the deflecting section after leaving the deflecting section in the gravitational field of the solid-bowl screw centrifuge onto an egg n Lower energy potential is brought before it is finally thrown off to the side by the outlet device.
  • the additional acceleration effect is mainly achieved by a targeted drainage of the fluid on a radially outward-pointing fluid guide contour of the guide means, which extends between the deflection path and the discharge edge.
  • the fluid is directed to a larger radius. If a mass is brought to a larger radius in the gravity field of the solid-bowl screw centrifuge, this means that the mass is brought to a lower level of potential energy in relation to the centrifugal field without taking into account the associated peripheral speed.
  • This difference in potential energy can be converted in the sense of the invention into kinetic energy, as is the case here.
  • the present guide means are arranged downstream behind the actual deflection section.
  • the guide means are preferably arranged downstream behind the actual deflection section in such a way that the fluid which has already been deflected is additionally accelerated radially outwards on the way to the end wall circumference by a repeated change of direction.
  • the route element and the guide means can be implemented in a variety of ways. They can be integrated into the outlet device in a structurally particularly simple manner if they are produced as a one-piece component from which the deflection device is at least partially composed.
  • the invention is also specifically aimed at using an outlet device according to the invention on a solid bowl screw centrifuge for separating a multi-phase material with a centrifuge drum.
  • the guide means are designed in such a way that the material guided along the deflection section can be guided, starting from the section radius, to a radially outer discharge radius before it is thrown off by the outlet device.
  • the preferred factor is preferably between 1 and 6, preferably between 2 and 5, particularly preferably between 3 and 4.
  • the guide means are arranged radially behind the route element in such a way that the material guided along the route can be guided, starting from the route radius defined by the route element, to a radially outer throw radius before it is thrown off by the outlet device.
  • the guide means comprise an acceleration section along which the fluid between the section radius and a discharge radius of the outlet device can be accelerated. In this way, the rotation of the centrifuge drum can be more strongly supported.
  • the deflection section primarily serves the purpose of deflecting the fluid in the circumferential direction
  • the present acceleration section primarily serves to accelerate the already deflected fluid again.
  • the acceleration section is arranged downstream behind the actual deflection section in such a way that the fluid which has already been deflected is additionally accelerated on the way to the outer end wall circumference by a further change in direction.
  • the deflection device is preferably designed such that a direction of the course of the outer contour of the deflection device changes in a transition region in which the deflection section merges into the acceleration section.
  • the guide means have a discharge edge which is arranged on the end face at a distance from the longitudinal axis by a throw-off radius, the throw-off radius being greater than the radius of the path, the material can be accelerated further in the direction of the end wall circumference before it is thrown off by the outlet device.
  • this can provide a drop edge for the redirected and subsequently accelerated material in a structurally simple manner which is arranged radially further outside than the deflection path of the route element.
  • the guide means comprise a curved guide element which extends from radially further inwards to radially further outwards, the material guided in the direction of the end wall periphery can be guided radially further outwards in a particularly reliable manner before it is thrown off by the outlet device. Due to the curved guide element, the accelerated material undergoes another change of direction so that it can then be advantageously thrown off the outlet device.
  • a particularly good acceleration path can be created with the aid of the guide means if the guide means comprise a concave guide surface which faces the longitudinal axis.
  • This guide surface is concave in the radial direction. Cumulatively, it can also be concave in the axial direction in order to be able to better guide the fluid.
  • a preferred embodiment variant provides that the outlet opening is arranged on a bolt circle with a bolt circle radius, with a discharge radius of the outlet device being greater than the bolt circle radius.
  • a discharge edge can be arranged further radially outward, which further improves energy recovery.
  • the outlet device comprises a weir element which is arranged at a distance from the longitudinal axis by a weir radius, with a discharge radius of the outlet device being greater than the weir radius.
  • the weir element is arranged radially further inwards than the discharge edge of the outlet device, so that the material which has already been deflected can be further accelerated in the sense of the invention.
  • the weir element can be designed to be particularly simple in terms of construction if it is immediately realized by a contour of the deflection device.
  • weir element is arranged between the deflection path of the path element and the acceleration path of the guide means.
  • the route element, the curved guide element and the weir element are preferably realized in one piece as a single component of the deflection device, so that the outlet device is very compact.
  • the outlet device has a discharge angle ⁇ > 0 ° with respect to a tangent which affects a discharge radius of the outlet device.
  • the tangent preferably touches the discharge radius at an intersection generated by the discharge radius and the discharge edge.
  • a discharge angle of 0 ° is most effective in relation to this tangent, that is, a tangential discharge in the direction of the tangent based on the discharge radius.
  • a discharge angle ⁇ > 0 ° is advantageous to choose a discharge angle ⁇ > 0 °.
  • the discharge angle ⁇ has a value between 1 ° and 30 °, it can be reliably prevented that the fluid jetted from the outlet device collides with another jetted fluid from another outlet device arranged on the end wall.
  • the discharge angle ⁇ has an alternative value between 3 ° and 20 °, the fluid discharged by the outlet device can be discharged radially outwards in an even more reliable manner.
  • the fluid can be discharged from the outlet device even more effectively and reliably if the discharge angle ⁇ has a value between 5 ° and 15 °.
  • the first exemplary embodiment shown is a plurality of first outlet devices 10 (numbered only by way of example) on an end wall 12 of a centrifuge drum 14 of a solid-bowl screw centrifuge 16 attached to separate a multi-phase good 18.
  • the end wall 12 here forms an axial centrifuge drum cover.
  • a centrifuge screw (not shown) is located within this solid-bowl screw centrifuge 16.
  • the centrifuge drum 14 rotates in a driven state about a longitudinal axis 20, which simultaneously represents the central axis and also the axis of rotation of the centrifuge drum 14.
  • the multiphase material 18 per se forms a pond or a liquid ring 26 on the inside of its drum jacket 24 when the centrifuge drum 14 rotates sufficiently quickly in the direction of rotation 22.
  • the pond has a liquid level or pond radius 28 which is essentially dependent on the throughput of material 18 to be clarified in the centrifuge drum 14.
  • a lot of material 18 to be clarified is fed into the centrifuge drum 14 per unit of time, but only a little clarified material as fluid 30 (see Fig. 3 ) per unit time, the liquid level increases and the pond radius 28 becomes smaller. If relatively more fluid 30 is removed, this liquid level drops.
  • the liquid level of course also depends on the amount of material 18 of the heavy phase discharged per unit of time from the centrifuge drum 14, which should not be discussed here.
  • each circular outlet opening 32 is machined in the end wall 12, through which the fluid 30 is discharged in the axial direction 34 of the longitudinal axis 20 - at a corresponding liquid level within the centrifuge drum 14.
  • the circular outlet openings 32 thus serve for the removal or discharge of clarified material of a lighter phase in the form of the fluid 30 from the centrifuge drum 14.
  • the circular outlet openings 32 are in this case uniformly spaced on a bolt circle 36 with a bolt circle radius 38 around the longitudinal axis 20 the end wall 12 arranged.
  • one of the outlet devices 10 is attached to the outside of the end wall 12 in front of each circular outlet opening 32.
  • Each of the six outlet devices 10 comprises a deflection device 40 (here numbered only as an example) for deflecting the fluid 30, which has essentially passed axially through the outlet opening 32, so that this fluid 30 is deflected laterally in the direction 42 of the end wall circumference 44 and with respect to the longitudinal axis 20 is directed radially outward before it is thrown off the respective outlet device 10 in order to achieve energy recovery.
  • the six deflecting devices 40 are fastened to the end wall 12 with a common retaining ring 46, each of the deflecting devices 40 being firmly screwed to the end wall 12 by means of two screws 48 (only numbered by way of example) inserted through the common holding ring 46.
  • the common retaining ring 46 also ensures that the fluid 30 to be deflected can only flow off laterally in the direction 42 of the end wall circumference 44 and not further in the axial direction 34.
  • the common retaining ring 46 on each of the outlet devices 10 forms an axial baffle plate element (not numbered here) of the respective deflection device 40 in such a way that on the respective deflection device 40 between the end wall 12 and the common retaining ring 46 a corresponding bowl-shaped guide space 50 for receiving the deflection element Fluid 30 is realized.
  • the deflection device 40 For guiding the deflected fluid 30 radially outward, the deflection device 40 further comprises a distance element 54 which is arranged at a distance from the longitudinal axis 20 and which defines a deflection path 56, the distance radius 52 being based on the distance between the deflection path 56 and the longitudinal axis 20 relates.
  • the deflection device 40 immediately embodies a weir element 58, the weir edge 60 of which defines a weir radius 62 by appropriately designing the route element 54.
  • the weir radius 62 is also defined by the geometry of the route element 54.
  • each of the outlet devices 10 comprises guide means 64, by means of which the deflected fluid 30 in the gravitational field of the solid bowl screw centrifuge 16 before the ejection can be brought to an energetically lower position potential by the outlet device 10.
  • guide means 64 can be implemented in a variety of ways.
  • the guide means 64 are embodied in a structurally simple manner by a curved guide element 66 which extends in the direction of the arrow 68 from radially further inwards to radially further outwards.
  • the curved guide element 66 is curved in such a way that a guide surface 70 designed in this way is concave.
  • This concave guide surface 70 is integrated in the respective outlet device 10 in such a way that it faces the longitudinal axis 20. A fluid 30 which is forced outwards by the centrifugal forces can thus be guided particularly advantageously.
  • the curved guide element 66 is designed in such a way that the fluid 30 guided along the deflection section 56 can be guided, starting from the section radius 52 defined by the section element 54, to a radially outer discharge radius 72 before it is ejected from a discharge edge 74 of the respective outlet device 10 becomes.
  • the section radius 52 and thus also the deflection section 56 are thus arranged radially further inwards than the discharge edge 74.
  • the curved guide element 66 here forms an acceleration path 76 (see in particular Fig. 3 ), by means of which the fluid 30 between the deflection section 56 and the discharge radius 72 is accelerated.
  • This acceleration distance 76 is here - viewed in the direction of the end wall circumference 44 - arranged behind the deflection section 56 of the section element 54 such that the fluid 30 guided along the deflection section 56 undergoes a change in direction in the direction of rotation 22 of the centrifuge drum 14 at the transition between the deflection section 56 and the acceleration section 76.
  • the fluid 30 can thus be accelerated better by centrifugal forces which act on the fluid 30 due to the rotation of the centrifuge drum 14.
  • the deflected fluid 30 is redirected at least once more by means of the acceleration path 76, namely radially outwards and in a direction opposite to the direction of rotation 22 before it is thrown off by the outlet device 10.
  • the guide element 66 is curved, as already described above. By deflecting the fluid 30 radially outward and in the opposite direction, the latter is pressed against the curved guide surface 70, so that it can be ensured that the fluid 30 is only ejected from the outlet device 10 at the discharge edge 74.
  • the fluid 30, which has been accelerated again, can be ejected particularly advantageously with an ejection angle ⁇ in a ejection range between 5 ° and 15 °, which is provided here on each of the outlet devices 10.
  • the discharge angle ⁇ relates to a tangent 78, which affects the discharge radius 72 at an intersection 80 of the discharge radius 72 and the discharge edge 74.
  • the discharge area also depends on the speed of rotation of the centrifuge drum 14.
  • the fluid 30 after its deflection in the direction 42 of the end wall circumference 44 at the height of the weir radius 62 has the velocity vu.
  • the fluid 30 in the gravitational field of the solid-bowl screw centrifuge 16 is at a level there with a lower one potential energy.
  • the higher potential energy inherent in the fluid 30 at the height of the weir radius 62 or at the level of the distance radius 52 was converted into kinetic energy along the acceleration path 76 of the guide means 64, so that the fluid 30 with the ejection speed va> vü on the ejection radius 72 of the respective outlet device 10 is dropped.
  • the fluid 30 is guided during the guiding along the curved guide element 66 from the weir radius 62 located further inwards or the radius 52 of the route to the discharge radius 72 located further outside.
  • both exemplary embodiments are essentially identical in construction.
  • the weir radius 62 can be variably set by a radially displaceable design of the weir element 58, for example with the aid of eccentric discs (not shown here).
  • the respective deflection device or the relevant route element 54 and / or the guide means 64 and the common retaining ring 46 could be firmly attached to one another before the respective outlet device 10 or 110 was installed get connected.
  • the effective weir edge 60 can lie in a plane parallel to the end wall 12 (see first exemplary embodiment, 1 to 3 ), in a plane which is arranged perpendicular to the end wall 12 (see second exemplary embodiment, 4 to 6 ) or at an angle between 0 ° and 90 °.
  • outlet device 10 can be seen how it is preferably designed in detail.
  • the outlet device 10 is formed with the deflection device 40 and the plate-shaped weir element 58, which is mounted with the screws 48 in a fixed manner in bores of the weir element 58 or adjustable in elongated holes of the weir element 58 on the associated end wall 12 of the centrifuge drum 14.
  • the centrifuge drum 14 rotates in the direction of rotation 22.
  • the weir edge 60 which defines the weir radius 62, is formed with the weir element 58 over the deflection section 56 of the section element 54.
  • the weir radius 62 corresponds to the line radius 52, the line radius 52 advantageously also being slightly larger than the weir radius 62 can be, so that the clarified material or fluid flows over the weir edge 60 in the form of a small hurdle or hill.
  • the guide element 64 with its curved guide element 66, adjoins the route element 54 counter to the direction of rotation 22.
  • the curved guide element 66 has a convex section at the transition to the deflection section 56, which is formed with a radius r1.
  • the guide surface 70 which is designed as a concave section with a radius r2.
  • the two radii r1 and r2 preferably have a ratio r1: r2 of 1: 1.5 to 1:10, preferably 1: 2 to 1: 6, particularly preferably 1: 2.5 to 1: 3.5.

Landscapes

  • Centrifugal Separators (AREA)

Description

Hintergrund der ErfindungBackground of the Invention

Die Erfindung betrifft eine Auslassvorrichtung einer Vollmantelschneckenzentrifuge zum Trennen eines mehrphasigen Guts, welche an einer Stirnwand einer um eine Längsachse drehenden Zentrifugentrommel an einer in der Stirnwand ausgebildeten Auslassöffnung angeordnet ist, und welche eine Umlenkeinrichtung zum Umlenken des durch die Auslassöffnung gelangten Guts in Richtung des Stirnwandumfangs umfasst, bei welcher die Umlenkeinrichtung ein durch einen Streckenradius von der Längsachse beabstandet angeordnetes Streckenelement aufweist, entlang welchem das umgelenkte Gut in Richtung des Stirnwandumfangs leitbar ist, bevor es seitlich von der Auslassvorrichtung abgeworfen wird.The invention relates to an outlet device of a solid bowl screw centrifuge for separating a multi-phase material, which is arranged on an end wall of a centrifuge drum rotating about a longitudinal axis at an outlet opening formed in the end wall, and which comprises a deflection device for deflecting the material passed through the outlet opening in the direction of the end wall circumference , in which the deflection device has a distance element which is arranged at a distance from the longitudinal axis and along which the deflected material can be guided in the direction of the end wall circumference before it is laterally thrown off by the outlet device.

Die Erfindung betrifft ferner das Verwenden einer solchen Auslassvorrichtung.The invention further relates to the use of such an outlet device.

Im Allgemeinen sind Vollmantelschneckenzentrifugen durch eine drehbare Zentrifugentrommel gekennzeichnet, welche einen weitestgehend geschlossenen Trommelmantel mit einer meist waagrecht verlaufenden Rotationsachse bzw. Längsachse aufweist. Die Zentrifugentrommel wird mittels eines Antriebs mit hoher Rotationsgeschwindigkeit gedreht. In die Zentrifugentrommel wird mittels eines meist zentral angeordneten Einlaufrohrs ein zu zentrifugierendes mehrphasiges Gut eingebracht. Das mehrphasige Gut wird dann mit dem Drehen der Zentrifugentrommel einer hohen Zentrifugalkraft unterworfen, wodurch es sich innen am Trommelmantel als Teich anlegt. In dem derart zentrifugierten Gut findet eine Phasentrennung statt, wobei vergleichsweise leichtes Gut im Teich als leichte Phase nach radial innen wandert und vergleichsweise schweres Gut als schwere Phase nach radial außen wandert. Die leichte Phase kann als Fluid radial innen mittels einer Auslassvorrichtung abgeführt werden, während die schwere Phase mittels einer Schnecke aus der Zentrifugentrommel ausgetragen wird.In general, solid bowl screw centrifuges are characterized by a rotatable centrifuge drum, which has a largely closed drum shell with a mostly horizontal axis of rotation or longitudinal axis. The centrifuge drum is rotated at a high rotational speed by means of a drive. A multiphase material to be centrifuged is introduced into the centrifuge drum by means of a mostly centrally arranged inlet tube. The multi-phase material is then subjected to a high centrifugal force by rotating the centrifuge drum, causing it to adhere to the inside Creating a drum jacket as a pond. A phase separation takes place in the material centrifuged in this way, comparatively light material in the pond migrating radially inwards as the light phase and comparatively heavy material migrating radially outwards as the heavy phase. The light phase can be discharged as a fluid radially on the inside by means of an outlet device, while the heavy phase is discharged from the centrifuge drum by means of a screw.

Beispielsweise ist aus der DE 20 2011 110 235 U1 ein an einer Trommel einer Dekanter-Zentrifuge angeordnetes Flüssig-Phase-Auslassanschluss-Bauteil bekannt, welches einen geraden Kanal aufweist. Dieser Kanal bildet eine Strecke aus, welche durch einen Streckenradius beabstandet von einer Längsachse der Dekanter-Zentrifuge angeordnet ist. Der Kanal ist in einem spitzen Winkel relativ zu einer stirnseitigen Trommel-Basisplatte angeordnet, um ein durch eine in der Basisplatte vorhandenen Auslassöffnung gelangendes Gut seitlich der Trommel umzulenken. Hierdurch kann das im Wesentlichen in axialer Richtung aus der Auslassöffnung austretende Gut zum Zwecke einer Energie-Wiedergewinnung entlang des Streckenelements seitlich nach außen abgelenkt werden, bevor es am Ende des geraden Kanals bzw. der Strecke auf Höhe des Streckenradius von dem Flüssig-Phase-Auslassanschluss-Bauteil abgeworfen wird.For example, from the DE 20 2011 110 235 U1 a liquid phase outlet connection component arranged on a drum of a decanter centrifuge is known, which has a straight channel. This channel forms a section which is arranged at a distance from a longitudinal axis of the decanter centrifuge by a section radius. The channel is arranged at an acute angle relative to an end-face drum base plate in order to deflect material to the side of the drum through an outlet opening provided in the base plate. As a result, the material emerging essentially in the axial direction from the outlet opening can be deflected laterally outwards for the purpose of energy recovery along the route element before it is at the end of the straight channel or the route at the level of the route radius from the liquid phase outlet connection - component is dropped.

Aus US 2004 0072667 A1 ist eine Zentrifuge mit einer rotierbaren Trommel bekannt, an deren Trommeldeckel zur Energierückgewinnung mindestens eine Auslassanschlussvorrichtung für flüssige Phase vorgesehen ist. Jede Auslassanschlussvorrichtung umfasst ein Röhrenelement, das mindestens eine oder zwei gebogene Rohrabschnitte bzw. Bögen aufweist. Zwischen den Bögen kann das Röhrenelement im Allgemeinen verschieden gerichtete Rohrabschnitte aufweisen. Der letzte Rohrabschnitt im Anschluss an den letzten Bogen ist immer umfänglich umlaufend entgegen einer Rotationsrichtung der Trommel gerichtet.Out US 2004 0072667 A1 a centrifuge with a rotatable drum is known, on the drum cover of which at least one outlet connection device for liquid phase is provided for energy recovery. Each outlet connection device comprises a tube element which has at least one or two bent tube sections or bends. The tube element can generally have pipe sections of different directions between the arcs. The last pipe section following the last bend is always circumferentially directed against a direction of rotation of the drum.

Aus JP 4 111 97548 A ist ein Fest-Flüssig-Zentrifugenseparator mit einer rotierbaren Trommel und einem zugehörigen Trommeldeckel bekannt. Im Trommeldeckel sind bogenförmige Auslasslöcher vorgesehen, aus denen abgetrenntes Wasser über eine Wehrplatte aus der Trommel austreten kann. Zudem sind viele vom Trommeldeckel abstehende und voneinander in Umfangsrichtung beabstandete Schaufelplatten am radial äußeren Ende des Trommeldeckels angeordnet. Während des Betriebes kollidiert ein Teil des aus den Auslasslöchern austretenden Wassers mit den Schaufelplatten. Damit wird ein Teil der Energie des austretenden Wassers mittels der Schaufelplatten für den Antrieb der Trommel rückgewonnen. Der andere Teil des Wassers fällt ohne Führung und ohne Energierückgewinnung mit entsprechend viel Verwirbelungen nach radial außen ab.Out JP 4 111 97548 A a solid-liquid centrifuge separator with a rotatable drum and an associated drum lid is known. In the drum lid arc-shaped outlet holes are provided, from which separated water can emerge from the drum via a weir plate. In addition, many blade plates protruding from the drum cover and spaced apart from one another in the circumferential direction are arranged at the radially outer end of the drum cover. During operation, part of the water emerging from the outlet holes collides with the blade plates. This means that part of the energy from the escaping water is recovered by means of the scoop plates for driving the drum. The other part of the water falls to the outside radially without guidance and without energy recovery with a corresponding amount of turbulence.

Zugrundeliegende AufgabeUnderlying task

Der Erfindung liegt die Aufgabe zugrunde, gattungsgemäße Auslassvorrichtungen einer Vollmantelschneckenzentrifuge weiterzuentwickeln, um eine effektivere Energierückgewinnung zu erzielen.The invention has for its object to further develop generic outlet devices of a solid bowl centrifuge in order to achieve a more effective energy recovery.

Erfindungsgemäße LösungSolution according to the invention

Diese Aufgabe der Erfindung ist von einer Auslassvorrichtung einer Vollmantelschneckenzentrifuge zum Trennen eines mehrphasigen Guts gelöst, welche an einer Stirnwand einer um eine Längsachse drehenden Zentrifugentrommel an einer in der Stirnwand ausgebildeten Auslassöffnung angeordnet ist, und welche eine Umlenkeinrichtung zum Umlenken eines durch die Auslassöffnung gelangten Fluids des Guts in Richtung des Stirnwandumfangs umfasst, bei welcher die Umlenkeinrichtung ein durch einen Streckenradius von der Längsachse beabstandet angeordnetes Streckenelement mit einer Umlenkstrecke aufweist, entlang welcher das umgelenkte Fluid in Richtung des Stirnwandumfangs leitbar ist, bevor es seitlich von der Auslassvorrichtung abgeworfen wird, wobei die Auslassvorrichtung erfindungsgemäß Führungsmittel umfasst, die stromab hinter der Umlenkstrecke angeordnet sind und mittels welchen das umgelenkte Fluid im Schwerefeld der Vollmantelschneckenzentrifuge vor dem Abwurf von der Auslassvorrichtung auf ein energetisch niedrigeres Lagepotential bringbar ist, wobei die Führungsmittel derart ausgestaltet sind, dass das entlang der Umlenkstrecke geleitete Fluid ausgehend von dem Streckenradius auf einen radial weiter außen liegenden Abwurfradius führbar ist, bevor es von der Auslassvorrichtung abgeworfen wird, wobei die Auslassvorrichtung ein durch einen Wehrradius von der Längsachse beabstandet angeordnetes Wehrelement umfasst, wobei der Abwurfradius der Auslassvorrichtung größer ist als der Wehrradius, wobei über die Umlenkstrecke des Streckenelements hinweg mit dem Wehrelement eine Wehrkante gebildet ist, die den Wehrradius definiert, wobei der Wehrradius dem Streckenradius entspricht. Erfindungsgemäß umfasst die Auslassvorrichtung also Führungsmittel, mittels welchen das umgeleitete Fluid im Schwerefeld der Vollmantelschneckenzentrifuge vor dem Abwurf von der Auslassvorrichtung auf ein energetisch niedrigeres Lagepotential bringbar ist. Hierdurch gelingt es, das umgelenkte Fluid an der Auslassvorrichtung zusätzlich noch zu beschleunigen, bevor es von der Auslassvorrichtung letztendlich abgeworfen wird, wodurch wiederum der Rückstoßeffekt an der Auslassvorrichtung erhöht und hiermit insbesondere die Energieeinsparung zum Antreiben der Zentrifugentrommel verbessert werden kann.This object of the invention is achieved by an outlet device of a solid-bowl screw centrifuge for separating a multiphase material, which is arranged on an end wall of a centrifuge drum rotating about a longitudinal axis at an outlet opening formed in the end wall, and which has a deflection device for deflecting a fluid of the fluid that has passed through the outlet opening Guts in the direction of the end wall circumference, in which the deflection device has a stretch element arranged at a distance from the longitudinal axis with a deflection path along which the deflected fluid can be directed in the direction of the end wall circumference before it is laterally thrown off the outlet device, the outlet device comprises guide means according to the invention, which are arranged downstream behind the deflection section and by means of which the deflected fluid in the gravitational field of the solid-bowl screw centrifuge before being ejected from the outlet device an energetically lower position potential can be brought, the guide means being designed in such a way that the fluid guided along the deflection path can be guided, starting from the path radius, to a radially outer discharge radius before it is thrown off by the outlet device, the outlet device being by a weir radius Weir element arranged at a distance from the longitudinal axis, the discharge radius of the outlet device being greater than the weir radius, a weir edge which defines the weir radius being formed over the deflection path of the track element and defining the weir radius, the weir radius corresponding to the track radius. According to the invention, the outlet device thus comprises guide means by means of which the diverted fluid in the gravitational field of the solid-bowl screw centrifuge can be brought to an energetically lower position potential before being ejected from the outlet device. This makes it possible to additionally accelerate the deflected fluid at the outlet device before it is finally thrown off by the outlet device, which in turn increases the recoil effect on the outlet device and, in particular, can thereby improve the energy saving for driving the centrifuge drum.

Die Wirkung der bis dato bekannten Auslassvorrichtungen beruht in der Regel darauf, das durch die Auslassöffnung gelangte Fluid des in der Zentrifugentrommel befindlichen Guts mit Hilfe der Umlenkeinrichtungen jeweils nur ein einziges Mal in Richtung des Stirnwandumfangs umzulenken. Hierbei hängt die Strömungsgeschwindigkeit des Fluids, welches in Richtung des Stirnwandumfangs geleitet und abgeworfen wird, in einem hohen Maße von der durch die Auslassöffnung geleitete Fluiddurchsatzmenge ab, da bisher eine bewusste, zusätzlich gewollte Beschleunigung des Fluids nicht erfolgte.The effect of the previously known outlet devices is generally based on deflecting the fluid of the material in the centrifuge drum through the outlet opening only once in the direction of the end wall circumference with the aid of the deflection devices. Here, the flow velocity of the fluid, which is directed and thrown off in the direction of the end wall circumference, depends to a large extent on the fluid throughput quantity passed through the outlet opening, since previously there was no deliberate, additionally desired acceleration of the fluid.

Vorliegend gelingt es mit den zusätzlichen Führungsmitteln jedoch, das Fluid zumindest zweimal auf seinem Weg zu einer Abwurfkante derart umzulenken, dass hierdurch der Effekt einer zusätzlichen Beschleunigung erzielt werden kann. Ein erstes Mal wird das Fluid an der Auslassöffnung bzw. kurz dahinter umgelenkt, um das im Wesentlichen in axiale Richtung aus der Zentrifugentrommel drängende Fluid in Richtung des Stirnwandumfangs umzulenken. Ein zweites Mal erfährt das bereits so umgelenkte und an der Auslassvorrichtung weiter in Richtung des Stirnwandumfangs geleitete Fluid eine zusätzliche Richtungsänderung in radialer Richtung der Zentrifugentrommel, wobei das Fluid aufgrund von hierauf wirkenden Fliehkräften beschleunigt wird, bevor es von der Auslassvorrichtung letztendlich abgeworfen wird. Diese zusätzliche Richtungsänderung erfolgt hierbei parallel oder windschief zur Stirnwand.In the present case, however, the additional guide means succeed in deflecting the fluid at least twice on its way to a discharge edge in such a way that the effect of an additional acceleration can be achieved as a result. For the first time, the fluid is deflected at the outlet opening or shortly behind it, in order to deflect the fluid which essentially exits the centrifuge drum in the axial direction in the direction of the end wall circumference. A second time, the fluid that has already been deflected in this way and directed further towards the end wall circumference at the outlet device undergoes an additional change in direction in the radial direction of the centrifuge drum, the fluid being accelerated due to centrifugal forces acting on it before it is finally thrown off by the outlet device. This additional change of direction takes place parallel or skewed to the front wall.

Die Aufgabe der Erfindung wird auch von einem Verfahren zur Energierückgewinnung an einer Vollmantelschneckenzentrifuge zum Trennen eines in einer um eine Längsachse drehenden Zentrifugentrommel befindlichen mehrphasigen Guts gelöst, bei welchem eine Phase des Guts in Form eines Fluids in Richtung der Längsachse durch eine in der Stirnwand der Zentrifugentrommel ausgebildeten Auslassöffnung hindurch gelangt, bei welchem das durch die Auslassöffnung hindurch gelangte Fluid mittels einer Umlenkeinrichtung in Richtung des Stirnwandumfangs umgelenkt wird, und bei welchem das in Richtung des Stirnwandumfangs umgelenkte Fluid entlang einer durch die Umlenkeinrichtung ausgebildeten Umlenkstrecke geleitet wird, bevor es nach dem Verlassen der Umlenkstrecke von der Umlenkeinrichtung seitlich abgeworfen wird, wobei sich das Verfahren dadurch auszeichnet, dass das entlang der Umlenkstrecke geleitete Fluid nach dem Verlassen der Umlenkstrecke im Schwerefeld der Vollmantelschneckenzentrifuge auf ein energetisch niedrigeres Lagepotential gebracht wird, bevor es letztendlich seitlich von der Auslassvorrichtung abgeworfen wird. Hierdurch wird das Fluid nach dem Verlassen der Umlenkstrecke, anstatt abgeworfen zu werden, nochmals radial zur Längsachse beschleunigt, bevor es anschließend von der Auslassvorrichtung abgeworfen wird.The object of the invention is also achieved by a method for energy recovery on a solid-bowl screw centrifuge for separating a multiphase material located in a centrifuge drum rotating about a longitudinal axis, in which a phase of the material in the form of a fluid in the direction of the longitudinal axis through a in the end wall of the centrifuge drum formed outlet opening, in which the fluid passed through the outlet opening is deflected in the direction of the end wall circumference by means of a deflection device, and in which the fluid deflected in the direction of the end wall circumference is guided along a deflection path formed by the deflection device before it leaves the The deflecting section is laterally thrown off by the deflecting device, the method being characterized in that the fluid guided along the deflecting section after leaving the deflecting section in the gravitational field of the solid-bowl screw centrifuge onto an egg n Lower energy potential is brought before it is finally thrown off to the side by the outlet device. As a result, instead of being thrown off, the fluid is accelerated again radially to the longitudinal axis after leaving the deflection section before it is subsequently thrown off by the outlet device.

Der zusätzliche Beschleunigungseffekt wird hauptsächlich durch ein gezieltes Ableiten des Fluids auf einer radial nach außen weisenden Fluidleitkontur der Führungsmittel erreicht, welche sich zwischen der Umlenkstrecke und der Abwurfkante erstreckt. Hierbei wird das Fluid gezielt auf einen größeren Radius geführt. Wird im Schwerefeld der Vollmantelschneckenzentrifuge eine Masse auf einen größeren Radius gebracht, bedeutet dies, dass die Masse auf ein niedrigeres Niveau von potentieller Energie bezogen auf das Zentrifugalfeld ohne Berücksichtigung der damit verbundenen Umfangsgeschwindigkeit gebracht wird.The additional acceleration effect is mainly achieved by a targeted drainage of the fluid on a radially outward-pointing fluid guide contour of the guide means, which extends between the deflection path and the discharge edge. Here, the fluid is directed to a larger radius. If a mass is brought to a larger radius in the gravity field of the solid-bowl screw centrifuge, this means that the mass is brought to a lower level of potential energy in relation to the centrifugal field without taking into account the associated peripheral speed.

Dieser Unterschied an potentieller Energie kann im Sinne der Erfindung in kinetische Energie umgewandelt werden, wie dies vorliegend der Fall ist.This difference in potential energy can be converted in the sense of the invention into kinetic energy, as is the case here.

Die vorliegenden Führungsmittel sind hierzu stromab hinter der eigentlichen Umlenkstrecke angeordnet.For this purpose, the present guide means are arranged downstream behind the actual deflection section.

Und zwar sind die Führungsmittel vorzugsweise derart stromab hinter der eigentlichen Umlenkstrecke angeordnet, dass das bereits umgelenkte Fluid auf dem Weg zum Stirnwandumfang durch eine nochmalige geführte Richtungsänderung nach radial außen zusätzlich beschleunigt wird.Specifically, the guide means are preferably arranged downstream behind the actual deflection section in such a way that the fluid which has already been deflected is additionally accelerated radially outwards on the way to the end wall circumference by a repeated change of direction.

Es versteht sich, dass insbesondere das Streckenelement und die Führungsmittel in vielfältiger Weise realisiert sein können. Konstruktiv besonders einfach können sie in die Auslassvorrichtung integriert werden, wenn sie als ein einteiliges Bauteil, aus welchem die Umlenkeinrichtung zumindest teilweise besteht, hergestellt sind. Die Erfindung ist ferner auch gezielt auf ein Verwenden einer erfindungsgemäßen Auslassvorrichtung an einer Vollmantelschneckenzentrifuge zum Trennen eines mehrphasigen Guts mit einer Zentrifugentrommel gerichtet.It goes without saying that in particular the route element and the guide means can be implemented in a variety of ways. They can be integrated into the outlet device in a structurally particularly simple manner if they are produced as a one-piece component from which the deflection device is at least partially composed. The invention is also specifically aimed at using an outlet device according to the invention on a solid bowl screw centrifuge for separating a multi-phase material with a centrifuge drum.

Bei der Erfindung sind die Führungsmittel derart ausgestaltet, dass das entlang der Umlenkstrecke geleitete Gut ausgehend von dem Streckenradius auf einen radial weiter außen liegenden Abwurfradius führbar ist, bevor es von der Auslassvorrichtung abgeworfen wird. Der Streckenradius und der Abwurfradius erfüllen vorzugsweise die Gleichung: R = r a / 100 n + 1

Figure imgb0001
wobei R = Abwurfradius, r = Streckenradius, n = Anzahl der Auslassbohrungen am zugehörigen Umfang der Stirnwand, a = Vorzugsfaktor. Der Vorzugsfaktor ist vorzugsweise zwischen 1 und 6, bevorzugt zwischen 2 und 5, besonders bevorzugt zwischen 3 und 4 gewählt.In the invention, the guide means are designed in such a way that the material guided along the deflection section can be guided, starting from the section radius, to a radially outer discharge radius before it is thrown off by the outlet device. The distance radius and the throw radius preferably satisfy the equation: R = r a / 100 n + 1
Figure imgb0001
where R = throw radius, r = track radius, n = number of outlet bores on the associated circumference of the end wall, a = preferred factor. The preferred factor is preferably between 1 and 6, preferably between 2 and 5, particularly preferably between 3 and 4.

Die Führungsmittel sind derart radial hinter dem Streckenelement angeordnet, dass das entlang der Strecke geleitete Gut ausgehend von dem durch das Streckenelement definierten Streckenradius auf einen radial weiter außen liegenden Abwurfradius führbar ist, bevor es von der Auslassvorrichtung abgeworfen wird.The guide means are arranged radially behind the route element in such a way that the material guided along the route can be guided, starting from the route radius defined by the route element, to a radially outer throw radius before it is thrown off by the outlet device.

Des Weiteren ist es vorteilhaft, wenn die Führungsmittel eine Beschleunigungsstrecke umfassen, entlang welcher das Fluid zwischen dem Streckenradius und einem Abwurfradius der Auslassvorrichtung beschleunigbar ist. Hierdurch kann die Drehung der Zentrifugentrommel stärker unterstützt werden.Furthermore, it is advantageous if the guide means comprise an acceleration section along which the fluid between the section radius and a discharge radius of the outlet device can be accelerated. In this way, the rotation of the centrifuge drum can be more strongly supported.

Während die Umlenkstrecke primär nur dem Zweck dient, das Fluid in Umfangsrichtung umzulenken, dient die vorliegende Beschleunigungsstrecke primär dazu, das bereits umgelenkte Fluid nochmals zu beschleunigen.While the deflection section primarily serves the purpose of deflecting the fluid in the circumferential direction, the present acceleration section primarily serves to accelerate the already deflected fluid again.

Die Beschleunigungsstrecke ist hierbei derart stromab hinter der eigentlichen Umlenkstrecke angeordnet, dass das bereits umgelenkte Fluid auf dem Weg zum Stirnwandaußenumfang durch eine nochmalige Richtungsänderung zusätzlich beschleunigt wird.The acceleration section is arranged downstream behind the actual deflection section in such a way that the fluid which has already been deflected is additionally accelerated on the way to the outer end wall circumference by a further change in direction.

Vorzugsweise ist die Umlenkeinrichtung so ausgestaltet, dass sich in einem Übergangsbereich, in welchem die Umlenkstrecke in die Beschleunigungsstrecke übergeht, eine Richtung des Verlaufs der Außenkontur der Umlenkeinrichtung ändert.The deflection device is preferably designed such that a direction of the course of the outer contour of the deflection device changes in a transition region in which the deflection section merges into the acceleration section.

Weisen die Führungsmittel eine Abwurfkante auf, welche durch einen Abwurfradius von der Längsachse beabstandet an der Stirnseite angeordnet ist, wobei der Abwurfradius größer als der Streckenradius ist, kann das Gut in Richtung des Stirnwandumfangs weiter beschleunigt werden, bevor es von der Auslassvorrichtung abgeworfen wird. Insbesondere kann hierdurch konstruktiv einfach eine Abwurfkante für das umgelenkte und anschließend beschleunigte Gut bereitgestellt werden, welche radial weiter außen angeordnet ist als die Umlenkstrecke des Streckenelements.If the guide means have a discharge edge which is arranged on the end face at a distance from the longitudinal axis by a throw-off radius, the throw-off radius being greater than the radius of the path, the material can be accelerated further in the direction of the end wall circumference before it is thrown off by the outlet device. In particular, this can provide a drop edge for the redirected and subsequently accelerated material in a structurally simple manner which is arranged radially further outside than the deflection path of the route element.

Umfassen die Führungsmittel ein gekrümmtes Führungselement, welches sich von radial weiter innen nach radial weiter außen erstreckt, kann das in Richtung des Stirnwandumfangs geleitete Gut besonders betriebssicher nach radial weiter außen geführt werden, bevor es von der Auslassvorrichtung abgeworfen wird. Durch das gekrümmte Führungselement erfährt das beschleunigte Gut eine nochmalige Richtungsänderung, um anschließend vorteilhafter von der Auslassvorrichtung abgeworfen werden zu können.If the guide means comprise a curved guide element which extends from radially further inwards to radially further outwards, the material guided in the direction of the end wall periphery can be guided radially further outwards in a particularly reliable manner before it is thrown off by the outlet device. Due to the curved guide element, the accelerated material undergoes another change of direction so that it can then be advantageously thrown off the outlet device.

Ein besonders guter Beschleunigungsweg kann mit Hilfe der Führungsmittel geschaffen werden, wenn die Führungsmittel eine konkav ausgestaltete Führungsfläche umfassen, welche der Längsachse zugewandt ist. Diese Führungsfläche ist hierbei in radialer Richtung konkav ausgeformt. Kumulativ kann sie auch in axialer Richtung konkav ausgeformt sein, um das Fluid besser führen zu können.A particularly good acceleration path can be created with the aid of the guide means if the guide means comprise a concave guide surface which faces the longitudinal axis. This guide surface is concave in the radial direction. Cumulatively, it can also be concave in the axial direction in order to be able to better guide the fluid.

Eine bevorzugte Ausführungsvariante sieht vor, dass die Auslassöffnung auf einem Lochkreis mit einem Lochkreisradius angeordnet ist, wobei ein Abwurfradius der Auslassvorrichtung größer als der Lochkreisradius ist. Hierdurch kann eine Abwurfkante weiter radial außen angeordnet werden, wodurch die Energierückgewinnung weiter verbessert wird.A preferred embodiment variant provides that the outlet opening is arranged on a bolt circle with a bolt circle radius, with a discharge radius of the outlet device being greater than the bolt circle radius. As a result, a discharge edge can be arranged further radially outward, which further improves energy recovery.

Eine sehr vorteilhafte Ausführungsvariante sieht vor, dass die Auslassvorrichtung ein durch einen Wehrradius von der Längsachse beabstandet angeordnetes Wehrelement umfasst, wobei ein Abwurfradius der Auslassvorrichtung größer ist als der Wehrradius.A very advantageous embodiment variant provides that the outlet device comprises a weir element which is arranged at a distance from the longitudinal axis by a weir radius, with a discharge radius of the outlet device being greater than the weir radius.

Insofern ist das Wehrelement radial weiter innen als die Abwurfkante der Auslassvorrichtung angeordnet, so dass das bereits umgelenkte Gut im Sinne der Erfindung weiter beschleunigt werden kann.In this respect, the weir element is arranged radially further inwards than the discharge edge of the outlet device, so that the material which has already been deflected can be further accelerated in the sense of the invention.

Das Wehrelement kann konstruktiv besonders einfach geschaffen sein, wenn es sogleich durch eine Kontur der Umlenkeinrichtung realisiert ist.The weir element can be designed to be particularly simple in terms of construction if it is immediately realized by a contour of the deflection device.

Es kann vorteilhaft sein, wenn das Wehrelement zwischen der Umlenkstrecke des Streckenelements und der Beschleunigungsstrecke der Führungsmittel angeordnet ist.It can be advantageous if the weir element is arranged between the deflection path of the path element and the acceleration path of the guide means.

Bevorzugt sind das Streckenelement, das gekrümmte Führungselement und das Wehrelement einstückig als ein einziges Bauteil der Umlenkeinrichtung realisiert, so dass die Auslassvorrichtung sehr kompakt baut.The route element, the curved guide element and the weir element are preferably realized in one piece as a single component of the deflection device, so that the outlet device is very compact.

Des Weiteren ist es vorteilhaft, wenn die Auslassvorrichtung bezogen auf eine Tangente, welche einen Abwurfradius der Auslassvorrichtung tangiert, einen Abwurfwinkel α > 0° aufweist. Vorzugsweise tangiert die Tangente den Abwurfradius in einem durch den Abwurfradius und der Abwurfkante erzeugten Schnittpunkt.Furthermore, it is advantageous if the outlet device has a discharge angle α> 0 ° with respect to a tangent which affects a discharge radius of the outlet device. The tangent preferably touches the discharge radius at an intersection generated by the discharge radius and the discharge edge.

Aus energetischer Sicht ist zwar ein Abwurfwinkel von 0° -bezogen auf diese Tangente, also ein tangentialer Abwurf in Richtung der an dem Abwurfradius angelehnten Tangente, am effektivsten. Jedoch besteht hierbei die Gefahr, dass Strahlen der, von zwei direkt hintereinander auf dem Lochkreis angeordneten Auslassvorrichtungen, abgeworfenen Fluide miteinander kollidieren. Insofern ist es vorteilhaft, einen Abwurfwinkel α > 0° zu wählen.From an energetic point of view, a discharge angle of 0 ° is most effective in relation to this tangent, that is, a tangential discharge in the direction of the tangent based on the discharge radius. However, there is a risk here that jets of the fluids ejected by two outlet devices arranged directly behind one another on the bolt circle collide with one another. In this respect, it is advantageous to choose a discharge angle α> 0 °.

Weist der Abwurfwinkel α einen Wert zwischen 1° und 30° auf, kann zuverlässig verhindert werden, dass das von der Auslassvorrichtung abgeworfene Fluid mit einem weiteren abgeworfenen Fluid einer anderen an der Stirnwand angeordneten Auslassvorrichtung kollidiert.If the discharge angle α has a value between 1 ° and 30 °, it can be reliably prevented that the fluid jetted from the outlet device collides with another jetted fluid from another outlet device arranged on the end wall.

Weist der Abwurfwinkel α einen alternativen Wert zwischen 3° und 20° auf, kann das von der Auslassvorrichtung abgeworfene Fluid noch betriebssicherer radial nach außen abgeworfen werden.If the discharge angle α has an alternative value between 3 ° and 20 °, the fluid discharged by the outlet device can be discharged radially outwards in an even more reliable manner.

Das Fluid kann im Sinne der Erfindung noch effektiver und zuverlässiger von der Auslassvorrichtung abgeworfen werden, wenn der Abwurfwinkel α einen Wert zwischen 5° und 15° aufweist.For the purposes of the invention, the fluid can be discharged from the outlet device even more effectively and reliably if the discharge angle α has a value between 5 ° and 15 °.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Nachfolgend werden zwei Ausführungsbeispiele von Auslassvorrichtungen an einer Vollmantelschneckenzentrifuge anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:

Fig. 1
eine Frontalansicht einer Stirnwand einer Zentrifugentrommel einer Vollmantelschneckenzentrifuge, wobei an der Stirnwand sechs Auslassvorrichtungen gemäß einer ersten erfindungsgemäßen Ausführungsform angeordnet sind,
Fig. 2
den Schnitt II - II in Fig. 1,
Fig. 3
den Schnitt III - III in Fig. 2 in vergrößertem Maßstab,
Fig. 4
eine Frontalansicht gemäß Fig. 1, wobei an der Stirnwand Auslassvorrichtungen gemäß einer zweiten Ausführungsform angeordnet sind,
Fig. 5
den Schnitt V - V in Fig. 4,
Fig. 6
den Schnitt VI - VI in Fig. 5 in vergrößertem Maßstab, und
Fig. 7
den Schnitt III - III einer Auslassvorrichtung gemäß Fig. 1 in weiter vergrößertem Maßstab.
Two exemplary embodiments of outlet devices on a solid-bowl screw centrifuge are explained in more detail below with reference to the attached schematic drawings. It shows:
Fig. 1
3 shows a frontal view of an end wall of a centrifuge drum of a solid bowl screw centrifuge, six outlet devices according to a first embodiment of the invention being arranged on the end wall,
Fig. 2
the section II - II in Fig. 1 ,
Fig. 3
the section III - III in Fig. 2 on an enlarged scale,
Fig. 4
a frontal view according to Fig. 1 , where outlet devices according to a second embodiment are arranged on the end wall,
Fig. 5
the section V - V in Fig. 4 ,
Fig. 6
the section VI - VI in Fig. 5 on an enlarged scale, and
Fig. 7
the section III - III of an outlet device according to Fig. 1 on a larger scale.

Detaillierte Beschreibung der AusführungsbeispieleDetailed description of the exemplary embodiments

Bei dem in den Fig. 1 bis 3 gezeigten, ersten Ausführungsbeispiel ist eine Mehrzahl an ersten Auslassvorrichtungen 10 (nur exemplarisch beziffert) an einer Stirnwand 12 einer Zentrifugentrommel 14 einer Vollmantelschneckenzentrifuge 16 zum Trennen eines mehrphasigen Guts 18 befestigt. Die Stirnwand 12 bildet hierbei einen axialen Zentrifugentrommeldeckel. Innerhalb dieser Vollmantelschneckenzentrifuge 16 befindet sich eine nicht dargestellte Zentrifugenschnecke. Die Zentrifugentrommel 14 dreht sich in einem angetriebenen Zustand um eine Längsachse 20, welche gleichzeitig die Mittelachse und auch die Drehachse der Zentrifugentrommel 14 darstellt. Das mehrphasige Gut 18 an sich bildet bei hinreichend schneller Drehung der Zentrifugentrommel 14 in Drehrichtung 22 innenseitig an deren Trommelmantel 24 einen Teich bzw. einen Flüssigkeitsring 26 aus. Dabei weist der Teich einen Flüssigkeitspegel bzw. Teichradius 28 auf, der im Wesentlichen vom Durchsatz an zu klärendem Gut 18 in der Zentrifugentrommel 14 abhängig ist. Wird viel zu klärendes Gut 18 in die Zentrifugentrommel 14 pro Zeiteinheit zugeführt, aber nur wenig geklärtes Gut als Fluid 30 (siehe Fig. 3) pro Zeiteinheit abgeführt, so steigt der Flüssigkeitspegel bzw. der zugehörige Teichradius 28 wird kleiner. Wird verhältnismäßig mehr Fluid 30 abgeführt, so sinkt dieser Flüssigkeitspegel. Der Flüssigkeitspegel hängt hierbei natürlich auch von der Menge an pro Zeiteinheit abgeführtem Gut 18 der schweren Phase aus der Zentrifugentrommel 14 ab, was hier aber nicht weiter thematisiert werden soll.In the in the 1 to 3 The first exemplary embodiment shown is a plurality of first outlet devices 10 (numbered only by way of example) on an end wall 12 of a centrifuge drum 14 of a solid-bowl screw centrifuge 16 attached to separate a multi-phase good 18. The end wall 12 here forms an axial centrifuge drum cover. A centrifuge screw (not shown) is located within this solid-bowl screw centrifuge 16. The centrifuge drum 14 rotates in a driven state about a longitudinal axis 20, which simultaneously represents the central axis and also the axis of rotation of the centrifuge drum 14. The multiphase material 18 per se forms a pond or a liquid ring 26 on the inside of its drum jacket 24 when the centrifuge drum 14 rotates sufficiently quickly in the direction of rotation 22. The pond has a liquid level or pond radius 28 which is essentially dependent on the throughput of material 18 to be clarified in the centrifuge drum 14. A lot of material 18 to be clarified is fed into the centrifuge drum 14 per unit of time, but only a little clarified material as fluid 30 (see Fig. 3 ) per unit time, the liquid level increases and the pond radius 28 becomes smaller. If relatively more fluid 30 is removed, this liquid level drops. The liquid level of course also depends on the amount of material 18 of the heavy phase discharged per unit of time from the centrifuge drum 14, which should not be discussed here.

Zum Abführen des Fluids 30 sind in der Stirnwand 12 sechs kreisrunde Auslassöffnungen 32 eingearbeitet, durch welche hindurch das Fluid 30 - bei einem entsprechenden Flüssigkeitspegel innerhalb der Zentrifugentrommel 14 - in axialer Richtung 34 der Längsachse 20 ausgetragen wird. Die kreisrunden Auslassöffnungen 32 dienen somit zum Abführen bzw. Auslassen von geklärtem Gut einer leichteren Phase in Form des Fluids 30 aus der Zentrifugentrommel 14. Die kreisrunden Auslassöffnungen 32 sind hierbei auf einem Lochkreis 36 mit einem Lochkreisradius 38 konzentrisch um die Längsachse 20 herum gleichmäßig beabstandet an der Stirnwand 12 angeordnet. Um nun das durch die kreisrunden Auslassöffnungen 32 hindurchströmende Fluid 30 kontrollierter abführen zu können, ist außen an der Stirnwand 12 vor jeder kreisrunden Auslassöffnung 32 jeweils eine der Auslassvorrichtungen 10 angebracht.To discharge the fluid 30, six circular outlet openings 32 are machined in the end wall 12, through which the fluid 30 is discharged in the axial direction 34 of the longitudinal axis 20 - at a corresponding liquid level within the centrifuge drum 14. The circular outlet openings 32 thus serve for the removal or discharge of clarified material of a lighter phase in the form of the fluid 30 from the centrifuge drum 14. The circular outlet openings 32 are in this case uniformly spaced on a bolt circle 36 with a bolt circle radius 38 around the longitudinal axis 20 the end wall 12 arranged. In order to be able to discharge the fluid 30 flowing through the circular outlet openings 32 in a more controlled manner, one of the outlet devices 10 is attached to the outside of the end wall 12 in front of each circular outlet opening 32.

Jede der sechs Auslassvorrichtungen 10 umfasst eine Umlenkeinrichtung 40 (hier nur exemplarisch beziffert) zum Umlenken des im Wesentlichen axial durch die Auslassöffnung 32 hindurch gelangten Fluids 30, so dass dieses Fluid 30 seitlich in Richtung 42 des Stirnwandumfangs 44 umgelenkt und in Bezug auf die Längsachse 20 radial nach außen geleitet wird, bevor es von der jeweiligen Auslassvorrichtung 10 abgeworfen wird, um hierbei eine Energierückgewinnung zu erzielen. Die sechs Umlenkeinrichtungen 40 sind mit einem gemeinsamen Haltering 46 an der Stirnwand 12 befestigt, wobei jede der Umlenkeinrichtungen 40 mittels zwei jeweils durch den gemeinsamen Haltering 46 gesteckten Schrauben 48 (nur exemplarisch beziffert) an der Stirnwand 12 fest angeschraubt ist.Each of the six outlet devices 10 comprises a deflection device 40 (here numbered only as an example) for deflecting the fluid 30, which has essentially passed axially through the outlet opening 32, so that this fluid 30 is deflected laterally in the direction 42 of the end wall circumference 44 and with respect to the longitudinal axis 20 is directed radially outward before it is thrown off the respective outlet device 10 in order to achieve energy recovery. The six deflecting devices 40 are fastened to the end wall 12 with a common retaining ring 46, each of the deflecting devices 40 being firmly screwed to the end wall 12 by means of two screws 48 (only numbered by way of example) inserted through the common holding ring 46.

Der gemeinsame Haltering 46 sorgt zudem dafür, dass das umzulenkende Fluid 30 nur seitlich in Richtung 42 des Stirnwandumfangs 44 und nicht weiter in axialer Richtung 34 abfließen kann. Insofern bildet der gemeinsame Haltering 46 an jeder der Auslassvorrichtungen 10 ein axiales Prallplattenelement (hier nicht beziffert) der jeweiligen Umlenkeinrichtung 40 derart aus, dass an der jeweiligen Umlenkeinrichtung 40 zwischen der Stirnwand 12 und dem gemeinsamen Haltering 46 ein entsprechender schalenförmiger Leitraum 50 zur Aufnahme des umzulenkenden Fluids 30 realisiert ist.The common retaining ring 46 also ensures that the fluid 30 to be deflected can only flow off laterally in the direction 42 of the end wall circumference 44 and not further in the axial direction 34. In this respect, the common retaining ring 46 on each of the outlet devices 10 forms an axial baffle plate element (not numbered here) of the respective deflection device 40 in such a way that on the respective deflection device 40 between the end wall 12 and the common retaining ring 46 a corresponding bowl-shaped guide space 50 for receiving the deflection element Fluid 30 is realized.

Zum radialen nach außen Leiten des umgelenkten Fluids 30 umfasst die Umlenkeinrichtung 40 des Weiteren ein durch einen Streckenradius 52 von der Längsachse 20 beabstandet angeordnetes Streckenelement 54, welches eine Umlenkstrecke 56 definiert, wobei sich der Streckenradius 52 auf den Abstand zwischen der Umlenkstrecke 56 und der Längsachse 20 bezieht.For guiding the deflected fluid 30 radially outward, the deflection device 40 further comprises a distance element 54 which is arranged at a distance from the longitudinal axis 20 and which defines a deflection path 56, the distance radius 52 being based on the distance between the deflection path 56 and the longitudinal axis 20 relates.

Die Umlenkeinrichtung 40 verkörpert in diesem Ausführungsbeispiel durch eine entsprechende Gestaltung des Streckenelements 54 sogleich ein Wehrelement 58, dessen Wehrkante 60 einen Wehrradius 62 definiert. Insofern ist durch die Geometrie des Streckenelements 54 zugleich der Wehrradius 62 definiert. Über diese Wehrkante 60 gelangt das axial durch die Auslassöffnung 32 hindurch strömende Fluid 30 in den schalenförmigen Leitraum 50, von welchem aus es in Richtung 42 des Stirnwandumfangs 44 umgelenkt und geleitet wird.In this exemplary embodiment, the deflection device 40 immediately embodies a weir element 58, the weir edge 60 of which defines a weir radius 62 by appropriately designing the route element 54. In this respect, the weir radius 62 is also defined by the geometry of the route element 54. The axially flowing through the outlet opening 32 passes through this weir edge 60 Fluid 30 into the bowl-shaped guide space 50, from which it is deflected and directed in the direction 42 of the end wall circumference 44.

Um das entlang der Umlenkstrecke 56 geleitete Fluid 30 vor dem Abwurf von der Auslassvorrichtung 10 weiter zu beschleunigen und hierdurch die Energierückgewinnung effektiver zu gestalten, umfasst jede der Auslassvorrichtungen 10 erfindungsgemäß Führungsmittel 64, mittels welchen das umgelenkte Fluid 30 im Schwerefeld der Vollmantelschneckenzentrifuge 16 vor dem Abwurf von der Auslassvorrichtung 10 auf ein energetisch niedrigeres Lagepotential bringbar ist. Derartige Führungsmittel 64 können in vielfältiger Weise realisiert sein.In order to further accelerate the fluid 30 guided along the deflection path 56 before it is ejected from the outlet device 10 and thereby make the energy recovery more effective, each of the outlet devices 10 according to the invention comprises guide means 64, by means of which the deflected fluid 30 in the gravitational field of the solid bowl screw centrifuge 16 before the ejection can be brought to an energetically lower position potential by the outlet device 10. Such guide means 64 can be implemented in a variety of ways.

In den vorliegenden Ausführungsbeispielen sind die Führungsmittel 64 konstruktiv einfach durch ein gekrümmtes Führungselement 66 verkörpert, welches sich gemäß Pfeilrichtung 68 von radial weiter innen nach radial weiter außen erstreckt. Hierbei ist das gekrümmte Führungselement 66 derart gekrümmt, dass eine hierdurch ausgestaltete Führungsfläche 70 konkav ausgeformt ist. Diese konkav ausgestaltete Führungsfläche 70 ist derart in der jeweiligen Auslassvorrichtung 10 integriert, dass sie der Längsachse 20 zugewandt ist. So kann ein durch die Fliehkräfte nach außen drängendes Fluid 30 besonders vorteilhaft geführt werden.In the present exemplary embodiments, the guide means 64 are embodied in a structurally simple manner by a curved guide element 66 which extends in the direction of the arrow 68 from radially further inwards to radially further outwards. Here, the curved guide element 66 is curved in such a way that a guide surface 70 designed in this way is concave. This concave guide surface 70 is integrated in the respective outlet device 10 in such a way that it faces the longitudinal axis 20. A fluid 30 which is forced outwards by the centrifugal forces can thus be guided particularly advantageously.

Insbesondere ist das gekrümmte Führungselement 66 derart ausgestaltet, dass das entlang der Umlenkstrecke 56 geleitete Fluid 30 ausgehend von dem durch das Streckenelement 54 definierten Streckenradius 52 auf einen radial weiter außen liegenden Abwurfradius 72 führbar ist, bevor es von einer Abwurfkante 74 der jeweiligen Auslassvorrichtung 10 abgeworfen wird. Der Streckenradius 52 und damit auch die Umlenkstrecke 56 sind somit radial weiter innen als die Abwurfkante 74 angeordnet.In particular, the curved guide element 66 is designed in such a way that the fluid 30 guided along the deflection section 56 can be guided, starting from the section radius 52 defined by the section element 54, to a radially outer discharge radius 72 before it is ejected from a discharge edge 74 of the respective outlet device 10 becomes. The section radius 52 and thus also the deflection section 56 are thus arranged radially further inwards than the discharge edge 74.

Das gekrümmte Führungselement 66 gestaltet hierbei eine Beschleunigungsstrecke 76 (siehe insbesondere Fig. 3) aus, mittels welcher das Fluid 30 zwischen der Umlenkstrecke 56 und dem Abwurfradius 72 beschleunigt wird. Diese Beschleunigungsstrecke 76 ist hierbei - in Richtung des Stirnwandumfangs 44 gesehen - derart hinter der Umlenkstrecke 56 des Streckenelements 54 angeordnet, dass das entlang der Umlenkstrecke 56 geleitete Fluid 30 beim Übergang zwischen der Umlenkstrecke 56 und der Beschleunigungsstrecke 76 eine Richtungsänderung in Drehrichtung 22 der Zentrifugentrommel 14 erfährt. Das Fluid 30 kann somit durch Fliehkräfte, welche aufgrund der Drehung der Zentrifugentrommel 14 auf das Fluid 30 wirken, besser beschleunigt werden.The curved guide element 66 here forms an acceleration path 76 (see in particular Fig. 3 ), by means of which the fluid 30 between the deflection section 56 and the discharge radius 72 is accelerated. This acceleration distance 76 is here - viewed in the direction of the end wall circumference 44 - arranged behind the deflection section 56 of the section element 54 such that the fluid 30 guided along the deflection section 56 undergoes a change in direction in the direction of rotation 22 of the centrifuge drum 14 at the transition between the deflection section 56 and the acceleration section 76. The fluid 30 can thus be accelerated better by centrifugal forces which act on the fluid 30 due to the rotation of the centrifuge drum 14.

Vorteilhafterweise wird das umgelenkte Fluid 30 mittels der Beschleunigungsstrecke 76 mindestens noch einmal umgelenkt, nämlich radial nach außen und in einer der Drehrichtung 22 entgegengesetzten Richtung, bevor es von der Auslassvorrichtung 10 abgeworfen wird. Hierzu ist das Führungselement 66 gekrümmt, wie vorstehend bereits beschrieben. Durch das Umlenken des Fluids 30 nach radial außen und in die entgegengesetzte Richtung wird dieses an die gekrümmte Führungsfläche 70 gepresst, so dass sicher gestellt werden kann, dass das Fluid 30 auch erst an der Abwurfkante 74 von der Auslassvorrichtung 10 abgeworfen wird.Advantageously, the deflected fluid 30 is redirected at least once more by means of the acceleration path 76, namely radially outwards and in a direction opposite to the direction of rotation 22 before it is thrown off by the outlet device 10. For this purpose, the guide element 66 is curved, as already described above. By deflecting the fluid 30 radially outward and in the opposite direction, the latter is pressed against the curved guide surface 70, so that it can be ensured that the fluid 30 is only ejected from the outlet device 10 at the discharge edge 74.

Der Abwurf des nochmals beschleunigten Fluids 30 gelingt besonders vorteilhaft mit einem Abwurfwinkel α in einem Abwurfbereich zwischen 5° und 15°, der hier an jedem der Auslassvorrichtungen 10 vorgesehen ist. Der Abwurfwinkel α bezieht sich vorliegend auf eine Tangente 78, welche den Abwurfradius 72 in einem Schnittpunkt 80 des Abwurfradius 72 und der Abwurfkante 74 tangiert. Der Abwurfbereich ist auch abhängig von der Drehzahlgeschwindigkeit der Zentrifugentrommel 14.The fluid 30, which has been accelerated again, can be ejected particularly advantageously with an ejection angle α in a ejection range between 5 ° and 15 °, which is provided here on each of the outlet devices 10. In the present case, the discharge angle α relates to a tangent 78, which affects the discharge radius 72 at an intersection 80 of the discharge radius 72 and the discharge edge 74. The discharge area also depends on the speed of rotation of the centrifuge drum 14.

Insbesondere nach der Darstellung gemäß Fig. 3 ist sehr gut ersichtlich, dass das Fluid 30 nach dessen Umlenkung in Richtung 42 des Stirnwandumfangs 44 in Höhe des Wehrradius 62 die Geschwindigkeit vü besitzt. Durch das Leiten des Fluids 30 bis auf den größeren Abwurfradius 72 befindet sich das Fluid 30 im Schwerefeld der Vollmantelschneckenzentrifuge 16 dort auf einem Niveau mit einer niedrigeren potentiellen Energie. Die dem Fluid 30 auf Höhe des Wehrradius 62 bzw. auf Höhe des Streckenradius 52 noch innewohnende höhere potentielle Energie wurde entlang der Beschleunigungsstrecke 76 der Führungsmittel 64 in kinetische Energie umgewandelt, so dass das Fluid 30 mit der Abwurfgeschwindigkeit va > vü auf dem Abwurfradius 72 von der jeweiligen Auslassvorrichtung 10 abgeworfen wird. Das Fluid 30 wird beim Leiten entlang des gekrümmten Führungselements 66 von dem weiter innen liegenden Wehrradius 62 bzw. dem Streckenradius 52 auf den weiter außen liegenden Abwurfradius 72 geführt.Especially according to the representation according to Fig. 3 it can be seen very clearly that the fluid 30 after its deflection in the direction 42 of the end wall circumference 44 at the height of the weir radius 62 has the velocity vu. By directing the fluid 30 down to the larger discharge radius 72, the fluid 30 in the gravitational field of the solid-bowl screw centrifuge 16 is at a level there with a lower one potential energy. The higher potential energy inherent in the fluid 30 at the height of the weir radius 62 or at the level of the distance radius 52 was converted into kinetic energy along the acceleration path 76 of the guide means 64, so that the fluid 30 with the ejection speed va> vü on the ejection radius 72 of the respective outlet device 10 is dropped. The fluid 30 is guided during the guiding along the curved guide element 66 from the weir radius 62 located further inwards or the radius 52 of the route to the discharge radius 72 located further outside.

Bei dem zweiten, in den Fig. 4 bis 6 gezeigten Ausführungsbeispiel sind alternative Auslassvorrichtungen an der vorstehend beschriebenen Stirnwand 12 verbaut. Insofern sind Komponenten der beiden Ausführungsbeispiele, welche wenigstens im Wesentlichen hinsichtlich ihrer Funktion übereinstimmen, hierbei mit gleichen Bezugszeichen gekennzeichnet, wobei die Komponenten nicht in allen Figuren beziffert und erläutert sein müssen. Hinsichtlich des zweiten Ausführungsbeispiels wird auf die vorstehenden Erläuterungen des ersten Ausführungsbeispiels verwiesen, um auch Wiederholungen zu vermeiden.The second, in the 4 to 6 In the embodiment shown, alternative outlet devices are installed on the end wall 12 described above. In this respect, components of the two exemplary embodiments, which at least essentially correspond in terms of their function, are identified by the same reference numerals, the components need not be numbered and explained in all the figures. With regard to the second exemplary embodiment, reference is made to the above explanations of the first exemplary embodiment in order also to avoid repetitions.

Wie nun gemäß den Darstellungen nach den Fig. 4 bis 6, in welchen die alternativen Auslassvorrichtungen 110 gezeigt sind, gut zu erkennen ist, kann es alternativ günstiger sein, die Umlenkung des Fluids 30 bereits vor der eigentlichen Wehrkante 60 vorzunehmen, anstatt das Fluid 30 auf oder hinter dem Wehrradius 62 umzulenken. Hiermit erfolgt die Umlenkung des Fluids 30 bereits bei einer niedrigen Strömungsgeschwindigkeit vf, wodurch eine Umlenkung des Fluids 30 mit weniger Verlusten durch Turbulenzen erreichbar ist. Beim Überströmen der Wehrkante 60 wird das Fluid 30 dann auf die Geschwindigkeit vü erhöht. Durch das Leiten des Fluids 30 auf den radial weiter außen liegenden Abwurfradius 72 wird analog zu dem in den Fig. 1 bis 3 gezeigten Ausführungsbeispiel und der diesbezüglichen vorigen Beschreibung die Abwurfgeschwindigkeit va erreicht.How now according to the representations after the 4 to 6 , in which the alternative outlet devices 110 are shown, can be clearly seen, it may alternatively be more favorable to deflect the fluid 30 in front of the actual weir edge 60 instead of deflecting the fluid 30 on or behind the weir radius 62. With this, the deflection of the fluid 30 takes place already at a low flow velocity vf, whereby a deflection of the fluid 30 can be achieved with less losses due to turbulence. When flowing over the weir edge 60, the fluid 30 is then increased to the speed vu. By directing the fluid 30 to the radially outer throwing radius 72, analogous to that in FIGS 1 to 3 shown embodiment and the related previous description, the discharge speed va reached.

Bis auf die unterschiedlich ausgebildete Wehrkante 60 und das Streckenelement 54 der alternativen Auslassvorrichtung 110 sind beide Ausführungsbeispiele im Wesentlichen baugleich.Except for the differently designed weir edge 60 and the route element 54 of the alternative outlet device 110, both exemplary embodiments are essentially identical in construction.

Weitere Vorteile hinsichtlich der beiden Auslassvorrichtungen 10 und 110 können erzielt werden, wenn beispielsweise durch eine radial verschiebbar gestaltete Ausführung des Wehrelements 58, etwa mit Hilfe von Exzenterscheiben (hier nicht gezeigt), der Wehrradius 62 variabel eingestellt werden kann.Further advantages with regard to the two outlet devices 10 and 110 can be achieved if, for example, the weir radius 62 can be variably set by a radially displaceable design of the weir element 58, for example with the aid of eccentric discs (not shown here).

Darüber hinaus könnten zwecks einer einfacheren Montierbarkeit der Auslassvorrichtungen 10 bzw. 110 an die Stirnwand 12 die jeweilige Umlenkeinrichtung bzw. das diesbezügliche Streckenelement 54 und/oder die Führungsmittel 64, und der gemeinsame Haltering 46 vor der Montage der jeweiligen Auslassvorrichtung 10 bzw. 110 fest miteinander verbunden werden.In addition, in order to make it easier to mount the outlet devices 10 and 110 on the end wall 12, the respective deflection device or the relevant route element 54 and / or the guide means 64 and the common retaining ring 46 could be firmly attached to one another before the respective outlet device 10 or 110 was installed get connected.

Je nach der bevorzugten Ausführung kann die effektive Wehrkante 60 in einer zur Stirnwand 12 parallelen Ebene liegen (siehe hierzu erstes Ausführungsbeispiel, Fig. 1 bis 3), in einer Ebene, welche senkrecht zur Stirnwand 12 angeordnet ist (siehe hierzu zweites Ausführungsbeispiel, Fig. 4 bis 6) oder in einem Winkel zwischen 0° und 90° angestellt sein.Depending on the preferred embodiment, the effective weir edge 60 can lie in a plane parallel to the end wall 12 (see first exemplary embodiment, 1 to 3 ), in a plane which is arranged perpendicular to the end wall 12 (see second exemplary embodiment, 4 to 6 ) or at an angle between 0 ° and 90 °.

An der in Fig. 7 veranschaulichten Auslassvorrichtung 10 ist zu erkennen, wie diese vorzugsweise im Detail gestaltet ist. Die Auslassvorrichtung 10 ist mit der Umlenkeinrichtung 40 und dem plattenförmigen Wehrelement 58 ausgebildet, das mit den Schrauben 48 ortsfest in Bohrungen des Wehrelements 58 oder verstellbar in Langlöchern des Wehrelements 58 an der zugehörigen Stirnwand 12 der Zentrifugentrommel 14 angebracht ist. Die Zentrifugentrommel 14 dreht sich dabei in Drehrichtung 22. Über die Umlenkstrecke 56 des Streckenelements 54 hinweg ist mit dem Wehrelement 58 die Wehrkante 60 gebildet, die dabei den Wehrradius 62 definiert. Der Wehrradius 62 entspricht vorliegend dem Streckenradius 52, wobei der Streckenradius 52 vorteilhaft auch geringfügig größer als der Wehrradius 62 sein kann, so dass das geklärte Gut bzw. Fluid die Wehrkante 60 in Gestalt einer kleinen Hürde bzw. eines Hügels überströmt. An das Streckenelement 54 schließt sich entgegen der Drehrichtung 22 das Führungsmittel 64 mit seinem gekrümmten Führungselement 66 an. Das gekrümmte Führungselement 66 weist am Übergang zur Umlenkstrecke 56 einen konvexen Abschnitt auf, der mit einem Radius r1 gebildet ist. An diesen schließt sich die Führungsfläche 70 an, die als konkaver Abschnitt mit einem Radius r2 gestaltet ist. Die beiden Radien r1 und r2 weisen vorzugsweise ein Verhältnis r1 : r2 von 1 : 1,5 bis 1 : 10, bevorzugt von 1 : 2 bis 1 : 6, besonders bevorzugt von 1 : 2,5 bis 1 : 3,5 auf.At the in Fig. 7 illustrated outlet device 10 can be seen how it is preferably designed in detail. The outlet device 10 is formed with the deflection device 40 and the plate-shaped weir element 58, which is mounted with the screws 48 in a fixed manner in bores of the weir element 58 or adjustable in elongated holes of the weir element 58 on the associated end wall 12 of the centrifuge drum 14. The centrifuge drum 14 rotates in the direction of rotation 22. The weir edge 60, which defines the weir radius 62, is formed with the weir element 58 over the deflection section 56 of the section element 54. In the present case, the weir radius 62 corresponds to the line radius 52, the line radius 52 advantageously also being slightly larger than the weir radius 62 can be, so that the clarified material or fluid flows over the weir edge 60 in the form of a small hurdle or hill. The guide element 64, with its curved guide element 66, adjoins the route element 54 counter to the direction of rotation 22. The curved guide element 66 has a convex section at the transition to the deflection section 56, which is formed with a radius r1. This is followed by the guide surface 70, which is designed as a concave section with a radius r2. The two radii r1 and r2 preferably have a ratio r1: r2 of 1: 1.5 to 1:10, preferably 1: 2 to 1: 6, particularly preferably 1: 2.5 to 1: 3.5.

BezugszeichenlisteReference list

1010th
AuslassvorrichtungExhaust device
1212th
StirnwandFront wall
1414
ZentrifugentrommelCentrifuge drum
1616
VollmantelschneckenzentrifugeSolid bowl screw centrifuge
1818th
mehrphasiges Gutmulti-phase good
2020
LängsachseLongitudinal axis
2222
DrehrichtungDirection of rotation
2424th
TrommelmantelDrum jacket
2626
FlüssigkeitsringLiquid ring
2828
Teichradius bzw. FlüssigkeitspegelPond radius or liquid level
3030th
FluidFluid
3232
AuslassöffnungOutlet opening
3434
axiale Richtungaxial direction
3636
LochkreisBolt circle
3838
LochkreisradiusPitch circle radius
4040
UmlenkeinrichtungDeflection device
4242
Richtungdirection
4444
StirnwandumfangEnd wall circumference
4646
HalteringRetaining ring
4848
SchraubenScrews
5050
LeitraumControl room
5252
StreckenradiusLine radius
5454
StreckenelementRoute element
5656
UmlenkstreckeDeflection path
5858
WehrelementWeir element
6060
WehrkanteWeir edge
6262
WehrradiusWeir radius
6464
FührungsmittelLeadership resources
6666
gekrümmtes Führungselementcurved guide element
6868
PfeilrichtungArrow direction
7070
FührungsflächeLeadership area
7272
AbwurfradiusThrowing radius
7474
AbwurfkanteDischarge edge
7676
BeschleunigungsstreckeAcceleration distance
7878
Tangentetangent
8080
SchnittpunktIntersection
110110
alternative Auslassvorrichtungalternative outlet device
r1r1
Radiusradius
r2r2
Radiusradius

Claims (8)

  1. An outlet device (10; 110) of a solid bowl screw centrifuge (16) for separating a multi-phase material (18), which outlet device is arranged on an end wall (12) of a centrifuge drum (14), which rotates about a longitudinal axis (20), at an outlet opening (32) arranged in the end wall (12), and which comprises a deflecting apparatus (4) for deflecting a fluid (30) of the material (18) that has passed through the outlet opening (32) in the direction (42) toward the end wall circumference (44), in which the deflecting apparatus (40) has a distance element (54) having a deflecting distance (56), which distance element is arranged to be spaced from the longitudinal axis (20) by a distance radius (52), along which deflecting distance the deflected fluid (30) can be conducted in the direction toward the end wall circumference (44) before being thrown off laterally by the outlet device (10; 110),
    wherein the outlet device (10; 110) comprises guiding means (64) arranged downstream behind the deflecting distance (56), and by means of which the deflected fluid (30) can be brought to an energetically lower positional potential in the gravitation field of the solid bowl screw centrifuge (16) before being thrown off by the outlet device (10; 110),
    wherein the guiding means (64) are configured such that the fluid (30) conducted along the deflecting distance (56) can be guided starting from the distance radius (52) to a throw-off radius (72) situated radially further outward, before being thrown off by the outlet device (10; 110),
    wherein the outlet device (10; 110) comprises a weir element (58) arranged to be spaced from the longitudinal axis (20) by a weir radius (62), wherein the throw-off radius (72) of the outlet device (10; 110) is larger than the weir radius (62),
    wherein a weir edge (60) is formed by means of the weir element (58) over the entire deflecting distance (56) of the distance element (54), which weir edge defines the weir radius (62), wherein the weir radius (62) corresponds to the distance radius (52).
  2. The outlet device (10; 110) according to claim 1,
    characterized in that the guiding means (64) comprise an accelerating distance (76) along which the fluid (30) can be accelerated between the distance radius (52) and the throw-off radius (72) of the outlet device (10; 110).
  3. The outlet device (10; 110) according to any one of claims 1 to 2,
    characterized in that the guiding means (64) have a throw-off edge (74), which is arranged on the end wall (12) to be spaced from the longitudinal axis (20) by a throw-off radius (72), wherein the throw-off radius (72) is larger than the distance radius (52).
  4. The outlet device (10; 110) according to any one of claims 1 to 3,
    characterized in that the guiding means (64) comprise a curved guiding element (66) extending from radially further inward to radially further outward.
  5. The outlet device (10; 110) according to any one of claims 1 to 4,
    characterized in that the guiding means (64) comprise a guiding surface (70) configured to be concave, which is facing the longitudinal axis (20).
  6. The outlet device (10; 110) according to any one of claims 1 to 5,
    characterized in that the outlet opening (32) is arranged on a hole circle (36) having a hole circle radius (38), wherein a throw-off radius (72) of the outlet device (10; 110) is larger than the hole circle radius (38).
  7. The outlet device (10; 110) according to any one of claims 1 to 6,
    characterized in that the outlet device (10; 110), relative to a tangent (78) being tangent to a throw-off radius (72) of the outlet device (10; 110), has a throw-off angle of α > 0°, wherein the throw-off angle α has a value of between 1° and 30°, preferably between 3° and 20°, or particularly preferred between 5° and 15°.
  8. Use of an outlet device (10; 110) according to any one of the preceding claims on a solid bowl screw centrifuge (16) for separating a multi-phase material (18) by means of a centrifuge drum (14).
EP15157303.7A 2014-03-27 2015-03-03 Outlet device of a solid bowl worm centrifuge Active EP2923769B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014104296.4A DE102014104296A1 (en) 2014-03-27 2014-03-27 Outlet device of a solid bowl screw centrifuge

Publications (2)

Publication Number Publication Date
EP2923769A1 EP2923769A1 (en) 2015-09-30
EP2923769B1 true EP2923769B1 (en) 2020-07-29

Family

ID=52596411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15157303.7A Active EP2923769B1 (en) 2014-03-27 2015-03-03 Outlet device of a solid bowl worm centrifuge

Country Status (4)

Country Link
US (1) US10265704B2 (en)
EP (1) EP2923769B1 (en)
DE (1) DE102014104296A1 (en)
DK (1) DK2923769T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2331264B1 (en) * 2008-08-15 2017-05-03 M-I Llc Centrifuge
DE102012106226A1 (en) * 2012-07-11 2014-01-16 Gea Mechanical Equipment Gmbh Solid bowl centrifuge with overflow weir
JP5220950B1 (en) * 2012-11-02 2013-06-26 巴工業株式会社 Centrifugal separator with separation liquid injection nozzle
DE102013001436A1 (en) * 2013-01-29 2014-07-31 Flottweg Se Solid bowl centrifuge with a weir edge
DE102014104296A1 (en) * 2014-03-27 2015-10-01 Flottweg Se Outlet device of a solid bowl screw centrifuge

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335846A (en) * 1981-01-15 1982-06-22 Pennwalt Corporation Three-phase decanter
JP3543597B2 (en) * 1997-12-22 2004-07-14 株式会社クボタ Separation water discharge device in horizontal centrifuge
JPH11197548A (en) * 1998-01-13 1999-07-27 Kubota Corp Discharge device of separated water in a horizontal type centrifugal separator
JPH11197547A (en) * 1998-01-13 1999-07-27 Kubota Corp Device of discharging separated water in a horizontal type centrifugal separator
US7022061B2 (en) * 2002-10-15 2006-04-04 Andritz Ag Centrifuge discharge port with power recovery
US20040072668A1 (en) * 2002-10-15 2004-04-15 Baker Hughes Incorporated Liquid phase discharge port incorporating chamber nozzle device for centrifuge
EP2331264B1 (en) * 2008-08-15 2017-05-03 M-I Llc Centrifuge
ES2606134T3 (en) * 2011-07-29 2017-03-22 Andritz S.A.S. Centrifuge and centrifugal discharge orifice member for power reduction
DE202011110235U1 (en) 2011-07-29 2013-02-22 Andritz S.A.S. Centrifuge and outlet connection component of a power reduction centrifuge
DE102012106226A1 (en) * 2012-07-11 2014-01-16 Gea Mechanical Equipment Gmbh Solid bowl centrifuge with overflow weir
DE102012014563B4 (en) * 2012-07-23 2014-12-11 Flottweg Se Solid bowl screw centrifuge with an energy recovery device
DE102013001436A1 (en) * 2013-01-29 2014-07-31 Flottweg Se Solid bowl centrifuge with a weir edge
DE102014101205B4 (en) * 2014-01-31 2021-08-05 Flottweg Se Outlet device of a solid bowl screw centrifuge
DE102014104296A1 (en) * 2014-03-27 2015-10-01 Flottweg Se Outlet device of a solid bowl screw centrifuge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2923769A1 (en) 2015-09-30
US10265704B2 (en) 2019-04-23
DK2923769T3 (en) 2020-10-19
DE102014104296A1 (en) 2015-10-01
US20150273482A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
EP2923769B1 (en) Outlet device of a solid bowl worm centrifuge
EP1943022B1 (en) Stirrer mill
DE60128493T2 (en) Feed screw for a centrifuge
DE2549314A1 (en) DECANTING CENTRIFUGE
EP2950932B1 (en) Solid-wall screw centrifuge having a weir edge
DE102014101205B4 (en) Outlet device of a solid bowl screw centrifuge
EP0596052B1 (en) Method and inlet device for feeding flat sand traps and settling tanks/secondary settler
EP2872256B1 (en) Solid-bowl screw centrifuge with overflow weir
DE102012014563B4 (en) Solid bowl screw centrifuge with an energy recovery device
EP2140920B1 (en) Twisting element, inlet valve, device and method of removing gas from fluids
DE102006053491A1 (en) Centrifuge, in particular separator, with solids outlet nozzles
EP3618968A1 (en) Decanter centrifuge
EP2789395B2 (en) Solid bowl screw centrifuge with an energy recovery device
DE102012004544B4 (en) Drum centrifuge with an inlet accelerator
EP2551019B1 (en) Solid bowl screw centrifuge with a weir edge
EP2551020A1 (en) Inlet device of a centrifuge
DE202011110235U1 (en) Centrifuge and outlet connection component of a power reduction centrifuge
DE102009038743A1 (en) Centripetal pump for centrifuge, particularly for separator, is provided with disk-shaped base section and tubular shank, where base section extends to inner side of centrifuge drainage channel
DE102017130904B4 (en) Outlet device of a solid bowl screw centrifuge with a deflection chute
DE398102C (en) Device for separating mixtures of solid and liquid components, in particular sugar crystals and mother liquor
DE102012102478A1 (en) Solid bowl centrifuge
WO2021122878A1 (en) Inlet region of a centrifuge screw, and solid bowl centrifuge
EP3181231B1 (en) Drum lid of a solid bowl screw centrifuge
DE2751460A1 (en) Material separation by flotation - using fluid ring rotating in centrifugal field inside stationary vessel
DE2624506A1 (en) Vertical sludge thickener tank - with upper cylindrical and lower paraboloid part and worm discharge at bottom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160324

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190724

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013085

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1295173

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201015

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013085

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210303

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 9

Ref country code: DK

Payment date: 20230323

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230210

Year of fee payment: 9

Ref country code: SE

Payment date: 20230317

Year of fee payment: 9

Ref country code: IT

Payment date: 20230321

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 10