EP2917481B1 - Appareil de télémétrie électromagnétique de fond de puits - Google Patents

Appareil de télémétrie électromagnétique de fond de puits Download PDF

Info

Publication number
EP2917481B1
EP2917481B1 EP13854109.9A EP13854109A EP2917481B1 EP 2917481 B1 EP2917481 B1 EP 2917481B1 EP 13854109 A EP13854109 A EP 13854109A EP 2917481 B1 EP2917481 B1 EP 2917481B1
Authority
EP
European Patent Office
Prior art keywords
electrically
probe
gap sub
insulating layer
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13854109.9A
Other languages
German (de)
English (en)
Other versions
EP2917481A1 (fr
EP2917481A4 (fr
Inventor
Aaron W. LOGAN
Patrick R. DERKACZ
Justin C. LOGAN
David A. Switzer
Jili LIU (Jerry)
Mojtaba Kazemi Miraki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evolution Engineering Inc
Original Assignee
Evolution Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evolution Engineering Inc filed Critical Evolution Engineering Inc
Publication of EP2917481A1 publication Critical patent/EP2917481A1/fr
Publication of EP2917481A4 publication Critical patent/EP2917481A4/fr
Application granted granted Critical
Publication of EP2917481B1 publication Critical patent/EP2917481B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Definitions

  • the present invention relates to a probe for subsurface drilling and a corresponding subsurface drilling method.
  • US 2005/0167098 discloses a gap collar for an electromagnetic communication unit of a downhole tool positioned in a wellbore.
  • the downhole tool communicates with a surface unit via an electromagnetic field generated by the electromagnetic communication unit.
  • the gap collar includes a first collar having a first end connector and a second collar having a second end connector matingly connectable to the first end connector.
  • the gap collar further includes a non-conductive insulation coating disposed on the first and/or second end connectors, and a non-conductive insulation molding positioned about an inner and/or outer surface of the collars.
  • the insulation molding molding ly conforms to the shape collars.
  • the connectors are provided with mated threads modified to receive the insulation coating. Measurements taken by the downhole tool may be stored in memory, and transmitted to the surface unit via the electromagnetic field.
  • This application relates lo subsurface drilling, specifically to apparatus for telemetry of information from downhole locations.
  • Embodiments are applicable to drilling wells for recovering hydrocarbons.
  • Recovering hydrocarbons from subterranean zones relies on the process of drilling wellbores.
  • Drilling fluid usually in the form of a drilling "mud" is typically pumped through die drill string. The drilling fluid cools and lubricates the drill bit and also carries cuttings back to the surface. Drilling fluid may also be used to help control bottom hole pressure to inhibit hydrocarbon influx from the formation into the wellbore and potential blow out at surface.
  • Bottom hole assembly is the name given to the equipment at the terminal and of a drill string.
  • a BHA may comprise elements such as:
  • Telemetry information can be invaluable for efficient drilling operations.
  • telemetry information may be used by a drill rig crew to make decisions about controlling and steering the drill bit to optimize the drilling speed and trajectory based on numerous factors, including legal boundaries, locations of existing wells, formation properties, hydrocarbon size and location, etc.
  • a crew may make intentional deviations from the planned path as necessary based on information gathered from downhole sensors and transmitted to the surface by telemetry during the drilling process. The ability to obtain real time data allows for relatively more economical and more efficient drilling operations.
  • Various techniques have been used to transmit information from a location in a bore hole to the surface. These include transmitting information by generating vibrations in fluid in the bore hole (e.g. acoustic telemetry or mud pulse telemetry) and transmitting information by way of electromagnetic signals that propagate at least in part through the earth (EM telemetry).
  • EM telemetry electromagnetic signals that propagate at least in part through the earth
  • Other telemetry systems use hardwired drill pipe or fibre optic cable to carry data to the surface.
  • a typical arrangement for electromagnetic telemetry uses parts of the drill string as an antenna.
  • the drill string may be divided into two conductive sections by including an insulating joint or connector (a "gap sub") in the drill string.
  • the gap sub is typically placed within a bottom hole assembly such that metallic drill pipe in the drill string above the BHA serves as one antenna element and metallic sections in the BHA serve as another antenna element.
  • Electromagnetic telemetry signals can then be transmitted by applying electrical signals between the two antenna elements.
  • the signals typically comprise very low frequency AC signals applied in a manner that codes information for transmission to the surface.
  • the electromagnetic signals may be detected at the surface, for example by measuring electrical potential differences between the drill string and one or more ground rods.
  • a challenge with EM telemetry is that the generated signals are significantly attenuated as they propagate to the surface. Further, the electrical power available to generate EM signals may be provided by batteries or another power source that has limited capacity. Therefore, it is desirable to provide a system in which EM signals are generated efficiently.
  • the gap sub is an important factor in an EM telemetry system.
  • the gap sub must provide electrical isolation between two parts of the drill string as well as withstand the extreme mechanical loading induced during drilling and the high differential pressures that occur between the center and exterior of the drill pipe.
  • Drill string components are typically made from high strength, ductile metal alloys in order to handle the loading without failure.
  • Most electrically-insulating materials suitable for electrically isolating different parts of a gap sub are weaker than metals (e.g. rubber, plastic, epoxy) or quite brittle (ceramics). This makes it difficult to design a gap sub that is both configured to provide efficient transmission of EM telemetry signals and has the mechanical properties required of a link in the drill string.
  • the invention has several aspects.
  • One aspect provides EM telemetry apparatus for downhole applications.
  • Another aspect provides methods for subsurface drilling.
  • the present invention provides a probe for use in subsurface drilling as defined in independent claim 1.
  • the probe comprises an elongated metallic housing.
  • the housing encloses electronics, including a telemetry signal generator.
  • the housing comprises first and second electrical contacts spaced apart longitudinally on the outside of the housing and an electrically-insulating gap comprising an electrically-insulating material providing electrical isolation between first and second parts of the metallic housing.
  • the gap is located between the first and second electrical contacts.
  • the probe also comprises an electrically-insulating layer on an outside surface of the metallic housing.
  • the electrically insulating layer at least partially covers the electrically-insulating gap and extends continuously to cover an outside surface of the metallic housing on at least one side of the gap. In some embodiments the covering extends for a distance of at least 1 meter.
  • the probe is combined with a gap sub.
  • the gap sub (which may comprise one component or a plurality of separable components comprises an electrically- conducting uphole part comprising an uphole coupling for coupling into a drill string, an electrically-conducting downhole pan comprising a downhole coupling for coupling into the drill string, a bore extending through the gap sub from the uphole coupling to the downhole coupling and an electrically-insulating gap portion electrically isolating the uphole part of the gap sub from the downhole part of the gap sub.
  • the 10 probe is located within the bore of the gap sub and die first electrical contact is in electrical contact with the uphole part of the gap sub and the second electrical contact is in electrical contact with the downhole part of the gap sub.
  • a method according to the invention provides a subsurface drilling method performed using a drill string comprising a gap sub and an electronics package located in a bore of the gap sub as defined in independent claim 16.
  • the electronics package comprises electrical contacts that are in electrical contact with electrically-conductive parts of the gap sub.
  • the method comprises passing a drilling fluid down a bore of the drill string and, at the location of the electronics package, channeling the drilling fluid into a channel that is electrically insulated from both the electrically conductive parts of the gap sub and electrically conductive parts of the housing of the electronics package.
  • FIG 1 shows schematically an example drilling operation.
  • a drill rig 10 drives a drill string 12 which includes sections of drill pipe that extend to a drill bit 14.
  • the illustrated drill rig 10 includes a derrick 10A, a rig floor 10B and draw works 10C for supporting the drill string.
  • Drill bit 14 is larger in diameter than the drill string above the drill bit.
  • An annular region 15 surrounding the drill string is typically filled with drilling fluid. The drilling fluid is pumped through a bore in the drill string to the drill bit and returns to the surface through annular region 15 carrying cuttings from the drilling operation.
  • a casing 16 may be made in the well bore.
  • a blow out preventer 17 is supported at a top end of the casing.
  • the drill rig illustrated in Figure 1 is an example only. The methods and apparatus described herein are not specific to any particular type of drill rig.
  • Drill string 12 includes a gap sub 20.
  • An EM signal generator 18 located inside the drill string (for example in an electronics probe contained within the bore of the drill string) is electrically connected across the electrically-insulating gap of the gap sub 20.
  • the signals from the EM signal generator result in electrical currents 19A and electric fields 19B that are detectable at the surface.
  • a signal receiver 13 is connected by signal cables 13A to measure potential differences between electrical grounding stakes 13B and the top end of drill string 12.
  • a display 11 may be connected to display data received by the signal receiver 13.
  • FIG. 2 shows an example arrangement of a gap sub 20.
  • Gap sub 20 has an electrically-conducting uphole portion 20A and an electrically conducting downhole portion 20B separated by gap 20C filled with an electrically-insulating material.
  • Couplings 21 for coupling to adjacent elements of the drill string are provided at the uphole and downhole ends of gap sub 20.
  • An electronics package 22 comprising an EM telemetry signal generator (not shown in Figure 2 ) is supported in a bore 20D of gap sub 20.
  • Electronics package 22 has a metal housing 23 comprising first and second parts 23A and 23B that are electrically insulated from one another by an electrically-insulating gap 23C.
  • First and second electrodes 24A and 24B are connected to the telemetry signal generator and are respectively in contact with the uphole portion 20A and the downhole portion 20B of gap sub 20.
  • Electrode 24A may be, but is not necessarily, in electrical contact with first part 23A of the housing of electronics package 22.
  • Electrode 24B may be, but is not necessarily in electrical contact with second part 23B of the housing of electronics package 22.
  • An electrically-insulating layer 25 at least partially covers electrically-insulating gap 23C of electronics package 22. Electrically insulating layer 25 extends over the outside surface of electronics package 22 and continuously covers the outside surface of conductive housing 23 of electronics package 22 for a distance beyond electrically-insulating gap 23C on one or both sides of electrically-insulating gap 23C. In some embodiments the length of continuous coverage of electrically-insulating layer 25 is at least 1 meter and preferably at least 1 1 ⁇ 2 meters or 2 meters. In some example embodiments the length of continuous coverage of electrically-insulating layer 25 is 3 to 4 meters.
  • electrically-insulating layer 25 continuously covers at least 60% or 70% or 80% of that portion of the outside surface of electronics package 22 that lies between electrodes 24A and 24B. In some embodiments electrically insulating layer 25 continuously covers substantially all of that portion of the outside surface of electronics package 22 that lies between electrodes 24A and 24B. Here, 'substantially all' means at least 95%.
  • electrically-insulating layer 25 comprises a coating applied to electronics package 22, a sleeve or tube extending around electronics package 22, or the like.
  • the material of layer 25 may be any electrically insulating material suitable for exposure to downhole conditions. Some non-limiting examples are suitable thermoplastics, epoxies, ceramics, elastomeric polymers, and rubber.
  • Layer 25 may comprise a coating that is applied to, or bonded to electronics package 22 or a pre-formed component (formed e.g. by extrusion, injection molding, or the like which is subsequently attached to, affixed around, or supported around electronics package 22.
  • the material of layer 25 should be capable of withstanding downhole conditions without degradation.
  • the ideal material can withstand temperature of up to at least 150C (preferably 175C or 200C or more), is chemically resistant or inert to any drilling fluid to which it will be exposed, does not absorb fluid to any significant degree and resists erosion by drilling fluid.
  • An example of a suitable material is PET (polyethylene terephthalate) or PEEK (polyether ether ketone).
  • a second electrically-insulating layer 26 is provided between electronics package 22 and the inner surfaces of the electrically-conducting uphole and/or downhole parts 20A and 20B of gap sub 20.
  • Electrically insulating layer 26 extends to at least partially cover the inner side of electrically-insulating gap 20C and extends continuously to cover electrically-conductive parts of the bore wall on at least one side of electrically-insulating gap 20C.
  • electrically insulating layer 26 continuously covers a part of the bore wall that includes the inner side of electrically-insulating gap 20C and extends continuously to cover parts of both uphole and downhole parts 20A and 20B of gap sub 20.
  • electrically insulating layer 26 comprises a coating applied to the inside of gap sub 20, a sleeve or tube extending around the inside of gap sub 20, or the like.
  • the material of layer 26 may be any electrically insulating material suitable for exposure to downhole conditions.
  • Some non-limiting examples are suitable thermoplastics, epoxies, ceramics, elastomeric polymers, and rubber.
  • Layer 26 may comprise a coating that is applied to, formed on or bonded to the inner wall of gap sub 20 or a pre-formed component (formed e.g. by extrusion, injection molding, or the like) which is subsequently attached to, affixed around, supported around the inside of the bore of gap sub 20.
  • a suitable material is PET (polyethylene terephthalate) or PEEK (polyether ether ketone).
  • the inventors have determined that low impedance paths within the bore of a gap sub can provide a significant source of inefficiency in the transmission of EM telemetry signals.
  • the provision of electrically insulating layer 25, especially in combination with the provision of electrically insulating layer 26 has been found to dramatically reduce losses arising from conduction currents within the bore of the gap sub.
  • electrically-insulating layers 25 and 26 lining electrically-conductive surfaces within bore 27, the shortest path through the fluid in bore 27 electrically connecting parts 20A and 20B of gap sub 20 is at least the length of the shorter one of electrically-insulating layers 25 and 26.
  • Figures 3A to 3D illustrate possible electrical conduction paths through which current originating from electrodes 24A and 24B could pass. It can be seen that all of these possible electrical conduction paths are blocked by at least one of electrically-insulating layer 25, electrically-insulating layer 26, electrically-insulating gap 23C, and electrically-insulating gap 20C.
  • insulating layers 25 and 26 should be sufficient to raise the impedance of the conductive paths through the bore fluid to a desired degree. Providing electrically insulating layers 25 and 26 that are at least approximately 2 meters (6 feet) long has been shown to reduce power lost as a result of current flowing inside the borehole by 90% or more in some cases.
  • insulating layers 25 and 26 are at least 1 meter in length (although they could be shorter in some embodiments). In some embodiments insulating layer 26 extends for a length that is at least 75% of the length of electrically insulating layer 25. In preferred embodiments, electrically insulating layer 26 is at least as long as electrically insulating layer 25. In some embodiments, electrically insulating layer 26 covers substantially the entire inside of that portion of the bore of gap sub 20 lying between electrodes 24A and 24B.
  • FIG 4 illustrates schematically an equivalent electrical circuit for the telemetry signal generator and gap sub 20 (neglecting capacitive and inductive effects).
  • Resistor R IN represents the available current paths within the bore 20D of the gap sub 20 and resistor R OUT represents the available current paths external to the gap sub 20.
  • Dual non-conductive layers 25 and 26 provide an effectively large internal isolation path (a large value for R IN ) thus increasing the electrical efficiency of the gap sub 20 EM telemetry by providing an internal resistance (R IN ) between antenna elements of the gap sub 20 that is large compared to the resistance of the external gap (R OUT ).
  • Another advantage of providing non-conductive layers on both the inner surface of gap sub 20 and the outer surface of electronics package 22 is that layers 25 and 26 prevent conductive outer surfaces of electronics package 22 from making electrical contact with inner surfaces of gap sub 20 as might possibly occur in cases where the electronics package and gap sub are subjected to high shocks and/or vibration. Such contact could damage a telemetry signal generator (e.g. by shorting its output) and/or interfere with telemetry of downhole information.
  • a centralizer may optionally be provided to maintain electronics package 22 central in bore 20D of gap sub 20.
  • Various centralizer designs are used. Any suitable centralizer may be used.
  • one or both of layers 25 and 26 is integrated with a centralizer.
  • centralizing members such as longitudinally-extending ridges or bumps or other protrusions may be provided on one or both of layers 25 and 26 to maintain electronics package 22 centered in the bore of gap sub 20.
  • the centralizing members may comprise a resilient elastomeric or vibration dampening material such as rubber or a suitable plastic, for example.
  • Providing electrically-insulating layers 25 and/or 26 also allows the minimum spacing between the inner surfaces of electrically conducting parts 20A and 20B of gap sub 20 and the outer surface of the housing 23 of electronics package 22 to be reduced significantly without causing losses due to conduction through the fluid within the bore of gap sub 20 to increase significantly. This is particularly significant where the drilling fluids being used are of a type that provides relatively low electrical impedance. Water-based drilling fluids tend to have lower electrical impedance.
  • Providing electrically-insulating layers 25 and/or 26 also allows the width of gap 20C inside the bore of gap sub 20 and the width of gap 23C to be reduced. Reducing the widths of gaps 20C and/or 23C can result in more robust apparatus since most available electrically-insulating materials suitable for gaps 23C and 20C are less robust than the materials (most typically metals) used for other parts of gap sub 20 and housing 23.
  • Electrically-insulating layers 25 and 26A also alleviate any need to align gap 20C of gap sub 20 with gap 23C of electronics package 22.
  • gap 20C is longitudinally spaced apart from Gap 23C.
  • the provision of electrically-insulating layers 25 and 26 allows the longitudinal position of electronics package 22 to be adjusted without causing problems that might otherwise arise from the misalignment of gaps 20C and 23C.
  • the location of gap 23C on electronics package 22 may be selected for optimum mechanical properties and/or for optimum placement of electronics systems and components within electronics package 22 when it is unnecessary for gap 23C to be aligned longitudinally with gap 20C..
  • electrically conducting parts 20A and 20B of gap sub 20 are formed to provide parts that extend radially inwardly to provide support to electronics package 22.
  • the radially-inwardly extending parts may be integrally formed with parts 20A and 20B of the same metal.
  • Figure 5 illustrates an example apparatus 50 comprising a gap sub 20 that is formed to provide radially-inwardly extending parts in the form of rounded lobes 52 that extend longitudinally within bore 20D of gap sub 20.
  • Lobes 52 may extend for substantially the full length of electronics package 22.
  • Lobes 52 may be formed, for example, by hobbing.
  • Figure 5A shows an example embodiment wherein an electrically insulating layer 25 is provided on the outside of electronics package 22.
  • Another electrically insulating layer 26A is preferably but optionally provided on the inside of the bore of gap sub 20 covering lobes 52.
  • lobes 52 are dimensioned such that electronics package 22 is firmly held within their inwardly-facing tips.
  • Electrically-insulating layers 25 and/or 26A may be of materials that provide mechanical damping as well as electrical insulation. Mechanically coupling electronics package 22 to gap sub 20 continuously along its length can substantially reduce flexing and vibration of electronics package 22 caused by lateral accelerations of the drill string, flow of drilling fluid, or the like.
  • Apparatus as described herein may be applied in a wide range of subsurface drilling applications.
  • the apparatus may be applied to provide telemetry in logging while drilling ('LWD') and/or measuring while drilling ('MWD') applications.
  • Providing apparatus as described herein in which electrical current flow between different antenna elements within the bore of a drill string is significantly diminished reduces the load on a telemetry signal generator. This in turn may permit the same telemetry signal generator to operate with a reduced power output and/or to provide a higher-voltage signal to the antenna elements, thereby facilitating one or more of extended battery life, reduced power consumption, improved telemetry signal strength at the surface and reduced telemetry error rate.
  • Extended battery life in downhole applications is very significant since battery replacement or recharging may require withdrawal of the electronics package from the hole. This can be time consuming and labor intensive. Thus, increased battery life can result in a longer run length during drilling operations with fewer service intervals needed.
  • Another aspect of the invention provides a subsurface drilling method.
  • the method is performed using a drill string comprising a gap sub and an electronics package located in a bore of the gap sub.
  • the electronics package has electrical contacts that are in electrical contact with electrically-conductive parts of the gap sub.
  • the method involves passing a drilling fluid down a bore of the drill string and, at the location of the electronics package, channeling the drilling fluid into a channel that is electrically insulated from both the electrically conductive parts of the gap sub and electrically conductive parts of the housing of the electronics package.
  • the channel is an annular channel that surrounds that portion of the electronics package between the electrodes. This is not mandatory, however.
  • gap sub be a single component.
  • a gap sub comprises a plurality of components that can be assembled together into the drill string to provide electrical insulation between two parts of the drill string.
  • a probe may extend fully or partially through one, two, three, or more coupled-together sections of the drill string.
  • electronic systems which may include a telemetry signal generator are provided in a package located in a cavity formed in a wall of a drill collar or gap sub. Such embodiments may not have a separate probe mounted in a bore of the drill collar or gap sub. Electrical connections between an EM telemetry signal generator housed in a wall of a drill string section and uphole and downhole portions 20A and 20B of the gap sub may be made by way of conductors embedded in the wall of the gap sub.
  • Figure 6 shows schematically an example embodiment in which an electronics package 60 is located in a cavity 61 in a wall of a gap sub 20.
  • efficiency of EM telemetry may be improved by providing an electrically-insulating layer 26 that at least partially covers the inside of electrically-insulating gap 20C and extends to continuously cover parts of one or both of the inner surfaces of the electrically-conducting uphole and downhole parts 20A and 20B of gap sub 20 that are adjacent to electrically-insulating gap 20C.
  • the electrically-insulating layer 26 covers at least one of the interfaces 62 between electrically-insulating gap 20C and uphole and downhole parts 20A and 20B.
  • a component e.g. a circuit, module, assembly, device, drill string component, drill rig system etc.
  • reference to that component should be interpreted as including as equivalents of that component any component which performs the function of the described component (i.e., that is functionally equivalent), including components which are not structurally equivalent to the disclosed structure which performs the function in the illustrated exemplary embodiments of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Near-Field Transmission Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Claims (17)

  1. Sonde de forage souterrain comprenant :
    un boîtier métallique allongé (23) renfermant des circuits électroniques incluant un générateur de signaux, de préférence un générateur de signaux de télémétrie électromagnétique, le boîtier allongé (23) comprenant des premier et second contacts électriques (24A, 24B) longitudinalement espacés l'un de l'autre sur l'extérieur du boîtier (23) et un espace électriquement isolant (23C) comprenant un matériau électriquement isolant assurant une isolation électrique entre des premier et second éléments (23A, 23B) du boîtier métallique (23),
    l'espace (23C) se situant entre les premier et second contacts électriques (24A, 24B), dans laquelle le générateur de signaux est au contact électrique des premier et second contacts électriques (24A, 24B ) et
    dans laquelle les premier et second contacts électriques (24A, 24B) se situent à des extrémités opposées du boîtier métallique allongé (23) ; et
    une première couche électriquement isolante (25) sur une surface extérieure du boîtier métallique (23), la première couche électriquement isolante (25) recouvrant en continu sensiblement toute la partie de la surface extérieure du boîtier métallique (23) se trouvant entre les premier et second contacts électriques (24A, 24B).
  2. Sonde selon la revendication 1, dans laquelle la première couche électriquement isolante (25) recouvre en continu la surface extérieure du boîtier métallique (23) sur une distance d'au moins 1 mètre, de préférence sur une distance d'au moins 2 mètres.
  3. Sonde selon l'une ou l'autre des revendications 1 et 2, dans laquelle le premier contact électrique (24A) est au contact électrique du premier élément (23A) du boîtier métallique (23), et/ou le second contact électrique (24B) est au contact électrique de second élément (23B) du boîtier métallique (23).
  4. Sonde selon l'une quelconque des revendications 1 à 3, dans laquelle la première couche électriquement isolante (25) comprend un matériau choisi dans le groupe constitué de : matières thermoplastiques, époxydes, céramiques, polymères élastiques et caoutchouc.
  5. Sonde selon l'une quelconque des revendications 1 à 4, dans laquelle la première couche électriquement isolante (25) comprend un revêtement appliqué sur une surface extérieure de la sonde ou un composant préformé entrant en prise autour de la surface extérieure de la sonde, dans laquelle le composant préformé est de préférence un manchon tubulaire préformé.
  6. Sonde selon l'une quelconque des revendications 1 à 5, dans laquelle la première couche électriquement isolante (25) est intégrée à un centreur.
  7. Sonde selon l'une quelconque des revendications 1 à 6, dans laquelle des arêtes ou des bosses s'étendant longitudinalement se trouvent sur une surface extérieure de la première couche électriquement isolante (25).
  8. Combinaison de sonde comprenant la sonde selon l'une quelconque des revendications 1 à 7, en combinaison avec un raccord d'espace (20), le raccord d'espace (20) comprenant un élément de haut de trou conducteur de l'électricité (20A) comprenant un accouplement de haut de trou (21) pour s'accoupler à un train de tiges de forage, un élément de fond de trou conducteur de
    l'électricité (20B) comprenant un accouplement de fond de trou (21) pour s'accoupler au train de tiges de forage, un alésage (20D) s'étendant à travers le raccord d'espace (20), de l'accouplement de haut de trou (21) à l'accouplement de fond de trou (21) et une partie espace électriquement isolant (20C) isolant électriquement l'élément de haut de trou (20A) du raccord d'espace (20) de l'élément de fond de trou (20B) du raccord d'espace (20), dans laquelle la sonde se trouve dans l'alésage (20D) du raccord d'espace (20) et le premier contact électrique (24A) est au contact électrique de l'élément de haut de trou (20A) du raccord d'espace (20) et le second contact électrique (24B) est au contact électrique de l'élément de fond de trou (20B) du raccord d'espace (20), dans laquelle l'espace électriquement isolant (23C) de la sonde est longitudinalement espacé de la partie espace électriquement isolant (20C) du raccord d'espace (20).
  9. Combinaison de sonde selon la revendication 8, comprenant une seconde couche électriquement isolante (26) s'étendant autour de la sonde à l'intérieur de l'alésage (20D) du raccord d'espace (20), dans laquelle les première et seconde couches électriquement isolantes (25, 26) ont toutes deux au moins 2 mètres de long, et dans laquelle la seconde couche électriquement isolante (26) est d'une longueur représentant au moins 75 % de la longueur de la première couche électriquement isolante (25).
  10. Combinaison de sonde selon la revendication 9, dans laquelle la seconde couche électriquement isolante (26) recouvre sensiblement toute la partie d'une paroi de l'alésage (20D) du raccord d'espace (20) se trouvant entre les premier et second contacts électriques (24A, 24B) et/ou dans laquelle la seconde couche électriquement isolante (26) garnit une paroi intérieure de l'alésage (20D) du raccord d'espace (20).
  11. Combinaison de sonde selon l'une ou l'autre des revendications 9 et 10, dans laquelle la seconde couche électriquement isolante (26) comprend un revêtement appliqué sur la paroi intérieure de l'alésage (20D) du raccord d'espace (20) ou un manchon tubulaire entrant en prise autour de la paroi intérieure de l'alésage (20D) du raccord d'espace (20).
  12. Combinaison de sonde selon l'une ou l'autre des revendications 9 et 10, comprenant en outre une masse-tige accouplée à une extrémité de fond de trou du raccord d'espace, dans laquelle la seconde couche électriquement isolante (26) garnit une paroi intérieure d'un alésage de la masse-tige, dans laquelle la seconde couche électriquement isolante (26) comprend un revêtement appliqué sur la paroi intérieure de l'alésage de la masse-tige ou un composant préformé entrant en prise autour de la paroi intérieure de l'alésage de la masse-tige.
  13. Combinaison de sonde selon l'une ou l'autre des revendications 9 et 10, dans laquelle la seconde couche électriquement isolante (26) comprend un manchon tubulaire formé avec des lobes s'étendant longitudinalement qui entrent en contact avec la première couche électriquement isolante (25) sur la surface extérieure du boîtier métallique (23) et dans laquelle de préférence au moins l'une de la première couche électriquement isolante (25) et de la seconde couche électriquement isolante (26) comprend un matériau qui permet un amortissement mécanique.
  14. Combinaison de sonde selon l'une quelconque des revendications 8 à 13, dans laquelle le raccord d'espace (20) comprend des éléments s'étendant vers l'intérieur, faisant saillie vers l'intérieur sur l'intérieur de l'alésage (20D), les éléments s'étendant vers l'intérieur comprenant des arêtes s'étendant longitudinalement et/ou les arêtes comprenant des lobes arrondis et/ou des arêtes métalliques formées d'une seule pièce avec l'un des éléments de haut de trou et de fond de trou (20A, 20B) ou les deux du raccord de trou (20), et dans laquelle les éléments s'étendant vers l'intérieur s'étendent de préférence pour supporter la sonde à partir d'une pluralité de directions circonférentielles différentes.
  15. Combinaison de sonde selon l'une quelconque des revendications 8 à 11, comprenant une masse-tige accouplée à une extrémité de fond de trou du raccord d'espace, dans laquelle la masse-tige comprend un alésage et des éléments s'étendant vers l'intérieur, faisant saillie vers l'intérieur sur l'intérieur de l'alésage de la masse-tige, dans laquelle la sonde s'étend dans la masse-tige.
  16. Procédé de forage souterrain mis en oeuvre à l'aide d'un train de tiges de forage comportant la sonde selon l'une des revendications 1 à 7 comprenant un raccord d'espace (20) et la sonde se trouvant dans un alésage (20D) du raccord d'espace (20), dans lequel les premier et second contacts électriques (24A, 24B) de la sonde sont au contact électrique des éléments conducteurs de l'électricité (20A, 20B) du raccord d'espace (20), le procédé comprenant les étapes suivantes :
    faire circuler un fluide de forage vers le bas d'un alésage du train de tiges de forage ; et
    à l'emplacement du module électronique, canaliser le fluide de forage dans un canal s'étendant entre les premier et second contacts électriques (24A, 24B) qui est électriquement isolé des deux éléments conducteurs de l'électricité (20A, 20B) du raccord d'espace (20) et des éléments (23A, 23B) du boîtier métallique (23) de la sonde, le canal s'étendant sensiblement du premier contact électrique (24A) au second contact électrique (24B), dans lequel le canal est de préférence de section transversale annulaire et/ou entoure au moins la partie de la sonde se trouvant entre les contacts électriques (24A, 24B) .
  17. Procédé selon la revendication 16, comprenant l'acheminement du fluide de forage dans le canal sur une distance d'au moins 1 mètre, de préférence sur une distance d'au moins 1 ½ mètre et/ou sur une distance représentant au moins 65 % d'une distance entre les premier et second contacts électriques (24A, 24B).
EP13854109.9A 2012-11-06 2013-11-06 Appareil de télémétrie électromagnétique de fond de puits Active EP2917481B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261723286P 2012-11-06 2012-11-06
PCT/CA2013/050850 WO2014071520A1 (fr) 2012-11-06 2013-11-06 Appareil de télémétrie électromagnétique de fond de puits

Publications (3)

Publication Number Publication Date
EP2917481A1 EP2917481A1 (fr) 2015-09-16
EP2917481A4 EP2917481A4 (fr) 2016-11-30
EP2917481B1 true EP2917481B1 (fr) 2018-02-21

Family

ID=50683876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13854109.9A Active EP2917481B1 (fr) 2012-11-06 2013-11-06 Appareil de télémétrie électromagnétique de fond de puits

Country Status (7)

Country Link
US (1) US20150285062A1 (fr)
EP (1) EP2917481B1 (fr)
CN (1) CN104919137B (fr)
CA (1) CA2890603C (fr)
EA (2) EA201791477A1 (fr)
NO (1) NO2970497T3 (fr)
WO (1) WO2014071520A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2890618C (fr) * 2012-12-28 2019-02-12 Halliburton Energy Services, Inc. Systeme de telemetrie electromagnetique en fond de trou employant un materiau electriquement isolant et procedes apparentes
US9863239B2 (en) 2014-06-19 2018-01-09 Evolution Engineering Inc. Selecting transmission frequency based on formation properties
CA2967286C (fr) 2014-12-18 2021-03-02 Halliburton Energy Services, Inc. Communication sans fil de fond de trou haute efficacite
AU2014415641B2 (en) 2014-12-29 2018-03-15 Halliburton Energy Services, Inc. Electromagnetically coupled band-gap transceivers
CA2976134C (fr) 2015-02-24 2021-01-12 Evolution Engineering Inc. Dispositif et procede pour retenir un manchon d'usure exterieure de sonde
CA2978705C (fr) * 2015-04-16 2019-09-24 Halliburton Energy Services, Inc. Stabilisateur avec electrode montee sur ailette permettant de fournir des signaux a une antenne de train de tiges de forage
CA2931556C (fr) 2015-05-27 2023-09-26 Evolution Engineering Inc. Systeme de telemetrie magnetique a compensation de caracteristiques de fluide de forage
CN107546487B (zh) * 2016-06-29 2020-12-11 中国石油化工股份有限公司 一种高强度绝缘天线耦合组件
BR112019008030B1 (pt) * 2016-12-21 2022-07-19 Halliburton Energy Services, Inc Ferramenta de indução eletromagnética, e, método para aumentar um campo eletromagnético
CN106593317B (zh) * 2017-02-23 2019-02-01 中国地质大学(武汉) 一种绝缘内管及其制作方法
US10519762B2 (en) 2017-06-20 2019-12-31 Baker Hughes, A Ge Company, Llc Lateral support for downhole electronics
EP3714134A4 (fr) * 2018-10-15 2021-08-04 Ozzie's Enterprises LLC Outil de cartographie de trou de forage et procédés de cartographie de trous de forage
GB2599064B (en) * 2020-04-16 2023-05-31 Schlumberger Technology Bv Systems and methods for downhole communication

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650067A (en) * 1948-12-13 1953-08-25 Philip W Martin Apparatus for logging wells while drilling
US7080699B2 (en) * 2004-01-29 2006-07-25 Schlumberger Technology Corporation Wellbore communication system
CN100513742C (zh) * 2004-02-16 2009-07-15 中国石油集团钻井工程技术研究院 一种随钻测量的电磁遥测方法及系统
US8020634B2 (en) * 2005-10-05 2011-09-20 Schlumberger Technology Corporation Method and apparatus for supporting a downhole component in a downhole drilling tool
US7477162B2 (en) * 2005-10-11 2009-01-13 Schlumberger Technology Corporation Wireless electromagnetic telemetry system and method for bottomhole assembly
US20070235224A1 (en) * 2006-04-05 2007-10-11 Diamond Back - Quantum Drilling Motors, L.L.C. Drill pipe with vibration dampening liner
US7605715B2 (en) * 2006-07-10 2009-10-20 Schlumberger Technology Corporation Electromagnetic wellbore telemetry system for tubular strings
US7782060B2 (en) * 2006-12-28 2010-08-24 Schlumberger Technology Corporation Integrated electrode resistivity and EM telemetry tool
CN102246063A (zh) * 2008-12-10 2011-11-16 普拉德研究及开发股份有限公司 用于定向测井的方法和装置
US8162044B2 (en) * 2009-01-02 2012-04-24 Joachim Sihler Systems and methods for providing electrical transmission in downhole tools
WO2014071522A1 (fr) * 2012-11-06 2014-05-15 Evolution Engineering Inc. Masse-tige à centralisateur de sonde intégrée
EA032390B1 (ru) * 2012-11-06 2019-05-31 Эволюшн Инжиниринг Инк. Скважинный прибор и способ для его использования

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2917481A1 (fr) 2015-09-16
CN104919137A (zh) 2015-09-16
EA028582B1 (ru) 2017-12-29
CA2890603C (fr) 2018-12-04
CA2890603A1 (fr) 2014-05-15
NO2970497T3 (fr) 2018-03-24
EA201590897A1 (ru) 2015-08-31
EA201791477A1 (ru) 2018-03-30
EA201590897A8 (ru) 2015-11-30
CN104919137B (zh) 2018-05-08
EP2917481A4 (fr) 2016-11-30
US20150285062A1 (en) 2015-10-08
WO2014071520A1 (fr) 2014-05-15
CN104919137A8 (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
EP2917481B1 (fr) Appareil de télémétrie électromagnétique de fond de puits
US20240133249A1 (en) Centralizer for downhole probes
WO2009086637A1 (fr) Ensemble télémétrie électromagnétique avec antenne protégée
US10352111B2 (en) Drill collar with integrated probe centralizer
US11411298B2 (en) Lower electrode extension for sub-surface electromagnetic telemetry system
US10385683B1 (en) Deepset receiver for drilling application
US9932776B2 (en) Pinned electromagnetic telemetry gap sub assembly
CA2951155C (fr) Moteur a boue dote d'un systeme integre de mesure en cours de forage
CA2946172C (fr) Support de dispositif electronique de fond de trou
CA2946447C (fr) Sections de train de tiges presentant des raccords interchangeables

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LIU, JILI (JERRY)

Inventor name: KAZEMI, MOJTABA

Inventor name: DERKACZ, PATRICK R.

Inventor name: LOGAN, AARON W.

Inventor name: SWITZER, DAVID A.

Inventor name: LOGAN, JUSTIN C.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAZEMI MIRAKI, MOJTABA

Inventor name: LOGAN, AARON W.

Inventor name: DERKACZ, PATRICK R.

Inventor name: LOGAN, JUSTIN C.

Inventor name: LIU, JILI (JERRY)

Inventor name: SWITZER, DAVID A.

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20161031

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 7/00 20060101ALI20161025BHEP

Ipc: E21B 47/01 20120101AFI20161025BHEP

Ipc: E21B 17/00 20060101ALI20161025BHEP

Ipc: E21B 47/13 20120101ALI20161025BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170920

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 971934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013033518

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 971934

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180221

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180522

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013033518

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231023

Year of fee payment: 11

Ref country code: DE

Payment date: 20231019

Year of fee payment: 11