EP2910261B1 - Procédé pour contrôler un appareil de traitement de sang - Google Patents

Procédé pour contrôler un appareil de traitement de sang Download PDF

Info

Publication number
EP2910261B1
EP2910261B1 EP15159940.4A EP15159940A EP2910261B1 EP 2910261 B1 EP2910261 B1 EP 2910261B1 EP 15159940 A EP15159940 A EP 15159940A EP 2910261 B1 EP2910261 B1 EP 2910261B1
Authority
EP
European Patent Office
Prior art keywords
ultrafiltration
value
coefficient
flow rate
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15159940.4A
Other languages
German (de)
English (en)
Other versions
EP2910261A1 (fr
Inventor
Alain Ficheux
Angel Argiles Ciscart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RD Nephrologie
Original Assignee
RD Nephrologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RD Nephrologie filed Critical RD Nephrologie
Publication of EP2910261A1 publication Critical patent/EP2910261A1/fr
Application granted granted Critical
Publication of EP2910261B1 publication Critical patent/EP2910261B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3413Diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • A61M1/341Regulation parameters by measuring the filtrate rate or volume

Definitions

  • the invention relates to a method for managing a blood treatment apparatus outside a body. It also relates to a system implementing this method.
  • the invention relates to a method of managing a blood treatment apparatus outside a body for the purpose of removing liquid and solutes present in the blood.
  • a method is more commonly known as hemodialysis.
  • dialysis generator comprising a filter, called dialyzer, wherein an exchange of solutes and liquids is achieved through a semi-permeable membrane.
  • the liquid to be removed is removed from the blood by pressure gradient and the solutes to be removed are transported by convection with the liquid.
  • a fluid of a predetermined composition is introduced into the non-blood compartment of the dialyzer.
  • the elimination of liquids from the blood through the semipermeable membrane is done by pressure gradient.
  • the exchange of solutes through the membrane is carried out mainly by diffusion due to the concentration gradient of the solutes.
  • various exchanges of water and solutes can occur.
  • WO2006 / 011009 describes a dialysis machine with sensors to determine an ultrafiltration flow rate and transmembrane pressure
  • solute exchanges are by diffusion and by convection. An additional amount of liquid is removed by ultrafiltration.
  • Substitute fluid is infused into the blood to compensate for the amount of extra fluid removed.
  • weight loss is one of the most important parameters in the treatment, and is usually set at the beginning of treatment as a target.
  • the amount of fluid removed from the treated blood per unit time is known as the weight loss rate.
  • the weight loss rate is set at a constant value or a predefined profile.
  • TMP transmembrane pressure
  • the ratio between the hourly ultrafiltration rate and the trans-membrane pressure is called ultrafiltration coefficient (KUF).
  • the manufacturers of treatment devices give, for each type of dialyzer, a value of the ultrafiltration coefficient (KUF) measured in vitro with standardized bovine blood. This value is usually taken as a constant in vivo. In vivo, for a given ultrafiltration rate (QINF), the adsorption in the membrane of proteins, modifies the resistance to convection and therefore the trans-membrane pressure (TMP).
  • This maximum value of the ultrafiltered total flow is generally sought as a target value where the convective resistance is important.
  • Weight loss leads to increased hematocrit during the session which can lead to hemoconcentration and protein saturation of the membrane, resulting in trans-membrane pressure alarms.
  • the elimination of toxins, especially of high molecular weight under these conditions decreases.
  • the ultrafiltration coefficient (KUF) decreases.
  • An object of the invention is to overcome these disadvantages.
  • Another object of the invention is to provide a method of managing a blood treatment apparatus outside a body to improve the operation and performance of the treatment apparatus.
  • Another object of the invention is to provide a blood treatment apparatus outside a body having a better performance than currently known devices.
  • the elimination of uremic toxins from the blood by dialysis depends on the hydraulic and diffusive permeability of the semipermeable membrane.
  • adsorption in the membrane of proteins increases the resistance to convection.
  • Hydraulic permeability is changed.
  • the hydraulic permeability is measured by the determination of the ultrafiltration coefficient (KUF) which is equal to the ratio of the ultrafiltration rate in ml / h on the transmembrane pressure (PTM) in mmHg.
  • KUF max KUF
  • the maximum value of KUF (KUF max) corresponds to the best convection flow compared to the pressure stress. This is the optimum hydraulic permeability value for the membrane. This value, obtained during the session, takes into account the characteristics of the treatment: blood composition, flow rates, membrane type, surface area, etc.
  • the invention makes it possible to determine the optimum ultrafiltration coefficient for using a dialysis machine in its optimal rheology state.
  • the method according to the invention makes it possible to use a dialysis machine at its best, and not at its maximum.
  • the efficiency of a dialysis machine is optimal when the ultrafiltration coefficient is maximum, which corresponds to a better ultrafiltration rate than those currently obtained and for a lower transmembrane pressure stress. It is a value that allows the dialysis machine to be used in its optimal rheology state.
  • the method according to the invention comprises a first iteration during which a first value KUF 0 of the ultrafiltration coefficient is determined after measuring the transmembrane pressure. This value is stored in memory. Then, during a second iteration, the ultrafiltration flow rate is modified and a new KUF value 1 of the ultrafiltration coefficient is determined after measuring the transmembrane pressure. If KUF 1 > KUF 0 then KUF 1 is put in memory and so on. The series of iterations stops when KUF k > KUF k + 1 is obtained. The optimum ultrafiltration rate is that which corresponds to the ultrafiltration coefficient KUF k .
  • the instantaneous value of the ultrafiltration coefficient is compared with an ultrafiltration value determined during the previous iteration. As indicated above, the comparison can be made with respect to a value given by the manufacturer or determined in previous sessions.
  • the determination of the variation of the ultrafiltration coefficient can be done at any time during the blood treatment session.
  • the determination of the variation can be made several times during a treatment session to optimize the performance of the treatment apparatus. She can either be done automatically or be triggered by manual intervention by an operator.
  • the variation of the ultrafiltration coefficient as a function of the ultrafiltration flow rate is according to a parabolic curve.
  • the optimum ultrafiltration flow rate is that for which the ultrafiltration coefficient is substantially equal to the value corresponding to the top of this parabolic curve.
  • Each of the sensors and the calculation means can be connected to the control module.
  • the apparatus according to the invention may advantageously comprise storage means arranged for storing at least one ultrafiltration coefficient value for an ultrafiltration flow rate value.
  • the figure 1 shows several examples of variations of the ultrafiltration coefficient as a function of the ultrafiltration flow rate for the same type of dialyzer. As represented in figure 1 measurements show that the variation curve of the ultrafiltration coefficient KUF as a function of the ultrafiltration flow rate increases, passes through a maximum and then decreases.
  • the general shape of the curve is a parabola shape regardless of the patient or the time of the session.
  • the values of KUF as well as the maximum values are different.
  • the ultrafiltration coefficient is therefore not a constant. It varies according to multiple factors including membrane characteristics, surface area, blood composition or flow rates. This is a new treatment parameter.
  • Monitoring of the ultrafiltration coefficient during the treatment makes it possible to control the working conditions of the ultrafiltration apparatus and to monitor, during the treatment, the two variables in the filter, the performance and the variations of the characteristics of the blood of the ultrafiltration apparatus. patient to improve the efficiency of the semipermeable membrane used to purify the patient's blood in a given situation.
  • the apparatus 20 comprises a treatment chamber 21 comprising a semi-permeable membrane 22 which separates the internal volume from the treatment chamber 21 into two compartments: the compartment 23 which receives the blood to be treated and the compartment 24 which receives, for example dialysate.
  • the apparatus 20 is suitable for performing pure ultrafiltration, hemodialysis, or hemodiafiltration.
  • the treatment apparatus 20 further comprises a pump 25, for example of the peristaltic type, arranged to circulate the patient's blood via the line 26 to the treatment chamber 21, also called dialyzer 21, at a controlled and controlled flow rate. equal to Qs.
  • a pump 25 for example of the peristaltic type, arranged to circulate the patient's blood via the line 26 to the treatment chamber 21, also called dialyzer 21, at a controlled and controlled flow rate. equal to Qs.
  • the blood pressure is measured by a sensor 27 before the compartment 23 of the dialyzer 21.
  • the blood is in contact with the semipermeable membrane 22.
  • the return of the treated blood to the patient is done by the line 28.
  • the pressure is measured by a sensor 29.
  • a pump 30 located on a line 31, connected to the compartment 24 of the dialyzer 21 operates at a precisely controlled rate by a device of known type and adapted to measure an ultrafiltration rate equal to the rate of weight loss Q UF .
  • Pumps 32, 33 and 34 are occlusive and stopped.
  • a sensor 35 measures the pressure in this line 31 before the dialyzer 21.
  • the blood liquid is ultrafiltered through the semipermeable membrane 22 to the compartment 24 of the dialyzer and to the pump 30.
  • a sensor 36 measures the pressure.
  • the return flow of the dialyzer 21 to the patient is at a rate equal to Q S -Q UF , where Q UF is the rate of weight loss.
  • a controller 37 receives pressure data from the sensors 27, 29, 35 and 36 and flow data from the pumps 25, 30, 32, 33, 34.
  • the controller 37 is arranged to control the flow rate of the pumps 25, 30. , 32, 33, 34.
  • This controller 37 calculates the transmembrane pressure PTM on the basis of the values of the pressures measured at the 4 points by the sensors 27, 29, 35 and 36.
  • the TMP is equal to the average of the pressures of the blood compartment 23 minus the average of the pressures of the dialysate compartment 24.
  • the PTM can also be determined but less precisely by two sensors, one located on the return of blood, line 28, and the other on the return of the dialysate, line 31 or by three sensors with the third sensor positioned on the blood line at the inlet of the dialyzer, that is to say the line 26.
  • the controller 37 stops the ultrafiltration pump 30 and waits for the stabilization of the pressure measurements, approximately 1 min, then calculates the PTM and sets this value, equal to PTM 0 in memory, in means stored memory controller 37. It then increases the pump 30 to the value of flow equal to a programmed weight loss, it waits for the stabilization of the measurements, about 1 min, then calculates the transmembrane pressure PTM i .
  • the value of the ultrafiltration coefficient calculated will be equal to the rate of weight loss Q UF divided by the value (PTM i -PTM 0 ).
  • the controller 37 will adjust the value of the ultrafiltration coefficient at the pump 30 by stopping the ultrafiltration pump 30 for a stabilization time to update the PTM value 0 .
  • the ultrafiltration coefficient will be displayed by the apparatus 20 on display means (not shown) and may be compared with values stored in memory, for example, characteristic values for the type of dialyzer or for the patient or values of the beginning of the session or measured values during previous sessions of this patient, so to control inter-session or intra-session variations and to induce a procedure for improving the performance of the apparatus 20 or to provide alert messages or alarms via the controller 37.
  • the controller 37 stops the ultrafiltration pump 30 and waits for the stabilization of the pressure measurements, about 1 min, then calculates the PTM and sets this value, equal to PTM 0 in memory .
  • the controller 37 then increases the flow rate of the ultrafiltration pump 30 in increments up to the value Q UFx and for a predetermined settling time. At the end of each level, the PTM will be equal to PTM x . Then, the ultrafiltration coefficient is determined with the formula: Q UFx PTM x - PTM 0
  • the value of the ultrafiltration coefficient will be compared with characteristic values of different types of membranes stored in memory and with the programmed weight loss of the patient.
  • the value of the ultrafiltration coefficient determined at the end of each step will be stored in memory and compared with the previous values. If the latter value is lower than the previous values by a certain preprogrammed value then there will be no additional step.
  • the computer 37 will calculate a trend line of the values and adjust the flow rate of the ultrafiltration pump 30 to obtain the maximum purification coefficient.
  • the computer 37 will generate a signal indicating that the optimum value has been reached
  • a confirmation of the flow rate value of the ultrafiltration pump 30 will be requested by the computer 37. If the value is confirmed, the Ultrafiltration pump 30 will be maintained at this value for the scheduled or stopped time when the expected weight loss will be achieved. The ultrafiltration coefficient will be calculated continuously. Regularly, during the session, the computer 37 will adjust the value by stopping the ultrafiltration pump 30 for a stabilization time to update the value PTM 0 .
  • the ultrafiltration pump 30 will be maintained at the programmed weight loss value relative to the dialysis time.
  • the treatment apparatus 20 also allows the execution of hemodialysis treatment.
  • the blood circuit is unchanged from pure ultrafiltration.
  • the pumps 32 and 33 allow the circulation of the dialysate in the dialyzer 21 and more precisely in the compartment 24 of the dialyzer 21.
  • the dialysate passes through the semipermeable membrane 22 to the compartment 23 of the dialyzer 21.
  • the flow is equal to Q D .
  • the return of the dialyzer 21 by the line 31 is at a rate equal to D D increased the rate of weight loss.
  • the pressure sensors 35 and 36 allow the calculation of the PTM.
  • the circulation of the dialysate is generally controlled by a volumetric equilibrium module 38 whose particularity is that the flow Q D coming out of this module 38 is identical to that which comes back.
  • the weight loss is achieved by the pump 30.
  • the flow Q UF is equal to the rate of weight loss.
  • the circulation of the dialysate can also be carried out by two pumps, one at the inlet of the dialyzer and the other at the outlet.
  • a device of known type accurately measures and controls flow rates.
  • the measurement of the ultrafiltration coefficient and its adjustment are performed in a manner comparable to that described for pure ultrafiltration.
  • the treatment apparatus 20 may also be used for hemodiafiltration blood treatment.
  • Liquid is continuously infused into the patient by the pump 34 at a rate controlled by a known device (not shown) such as weighing or ultrasonic testing means.
  • This liquid can be taken from sterile bags, or, under certain aseptic and liquid quality conditions, in the dialysate circuit on line 39. The latter technique is called on-line hemodiafiltration.
  • the apparatus is in hemodialysis, the dialysate circulates in the dialyzer 21. Part of the dialysate is taken by the pump 34 at a rate Q IN .
  • the flow rate in the line 39 at the inlet of the dialyzer 21 is therefore equal to QD-Q IN .
  • the output flow of dialyzer 21, line 31, is therefore equal to Q D + Q UF , since the machine operates on the principle of hemodialysis.
  • a quantity of liquid at a flow rate equal to Q IN is thus ultrafiltered from the blood to maintain the flow rate equal to Q D + Q UF at the dialyser outlet 21.
  • the flow of blood at the outlet of the dialyzer 21 is equal to Q S Q UF -Q IN .
  • the pump 34 infusing at a flow rate equal to Q IN , the rate of return of blood to the patient is equal to Q S -Q UF , the same rate as the hemodialysis.
  • the infusion liquid can be injected at the outlet of the blood line of the dialyzer, line 28 (post-dilution), or at the inlet, line 26 (pre-dilution).
  • the ultrafiltration rate of the membrane 22 is then equal to Q IN + Q UF .
  • the ultrafiltration coefficient (KUF) is the ratio between the hourly rate of ultrafiltration, so in this case: Q IN + Q UF , and the trans-membrane pressure
  • the controller 37 stops the ultrafiltration pump 30 and the infusion pump 34. It waits for the stabilization of the pressure measurements, approximately 1 minute, then calculates the PTM and sets this value, equal to PTM 0 in memory. It resets the ultrafiltration pump 30 to the previous value and then increases the infusion pump 34 to the value provided by the user and programmed in At the beginning of the session, he waits for the stabilization of the measurements, about 1 minute, then calculates the transmembrane pressure PTM i . The value of the ultrafiltration coefficient calculated will be equal to the ultrafiltration rate Q INi + Q UF divided by the value (PTM i -PTM 0 ).
  • the controller 37 will make a value adjustment by stopping the ultrafiltration pump 30 and infusion 34 for a stabilization time to update the value PTM 0 .
  • the ultrafiltration coefficient will be displayed by the machine on display means connected to the controller 37 and may be compared with values stored in memory, for example, characteristic values for the type of dialyzer or for the patient, or start values. session or values obtained in previous sessions for this patient, in order to control inter-session or intra-session variations and to induce an improvement in the operation of the apparatus 20 or alert messages or alarms via the controller 37.
  • the conditions of optimal permeability will be sought, in this case, by varying the flow rate of the infusion pump 34.
  • the controller 37 stops the infusion pumps 34 and ultrafiltration 30 and waits for the stabilization of the pressure measurements, about 1 minute, then calculates the PTM and sets this value equal to PTM 0 in memory. It will then restart the ultrafiltration pump 30 at the programmed value and then increase, in steps of a value and a predetermined stabilization time, the infusion pump 34. At the end of each stage it will determine the ultrafiltration coefficient with the formula: (Q INx + Q UF ) divided by the value (PTMx-PTM 0 ). The ultrafiltration flow rate and the PTM must be lower than programmed limits otherwise the optimum value of the ultrafiltration coefficient will be considered as that obtained at the first limit.
  • the value of the ultrafiltration coefficient will be stored by the controller 37 and compared with the previous values stored in memory. If the latter value is lower than the previous ones by a certain programmed value then there will be no additional step.
  • the controller will calculate a trend line of values as represented in figure 1 and adjust the flow rate of the infusion pump 34 to obtain the maximum purification coefficient.
  • the controller 37 will generate a signal indicating that the optimum value is reached
  • the infusion pump 34 will be maintained at the programmed value.
  • the characteristics of the KUF / UF curve will make it possible to verify whether the dialyzer 21 is adapted to the patient.
  • This curve is a characteristic of a patient, not only for a single treatment, but also during his illness. Certain changes in blood composition may be detected by comparing curve profiles in a historical analysis, for example last or previous sessions, to reduce complications by possible preventive treatment.
  • the figure 3 is a schematic representation of an example of an apparatus 20 according to the invention.
  • This figure shows the dialyzer 21 comprising the semi-permeable membrane, the pump 25 for circulating the blood in the line 26 and the infusion pump 34 and the line 31.
  • the apparatus 20 according to the invention comprises in addition, a generator G for supplying power to the various components of the apparatus 20.
  • the dialyzer 21 is outside the apparatus 20 according to the invention and can be easily changed by disconnecting lines 26, 28, 31 and 39.
  • the invention makes it possible to improve the operation of an extracorporeal blood treatment device according to the conditions relating to the patient at the beginning of the treatment.
  • Another advantage of the invention is that it is adaptable to the patient's situation and to the purification conditions that vary during a treatment.
  • the apparatus comprises a controller which can detect the changes of parameters as a function of the composition of the blood and can therefore provide a useful historical analysis to improve the purification.
  • the apparatus according to the invention makes it possible to detect an abnormal rise in the hematocrit and thus to prevent coagulation of the semipermeable membrane.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

  • L'invention porte sur un procédé de gestion d'un appareil de traitement du sang à l'extérieur d'un corps. Elle porte également sur un système mettant en oeuvre ce procédé.
  • L'invention porte plus particulièrement sur un procédé de gestion d'un appareil de traitement du sang à l'extérieur d'un corps en vue de l'élimination de liquide et de solutés présents dans le sang. Un tel procédé est plus communément appelé hémodialyse.
  • Actuellement, on connaît plusieurs types d'hémodialyses réalisées avec des appareils, appelés générateur de dialyse, comportant un filtre, appelé dialyseur, dans lequel un échange de solutés et de liquides est réalisé par le biais d'une membrane semi-perméable.
  • Dans les procédés dits « ultrafiltration pure », le liquide à enlever est retiré du sang par gradient de pression et les solutés à éliminer sont transportés par convection avec le liquide.
  • Dans d'autres procédés d'hémodialyse, un fluide d'une composition prédéterminé est introduit dans le compartiment non sanguin du dialyseur. L'élimination des liquides du sang à travers la membrane semi-perméable se fait par gradient de pression. L'échange de solutés à travers la membrane est réalisé principalement par diffusion due au gradient de concentration des solutés. Selon les pressions et la porosité de la membrane divers échanges d'eau et de solutés peuvent se produire. WO2006/011009 décrit une machine à dialyse avec des capteurs pour déterminer un débit d'ultrafiltration et la pression transmembranaire En hémodiafiltration, les échanges de solutés se font par diffusion et par convection. Une quantité supplémentaire de liquide est enlevée par ultrafiltration. Un liquide de substitution est infusé dans le sang pour compenser la quantité de liquide supplémentaire enlevée.
  • Tous ces types d'hémodialyse permettent l'enlèvement d'un excès de liquide du sang traité. La quantité totale de liquide retiré du début à la fin du traitement (perte de poids) est l'un des paramètres les plus importants dans le traitement, et elle est généralement fixée au début du traitement comme une cible.
  • Un autre paramètre important est le temps total de traitement. La quantité de liquide retiré du sang traité par unité de temps est connu sous le nom de taux de perte de poids. Généralement, le taux de perte de poids est fixé à une valeur constante ou à un profil prédéfini.
  • En hémodiafiltration, la quantité de liquide infusé par unité de temps est le taux d'infusion. Le taux d'ultrafiltration sera déterminé comme la somme du taux de perte de poids et du taux d'infusion. La différence de pression de part et d'autre de la membrane est appelée pression transmembranaire (PTM).
  • Le rapport entre le taux horaire d'ultrafiltration et la pression trans-membranaire est appelé coefficient d'ultrafiltration (KUF).
  • Les constructeurs de dispositifs de traitement donnent, pour chaque type de dialyseur, une valeur du coefficient d'ultrafiltration (KUF) mesurée in vitro avec du sang bovin standardisé. Cette valeur est généralement prise comme une constante in vivo. In vivo, pour un débit d'ultrafiltration (QINF) donné, l'adsorption dans la membrane de protéines, modifie la résistance à la convection et donc la pression trans-membranaire (PTM). Le coefficient d'ultrafiltration (KUF= QINF / PTM) n'est donc pas constant. Il varie avec les caractéristiques du sang. La composition du sang peut varier en cours de séance ou se modifier sur plusieurs séances. Si on augmente fortement le débit total ultrafiltré, comme c'est la cas en hémodiafiltration, la pression trans-membranaire augmente. Une valeur maximale de débit peut être atteinte. C'est le plateau où une augmentation de la pression trans-membranaire (PTM) n'entraîne pas d'augmentation de débit (dQuf/dPTM =0 ).
  • Cette valeur maximale du débit total ultrafiltré est généralement recherchée comme une valeur cible or la résistance convective est importante. La perte de poids entraîne une augmentation de l'hématocrite en cours de séance qui peut conduire à une hémoconcentration et la saturation de la membrane par les protéines, entraînant des alarmes de pression trans-membranaire. L'élimination des toxines, notamment de haut poids moléculaire dans ces conditions diminue. La PTM augmentant, le coefficient d'ultrafiltration (KUF) diminue.
  • Un but de l'invention est de pallier ces inconvénients.
  • Un autre but de l'invention est de proposer un procédé de gestion d'un appareil de traitement de sang à l'extérieur d'un corps permettant d'améliorer le fonctionnement et le rendement de l'appareil de traitement.
  • Un autre but de l'invention est de fournir un appareil de traitement de sang à l'extérieur d'un corps présentant un meilleur rendement que les appareils actuellement connus.
  • L'invention permet d'atteindre les buts précités par un procédé de gestion d'un appareil de traitement de sang à l'extérieur du corps humain, en vue d'une amélioration du fonctionnement dudit appareil, ledit appareil comportant une membrane semi-perméable réalisant un échange de solutés, dit dialyse, et de liquide, dit ultrafiltration, avec le sang, ledit procédé comprenant au moins une itération des étapes suivantes :
    • détermination d'une valeur, dite instantanée, d'un coefficient d'ultrafiltration, ledit coefficient correspondant au rapport d'un débit d'ultrafiltration sur une différence de pression, dite pression transmembranaire, de part et d'autre de ladite membrane semi-perméable,
    • comparaison de ladite valeur instantanée avec au moins une valeur caractéristique préalablement déterminée ; et
    • en fonction de ladite comparaison, commande dudit appareil de traitement de manière à atteindre une valeur maximale dudit coefficient d'ultrafiltration, ladite commande comprenant une variation du débit d'ultrafiltration à une valeur correspondant à ladite valeur maximale dudit coefficient d'ultrafiltration.
  • L'élimination des toxines urémiques du sang par la dialyse dépend de la perméabilité hydraulique et diffusive de la membrane semi-perméable. Au cours d'une séance de traitement, pour un débit d'ultrafiltration constant, l'adsorption dans la membrane de protéines fait augmenter la résistance à la convection. La perméabilité hydraulique est modifiée. La perméabilité hydraulique est mesurée par la détermination du coefficient d'ultrafiltration (KUF) qui est égal au rapport du débit d'ultrafiltration en mL/h sur la pression transmembranaire (PTM) en mmHg.
  • En effet, des études menées par le(s) demandeur(s) montrent que le coefficient d'ultrafiltration varie notamment avec le débit d'ultrafiltration. Sa courbe de variation n'est pas un plateau mais une parabole. La valeur maximale du KUF (KUF max) correspond au meilleur débit de convection par rapport à la contrainte de pression. C'est la valeur de perméabilité hydraulique optimale pour la membrane. Cette valeur qui est obtenue en cours de séance tient compte des caractéristiques du traitement : composition du sang, débits, type de membrane, surface....
  • L'invention permet de déterminer le coefficient d'ultrafiltration optimal pour utiliser un appareil de dialyse à son état de rhéologie optimal.
  • Avantageusement, le procédé selon l'invention permet d'utiliser un appareil de dialyse à son mieux, et non pas à son maximum. En effet, le rendement d'un appareil de dialyse est optimal lorsque le coefficient d'ultrafiltration est maximal, ce qui correspond à un taux d'ultrafiltration meilleur que ceux obtenus actuellement et ce pour une moindre contrainte de pression transmembranaire. C'est une valeur qui permet d'utiliser l'appareil de dialyse à son état de rhéologie optimal.
  • Avantageusement, l'étape de détermination du coefficient d'ultrafiltration peut comprendre au moins une itération des étapes suivantes :
    • mesure de la pression transmembranaire,
    • calcul du débit d'ultrafiltration réalisée par la membrane semi-perméable, et
    • calcul de la valeur de coefficient d'ultrafiltration par division dudit débit d'ultrafiltration par ladite pression transmembranaire.
  • Lors de l'étape de comparaison, la ou les valeurs caractéristiques préalablement déterminées peuvent comprendre :
    • ▪ soit des valeurs fournies par le constructeur de l'appareil de traitement, ou
    • ▪ soit des valeurs déterminées lors d'une itération précédente ou lors d'une ou plusieurs séances de traitement préalables.
  • Ainsi, la valeur instantanée du coefficient d'ultrafiltration peut être comparée à une ou plusieurs valeurs qui sont :
    • ▪ soit fournies par le constructeur de l'appareil de traitement, ou
    • ▪ soit déterminées lors d'une ou plusieurs itérations ou séances de traitement précédentes.
  • Selon un mode de réalisation, la valeur maximale du coefficient d'ultrafiltration peut être mesurée lors de la séance de traitement en cours par détermination de la variation dudit coefficient d'ultrafiltration en fonction du débit d'ultrafiltration, ladite détermination comprenant plusieurs itérations des étapes suivantes :
    • variation du débit d'ultrafiltration
    • mesure de la pression transmembranaire obtenue pour ce débit d'ultrafiltration,
    • calcul da la valeur de coefficient d'ultrafiltration par division dudit débit d'ultrafiltration par ladite pression transmembranaire, et
    • mémorisation dudit coefficient d'ultrafiltration calculé en association avec le débit d'ultrafiltration ;
  • Dans ce mode de réalisation, le procédé selon l'invention comprend une première itération pendant laquelle une première valeur KUF0 du coefficient d'ultrafiltration est déterminée après mesure de la pression transmembranaire. Cette valeur est mise en mémoire. Puis lors d'une deuxième itération, le débit d'ultrafiltration est modifié et une nouvelle valeur KUF1 du coefficient d'ultrafiltration est déterminée après mesure de la pression transmembranaire. Si KUF1>KUF0 alors KUF1 est mis en mémoire et ainsi de suite. La série d'itérations s'arrête lorsqu'on obtient KUFk>KUFk+1. Le débit d'ultrafiltration optimal est celui qui correspond au coefficient d'ultrafiltration KUFk. Dans ce mode de réalisation, la valeur instantanée du coefficient d'ultrafiltration est comparée à une valeur d'ultrafiltration déterminée lors de l'itération précédente. Tel qu'indiqué plus haut la comparaison peut se faire par rapport à une valeur donnée par le constructeur ou déterminée lors de séances précédentes.
  • La détermination de la variation du coefficient d'ultrafiltration peut se faire à tout moment lors de la séance de traitement de sang. La détermination de la variation peut se faire plusieurs fois lors d'une séance de traitement pour optimiser le rendement de l'appareil de traitement. Elle peut soit se faire de manière automatique, soit être déclenchée par une intervention manuelle de la part d'un opérateur.
  • Tel que précisé plus haut, la variation du coefficient d'ultrafiltration en fonction du débit d'ultrafiltration se fait selon une courbe parabolique. Le débit optimal d'ultrafiltration est celui pour lequel le coefficient d'ultrafiltration est sensiblement égal à la valeur correspondant au sommet de cette courbe parabolique.
  • Suivant un autre aspect de l'invention, il est proposé un appareil de traitement de sang à l'extérieur du corps humain comprenant une enceinte de dialyse comportant une membrane semi-perméable réalisant un échange de solutés, dit dialyse, et de liquide, dit ultrafiltration, avec le sang, ledit appareil comprenant :
    • des moyens de détermination d'une valeur, dite instantanée, d'un coefficient d'ultrafiltration, ledit coefficient correspondant au rapport d'un débit d'ultrafiltration sur une différence de pression, dite pression transmembranaire, de part et d'autre de ladite membrane semi-perméable,
    • des moyens de variation du débit d'ultrafiltration, et
    • un module de commande desdits moyens de variation du débit d'ultrafiltration, en fonction d'une comparaison de ladite valeur instantanée à une valeur dite maximale.
  • Avantageusement, les moyens de détermination de la valeur instantanée du coefficient d'ultrafiltration peuvent comprendre :
    • des capteurs de mesure de la pression transmembranaire, et plus particulièrement plusieurs capteurs disposés au niveau de chaque entrée et sortie de l'enceinte de dialyse et mesurant la pression au niveau de chaque entrée et sortie de l'enceinte de dialyse ;
    • des moyens de détermination du débit d'ultrafiltration, et
    • des moyens de calcul d'une valeur du coefficient d'ultrafiltration par division dudit débit d'ultrafiltration par ladite pression transmembranaire.
  • Chacun des capteurs et les moyens de calculs peuvent être reliés au module de commande.
  • L'appareil selon l'invention peut avantageusement comprendre des moyens de mémorisation agencés pour mémoriser au moins une valeur de coefficient d'ultrafiltration pour une valeur de débit d'ultrafiltration.
  • Par ailleurs, les moyens de commande peuvent comprendre des moyens d'exécution d'instructions mémorisées dans des moyens de mémorisation, éventuellement intégrés dans le module de commande, lesdites instructions réalisant un calcul de la valeur maximale du coefficient d'ultrafiltration lors d'une séance de traitement en cours par détermination de la variation dudit coefficient d'ultrafiltration en fonction du débit d'ultrafiltration, ladite détermination comprenant plusieurs itérations des étapes suivantes :
    • variation du débit d'ultrafiltration
    • mesure de la pression transmembranaire obtenue pour ce débit d'ultrafiltration,
    • calcul de la valeur de coefficient d'ultrafiltration par division dudit débit d'ultrafiltration par ladite pression transmembranaire, et
    • mémorisation, dans les moyens de mémorisation, dudit coefficient d'ultrafiltration calculé en association avec le débit d'ultrafiltration ;
  • Avantageusement, des moyens de déclenchements manuels peuvent être agencés pour un déclenchement manuel :
    • de la détermination de la valeur instantanée du coefficient d'ultrafiltration, et/ou
    • de la détermination de la valeur maximale du coefficient d'ultrafiltration lors d'une séance de traitement en cours.
    Ainsi, l'opérateur peut à tout moment et aussi souvent que nécessaire déclencher la détermination de la valeur instantanée du coefficient d'ultrafiltration. Si la valeur d'ultrafiltration est inférieure, d'une valeur prédéterminée, à la valeur maximale de ce coefficient alors le module de commande peut effectuer un réglage du débit d'ultrafiltration pour atteindre la valeur maximale du coefficient d'ultrafiltration.
  • L'appareil selon l'invention peut être mis en oeuvre pour :
    • un traitement de sang à l'extérieur du corps humain par ultrafiltration pure,
    • un traitement de sang à l'extérieur du corps humain par hémodialyse, ou
    • un traitement de sang à l'extérieur du corps humain par hémodiafiltration.
    Avantageusement, l'enceinte de dialyse est jetable.
  • D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de mise en oeuvre nullement limitatif, et des dessins annexés sur lesquels :
    • la figure 1 illustre des exemples de profil de variation du coefficient d'ultrafiltration en fonction du débit d'ultrafiltration pour un même type de dialyseur,
    • la figure 2 est une représentation schématique d'un appareil pouvant être mis en oeuvre pour un traitement d'ultrafiltration pure, d'hémodialyse ou d'hémodiafiltration, et
    • la figure 3 est une représentation schématique d'un exemple d'un appareil selon l'invention.
  • La figure 1 montre plusieurs exemples de variations du coefficient d'ultrafiltration en fonction du débit d'ultrafiltration pour un même type de dialyseur. Tel que représenté en figure 1, des mesures montrent que la courbe de variation du coefficient d'ultrafiltration KUF en fonction du débit d'ultrafiltration, croît, passe par un maximum puis décroît. La forme générale de la courbe est une forme de parabole quel que soit le patient ou le moment de la séance. En revanche les valeurs de KUF ainsi que les valeurs maximales sont différentes.
  • Le coefficient d'ultrafiltration n'est donc pas une constante. Il varie selon de multiples facteurs dont les caractéristiques de la membrane, la surface, la composition du sang ou les débits. C'est un nouveau paramètre de traitement.
  • La surveillance du coefficient d'ultrafiltration pendant le traitement permet de contrôler les conditions de travail de l'appareil d'ultrafiltration et de suivre, au cours du traitement, les deux variables dans le filtre, la performance et les variations des caractéristiques du sang du patient pour améliorer le rendement de la membrane semi-perméable utilisée pour épurer le sang du patient dans une situation donnée.
  • Nous allons maintenant décrire, en référence à la figure 2, un appareil 20 de traitement extracorporel de sang à l'extérieur du corps selon l'invention. L'appareil 20 comprend une enceinte de traitement 21 comportant une membrane semi-perméable 22 qui sépare le volume interne de l'enceinte de traitement 21 en deux compartiments : le compartiment 23 qui reçoit le sang à traiter et le compartiment 24 qui reçoit par exemple le dialysat. L'appareil 20 est approprié pour l'exécution de l'ultrafiltration pure, de l'hémodialyse ou de l'hémodiafiltration.
  • Cas d'un traitement par ultrafiltration pure
  • L'appareil de traitement 20 comprend en outre une pompe 25, par exemple de type péristaltique, agencé pour faire circuler le sang du patient par la ligne 26 vers l'enceinte de traitement 21, aussi appelé dialyseur 21, à un débit régulé et contrôlé égal à Qs.
  • La pression du sang est mesurée par un capteur 27 avant le compartiment 23 du dialyseur 21. Le sang est en contact avec la membrane semi-perméable 22.
  • Le retour du sang traité vers le patient se fait par la ligne 28. La pression est mesurée par un capteur 29.
  • En ultrafiltration pure, une pompe 30 située sur une ligne 31, connectée au compartiment 24 du dialyseur 21 fonctionne à un débit contrôlé précisément par un dispositif de type connu et adapté pour mesurer un débit d'ultrafiltration égal au taux de perte de poids QUF.
  • Des pompes 32, 33 et 34 sont occlusives et à l'arrêt. Un capteur 35 mesure la pression dans cette ligne 31 avant le dialyseur 21.
  • Le liquide du sang est ultrafiltré au travers de la membrane semi-perméable 22 vers le compartiment 24 du dialyseur et vers la pompe 30. Un capteur 36 mesure la pression.
  • Le débit en retour du dialyseur 21 vers le patient se fait à un débit égal à QS-QUF, QUF étant le taux de perte de poids.
  • Un contrôleur 37 reçoit des données de pression des capteurs 27, 29, 35 et 36 et des données de débits des pompes 25, 30, 32, 33, 34. Le contrôleur 37 est agencé de manière à contrôler le débit des pompes 25, 30, 32, 33, 34.
  • Ce contrôleur 37 calcule la pression transmembranaire PTM sur la base des valeurs des pressions mesurées aux 4 points par les capteurs 27, 29, 35 et 36. La PTM est égale à la moyenne des pressions du compartiment de sang 23 moins la moyenne des pressions du compartiment dialysat 24. En l'absence de quatre capteurs, la PTM pourra également être déterminée mais de manière moins précise par deux capteurs, l'un situé sur le retour du sang, ligne 28, et l'autre sur le retour du dialysat, ligne 31 ou par trois capteurs avec le troisième capteur positionné sur la ligne de sang à l'entrée du dialyseur, c'est-à-dire la ligne 26.
  • Pour la première mesure du coefficient d'ultrafiltration, le contrôleur 37 arrête la pompe d'ultrafiltration 30 et attend la stabilisation des mesures de pression, environ 1 min puis calcule la PTM et met cette valeur, égale à PTM0 en mémoire dans des moyens de mémorisation intégrés au contrôleur 37. Il augmente ensuite la pompe 30 à la valeur de débit égale à une perte de poids programmée, il attend la stabilisation des mesures, environ 1 min, puis calcule la pression transmembranaire PTMi. La valeur du coefficient d'ultrafiltration calculée sera égale au taux de perte de poids QUF divisé par la valeur (PTMi-PTM0).
  • Régulièrement, en cours de séance, le contrôleur 37 procédera à un ajustement de la valeur du coefficient d'ultrafiltration à la pompe 30 en arrêtant la pompe d'ultrafiltration 30 pour un temps de stabilisation permettant d'actualiser la valeur PTM0.
  • Le coefficient d'ultrafiltration sera affiché par l'appareil 20 sur des moyens de visualisation (non représentés) et pourra être comparé avec des valeurs mises en mémoire, par exemple, des valeurs caractéristiques pour le type de dialyseur ou pour le patient ou des valeurs de début de séance ou de valeurs mesurées lors de séances précédentes de ce patient, ceci afin de contrôler les variations inter séances ou intra séance et induire une procédure d'amélioration du rendement de l'appareil 20 ou prévoir des messages d'alerte ou des alarmes via le contrôleur 37.
  • Par appuie sur un bouton de mise en marche du control, le contrôleur 37 arrête la pompe d'ultrafiltration 30 et attend la stabilisation des mesures de pression, environ 1 min, puis calcule la PTM et met cette valeur, égale à PTM0 en mémoire. Le contrôleur 37 augmente ensuite le débit de la pompe d'ultrafiltration 30, par paliers, jusqu'à la valeur QUFx et pour un temps de stabilisation prédéterminé. A la fin de chaque palier, la PTM sera égale à PTMx. Puis, le coefficient d'ultrafiltration est déterminé avec la formule : Q UFx PTM x PTM 0
    Figure imgb0001
  • Pour le premier palier la valeur du coefficient d'ultrafiltration sera comparée avec des valeurs caractéristiques de différents types de membranes mises en mémoire et avec la perte de poids programmée du patient.
  • Selon le résultat, apparenté au type de membrane, différents paliers seront prévus par le calculateur 37 à la condition que la perte de poids restante soit supérieure à la somme des pertes de poids engendrées pour tous les paliers prévus. Le débit d'ultrafiltration et la PTM devront être inférieurs à des limites programmées sinon la valeur optimale du coefficient d'ultrafiltration sera considérée comme celle obtenue à la première limite.
  • La valeur du coefficient d'ultrafiltration déterminée à la fin de chaque palier sera mise en mémoire et comparée avec les précédentes valeurs. Si cette dernière valeur est inférieure aux valeurs précédentes d'une certaine valeur préprogrammée alors il n'y aura pas de palier supplémentaire. Le calculateur 37 calculera une courbe de tendance des valeurs et ajustera le débit de la pompe d'ultrafiltration 30 pour obtenir le coefficient d'épuration maximal.
  • Le calculateur 37 engendrera un signal indiquant que la valeur optimale est atteinte
  • Une confirmation de la valeur de débit de la pompe d'ultrafiltration 30 sera demandée par le calculateur 37. Si la valeur est confirmée, la pompe d'ultrafiltration 30 sera maintenue à cette valeur pendant le temps prévu ou arrêtée lorsque la perte de poids prévue sera atteinte. Le coefficient d'ultrafiltration sera calculé en permanence. Régulièrement, en cours de séance, le calculateur 37 procédera à un ajustement de la valeur en arrêtant la pompe d'ultrafiltration 30 pour un temps de stabilisation permettant d'actualiser la valeur PTM0.
  • Si la valeur n'est pas confirmée, la pompe d'ultrafiltration 30 sera maintenue à la valeur programmée de perte de poids par rapport au temps de dialyse.
  • L'appareil de traitement 20 permet également l'exécution d'un traitement par hémodialyse.
  • Cas du traitement par hémodialyse
  • Le circuit du sang est inchangé par rapport à l'ultrafiltration pure.
  • Les pompes 32 et 33 permettent la circulation du dialysat dans le dialyseur 21 et plus précisément dans le compartiment 24 du dialyseur 21. Le dialysat passe par la membrane semi-perméable 22 vers le compartiment 23 du dialyseur 21. Le débit est égal à QD. Le retour du dialyseur 21 par la ligne 31 se fait à un débit égal QD augmenté du taux de perte de poids.
  • Les capteurs de pression 35 et 36 permettent le calcul de la PTM. La circulation du dialysat est en général contrôlée par un module d'équilibre volumétrique 38 dont la particularité est que le débit QD qui sort de ce module 38 est identique à celui qui en revient. La perte de poids est réalisée par la pompe 30. Le débit QUF est égal au taux de perte de poids.
  • A la place du module d'équilibre volumétrique 38 la circulation du dialysat peut également être réalisée par deux pompes, l'une à l'entrée du dialyseur et l'autre à la sortie. La pompe de sortie ayant un débit QD égal à celle de la pompe d'entrée augmenté du taux de perte de poids QUF. Un dispositif de type connu mesure et contrôle précisément les débits.
  • La mesure du coefficient d'ultrafiltration et son ajustement sont réalisés de manière comparable à celle décrite pour l'ultrafiltration pure.
  • L'appareil de traitement 20 peut aussi être utilisé pour un traitement de sang par hémodiafiltration.
  • Cas du traitement Par hémodiafiltration
  • Un liquide est infusé chez le patient en continu par la pompe 34 à un débit contrôlé par un dispositif connu (non représenté) tel que des moyens de pesée ou de contrôle par ultrasons. Ce liquide peut être prélevé dans des poches stériles, ou, sous certaines conditions d'asepsie et de qualité de liquide, dans le circuit dialysat sur la ligne 39. Cette dernière technique est nommée hémodiafiltration en ligne.
  • L'appareil est en hémodialyse, le dialysat circule dans le dialyseur 21. Une partie du dialysat est prélevé par la pompe 34 à un débit QIN. Le débit dans la ligne 39 à l'entrée du dialyseur 21 est donc égal à QD-QIN. Le débit de sortie du dialyseur 21, à la ligne 31, est égal donc égal à QD+QUF, puisque la machine fonctionne sur le principe de l'hémodialyse. Une quantité de liquide à un débit égal à QIN est donc ultrafiltrée du sang pour maintenir le débit égal à QD+QUF en sortie de dialyseur 21. Au niveau du compartiment sanguin, le débit de sang à la sortie du dialyseur 21 est égal à QSQUF-QIN. La pompe 34 infusant à un débit égal à QIN, le débit de retour du sang vers le patient est donc égal à QS-QUF, soit le débit identique à l'hémodialyse.
  • Le liquide d'infusion peut être injecté à la sortie de la ligne à sang du dialyseur, la ligne 28 (post dilution), ou à l'entrée, la ligne 26(pré dilution).
  • Cette technique de dialyse permet d'augmenter l'ultrafiltration à l'intérieur du dialyseur 21. Le taux d'ultrafiltration de la membrane 22 est alors égal à QIN+QUF. Le coefficient d'ultrafiltration (KUF) est le rapport entre le taux horaire d'ultrafiltration, donc dans ce cas : QIN+ QUF, et la pression trans-membranaire
  • Pour la première mesure du coefficient d'ultrafiltration, le contrôleur 37 arrête la pompe d'ultrafiltration 30 et la pompe d'infusion 34. Il attend la stabilisation des mesures de pression, environ 1 minute, puis calcule la PTM et met cette valeur, égale à PTM0 en mémoire. Il remet en fonction la pompe d'ultrafiltration 30 à la valeur précédente puis augmente ensuite la pompe d'infusion 34 à la valeur prévue par l'utilisateur et programmée en début de séance, il attend la stabilisation des mesures, environ 1 minute, puis calcule la pression transmembranaire PTMi. La valeur du coefficient d'ultrafiltration calculée sera égale au taux d'ultrafiltration QINi+QUF divisé par la valeur (PTMi-PTM0).
  • Régulièrement, en cours de séance, le contrôleur 37 procédera à un ajustement de la valeur en arrêtant les pompes d'ultrafiltration 30 et d'infusion 34 pour un temps de stabilisation permettant d'actualiser la valeur PTM0.
  • Le coefficient d'ultrafiltration sera affiché par la machine sur des moyens de visualisation connectés au contrôleur 37 et pourra être comparé avec des valeurs mises en mémoire, par exemple, des valeurs caractéristiques pour le type de dialyseur ou pour le patient ou des valeurs de début de séance ou des valeurs obtenues lors de séances précédentes pour ce patient, ceci afin de contrôler les variations inter séances ou intra séance et induire une amélioration du fonctionnement de l'appareil 20 ou des messages d'alerte ou des alarmes via le contrôleur 37.
  • Les conditions de perméabilité optimale seront recherchées, dans ce cas, en faisant varier le débit de la pompe d'infusion 34.
  • Par appuie sur un bouton de mise en marche du control, le contrôleur 37 arrête les pompes d'infusion 34 et d'ultrafiltration 30 et attend la stabilisation des mesures de pression, environ 1 minute, puis calcule la PTM et met cette valeur, égale à PTM0 en mémoire. Il va ensuite remettre la pompe d'ultrafiltration 30 en marche à la valeur programmée puis va augmenter, par paliers d'une valeur et d'un temps de stabilisation prédéterminé, la pompe d'infusion 34. A la fin de chaque palier il va déterminer le coefficient d'ultrafiltration avec la formule : (QINx+QUF) divisé par la valeur (PTMx-PTM0). Le débit d'ultrafiltration et la PTM devront être inférieurs à des limites programmées sinon la valeur optimale du coefficient d'ultrafiltration sera considéré comme celle obtenue à la première limite. A la fin de chaque palier la valeur du coefficient d'ultrafiltration sera mise en mémoire par le contrôleur 37 et comparée avec les précédentes valeurs mises en mémoire. Si cette dernière valeur est inférieure aux précédentes d'une certaine valeur programmée alors il n'y aura pas de palier supplémentaire. Le contrôleur calculera une courbe de tendance des valeurs telles que représentées en figure 1 et ajustera le débit de la pompe d'infusion 34 pour obtenir le coefficient d'épuration maximum.
  • Le contrôleur 37 engendrera un signal indiquant que la valeur optimale est atteinte
  • Une confirmation de la valeur de débit de la pompe d'ultrafiltration 30 sera demandée par le contrôleur 37. Si la valeur est confirmée, la pompe d'infusion 34 sera maintenue à cette valeur. Le coefficient d'ultrafiltration sera calculé en permanence. Régulièrement, en cours de séance, le calculateur 37 procédera à un ajustement de la valeur en arrêtant la pompe d'ultrafiltration 30 pour un temps de stabilisation permettant d'actualiser la valeur PTM0. En cours de séance, des recherches de la valeur optimale pourront être effectuées soit manuellement, soit par programmation soit en raison d'une variation du KUF mesuré dans des limites prédéfinies. Ceci permettra, par exemple, d'éviter la coagulation du circuit sanguin.
  • Si la valeur de débit de la pompe d'ultrafiltration 30 n'est pas confirmée, la pompe d'infusion 34 sera maintenue à la valeur programmée.
  • Les caractéristiques de la courbe du KUF /UF (forme et maximum) permettront de vérifier si le dialyseur 21 est adapté au patient.
  • Cette courbe, est une caractéristique d'un patient, non seulement pour un seul traitement, mais aussi au cours de sa maladie. Certaines modifications de la composition du sang pourront être détectées en comparant les profils de courbe dans une analyse historique, par exemple dernière ou précédentes séances, afin de réduire les complications par un éventuel traitement préventif.
  • La figure 3 est une représentation schématique d'un exemple d'un appareil 20 selon l'invention. On aperçoit sur cette figure le dialyseur 21 comprenant la membrane semi perméable, la pompe 25 permettant de faire circuler le sang dans la ligne 26 ainsi que la pompe infusion 34 et la ligne 31. Par ailleurs, l'appareil 20 selon l'invention comprend en outre un générateur G pour alimenter en énergie les différents composant de l'appareil 20.
  • Le dialyseur 21 se trouve à l'extérieur de l'appareil 20 selon l'invention et peut être changé facilement en déconnectant des lignes 26, 28, 31 et 39.
  • L'invention permet d'améliorer le fonctionnement d'un appareil de traitement extracorporel du sang en fonction des conditions relatives au patient au début du traitement.
  • Un autre avantage de l'invention est qu'elle est adaptable à la situation du patient et aux conditions d'épuration qui varient au cours d'un traitement.
  • Par ailleurs, l'appareil selon l'invention comprend un contrôleur qui peut détecter les changements de paramètres en fonction de la composition du sang et peut donc fournir une analyse historique utile pour améliorer l'épuration.
  • L'appareil selon l'invention permet de détecter une hausse anormale de l'hématocrite et donc de prévenir la coagulation de la membrane semi-perméable.
  • Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.

Claims (5)

  1. Procédé pour contrôler un appareil (20) de traitement de sang à l'extérieur du corps humain, en vue d'une amélioration du fonctionnement dudit appareil (20), ledit appareil (20) comportant une membrane (22) semi-perméable réalisant un échange de solutés, dit dialyse, et de liquide, dit ultrafiltration, avec le sang, ledit procédé comprenant au moins une itération des étapes suivantes :
    - détermination d'une valeur, dite instantanée, d'un coefficient d'ultrafiltration correspondant au rapport d'un débit d'ultrafiltration sur une différence de pression, dite pression transmembranaire, de part et d'autre de ladite membrane semi-perméable (22),
    - comparaison de ladite valeur instantanée avec au moins une valeur caractéristique préalablement déterminée ; et
    - commande dudit appareil (20) de traitement de manière à atteindre une valeur maximale dudit coefficient d'ultrafiltration, ladite commande comprenant une variation du débit d'ultrafiltration à une valeur correspondant à ladite valeur maximale dudit coefficient d'ultrafiltration.
  2. Procédé selon la revendication 1, caractérisé en ce que l'étape de détermination du coefficient d'ultrafiltration comprend au moins une itération des étapes suivantes :
    - mesure de la pression transmembranaire,
    - calcul du débit d'ultrafiltration réalisée par la membrane semi-perméable (22), et
    - calcul de la valeur de coefficient d'ultrafiltration par division dudit débit d'ultrafiltration par ladite pression transmembranaire.
  3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la valeur maximale du coefficient d'ultrafiltration est une valeur prédéterminée :
    ▪ par le constructeur de l'appareil (20) de traitement, ou
    ▪ lors d'une ou plusieurs séances de traitement préalables.
  4. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la valeur maximale du coefficient d'ultrafiltration est mesurée lors de la séance de traitement en cours par détermination de la variation dudit coefficient d'ultrafiltration en fonction du débit d'ultrafiltration, ladite détermination comprenant plusieurs itérations des étapes suivantes :
    - variation du débit d'ultrafiltration
    - mesure de la pression transmembranaire obtenue pour ce débit d'ultrafiltration,
    - calcul de la valeur de coefficient d'ultrafiltration par division dudit débit d'ultrafiltration par ladite pression transmembranaire, et
    - mémorisation dudit coefficient d'ultrafiltration calculé en association avec le débit d'ultrafiltration ;
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre une détermination d'une perméabilité hydraulique de la membrane semi-perméable (22) en fonction du coefficient d'ultrafiltration.
EP15159940.4A 2008-10-06 2009-09-24 Procédé pour contrôler un appareil de traitement de sang Active EP2910261B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856758A FR2936713B1 (fr) 2008-10-06 2008-10-06 Appareil de traitement extracorporel de sang et procede de gestion d'un tel appareil.
EP09752880.6A EP2362790B1 (fr) 2008-10-06 2009-09-24 Appareil de traitement extracorporel de sang

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP09752880.6A Division-Into EP2362790B1 (fr) 2008-10-06 2009-09-24 Appareil de traitement extracorporel de sang
EP09752880.6A Division EP2362790B1 (fr) 2008-10-06 2009-09-24 Appareil de traitement extracorporel de sang

Publications (2)

Publication Number Publication Date
EP2910261A1 EP2910261A1 (fr) 2015-08-26
EP2910261B1 true EP2910261B1 (fr) 2017-11-15

Family

ID=40679430

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09752880.6A Active EP2362790B1 (fr) 2008-10-06 2009-09-24 Appareil de traitement extracorporel de sang
EP15159940.4A Active EP2910261B1 (fr) 2008-10-06 2009-09-24 Procédé pour contrôler un appareil de traitement de sang

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09752880.6A Active EP2362790B1 (fr) 2008-10-06 2009-09-24 Appareil de traitement extracorporel de sang

Country Status (6)

Country Link
US (1) US8298427B2 (fr)
EP (2) EP2362790B1 (fr)
JP (1) JP5587891B2 (fr)
ES (2) ES2659075T3 (fr)
FR (1) FR2936713B1 (fr)
WO (1) WO2010040927A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US8114288B2 (en) 2007-11-29 2012-02-14 Fresenlus Medical Care Holdings, Inc. System and method for conducting hemodialysis and hemofiltration
US9199022B2 (en) 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US8535522B2 (en) 2009-02-12 2013-09-17 Fresenius Medical Care Holdings, Inc. System and method for detection of disconnection in an extracorporeal blood circuit
US8240636B2 (en) 2009-01-12 2012-08-14 Fresenius Medical Care Holdings, Inc. Valve system
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US8105487B2 (en) 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
CA2976872C (fr) 2008-10-07 2021-04-13 Fresenius Medical Care Holdings, Inc. Systeme et procede d'amorcage pour systemes de dialyse
WO2010042667A2 (fr) 2008-10-07 2010-04-15 Xcorporeal, Inc. Débitmètre thermique
CN105056324B (zh) 2008-10-30 2019-01-01 弗雷塞尼斯医疗保健控股公司 模块化便携透析系统
US8753515B2 (en) 2009-12-05 2014-06-17 Home Dialysis Plus, Ltd. Dialysis system with ultrafiltration control
FR2955037A1 (fr) * 2010-01-08 2011-07-15 Rd Nephrologie Appareil de filtration et procede de controle d'un tel appareil.
US8501009B2 (en) 2010-06-07 2013-08-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Fluid purification system
ES2561461T3 (es) 2010-09-30 2016-02-26 Gambro Lundia Ab Aparato para el tratamiento extracorpóreo de la sangre
DE102010052070A1 (de) * 2010-11-17 2012-05-24 B. Braun Avitum Ag Verfahren und Vorrichtung zur Anpassung des Substitutionsziels bei der Ultrafiltration von Blut
JP2014533133A (ja) 2011-10-07 2014-12-11 ホーム・ダイアリシス・プラス・リミテッドHome DialysisPlus, Ltd. 透析システムのための熱交換流体の精製
ITMO20120285A1 (it) * 2012-11-21 2014-05-22 Monica Zanotti Apparato di emodiafiltrazione
US9201036B2 (en) 2012-12-21 2015-12-01 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
DE102013014097A1 (de) * 2013-08-23 2015-02-26 Fresenius Medical Care Deutschland Gmbh Einwegartikel für die Dialysebehandlung, Dialysegerät und eine Wasseraufbereitungsanlage für Dialysat
US9354640B2 (en) 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
US20150314055A1 (en) 2014-04-29 2015-11-05 Michael Edward HOGARD Dialysis system and methods
DE102014014418A1 (de) * 2014-09-29 2016-03-31 Fresenius Medical Care Deutschland Gmbh Verfahren zur Identifizierung eines Filters
DE102014018072A1 (de) * 2014-12-08 2016-06-09 Fresenius Medical Care Deutschland Gmbh Dialysemaschine
JP7025408B2 (ja) 2016-08-19 2022-02-24 アウトセット・メディカル・インコーポレイテッド 腹膜透析システム及び方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416955C2 (de) 1984-05-08 1986-06-12 Fresenius AG, 6380 Bad Homburg Hämodialysevorrichtung
US4661246A (en) * 1984-10-01 1987-04-28 Ash Medical Systems, Inc. Dialysis instrument with dialysate side pump for moving body fluids
IT1310659B1 (it) * 1999-07-30 2002-02-19 Hospal Dasco Spa Metodo di controllo di una macchina per dialisi avente un filtrosemipermeabile.
DE19940624C5 (de) * 1999-08-27 2006-11-16 Fresenius Medical Care Deutschland Gmbh Sicherheitsvorrichtung für eine Blutbehandlungsvorrichtung und Verfahren zur Erhöhung der Sicherheit einer Blutbehandlungsvorrichtung
ITMO20040191A1 (it) * 2004-07-23 2004-10-23 Gambro Lundia Ab Macchina e metodo per il trattamento extracorporeo di sangue.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2936713B1 (fr) 2012-01-27
ES2659075T3 (es) 2018-03-13
EP2362790B1 (fr) 2015-05-27
US8298427B2 (en) 2012-10-30
WO2010040927A1 (fr) 2010-04-15
EP2910261A1 (fr) 2015-08-26
JP5587891B2 (ja) 2014-09-10
EP2362790A1 (fr) 2011-09-07
JP2012504481A (ja) 2012-02-23
US20110240555A1 (en) 2011-10-06
FR2936713A1 (fr) 2010-04-09
ES2544822T3 (es) 2015-09-04

Similar Documents

Publication Publication Date Title
EP2910261B1 (fr) Procédé pour contrôler un appareil de traitement de sang
EP0886529B1 (fr) Systeme de determination de la recirculation du sang dans un acces vasculaire
EP0678301B2 (fr) Appareil multifonction pour le traitement de l'insuffisance rénale
EP1300167B2 (fr) Procédé pour déterminer le vieillissement d'un filtre de liquide
EP2763720B1 (fr) Machine de dialyse comprenant des moyens d'ultrafiltration et de rétrofiltration
EP0291421B1 (fr) Procédé de détermination de la natrémie d'un patient et rein artificiel en faisant application
EP1223995B1 (fr) Dispositif d'epuration extracorporelle du sang
AU2013365795B2 (en) An apparatus for extracorporeal blood treatment.
FR2911417A1 (fr) Suivi de l'acces vasculaire d'un patient soumis a des seances successives de traitement extracorporel de sang
JP6362267B2 (ja) 体外血液処理の動作状態を検出するためのデバイス及び方法
EP0658352A1 (fr) Procédé de détermination d'un paramètre significatif du progrès d'un traitement extracorporel de sang
WO2000009182A1 (fr) Dispositif d'entrainement de fluide
US20210077704A1 (en) Blood Purification Apparatus and Method of Estimating Patient's State of Nutrition On Blood Purification Apparatus
US20210077703A1 (en) Blood Purification Apparatus and Method of Acquiring Plasma Flow Rate On Blood Purification Apparatus
FR2955037A1 (fr) Appareil de filtration et procede de controle d'un tel appareil.
WO2020254269A1 (fr) Appareil et procédé de régulation de la vitesse de perfusion d'une pré-dilution et d'une post-dilution dans un traitement extracorporel du sang

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2362790

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20151211

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170202

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTC Intention to grant announced (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RD NEPHROLOGIE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170616

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2362790

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 945651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009049458

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2659075

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180313

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 945651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009049458

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26N No opposition filed

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090924

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230928

Year of fee payment: 15

Ref country code: GB

Payment date: 20230928

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230929

Year of fee payment: 15

Ref country code: FR

Payment date: 20230929

Year of fee payment: 15

Ref country code: DE

Payment date: 20230928

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231106

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230925

Year of fee payment: 15