EP2909888A1 - Electrochemical electricity storage cell - Google Patents

Electrochemical electricity storage cell

Info

Publication number
EP2909888A1
EP2909888A1 EP13785546.6A EP13785546A EP2909888A1 EP 2909888 A1 EP2909888 A1 EP 2909888A1 EP 13785546 A EP13785546 A EP 13785546A EP 2909888 A1 EP2909888 A1 EP 2909888A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
electrochemical cell
positive
negative
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13785546.6A
Other languages
German (de)
French (fr)
Inventor
Bruno DELOBEL
Philippe Recouvreur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2909888A1 publication Critical patent/EP2909888A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of electrochemical cells for storing electricity, particularly for motor vehicle batteries, although the invention is not limited to this field of application.
  • an electrochemical cell for storing electricity consists of one or more positive electrodes stacked alternately with one or more negative electrodes and one or more separators so as to separate the positive and negative electrodes, and a waterproof envelope that can be flexible, if one is in the case of "pouch cell", or rigid for a cell called “hard casing”.
  • FIG. 1 shows an electrochemical cell 100 comprising an envelope 101 in which several positive electrodes 102, connected to a positive terminal 105, are alternately arranged with negative electrodes 103 connected to a negative terminal 106.
  • separators 104 impregnated with electrolyte are formed between each positive and negative electrode. These separators as well as the positive and negative electrodes have a substantially rectangular profile and are placed in a plane parallel to the (x, y) plane which corresponds to the longitudinal plane of the cell.
  • a disadvantage of this technique is that the use of spacers between each of the cells significantly increases the volume and mass of the vehicle battery. Moreover, this also generates a relatively high implementation cost, which is not satisfactory.
  • Another disadvantage of this technique is that the passage of heat from each of the cells to the neighboring spacer will be conditioned by the contact between the rigid envelope and the cell which is not optimal because the quality of this contact is difficult to control (depending on the conditions of manufacture, handling, ). As a result, an imperfect contact and thus a limited contact surface reduces the heat exchange, and therefore the cooling of the cell, relatively poorly, which is not satisfactory.
  • the internal structure of the cell consists of a stack of negative electrodes and positive electrodes separated by separators soaked with electrolyte.
  • the thermal conductivity towards the surface of the cell will be limited by the thermal conductivity of the various materials, for example polyolefin (polyethylene, polypropylene) separators having a thermal conductivity of less than 1 Watt per meter per Kelvin, electrodes in particular. aluminum or copper with a conductivity greater than 100 Watts per meter per Kelvin, and by the thermal resistances at the interfaces between the different electrodes and / or separators.
  • Cooling techniques using air circulation means on the surface of the cell are also known.
  • a disadvantage of such a cooling technique is that it implements means that have a significant size and a relatively high cost which is also not satisfactory.
  • the maintenance cost of such a technique is also relatively high.
  • the invention particularly aims to overcome at least some of the disadvantages of the prior art.
  • an objective of at least one embodiment of the invention is to provide an electrochemical cell for which the contact surface between the edges of the electrodes and the envelope is improved in order to optimize the cooling of the electrochemical cell. by evacuating heat over the entire contact area between the envelope and the electrodes.
  • Another objective of at least one embodiment is to reduce the bulk of such electrochemical cells to facilitate implementation on all possible vehicle types, or which can be used in most cases.
  • Yet at least one other object of an embodiment of the invention is to provide a solution that is simple to implement and inexpensive. 4. Summary of the invention
  • an electrochemical cell for storing electricity comprising an envelope in which are placed:
  • said at least two positive electrodes and at least two negative electrodes being alternately stacked in the envelope, and at least one separator being placed between each of said at least two positive and negative electrodes.
  • the electrochemical cell further comprises at least one contact element disposed in contact with the positive and negative electrodes and the envelope.
  • This contact element optimizes the contact between the envelope and the positive and negative electrodes, and thus increases the heat exchange between the edges of each of the electrodes and the separator with the envelope. Therefore, the heat exchange is favored with the outside of the cell which improves the cooling compared to the techniques of the prior art.
  • the invention proposes a novel and inventive approach for optimizing the contact surface between the electrodes and the envelope and thus to improve the cooling of the electrochemical cell by evacuating the heat over the entire contact zone between the electrochemical cell. envelope and the electrodes and more particularly at the edges. Indeed, the exchange of heat is facilitated when it is done by the edges of the cell rather than at the surface, when the electrodes are stacked. When it is on the surface of the cell, the heat exchange is limited by the thermal conductivity of the electrodes and separators. The invention makes it possible to overcome these constraints by allowing an optimal thermal exchange by the edges of the electrodes and the spaters.
  • the contact element comprises at least one heat pipe whose first end is connected to the contact element and a second end is formed outside the electrochemical cell.
  • the envelope of the cell is made of either a flexible material or a rigid material.
  • a flexible material will allow some flexibility of the electrochemical cell and also allow the envelope to adopt substantially the shape of the electrodes.
  • a rigid material may form a protective housing for the cells.
  • the contact element may be made of polymer or elastomer.
  • the positive electrodes and the negative electrodes are of substantially rectangular shape.
  • the contact element can be arranged either on the width or the length of the electrodes positive and negative, between the edge of these electrodes and 1 envelope.
  • the invention also relates to a battery comprising at least one electrochemical cell and a corresponding vehicle.
  • FIG. 1 is a sectional view along the plane (x, z) of an electrochemical cell of the prior art
  • FIG. 2 is a sectional view along the plane (x, z) of an electrochemical cell according to a first embodiment of the invention
  • FIG. 3 is a sectional view along the plane (x, z) of an electrochemical cell according to a second embodiment of the invention.
  • FIG. 4 is a sectional view along the plane (x, z) of a motor vehicle battery using several electrochemical cells according to the second embodiment
  • FIG. 5 is a graph showing the evolution of the temperature as a function of time for a cell of the prior art and for a cell according to the invention. 6. Detailed description
  • the x-axis is defined as being the longitudinal direction of a cell according to the invention.
  • the y and z axes, orthogonal to the x axis, respectively define the width and the thickness of the cell.
  • the plane (x, y) corresponds to the plane of the electrodes while the plane (x, z) corresponds to a transversal plane, orthogonal to the plane (x, y)
  • the electrochemical cell comprises an envelope 3 which is, in this example, a flexible polymer envelope.
  • a plurality of positive electrodes 21 alternating with negative electrodes 22.
  • a separator 23 impregnated, in known manner, with an electrolyte thus making it possible to conduct the electric current between the electrodes positive 21 and negative 22.
  • the assembly 2 formed by the positive electrodes, the negative electrodes, and the separators has a substantially rectangular profile and is formed on a substantially horizontal plane parallel to the plane (x, y).
  • the electrochemical cell 1 also comprises contact elements 4a, 4b disposed at the ends of the positive and negative electrodes in the x direction, that is to say on the width of the electrodes, between the assembly 2 and the envelope 3
  • These contact elements which in this example are in the form of a polymer foam such as polyethylene terephthalate (PET), make it possible to optimize the contact between the electrodes and the envelope and thus to increase the conductivity. thermal interface. So, all the heat, or at the very least a large part will be dissipated at the ends of the plane (x, y) which corresponds to the edges of the electrodes.
  • PET polyethylene terephthalate
  • contact elements that are glued to the package to reduce the risk of detachment of these elements during the life of the cell.
  • the contact elements are premolded in the envelope to improve the contact with each of the electrodes.
  • Other embodiments may also be provided in which the contact elements are made of elastomer, or in another polymer such as polypropylene (PP) or polyethylene (PE).
  • contact elements implemented at the ends of the negative and positive electrodes, but in the direction y, that is to say on the length of the electrodes.
  • the cell comprises only one positive electrode and one negative electrode, separated by a separator.
  • Embodiments may also be provided in which the envelope is rigid and made of other materials such as metal.
  • the electrodes and the separators are not planar but cylindrical circular, and arranged concentrically.
  • the contact elements are placed at the ends of the electrodes in the direction x, corresponding to the longitudinal direction of the cell, between the electrodes and the 'envelope.
  • FIG. 3 An embodiment can also be imagined in which a single contact element is used at one end of the electrodes in the x direction.
  • FIG. 3 a sectional view of an electrochemical cell according to a second embodiment of the invention is now presented.
  • the electrochemical cell 1 further comprises a heat pipe 7 whose first end 71 is connected to the contact element 4a and a second end 72 is formed outside the electrochemical cell 1. implanting this heat pipe 7 inside the cell makes it possible to limit the number of physical barriers by creating a "bridge" between the inside of the cell and the outside. This thus promotes the dynamics of heat dissipation inside the cell.
  • FIG. 4 shows a sectional view along a plane (x, z) of a motor vehicle battery, that is to say a cross-section, using a plurality of electrochemical cells 1 according to FIG. the invention, each comprising a heat pipe.
  • the battery A comprises three electrochemical cells 1a, 1b, the implementations according to the second embodiment presented above. These three electrochemical cells are superimposed along the direction z, corresponding to the direction perpendicular to the plane of the electrodes which are, in this example, rectangular. They are placed in a housing 30 forming the casing of the battery A, this casing further comprising a positive terminal 50 and a negative terminal 60.
  • batteries having one or more cells adopting different configurations.
  • the cells are for example placed end to end along the x axis, which corresponds to the longitudinal axis of the cells.
  • some of the cells are provided with heat pipes while others are not.
  • FIG. 5 a graph showing the evolution of the internal temperature (y-axis) as a function of time (x-axis) for a cell of the prior art and for a cell according to FIG. invention.
  • This graph G comprises a curve J showing the evolution of the internal temperature of a cell of the prior art as a function of the operating time. Note in this example that the curve J increases rapidly during the first hour then grows more slowly during the next thirty minutes to reach a maximum of 40 degrees. During the remainder of this battery's operating time, the temperature is between 38.5 and 40 degrees Celsius.
  • a second curve I of graph G shows the evolution of the internal temperature of an electrochemical cell according to the invention as a function of the operating time. Unlike curve J, curve I grows slowly during the first 45 minutes and then stabilizes at a maximum value of 36 degrees. During the subsequent operation of the cell, the internal temperature will oscillate between 34.5 and 36 degrees Celsius.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The invention relates to an electrochemical electricity storage cell (1) comprising a casing (3) containing: at least two positive electrodes (21) connected to a positive terminal (5), at least two negative electrodes (22) connected to a negative terminal (6), the positive (21) and negative (22) electrodes being stacked in an alternating manner in the casing (3). At least one spacer (23) is placed between each of the positive (21) and negative (22) electrodes. According to the invention, the electrochemical cell (1) also comprises at least one contact element (4a, 4b) placed in contact with the positive (21) and negative (22) electrodes and the casing (3).

Description

CELLULE ELECTROCHIMIQUE DE STOCKAGE D'ELECTRICITE  ELECTROCHEMICAL CELL FOR ELECTRICITY STORAGE
1. Domaine de l' invention 1. Field of the invention
La présente invention concerne le domaine des cellules électrochimiques de stockage d'électricité, notamment pour batterie de véhicules automobiles, bien que l'invention ne soit pas limitée à ce domaine d'application.  The present invention relates to the field of electrochemical cells for storing electricity, particularly for motor vehicle batteries, although the invention is not limited to this field of application.
2. Solutions de l'art antérieur 2. Solutions of the prior art
De manière classique, une cellule électrochimique de stockage d'électricité est constituée d'une ou plusieurs électrodes positives empilées de manière alternée avec une ou plusieurs électrodes négatives, ainsi qu'un ou plusieurs séparateurs de manière à séparer les électrodes positives et négatives, et d'une enveloppe étanche qui peut être souple, si l'on est dans le cas de « pouch cell », ou rigide pour une cellule dite « hard casing ».  Typically, an electrochemical cell for storing electricity consists of one or more positive electrodes stacked alternately with one or more negative electrodes and one or more separators so as to separate the positive and negative electrodes, and a waterproof envelope that can be flexible, if one is in the case of "pouch cell", or rigid for a cell called "hard casing".
On présente, en relation avec la figure 1, une cellule électrochimique 100 comprenant une enveloppe 101 dans laquelle sont disposées plusieurs électrodes positives 102, reliées à une borne positive 105, de manière alternée avec des électrodes négatives 103 reliées à une borne négative 106. Des séparateurs 104 imbibés d' électrolyte sont ménagés entre chaque électrode positive et négative. Ces séparateurs ainsi que les électrodes positives et négatives présentent un profil sensiblement rectangulaire et sont placés dans un plan parralèle au plan (x,y) qui correspond au plan longitudinal de la cellule.  FIG. 1 shows an electrochemical cell 100 comprising an envelope 101 in which several positive electrodes 102, connected to a positive terminal 105, are alternately arranged with negative electrodes 103 connected to a negative terminal 106. separators 104 impregnated with electrolyte are formed between each positive and negative electrode. These separators as well as the positive and negative electrodes have a substantially rectangular profile and are placed in a plane parallel to the (x, y) plane which corresponds to the longitudinal plane of the cell.
Pour refroidir une telle cellule électrochimique, il est courant d'utiliser des couvercles ou des entretoises en aluminium en les mettant en contact avec la surface de la cellule afin de conduire la chaleur vers l'extérieur de la cellule. Cette technique est par exemple illustrée par le document US2012/0009455 qui décrit un module de batterie mettant en œuvre une pluralité de cellules séparées par des entretoises possédant un profil en « L ». L'échange de chaleur se fait donc sur la surface de la cellule, au contact de l' entretoise, c'est-à-dire la direction du plus long côté de 1 ' entretoise . To cool such an electrochemical cell, it is common to use aluminum covers or spacers by contacting them with the surface of the cell to drive the heat out of the cell. This technique is for example illustrated by the US2012 / 0009455 which describes a battery module implementing a plurality of cells separated by spacers having an "L" profile. The heat exchange is therefore on the surface of the cell, in contact with the spacer, that is to say the direction of the longer side of the spacer.
Un inconvénient de cette technique est que l'utilisation d' entretoises entre chacune des cellules augmente de manière importante le volume et la masse de la batterie du véhicule. Par ailleurs, cela engendre également un coût de mise en œuvre relativement élevé ce qui n'est pas satisfaisant.  A disadvantage of this technique is that the use of spacers between each of the cells significantly increases the volume and mass of the vehicle battery. Moreover, this also generates a relatively high implementation cost, which is not satisfactory.
Un autre inconvénient de cette technique est que le passage de la chaleur de chacune des cellules vers l' entretoise avoisinante va être conditionné par le contact entre l'enveloppe rigide et la cellule ce qui n'est pas optimal du fait que la qualité de ce contact est difficilement maîtrisable (dépendant des conditions de fabrication, de manipulation, ...) . De ce fait, un contact imparfait et donc une surface de contact limitée réduit de manière relativement importante l'échange de chaleur, et donc le refroidissement de la cellule ce qui n'est pas satisfaisant .  Another disadvantage of this technique is that the passage of heat from each of the cells to the neighboring spacer will be conditioned by the contact between the rigid envelope and the cell which is not optimal because the quality of this contact is difficult to control (depending on the conditions of manufacture, handling, ...). As a result, an imperfect contact and thus a limited contact surface reduces the heat exchange, and therefore the cooling of the cell, relatively poorly, which is not satisfactory.
Encore un autre inconvénient de cette technique est que le refroidissement n'est pas optimal. En effet, la structure interne de la cellule consiste en un empilement d'électrodes négatives et d'électrodes positives séparées par des séparateurs imbibés d' électrolyte . Ainsi, la conductivité thermique vers la surface de la cellule va être limitée par la conductivité thermique des différents matériaux, par exemple des séparateurs en polyoléfine (polyéthylène, polypropylène) de conductivité thermique inférieure à 1 Watt par mètre par Kelvin, des électrodes en aluminium ou en cuivre de conductivité supérieure à 100 Watts par mètre par Kelvin, et par les résistances thermiques aux interfaces entre les différentes électrodes et/ou séparateurs. Yet another disadvantage of this technique is that cooling is not optimal. Indeed, the internal structure of the cell consists of a stack of negative electrodes and positive electrodes separated by separators soaked with electrolyte. Thus, the thermal conductivity towards the surface of the cell will be limited by the thermal conductivity of the various materials, for example polyolefin (polyethylene, polypropylene) separators having a thermal conductivity of less than 1 Watt per meter per Kelvin, electrodes in particular. aluminum or copper with a conductivity greater than 100 Watts per meter per Kelvin, and by the thermal resistances at the interfaces between the different electrodes and / or separators.
On connaît également des techniques de refroidissement mettant en œuvre des moyens de circulation de l'air à la surface de la cellule. Cependant, un inconvénient d'une telle technique de refroidissement est qu'elle met en œuvre des moyens qui présentent un emcombrement important ainsi qu'un coût relativement élevé ce qui n'est pas non plus satisfaisant. Par ailleurs, le coût de maintenance d'une telle technique s'avère également relativement élevé.  Cooling techniques using air circulation means on the surface of the cell are also known. However, a disadvantage of such a cooling technique is that it implements means that have a significant size and a relatively high cost which is also not satisfactory. Moreover, the maintenance cost of such a technique is also relatively high.
3. Objectifs de l'invention 3. Objectives of the invention
L'invention a notamment pour objectifs de pallier au moins certains des inconvénients de l'art antérieur.  The invention particularly aims to overcome at least some of the disadvantages of the prior art.
Plus précisément, un objectif d'au moins un mode de réalisation de l'invention est de fournir une cellule électrochimique pour laquelle la surface de contact entre les bords des électrodes et l'enveloppe est améliorée afin d'optimiser le refroidissement de la cellule électrochimique en évacuant la chaleur sur toute la zone de contact entre l'enveloppe et les électrodes.  More specifically, an objective of at least one embodiment of the invention is to provide an electrochemical cell for which the contact surface between the edges of the electrodes and the envelope is improved in order to optimize the cooling of the electrochemical cell. by evacuating heat over the entire contact area between the envelope and the electrodes.
Un autre objectif d'au moins un mode de réalisation est de réduire l'encombrement de telles cellules électrochimiques afin de faciliter la mise en œuvre sur tous les types de véhicules possibles, ou qui soit utilisable dans la plupart des cas de figure.  Another objective of at least one embodiment is to reduce the bulk of such electrochemical cells to facilitate implementation on all possible vehicle types, or which can be used in most cases.
Encore au moins un autre objectif d'un mode de réalisation de l'invention est de founir une solution qui soit simple à mettre en œuvre et peu coûteuse. 4. Résumé de l'invention Yet at least one other object of an embodiment of the invention is to provide a solution that is simple to implement and inexpensive. 4. Summary of the invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'une cellule électrochimique de stockage d'électricité comprenant une enveloppe dans laquelle sont placées :  These objectives, as well as others that will appear later, are achieved by means of an electrochemical cell for storing electricity comprising an envelope in which are placed:
- au moins deux électrodes positives reliées à une borne positive,  at least two positive electrodes connected to a positive terminal,
- au moins deux électrodes négatives reliée à une borne négative,  at least two negative electrodes connected to a negative terminal,
lesdites au moins deux électrodes positives et au moins deux électrodes négatives étant empilées de manière alternée dans l'enveloppe, et au moins un séparateur étant placé entre chacune desdites au moins deux électrodes positives et négatives. said at least two positive electrodes and at least two negative electrodes being alternately stacked in the envelope, and at least one separator being placed between each of said at least two positive and negative electrodes.
Selon l'invention, la cellule électrochimique comprend en outre au moins un élément de contact disposé au contact des électrodes positives et négatives, et de l'enveloppe. Cet élément de contact permet d'optimiser le contact entre l'enveloppe et les électrodes positives et négatives, et ainsi d'augmenter l'échange de chaleur entre les bords de chacune des électrodes et du séparateur avec l'enveloppe. Par conséquent, l'échange de chaleur est favorisé avec l'extérieur de la cellule ce qui améliore le refroidissement par rapport aux techniques de l'art antérieur.  According to the invention, the electrochemical cell further comprises at least one contact element disposed in contact with the positive and negative electrodes and the envelope. This contact element optimizes the contact between the envelope and the positive and negative electrodes, and thus increases the heat exchange between the edges of each of the electrodes and the separator with the envelope. Therefore, the heat exchange is favored with the outside of the cell which improves the cooling compared to the techniques of the prior art.
Ainsi, l'invention propose une approche nouvelle et inventive permettant d'optimiser la surface de contact entre les électrodes et l'enveloppe et ainsi d'améliorer le refroidissement de la cellule électrochimique en évacuant la chaleur sur toute la zone de contact entre l'enveloppe et les électrodes et plus particulièrement au niveau des bords. En effet, l'échange de la chaleur est facilité lorsqu' il se fait par les bords de la cellule plutôt qu' à la surface, lorsque les électrodes sont empilées. Quand il se fait à la surface de la cellule, l'échange thermique est limité par la conductivité thermique des électrodes et des séparateurs. L'invention permet de s'affranchir de ces contraintes en permettant un échange thermique optimal par les bords des électrodes et des spérateurs . Thus, the invention proposes a novel and inventive approach for optimizing the contact surface between the electrodes and the envelope and thus to improve the cooling of the electrochemical cell by evacuating the heat over the entire contact zone between the electrochemical cell. envelope and the electrodes and more particularly at the edges. Indeed, the exchange of heat is facilitated when it is done by the edges of the cell rather than at the surface, when the electrodes are stacked. When it is on the surface of the cell, the heat exchange is limited by the thermal conductivity of the electrodes and separators. The invention makes it possible to overcome these constraints by allowing an optimal thermal exchange by the edges of the electrodes and the spaters.
Dans un mode de réalisation particulier, l'élément de contact comprend au moins un caloduc dont une première extrémité est reliée à l'élément de contact et une deuxième extrémité est ménagée à l'extérieur de la cellule électrochimique .  In a particular embodiment, the contact element comprises at least one heat pipe whose first end is connected to the contact element and a second end is formed outside the electrochemical cell.
Le fait de placer un tel élément permet ainsi d'augmenter la rapidité du refroidissement de la cellule en limitant le nombre de barrières physiques.  The fact of placing such an element thus makes it possible to increase the speed of cooling of the cell by limiting the number of physical barriers.
Selon différents modes de réalisation de l'invention, l'enveloppe de la cellule est réalisée soit dans un matériau souple, soit dans un matériau rigide.  According to various embodiments of the invention, the envelope of the cell is made of either a flexible material or a rigid material.
Ainsi, cela permet d'adapter la cellule électrochimique pour la plupart des utilisations courantes de telles cellules. En effet, un matériau souple permettra une certaine souplesse de la cellule électrochimique et permettra également à l'enveloppe d'adopter sensiblement la forme des électrodes. De son côté, un matériau rigide pourra former un boîtier de protection pour les cellules.  Thus, this allows the electrochemical cell to be adapted for most common uses of such cells. Indeed, a flexible material will allow some flexibility of the electrochemical cell and also allow the envelope to adopt substantially the shape of the electrodes. For its part, a rigid material may form a protective housing for the cells.
Par ailleurs, selon les modes de réalisation, l'élément de contact peut être réalisé en polymère ou en élastomère .  Furthermore, according to the embodiments, the contact element may be made of polymer or elastomer.
Dans un mode de réalisation de l'invention, les électrodes positives et les électrodes négatives sont de forme sensiblement rectangulaire.  In one embodiment of the invention, the positive electrodes and the negative electrodes are of substantially rectangular shape.
Dans ce cas, l'élément de contact peut être ménagé soit sur la largeur, soit sur la longueur des électrodes positives et négatives, entre le bord de ces électrodes et 1 ' enveloppe . In this case, the contact element can be arranged either on the width or the length of the electrodes positive and negative, between the edge of these electrodes and 1 envelope.
Cela permet d'adapter l'encombrement de telles cellules électrochimiques suivant l'utilisation.  This allows to adapt the size of such electrochemical cells according to use.
L' invention concerne également une batterie comportant au moins une cellule électrochimique ainsi qu'un véhicule correspondant.  The invention also relates to a battery comprising at least one electrochemical cell and a corresponding vehicle.
5. Liste des figures 5. List of figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés, parmi lesquels :  Other features and advantages of the invention will emerge more clearly on reading the following description of an embodiment, given as a simple illustrative and nonlimiting example, and the appended drawings, among which:
- la figure 1 est une vue en coupe selon le plan (x,z) d'une cellule électrochimique de l'art antérieur ;  - Figure 1 is a sectional view along the plane (x, z) of an electrochemical cell of the prior art;
- la figure 2 est une vue en coupe selon le plan (x,z) d'une cellule électrochimique selon un premier mode de réalisation de l'invention ; - Figure 2 is a sectional view along the plane (x, z) of an electrochemical cell according to a first embodiment of the invention;
- la figure 3 est une vue en coupe selon le plan (x,z) d'une cellule électrochimique selon un deuxième mode de réalisation de l'invention ; et- Figure 3 is a sectional view along the plane (x, z) of an electrochemical cell according to a second embodiment of the invention; and
- la figure 4 est une vue en coupe selon le plan (x,z) d'une batterie de véhicule automobile mettant en œuvre plusieurs cellules électrochimiques selon le deuxième mode de réalisation, et FIG. 4 is a sectional view along the plane (x, z) of a motor vehicle battery using several electrochemical cells according to the second embodiment, and
- la figure 5 est un graphique présentant l'évolution de la température en fonction du temps pour une cellule de l'art antérieur et pour une cellule selon l'invention. 6. Description détaillée FIG. 5 is a graph showing the evolution of the temperature as a function of time for a cell of the prior art and for a cell according to the invention. 6. Detailed description
Dans la suite de la description, on définit l'axe x comme étant la direction longitudinale d'une cellule selon l'invention. Les axes y et z, orthogonaux à l'axe x, définissent respectivement la largeur et l'épaisseur de la cellule. Par ailleurs, le plan (x,y) correspond au plan des électrodes tandis que le plan (x, z) correspond à un plan transversal, orthogonal au plan (x,y)  In the remainder of the description, the x-axis is defined as being the longitudinal direction of a cell according to the invention. The y and z axes, orthogonal to the x axis, respectively define the width and the thickness of the cell. Moreover, the plane (x, y) corresponds to the plane of the electrodes while the plane (x, z) corresponds to a transversal plane, orthogonal to the plane (x, y)
On présente maintenant, en relation avec la figure 2, un premier mode de réalisation de l'invention.  A first embodiment of the invention will now be presented with reference to FIG.
Comme illustré sur cette figure 2, la cellule électrochimique comprend une enveloppe 3 qui est, dans cet exemple, une enveloppe souple en polymère. Dans cette enveloppe 3 sont disposées plusieurs électrodes positives 21 en alternance avec des électrodes négatives 22. Entre chacune des électrodes positives et négative est inséré un séparateur 23 imbibé, de manière connue, d'un électrolyte permettant ainsi de conduire le courant électrique entre les électrodes positives 21 et négatives 22.  As illustrated in FIG. 2, the electrochemical cell comprises an envelope 3 which is, in this example, a flexible polymer envelope. In this casing 3 are arranged a plurality of positive electrodes 21 alternating with negative electrodes 22. Between each of the positive and negative electrodes is inserted a separator 23 impregnated, in known manner, with an electrolyte thus making it possible to conduct the electric current between the electrodes positive 21 and negative 22.
L'ensemble 2 formé par les électrodes positives, les électrodes négatives, et les séparateurs présente un profil sensiblement rectangulaire et est ménagé sur un plan sensiblement horizontal, parallèle au plan (x,y).  The assembly 2 formed by the positive electrodes, the negative electrodes, and the separators has a substantially rectangular profile and is formed on a substantially horizontal plane parallel to the plane (x, y).
La cellule électrochimique 1, comprend également des éléments de contact 4a, 4b disposés aux extrémités des électrodes positives et négatives selon la direction x, c'est-à-dire sur la largeur des électrodes, entre l'ensemble 2 et l'enveloppe 3. Ces éléments de contacts, qui sont, dans cet exemple, sous forme de mousse en polymère tel que du Polytéréphtalate d' éthylène (PET), permettent d'optimiser le contact entre les électrodes et l'enveloppe et ainsi d'augmenter la conductivité thermique à l'interface. Ainsi, toute la chaleur, ou à tout le moins une grande partie, va être dissipée aux extrémités du plan (x,y) ce qui correspond aux bords des électrodes. The electrochemical cell 1 also comprises contact elements 4a, 4b disposed at the ends of the positive and negative electrodes in the x direction, that is to say on the width of the electrodes, between the assembly 2 and the envelope 3 These contact elements, which in this example are in the form of a polymer foam such as polyethylene terephthalate (PET), make it possible to optimize the contact between the electrodes and the envelope and thus to increase the conductivity. thermal interface. So, all the heat, or at the very least a large part will be dissipated at the ends of the plane (x, y) which corresponds to the edges of the electrodes.
Dans un autre mode de réalisation, on peut imaginer des éléments de contacts qui sont collés à l'emballage afin de diminuer le risque de détachement de ces éléments au cours de la vie de la cellule. On peut également imaginer un mode de réalisation dans lequel les éléments de contact sont prémoulés dans l'enveloppe afin d'améliorer le contact avec chacune des électrodes. On peut également prévoir d'autres modes de réalisation dans lesquels les éléments de contact sont en élastomère, ou dans un autre polymère tel que du Polypropylène (PP) ou du Polyéthylène (PE) .  In another embodiment, one can imagine contact elements that are glued to the package to reduce the risk of detachment of these elements during the life of the cell. One can also imagine an embodiment in which the contact elements are premolded in the envelope to improve the contact with each of the electrodes. Other embodiments may also be provided in which the contact elements are made of elastomer, or in another polymer such as polypropylene (PP) or polyethylene (PE).
On peut également imaginer, dans des variantes de l'invention, des éléments de contacts mis en œuvre aux extrémités des électrodes négatives et positives, mais dans la direction y, c'est-à-dire sur la longueur des électrodes . It is also conceivable, in variants of the invention, contact elements implemented at the ends of the negative and positive electrodes, but in the direction y, that is to say on the length of the electrodes.
On peut en outre imaginer un mode de réalisation dans lequel un seul élément de contact est employé, à une des extrémités des électrodes par exemple, suivant la direction x ou y .  It is also possible to imagine an embodiment in which a single contact element is used, at one end of the electrodes for example, in the direction x or y.
Par ailleurs, on pourrait prévoir un mode de réalisation dans lequel la cellule ne comporte qu'une électrode positive et une électrode négative, séparées par un séparateur. In addition, an embodiment could be provided in which the cell comprises only one positive electrode and one negative electrode, separated by a separator.
On peut également prévoir des modes de réalisation dans lesquels l'enveloppe est rigide et fabriquée dans d'autres matériaux comme du métal. On peut aussi imaginer un mode de réalisation dans lequel les électrodes et les séparateurs ne sont pas plans mais cylindriques circulaires, et arrangés de manière concentrique. Dans le mode de réalisation dans lequel les électrodes et les séparateurs seraient circulaires cylindriques concentriques, on peut imaginer que les éléments de contact soient placés aux extrémités des électrodes selon la direction x, correspondant à la direction longitudinale de la cellule, entre les électrodes et l'enveloppe. Embodiments may also be provided in which the envelope is rigid and made of other materials such as metal. One can also imagine an embodiment in which the electrodes and the separators are not planar but cylindrical circular, and arranged concentrically. In the embodiment in which the electrodes and the separators are concentric cylindrical circular, it is conceivable that the contact elements are placed at the ends of the electrodes in the direction x, corresponding to the longitudinal direction of the cell, between the electrodes and the 'envelope.
On peut également imaginer un mode de réalisation dans lequel un seul élément de contact est employé, à une des extrémités des électrodes, suivant la direction x. On présente maintenant, en relation avec la figure 3, une vue en coupe d'une cellule électrochimique selon un deuxième mode de réalisation de l'invention. An embodiment can also be imagined in which a single contact element is used at one end of the electrodes in the x direction. In connection with FIG. 3, a sectional view of an electrochemical cell according to a second embodiment of the invention is now presented.
Dans ce mode de réalisation, la cellule électrochimique 1 comprend en outre un caloduc 7 dont une première extrémité 71 est reliée à l'élément de contact 4a et une deuxième extrémité 72 est ménagée à l'extérieur de la cellule électrochimique 1. Le fait d'implanter ce caloduc 7 à l'intérieur de la cellule permet de limiter le nombre de barrières physiques en créant un « pont » entre l'intérieur de la cellule et l'extérieur. Cela favorise ainsi la dynamique de la dissipation thermique à l'intérieur de la cellule.  In this embodiment, the electrochemical cell 1 further comprises a heat pipe 7 whose first end 71 is connected to the contact element 4a and a second end 72 is formed outside the electrochemical cell 1. implanting this heat pipe 7 inside the cell makes it possible to limit the number of physical barriers by creating a "bridge" between the inside of the cell and the outside. This thus promotes the dynamics of heat dissipation inside the cell.
On présente maintenant, en relation avec la figure 4, une vue en coupe selon un plan (x,z) d'une batterie de véhicule automobile, c'est-à-dire une coupe transversale, mettant en œuvre plusieurs cellules électrochimiques 1 selon l'invention, comportant chacune un caloduc.  FIG. 4 shows a sectional view along a plane (x, z) of a motor vehicle battery, that is to say a cross-section, using a plurality of electrochemical cells 1 according to FIG. the invention, each comprising a heat pipe.
Comme illustré sur cette figure 4, la batterie A comporte trois cellules électrochimiques la, lb, le mises en œuvre selon le deuxième mode de réalisation présenté précédemment. Ces trois cellules électrochimiques sont superposées suivant la direction z, correspondant à la direction perpendiculaire au plan des électrodes qui sont, dans cet exemple, rectangulaires. Elles sont placées dans un logement 30 formant le boîtier de la batterie A, ce boîtier comprenant en outre une borne positive 50 et une borne négative 60. As illustrated in FIG. 4, the battery A comprises three electrochemical cells 1a, 1b, the implementations according to the second embodiment presented above. These three electrochemical cells are superimposed along the direction z, corresponding to the direction perpendicular to the plane of the electrodes which are, in this example, rectangular. They are placed in a housing 30 forming the casing of the battery A, this casing further comprising a positive terminal 50 and a negative terminal 60.
Dans d'autres variantes, on peut bien sûr imaginer des batteries comportant une ou plusieurs cellules adoptant des configurations différentes. On peut par exemple imaginer une batterie comportant plusieurs rangées de cellules superposées selon l'axe y. On peut également prévoir des modes de réalisation dans lesquels les cellules sont par exemple mises bout à bout selon l'axe x, qui correspond à l'axe longitudinal des cellules. On peut aussi prévoir des modes de réalisation dans lesquels certaines des cellules sont munies de caloducs tandis que d'autres non.  In other variants, one can of course imagine batteries having one or more cells adopting different configurations. One can for example imagine a battery having several rows of cells superimposed along the y axis. It is also possible to provide embodiments in which the cells are for example placed end to end along the x axis, which corresponds to the longitudinal axis of the cells. It is also possible to provide embodiments in which some of the cells are provided with heat pipes while others are not.
On présente maintenant, en relation avec la figure 5, un graphique présentant l'évolution de la température interne (axe des ordonnées) en fonction du temps (axe des abscisses) pour une cellule de l'art antérieur et pour une cellule selon l'invention.  With reference to FIG. 5, a graph showing the evolution of the internal temperature (y-axis) as a function of time (x-axis) for a cell of the prior art and for a cell according to FIG. invention.
Ce graphique G comporte une courbe J présentant l'évolution de la température interne d'une cellule de l'art antérieur en fonction du temps de fonctionnement. On remarque dans cet exemple que la courbe J croît rapidement durant la première heure puis croît de manière plus lente durant les trente minutes suivantes pour atteindre un maximum de 40 degrés. Durant le reste du temps de fonctionnement de cette batterie, la température oscille entre 38,5 degrés et 40 degrés Celsius.  This graph G comprises a curve J showing the evolution of the internal temperature of a cell of the prior art as a function of the operating time. Note in this example that the curve J increases rapidly during the first hour then grows more slowly during the next thirty minutes to reach a maximum of 40 degrees. During the remainder of this battery's operating time, the temperature is between 38.5 and 40 degrees Celsius.
Une deuxième courbe I du graphique G présente l'évolution de la température interne d'une cellule électrochimique selon l'invention en fonction du temps de fonctionnement. Contrairement à la courbe J, la courbe I croît lentement durant les 45 premières minutes puis se stabilise à une valeur maximale de 36 degrés. Pendant la suite du fonctionnement de la cellule, la température interne va osciller entre 34,5 et 36 degrés Celsius. A second curve I of graph G shows the evolution of the internal temperature of an electrochemical cell according to the invention as a function of the operating time. Unlike curve J, curve I grows slowly during the first 45 minutes and then stabilizes at a maximum value of 36 degrees. During the subsequent operation of the cell, the internal temperature will oscillate between 34.5 and 36 degrees Celsius.
On constate donc une différence de température d'environ 4 degrés Celsius entre une cellule de l'art antérieur et une cellule selon l'invention qui, de par les moyens de refroidissement mis en œuvre, présente donc une température interne relativement plus faible.  There is thus a temperature difference of about 4 degrees Celsius between a cell of the prior art and a cell according to the invention which, because of the cooling means used, therefore has a relatively lower internal temperature.
Bien évidemment, ces valeurs et ordres de grandeur ne sont que des exemples développés ici à titre de simples exemples illustratifs des gains au niveau du refroidissement d'une cellule électrochimique selon 1 ' invention .  Of course, these values and orders of magnitude are only examples developed here as simple illustrative examples of the cooling gains of an electrochemical cell according to the invention.

Claims

REVENDICATIONS
1. Cellule électrochimique de stockage d'électricité (1) comprenant une enveloppe (3) dans laquelle sont disposés : An electrochemical cell for storing electricity (1) comprising an envelope (3) in which are arranged:
- au moins deux électrodes positives (21) reliées à une borne positive (5) ,  at least two positive electrodes (21) connected to a positive terminal (5),
- au moins deux électrodes négatives (22) reliées à une borne négative (6),  at least two negative electrodes (22) connected to a negative terminal (6),
lesdites au moins deux électrodes positives (21) et deux électrodes négatives (22) étant empilées de manière alternée dans ladite enveloppe (3) , said at least two positive electrodes (21) and two negative electrodes (22) being alternately stacked in said envelope (3),
au moins un séparateur (23) étant placé entre chacune desdites électrodes positives (21) et négatives (22), caractérisée en ce que ladite cellule électrochimique (1) comprend en outre au moins un élément de contact (4a, 4b) disposé au contact desdites électrodes positives (21) et négatives (22), et de ladite enveloppe (3). at least one separator (23) being placed between each of said positive (21) and negative (22) electrodes, characterized in that said electrochemical cell (1) further comprises at least one contact element (4a, 4b) arranged in contact said positive (21) and negative (22) electrodes, and said envelope (3).
2. Cellule électrochimique selon la revendication 1, caractérisée en ce que ledit élément de contact (4a, 4b) comprend en outre au moins un caloduc (7) dont une première extrémité (71) est reliée audit élément de contact (4a, 4b) et une deuxième extrémité (72) est ménagée à l'extérieur de ladite cellule électrochimique.  2. Electrochemical cell according to claim 1, characterized in that said contact element (4a, 4b) further comprises at least one heat pipe (7), a first end (71) is connected to said contact element (4a, 4b). and a second end (72) is provided outside said electrochemical cell.
3. Cellule électrochimique selon l'une des revendications 1 et 2, caractérisée en ce que ladite enveloppe (3) est réalisée dans un matériau souple.  3. Electrochemical cell according to one of claims 1 and 2, characterized in that said casing (3) is made of a flexible material.
4. Cellule électrochimique selon l'une des revendications 1 et 2, caractérisée en ce que ladite enveloppe (3) est réalisé dans un matériau rigide.  4. Electrochemical cell according to one of claims 1 and 2, characterized in that said casing (3) is made of a rigid material.
5. Cellule électrochimique selon la revendication 1, caractérisée en ce que ledit élément de contact (4a, 4b) est réalisé en polymère. 5. Electrochemical cell according to claim 1, characterized in that said contact element (4a, 4b) is made of polymer.
6. Cellule électrochimique selon la revendication 1, caractérisée en ce que ledit élément de contact (4a, 4b) est réalisé en élastomère. 6. Electrochemical cell according to claim 1, characterized in that said contact element (4a, 4b) is made of elastomer.
7. Cellule électrochimique selon la revendication 1, caractérisée en ce que lesdites électrodes positives (21) et lesdites électrodes négatives (22) sont de forme sensiblement rectangulaire.  7. Electrochemical cell according to claim 1, characterized in that said positive electrodes (21) and said negative electrodes (22) are of substantially rectangular shape.
8. Cellule électrochimique selon la revendication précédente, caractérisée en ce que ledit élément de contact (4a, 4b) est ménagé sur la longueur desdites électrodes positives (21) et négatives (22) .  8. Electrochemical cell according to the preceding claim, characterized in that said contact element (4a, 4b) is formed along the length of said positive electrodes (21) and negative (22).
9. Batterie de véhicule automobile caractérisé en ce qu'elle comprend au moins une cellule électrochimique de stockage d'électricité selon l'une quelconque des revendications précédentes.  9. Motor vehicle battery characterized in that it comprises at least one electrochemical cell for storing electricity according to any one of the preceding claims.
10. Véhicule automobile caractérisé en ce qu'il comprend au moins une batterie selon la revendication 9.  10. Motor vehicle characterized in that it comprises at least one battery according to claim 9.
EP13785546.6A 2012-10-22 2013-10-11 Electrochemical electricity storage cell Withdrawn EP2909888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260043A FR2997234B1 (en) 2012-10-22 2012-10-22 ELECTROCHEMICAL CELL FOR STORAGE OF ELECTRICITY.
PCT/FR2013/052434 WO2014064360A1 (en) 2012-10-22 2013-10-11 Electrochemical electricity storage cell

Publications (1)

Publication Number Publication Date
EP2909888A1 true EP2909888A1 (en) 2015-08-26

Family

ID=47598902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13785546.6A Withdrawn EP2909888A1 (en) 2012-10-22 2013-10-11 Electrochemical electricity storage cell

Country Status (6)

Country Link
US (1) US10079412B2 (en)
EP (1) EP2909888A1 (en)
KR (1) KR102102714B1 (en)
CN (1) CN104854755B (en)
FR (1) FR2997234B1 (en)
WO (1) WO2014064360A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030121B1 (en) * 2014-12-16 2017-01-20 Commissariat Energie Atomique LITHIUM ACCUMULATOR WITH THERMALLY INSULATED PACKAGING WITH TWO LAYERS AND HEAT TRANSDUCER FOR THERMAL MANAGEMENT
US12113189B2 (en) * 2021-08-25 2024-10-08 GM Global Technology Operations LLC Battery including thermally conductive filler material with thermal runaway containment function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130295430A1 (en) * 2010-09-03 2013-11-07 Mitsubishi Heavy Industries, Ltd. Battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010800A (en) * 1998-06-17 2000-01-04 Hughes Electronics Corporation Method and apparatus for transferring heat generated by a battery
KR100325873B1 (en) * 2000-04-12 2002-03-07 김순택 Lithium ion polymer battery employing taps coated with polymer
JP4204237B2 (en) * 2001-03-21 2009-01-07 日本碍子株式会社 Lithium secondary cell and connection structure of lithium secondary cell
JP2006172870A (en) * 2004-12-15 2006-06-29 Toyota Motor Corp Battery and battery pack
DE102009016867A1 (en) * 2009-04-08 2010-10-14 Li-Tec Battery Gmbh Accumulator with extended life
DE102009037850A1 (en) * 2009-08-18 2011-02-24 Li-Tec Battery Gmbh Electrochemical cell
DE102009048237A1 (en) * 2009-10-05 2011-04-21 Li-Tec Battery Gmbh Electrochemical cell and method of making such a cell
US9196938B2 (en) 2010-07-06 2015-11-24 Samsung Sdi Co., Ltd. Battery module
US8906532B2 (en) 2011-06-03 2014-12-09 Johnson Controls Technology Llc Electrochemical cells with improved heat collection and transfer systems
US9689624B2 (en) * 2011-11-18 2017-06-27 GM Global Technology Operations LLC Method for mitigating thermal propagation of batteries using heat pipes
US10249921B2 (en) * 2013-05-23 2019-04-02 Elwha Llc Fast thermal dumping for batteries
US9666907B2 (en) * 2013-09-03 2017-05-30 Ut-Battelle, Llc Thermal management for high-capacity large format Li-ion batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130295430A1 (en) * 2010-09-03 2013-11-07 Mitsubishi Heavy Industries, Ltd. Battery

Also Published As

Publication number Publication date
FR2997234B1 (en) 2016-05-06
KR20150074144A (en) 2015-07-01
US10079412B2 (en) 2018-09-18
WO2014064360A1 (en) 2014-05-01
CN104854755A (en) 2015-08-19
US20150325888A1 (en) 2015-11-12
CN104854755B (en) 2018-02-13
FR2997234A1 (en) 2014-04-25
KR102102714B1 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
EP2034539B1 (en) Battery made up of a plurality of cells positioned and connected to one another without welding
EP3047534B1 (en) Battery pack thermal regulation device
EP3014676B1 (en) Strip of electrochemical cells for the production of a battery module for an electric or hybrid vehicle, and method for the production of such a module
EP2145360B1 (en) Module for an electric energy storage assembly
WO2014206947A1 (en) Battery module for an electric or hybrid vehicle incorporating a heat exchanger
EP2599143A1 (en) Battery, the design and assembly of which are simple
EP2721911B1 (en) Printed circuit for interconnecting and measuring battery cells in a battery
WO2015043869A1 (en) Battery module for an electric or hybrid vehicle to ensure the cooling of the cells, and associated battery
CA3000587A1 (en) Electrical energy storage module and method for producing same
EP3020081B1 (en) Module having a plurality of removable cells, battery comprising such a module and vehicle comprising such a battery
EP3925018A1 (en) Battery unit and motor vehicle provided with at least one such unit
EP2564451B1 (en) Battery unit for an electric or hybrid vehicle
FR2988914A3 (en) Module structure for housing Lithium-ion battery cells in battery module in e.g. electric vehicle, has structure element formed such that spacing is formed between basic walls, where flexible envelope is placed between basic walls
WO2014064360A1 (en) Electrochemical electricity storage cell
FR3018394A1 (en) ELECTRICAL ASSEMBLY AND CONNECTION PIECE OF AT LEAST TWO ELECTRIC ENERGY STORAGE CELLS
WO2016097517A1 (en) Module of primary cells and device for storing electrical energy
EP3114726B1 (en) Assembly module comprising electrochemical cells received by lugs and connecting clips
FR2893449A1 (en) Electrode stack compressing method for automobile field, involves compressing stack of electrodes using U-shaped compression clamps which are not supported on can of storage battery for exerting elastic compression force on stack
EP2851976B1 (en) Cooling system for a battery
EP4162564A1 (en) Connection member for connecting two accumulators
FR3143859A1 (en) ARCHITECTURE OF ELECTROCHEMICAL CELL FOR AUTOMOTIVE VEHICLE BATTERIES.
FR3146027A1 (en) ELECTROCHEMICAL CELL HAVING HELICAL ELECTRODES, MOTOR VEHICLE, ELECTRICAL DEVICE AND METHOD BASED ON SUCH A CELL
FR3146546A1 (en) Battery cell block, especially for motor vehicles
FR3016241A1 (en) ELECTRIC ENERGY STORAGE ASSEMBLY AND METHOD OF MANUFACTURING THE SAME
FR3110771A1 (en) Electrochemical element and corresponding battery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191025