EP2906882B1 - Refrigerator with two evaporators - Google Patents

Refrigerator with two evaporators Download PDF

Info

Publication number
EP2906882B1
EP2906882B1 EP13771483.8A EP13771483A EP2906882B1 EP 2906882 B1 EP2906882 B1 EP 2906882B1 EP 13771483 A EP13771483 A EP 13771483A EP 2906882 B1 EP2906882 B1 EP 2906882B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
diverter valve
refrigerant
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13771483.8A
Other languages
German (de)
French (fr)
Other versions
EP2906882A1 (en
Inventor
Andreas BABUCKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP2906882A1 publication Critical patent/EP2906882A1/en
Application granted granted Critical
Publication of EP2906882B1 publication Critical patent/EP2906882B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the invention relates to a refrigeration device with a refrigerant circuit having a compressor and at least a first evaporator and a second evaporator, wherein the refrigerant circuit has a main branch and at least a first parallel branch and a second parallel branch, wherein the compressor in the main branch, the first evaporator in the first Parallel branch and the second evaporator in the second parallel branch are arranged, and wherein between a discharge of the compressor and an inlet of the first evaporator and an inlet of the second evaporator, a diverter valve having an input and at least a first output and a second output is arranged, wherein the input with the refrigerant circuit, the first output with the first parallel branch and the second output with the second parallel branch is connected refrigerant leading.
  • Refrigeration appliances in particular designed as household appliances refrigerators are known and are used to housekeeping in households or in the catering sector to store perishable food and / or drinks at certain temperatures.
  • a refrigeration device with a refrigerant circuit which has two evaporators in addition to a compressor, both of which are arranged in the refrigerant circuit parallel to each other.
  • the refrigerant circuit further comprises a 3/2-way valve which is connected to an outlet of the compressor and each having an inlet of the two evaporators.
  • Each of the two evaporators is assigned a refrigeration compartment.
  • the evaporators must each be operated with an optimum filling level in order to achieve a high evaporation temperature.
  • the refrigerant circuit is closed to the evaporator of the second refrigeration compartment and only the evaporator of the first Refrigeration compartment charged with refrigerant.
  • An alternative solution to this is a check valve which is arranged between the compressor and one of the two evaporators.
  • the publication DE 34 31 452 A1 shows a used as a heat pump refrigerator or freezer.
  • the disclosure document DE 3 431 452 A1 discloses a refrigerator according to the preamble of claim 1.
  • the publication EP 1 707 900 A1 shows a refrigeration device comprising a refrigerant circuit.
  • the present invention is based on the finding that, by completely separating one of the two evaporators, the respectively non-separated evaporator can be operated with an optimum filling level.
  • the object according to the invention is achieved by a refrigeration device in which a second diverter valve with at least one first input, one second input and one output is arranged between a compressor inlet of the compressor and an evaporator outlet of the first evaporator and an evaporator outlet of the second evaporator, wherein the first input to the first parallel branch, the second input to the second parallel branch and the output to the refrigerant circuit is refrigerant leading.
  • refrigerant can be selectively directed into the first or second parallel branch, and with the second diverter valve, either the first or second parallel branch can be connected to the refrigerant circuit.
  • Both the first diverter valve and the second diverter valve may be 3/2-way valves. 3/2-way valves have two valve seats, whereby alternately always one of the two valve seats remains open or closed.
  • the first diverter valve in a first switching position of the first diverter valve the first output is opened and the second output is closed, or in a second switching position of the first diverter valve, the first output is closed and the second output is opened.
  • the first input is opened and the second input is closed in a first switching position of the second diverter valve, or in a second switching position of the second diverter valve, the first input is closed and the second input is opened.
  • a first throttle is arranged between the first diverter valve and the evaporator inlet of the first evaporator, and a second throttle is arranged between the second diverter valve and the evaporator inlet of the second evaporator.
  • an intake manifold throttle tube heat exchanger is arranged, which is heat-transmitting connected to the first throttle and / or with the second throttle.
  • the first diverter valve has a first switching position, in which the first outlet of the first diverter valve for refrigerant is permeably connected to the evaporator inlet of the first evaporator, and the second outlet of the first diverter valve is impermeable to refrigerant.
  • the first diverter valve has a second switching position, in which the second outlet of the first diverter valve is permeably connected to the evaporator inlet of the second evaporator, and the first outlet of the first diverter valve is impermeable to refrigerant.
  • the second diverter valve has a first switching position, in which the first input of the second diverter valve for refrigerant is permeably connected to the evaporator outlet of the first evaporator, and the second input of the second diverter valve is blocked impermeable to refrigerant.
  • the second diverter valve has a second switching position, in which the second input of the second diverter valve is connected in a permeable manner to the evaporator outlet of the second evaporator, and the first input of the second diverter valve is impermeable to the refrigerant.
  • the refrigeration device is operated in a normal mode in which at least temporarily the first diverter valve in the first switching position and the second diverter valve are simultaneously in the first switching position.
  • the refrigeration device is operated in a further normal operation in which at least temporarily, the first diverter valve in the second switching position and the second diverter valve are simultaneously in the second switching position.
  • the refrigeration device is operable in a transfer mode in which at least temporarily the first diverter valve in the first switching position and the second diverter valve in the second switching position are simultaneously.
  • the refrigeration device is operable in a transfer mode, in which at least temporarily the first diverter valve in the second switching position and the second diverter valve in the first switching position are simultaneously.
  • the refrigerant circuit has a condenser, wherein a stop valve is provided between the condenser and the first diverter valve.
  • a stop valve in a transfer mode with a driven compressor, at least temporarily prevents a refrigerant flow in the refrigerant circuit.
  • the refrigeration device has a control which is connected at least to the first diverter valve and the second diverter valve for driving the first diverter valve and the second diverter valve.
  • control is at least connected to a temperature sensor for transmitting measuring signals.
  • Fig. 1 shows a refrigerator as an exemplary embodiment of a refrigeration device 100.
  • the refrigeration device 100 is formed in the present embodiment as a refrigerator-freezer combination and also has in the present embodiment, a twin-Nofrost system.
  • the refrigeration appliance 100 has a first, upper refrigeration compartment 102, which is designed as a freezer compartment in the present exemplary embodiment.
  • a second, lower cooling compartment 104 which is formed in the present embodiment as a cooling compartment.
  • Fig. 2 1 shows an exemplary embodiment of a refrigerant circuit 200 of such a refrigeration device 100.
  • the refrigerant circuit 200 includes a compressor 202, a condenser 204, a stop valve 206, a first diverter valve 208, a first throttle 210, a second throttle 212, a first evaporator 214, a second evaporator 216, a second diverter valve 218, and a draft tube throttle tube Heat exchanger 220 on.
  • the compressor 202 is in the present embodiment, a mechanically driven component, the refrigerant vapor from one of the two evaporators 214, 216 sucks and promotes against a higher pressure to the condenser 204.
  • the condenser 204 is formed as a heat exchanger in which, after compression, the vaporized refrigerant is released by heat release to an external cooling medium, i. the ambient air is liquefied.
  • the first evaporator 214 and the second evaporator 216 are formed in the present embodiment as a heat exchanger in which, after expansion, the liquid refrigerant by heat absorption from the medium to be cooled, i. Air inside the refrigerator, is evaporated. Further, in the present embodiment, the first evaporator 214 and / or the second evaporator 216 are formed as a static evaporator. Thus, no fans are required for forced energization of the first evaporator 214 and / or the second evaporator 216.
  • the first evaporator 214 is assigned to the first refrigeration compartment 102 and the second evaporator 216 to the second refrigeration compartment 104.
  • both the first evaporator 214 and the second evaporator 216 are formed as a fin evaporator.
  • the first evaporator 214 is the first throttle 210 and the second evaporator 216 is the second throttle 212 associated.
  • the throttles 210, 212 are devices for reducing the pressure by necking.
  • the first throttle 210 and the first evaporator 214 are connected in series, and the second throttle 212 and the second evaporator 216 are connected in series, wherein these two series circuits are connected in parallel in the present embodiment. That the refrigeration cycle 200 is divided into two parallel branches 274, 276, wherein in the present embodiment, the compressor 202, the condenser 204, the stop valve 206 and the intake manifold throttle tube heat exchanger 220 are arranged in a main branch 278 of the refrigeration cycle 200.
  • the refrigerant is a fluid used for heat transfer in the cryogenic system that absorbs heat at low temperatures and low pressure of the fluid and releases heat at higher temperature and pressure of the fluid, usually including changes in state of the fluid.
  • the refrigerant circuit 200 in the present embodiment includes the stop valve 206, which is a controllable solenoid valve in the present embodiment, with a refrigerant flow in the refrigerant circuit 200 can be interrupted.
  • the refrigerant circuit 200 comprises the intake manifold throttle tube heat exchanger 220, so that the residual refrigeration of the refrigerant flowing out of the evaporator is also utilized.
  • the first diverter valve 208 has an input 222 and a first output 224 and a second output 226.
  • the second diverter valve 218 has a first input 228 and a second input 230 and an output 232.
  • refrigerant can be selectively directed into the first parallel branch 274 or into the second parallel branch 276, and with the second diverter valve 218, either the first parallel branch 274 or the second parallel branch 276 can be connected to the compressor 202.
  • both the first diverter valve 208 and the second diverter valve 218 are designed as a 3/2-way valve.
  • 3/2-way valves have two valve seats, whereby alternately always one of the two valve seats remains open or closed.
  • the first input 228 in a first switching position of the second diverter valve 218, the first input 228 is opened and the second input 230 is closed, or in a second switching position of the second diverter valve 218, the first input 228 is closed and the second input 230 is opened.
  • the compressor 202 has a compressor outlet 234, which is connected to a condenser inlet 236 of the condenser 204 refrigerant leading.
  • a condenser exit 238 of the condenser 204 is connected to an input port 240 of the stop valve 206 refrigerant leading.
  • An output port 242 of the stop valve 206 is connected to the inlet 222 of the first diverter valve 208 refrigerant leading.
  • the first output 224 of the first diverter valve 208 is connected to a throttle input 244 of the first throttle 210.
  • a throttle output 246 of the first throttle 210 is connected to an evaporator inlet 248 of the first evaporator 214 refrigerant leading.
  • An evaporator outlet 250 of the first evaporator 214 is connected to the first input 230 of the second diverter valve 218 refrigerant leading.
  • the second output 226 of the first diverter valve 208 is connected to a throttle inlet 252 of the second throttle 212 refrigerant leading.
  • a throttle output 254 of the second throttle 212 is connected to an evaporator input 256 of the second evaporator 216 refrigerant leading.
  • An evaporator outlet 258 of the second evaporator 214 is connected to the second input 228 of the second diverter valve 218 refrigerant leading.
  • the output 232 of the second diverter valve 218 is connected to a heat exchanger inlet 260 of the intake manifold throttle tube heat exchanger 220 refrigerant leading.
  • a heat exchanger outlet 262 of the intake manifold-to-choke heat exchanger 220 is connected via a suction pipe 266 to a compressor inlet 264 of the compressor 202 refrigerant leading.
  • the first diverter valve 208 and the second diverter valve 218 are connected to a controller 268 via control lines 270 to transmit control signals. Furthermore, the stop valve 206 is connected via a control lines 280 and the compressor 202 via a control lines 282 control signal transmitting with a controller 268 connected.
  • the controller 268 controls the first diverter valve 208 and the second diverter valve 218 to the first switching position. At the same time, the controller 268 controls the second one Diverter valve 218 in the first switching position.
  • refrigerant flows through the first throttle 210 and the first evaporator 214 and thus cools the refrigeration compartment 102 associated with the first evaporator 214.
  • the second throttle 212 and the second evaporator 216 are from the refrigerant circuit 200 separated.
  • the controller 268 controls the first diverter valve 208 to the second switching position. At the same time, the controller 268 controls the second diverter valve 218 in the second switching position.
  • refrigerant flows through the second orifice 212 and the second evaporator 216 and thus cools the refrigeration compartment 104 associated with the second evaporator 216.
  • the first orifice 210 and the first evaporator 214 are from the refrigerant cycle 200 separated.
  • the normal operation cycle may begin with the second phase described above followed by the first phase.
  • both the first evaporator 214 and the second evaporator 216 may each be operated with an optimum charge amount of refrigerant, i. with an optimal filling level. Therefore, no refrigerant has to be sucked out of the respective other evaporator 214, 216, so that no energy has to be expended for this purpose. Thus, the power consumption of the refrigeration device 100 is reduced.
  • the controller 268 may operate the first diverter valve 208 and the second diverter valve 218 in a transmission mode.
  • refrigerant is drawn off from the second evaporator 216 in order to have sufficient refrigerant available for the operation of the first evaporator 214.
  • the controller 268 controls the first diverter valve 208 in its first switching position. Further, the controller 268 controls the second diverter valve 218 to its second switching position. Now refrigerant is sucked from the second evaporator 216 and then changed to normal operation.
  • the controller 268 controls the first diverter valve 208 in its second switching position. Further, the controller 268 controls the second diverter valve 218 in its first switching position. Now refrigerant is sucked from the first evaporator 214 and then changed to normal operation.
  • the stop valve 206 can be brought into its blocking state, so that an unwanted refrigerant flow in the refrigerant circuit 200 is prevented. Due to the suction effect of the compressor 202, it is then possible to extract refrigerant from the first evaporator 214 and / or the second evaporator 216.
  • the controller 268 is connected to a temperature sensor 272.
  • the temperature value detected by the temperature sensor 272 e.g. the ambient temperature of the refrigerator exceeds a predetermined threshold is changed by the controller 268 to the transmission mode to make an adjustment of the refrigerant amount to the prevailing boundary conditions.
  • a predetermined threshold e.g. the ambient temperature of the refrigerator exceeds a predetermined threshold
  • condensation of moisture on the suction tube 266 can be prevented.
  • the refrigerant circuit 200 may serve to cool a third refrigeration compartment in addition to the first refrigeration compartment 102 designed as a freezer compartment and the second refrigeration compartment 104 designed as a refrigeration compartment, for example a freshness compartment or even further refrigeration compartments, such as a fourth or fifth refrigeration compartment, etc ..
  • Each of the cold storage is then associated with an evaporator, which is arranged in a parallel branch of the refrigerant circuit 200. Consequently Accordingly, the first diverter valve 208 has a number of outputs corresponding to the number of parallel branches and the second diverter valve 218 has a corresponding number of inputs. Furthermore, the first deflection valve 208 and the second deflection valve 218 then have a number of switching positions corresponding to the number of parallel branches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Die Erfindung betrifft ein Kältegerät mit einem Kältemittelkreislauf, der einen Verdichter und zumindest einen ersten Verdampfer und einen zweiten Verdampfer aufweist, wobei der Kältemittelkreislauf einen Hauptzweig und zumindest einen ersten Parallelzweig und einen zweiten Parallelzweig aufweist, wobei der Verdichter im Hauptzweig, der erste Verdampfer im ersten Parallelzweig und der zweite Verdampfer im zweiten Parallelzweig angeordnet sind, und wobei zwischen einem Auslass des Verdichters und einem Einlass des ersten Verdampfers und einem Einlass des zweiten Verdampfers ein Umlenkventil mit einem Eingang und zumindest einem ersten Ausgang und einem zweiten Ausgang angeordnet ist, wobei der Eingang mit dem Kältemittelkreislauf, der erste Ausgang mit dem ersten Parallelzweig und der zweite Ausgang mit dem zweiten Parallelzweig kältemittelführend verbunden ist.The invention relates to a refrigeration device with a refrigerant circuit having a compressor and at least a first evaporator and a second evaporator, wherein the refrigerant circuit has a main branch and at least a first parallel branch and a second parallel branch, wherein the compressor in the main branch, the first evaporator in the first Parallel branch and the second evaporator in the second parallel branch are arranged, and wherein between a discharge of the compressor and an inlet of the first evaporator and an inlet of the second evaporator, a diverter valve having an input and at least a first output and a second output is arranged, wherein the input with the refrigerant circuit, the first output with the first parallel branch and the second output with the second parallel branch is connected refrigerant leading.

Kältegeräte, insbesondere als Haushaltsgeräte ausgebildete Kältegeräte, sind bekannt und werden zur Haushaltsführung in Haushalten oder im Gastronomiebereich eingesetzt, um verderbliche Lebensmittel und/oder Getränke bei bestimmten Temperaturen zu lagern.Refrigeration appliances, in particular designed as household appliances refrigerators are known and are used to housekeeping in households or in the catering sector to store perishable food and / or drinks at certain temperatures.

Aus der DE 10 2006 015 989 A1 ist ein Kältegerät mit einem Kältemittelkreislauf bekannt, der neben einem Verdichter zwei Verdampfer aufweist, die beide im Kältemittelkreislauf parallel zueinander angeordnet sind. Der Kältemittelkreislauf weist ferner ein 3/2-Wegeventil auf, das mit einem Auslass des Verdichters und mit je einem Einlass der beiden Verdampfer verbunden ist. Jedem der beiden Verdampfer ist je ein Kältefach zugeordnet. Bei Kältegeräten mit mehr als einem Verdampfer spielt die Verteilung des Kältemittels im Kältekreislauf eine große Rolle, um die beiden Verdampfer optimal zu füllen. Die Verdampfer sind jeweils mit einem optimalen Füllgrad zu betreiben, um eine hohe Verdampfungstemperatur zu erreichen. Gleichzeitig ist ein Überlaufen von flüssigem Kältemittel zu vermeiden, da die daher eingehende Saugrohrabkühlung einen Verlust an Kühlleistung nach sich zieht. Bei derartig parallel geschalteten Verdampfern, wie z.B. bei einem Twin-Nofrost-System, ist sicherzustellen, dass beim Betrieb des wärmeren Kältefaches der beiden Kältefächer verdampftes Kältemittel nicht im kälteren Verdampfer kondensiert. Hierzu sieht die DE 10 2006 015 989 A1 vor, bei einem Kältemittelbedarf in einem ersten Kältefach in einem Vorbereitungsschritt zunächst den Verdampfer des zweiten Kältefachs mit Kältemittel zu beaufschlagen. Anschließend wird der Kältemittelkreislauf zum Verdampfer des zweiten Kältefachs verschlossen und nur noch der Verdampfer des ersten Kältefachs mit Kältemittel beaufschlagt. Eine alternative Lösung hierzu ist ein Rückschlagventil, das zwischen dem Verdichter und einem der beiden Verdampfer angeordnet ist. So kann durch Absaugen von Kältemittel aus dem kälteren der beiden Verdampfer der dem wärmeren Kältefach zugeordnete Verdampfer mit einem verbesserten Füllgrad betrieben werden. Jedoch erfordert das Absaugen Energie und erhöht somit den Energiebedarf des Kältegeräts.From the DE 10 2006 015 989 A1 a refrigeration device with a refrigerant circuit is known, which has two evaporators in addition to a compressor, both of which are arranged in the refrigerant circuit parallel to each other. The refrigerant circuit further comprises a 3/2-way valve which is connected to an outlet of the compressor and each having an inlet of the two evaporators. Each of the two evaporators is assigned a refrigeration compartment. For refrigerators with more than one evaporator, the distribution of the refrigerant in the refrigeration cycle plays a major role in optimally filling the two evaporators. The evaporators must each be operated with an optimum filling level in order to achieve a high evaporation temperature. At the same time, an overflow of liquid refrigerant is to be avoided, since the incoming intake pipe cooling system therefore causes a loss of cooling capacity. In such parallel-connected evaporators, such as in a twin-Nofrost system, to ensure that during operation of the warmer cold compartment of the two refrigerators fan evaporated refrigerant does not condensate in the colder evaporator. This sees the DE 10 2006 015 989 A1 in the case of a refrigerant requirement in a first refrigeration compartment in a preparatory step, first to pressurize the evaporator of the second refrigeration compartment with refrigerant. Subsequently, the refrigerant circuit is closed to the evaporator of the second refrigeration compartment and only the evaporator of the first Refrigeration compartment charged with refrigerant. An alternative solution to this is a check valve which is arranged between the compressor and one of the two evaporators. Thus, by evacuating refrigerant from the colder of the two evaporators, the evaporator associated with the warmer refrigeration compartment can be operated with an improved degree of filling. However, the suction requires energy and thus increases the energy consumption of the refrigerator.

Die Offenlegungsschrift DE 34 31 452 A1 zeigt ein als Wärmepumpe genutztes Kühl- oder Gefriergerät. Die Offenlegungschrift DE 3 431 452 A1 offenbart ein Kältegerät gemäß dem Oberbegriff des Anspruchs 1.The publication DE 34 31 452 A1 shows a used as a heat pump refrigerator or freezer. The disclosure document DE 3 431 452 A1 discloses a refrigerator according to the preamble of claim 1.

Die Offenlegungsschrift EP 1 707 900 A1 zeigt ein Kältegerät umfassend einen Kältemittelkreislauf.The publication EP 1 707 900 A1 shows a refrigeration device comprising a refrigerant circuit.

Es ist daher die der Erfindung zugrundeliegende Aufgabe, ein Kältegerät mit reduziertem Energiebedarf bereitzustellen.It is therefore the object underlying the invention to provide a refrigeration device with reduced energy requirements.

Diese Aufgabe wird durch den Gegenstand mit den Merkmalen nach dem unabhängigen Anspruch gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche, der Beschreibung sowie der Zeichnungen.This object is achieved by the subject matter having the features of the independent claim. Advantageous developments are the subject of the dependent claims, the description and the drawings.

Die vorliegende Erfindung basiert auf der Erkenntnis, dass durch vollständiges Abtrennen von einem der beiden Verdampfer der jeweils nicht abgetrennte Verdampfer mit einem optimalen Füllgrad betrieben werden kann.The present invention is based on the finding that, by completely separating one of the two evaporators, the respectively non-separated evaporator can be operated with an optimum filling level.

Gemäß einem ersten Aspekt wird die erfindungsgemäße Aufgabe durch ein Kältegerät gelöst, bei dem zwischen einem Verdichtereingang des Verdichters und einem Verdampferausgang des ersten Verdampfers und einem Verdampferausgang des zweiten Verdampfers ein zweites Umlenkventil mit zumindest einem ersten Eingang, einem zweiten Eingang und einem Ausgang angeordnet ist, wobei der erste Eingang mit dem ersten Parallelzweig, der zweiten Eingang mit dem zweiten Parallelzweig und der Ausgang mit dem Kältemittelkreislauf kältemittelführend verbunden ist. Dadurch wird der technische Vorteil erreicht, dass jeweils einer der beiden Verdampfer mit einem optimalen Füllgrad betrieben werden kann. Somit ist kein Absaugen von Kältemittel aus dem jeweils anderen Verdampfer mehr erforderlich. Daher muss keine Energie für das Absaugen von Kältemitteln aufgewendet werden, so dass der Energiebedarf des Kältegeräts reduziert ist. Mit dem ersten Umlenkventil kann Kältemittel wahlweise in den ersten oder zweiten Parallelzweig geleitet werden, und mit dem zweiten Umlenkventil kann wahlweise der erste oder zweite Parallelzweig mit dem Kältemittkreislauf verbunden werden. Sowohl das erste Umlenkventil als auch das zweite Umlenkventil können 3/2-Wegeventile sein. 3/2-Wegeventile weisen zwei Ventilsitze auf, wobei wechselseitig immer einer der beiden Ventilsitze geöffnet oder geschlossen bleibt. Somit ist im Fall des ersten Umlenkventils in einer ersten Schaltstellung des ersten Umlenkventils der erste Ausgang geöffnet und der zweite Ausgang geschlossen, oder in einer zweiten Schaltstellung des ersten Umlenkventils ist der erste Ausgang geschlossen und der zweite Ausgang geöffnet. Im Fall des zweiten Umlenkventils ist in einer ersten Schaltstellung des zweiten Umlenkventils der erste Eingang geöffnet und der zweite Eingang geschlossen, oder in einer zweiten Schaltstellung des zweiten Umlenkventils ist der erste Eingang geschlossen und der zweite Eingang geöffnet.According to a first aspect, the object according to the invention is achieved by a refrigeration device in which a second diverter valve with at least one first input, one second input and one output is arranged between a compressor inlet of the compressor and an evaporator outlet of the first evaporator and an evaporator outlet of the second evaporator, wherein the first input to the first parallel branch, the second input to the second parallel branch and the output to the refrigerant circuit is refrigerant leading. As a result, the technical advantage is achieved that in each case one of the two evaporators can be operated with an optimal degree of filling. Thus, no extraction of refrigerant from the other evaporator is required. Therefore, no energy must be expended for the extraction of refrigerants, so that the energy consumption of the refrigeration device is reduced. With the The first diverter valve, refrigerant can be selectively directed into the first or second parallel branch, and with the second diverter valve, either the first or second parallel branch can be connected to the refrigerant circuit. Both the first diverter valve and the second diverter valve may be 3/2-way valves. 3/2-way valves have two valve seats, whereby alternately always one of the two valve seats remains open or closed. Thus, in the case of the first diverter valve in a first switching position of the first diverter valve, the first output is opened and the second output is closed, or in a second switching position of the first diverter valve, the first output is closed and the second output is opened. In the case of the second diverter valve, the first input is opened and the second input is closed in a first switching position of the second diverter valve, or in a second switching position of the second diverter valve, the first input is closed and the second input is opened.

In einer vorteilhaften Ausführungsform ist zwischen dem ersten Umlenkventil und dem Verdampfereingang des ersten Verdampfers eine erste Drossel angeordnet, und zwischen dem zweiten Umlenkventil und dem Verdampfereingang des zweiten Verdampfers ist eine zweite Drossel angeordnet. Dadurch wird der technische Vorteil erreicht, dass jedem Verdampfer eine an den Verdampfer angepasste Drossel vorgeschaltet ist. So wird ein energieeffizienter Betrieb der beiden Verdampfer möglich.In an advantageous embodiment, a first throttle is arranged between the first diverter valve and the evaporator inlet of the first evaporator, and a second throttle is arranged between the second diverter valve and the evaporator inlet of the second evaporator. As a result, the technical advantage is achieved that each evaporator is preceded by a throttle adapted to the evaporator. This makes energy-efficient operation of the two evaporators possible.

In einer vorteilhaften Ausführungsform ist in dem Kältemittelkreislauf zwischen dem Verdichter und dem ersten Verdampfer und dem zweiten Verdampfer ein Saugrohr-Drosselrohr-Wärmetauscher angeordnet, der wärmeübertragend mit der ersten Drossel und/oder mit der zweiten Drossel verbunden ist. Dadurch wird der technische Vorteil erreicht, dass die Restkälte des aus dem Verdampfer ausströmenden Kältemittels genutzt wird, da dem Kältemittel in der ersten Drossel und/oder die zweiten Drossel Wärme entzogen wird.In an advantageous embodiment, in the refrigerant circuit between the compressor and the first evaporator and the second evaporator, an intake manifold throttle tube heat exchanger is arranged, which is heat-transmitting connected to the first throttle and / or with the second throttle. As a result, the technical advantage is achieved that the residual cold of the effluent from the evaporator refrigerant is used, since the refrigerant in the first throttle and / or the second throttle heat is withdrawn.

In einer erfindungsgemäßen Ausführungsform weist das erste Umlenkventil eine erste Schaltstellung auf, in der der erste Ausgang des ersten Umlenkventils für Kältemittel durchlässig mit dem Verdampfereingang des ersten Verdampfers verbunden ist, und der zweite Ausgang des ersten Umlenkventils ist für Kältemittel undurchlässig gesperrt. Dadurch wird der technische Vorteil erreicht, dass ein flexibler Betrieb des Kältegeräts mit einer Anpassung an verschiedene Randbedingungen, wie z.B. unterschiedliche Umgebungstemperaturen, möglich ist.In one embodiment of the invention, the first diverter valve has a first switching position, in which the first outlet of the first diverter valve for refrigerant is permeably connected to the evaporator inlet of the first evaporator, and the second outlet of the first diverter valve is impermeable to refrigerant. Thereby, the technical advantage is achieved that a flexible operation of the refrigerator with an adaptation to different boundary conditions, such as. different ambient temperatures, is possible.

In einer erfindungsgemäßen Ausführungsform weist das erste Umlenkventil eine zweite Schaltstellung auf, in der der zweite Ausgang des ersten Umlenkventils durchlässig mit dem Verdampfereingang des zweiten Verdampfers verbunden ist, und der erste Ausgang des ersten Umlenkventils ist für Kältemittel undurchlässig gesperrt. Dadurch wird der technische Vorteil erreicht, dass ein flexibler Betrieb des Kältegeräts mit einer Anpassung an verschiedene Randbedingungen, wie z.B. unterschiedliche Umgebungstemperaturen, möglich ist.In one embodiment of the invention, the first diverter valve has a second switching position, in which the second outlet of the first diverter valve is permeably connected to the evaporator inlet of the second evaporator, and the first outlet of the first diverter valve is impermeable to refrigerant. As a result, the technical advantage is achieved that a flexible operation of the refrigerator with an adaptation to various boundary conditions, such as different ambient temperatures, is possible.

In einer erfindungsgemäßen Ausführungsform weist das zweite Umlenkventil eine erste Schaltstellung auf, in der der erste Eingang des zweiten Umlenkventils für Kältemittel durchlässig mit dem Verdampferausgang des ersten Verdampfers verbunden ist, und der zweite Eingang des zweiten Umlenkventils ist für Kältemittel undurchlässig gesperrt. Dadurch wird der technische Vorteil erreicht, dass ein flexibler Betrieb des Kältegeräts mit einer Anpassung an verschiedene Randbedingungen, wie z.B. unterschiedliche Umgebungstemperaturen, möglich ist.In one embodiment of the invention, the second diverter valve has a first switching position, in which the first input of the second diverter valve for refrigerant is permeably connected to the evaporator outlet of the first evaporator, and the second input of the second diverter valve is blocked impermeable to refrigerant. Thereby, the technical advantage is achieved that a flexible operation of the refrigerator with an adaptation to different boundary conditions, such as. different ambient temperatures, is possible.

In einer erfindungsgemäßen Ausführungsform weist das zweite Umlenkventil eine zweite Schaltstellung auf, in der der zweite Eingang des zweiten Umlenkventils durchlässig mit dem Verdampferausgang des zweiten Verdampfers verbunden ist, und der erste Eingang des zweiten Umlenkventils ist für Kältemittel undurchlässig gesperrt. Dadurch wird der technische Vorteil erreicht, dass ein flexibler Betrieb des Kältegeräts mit einer Anpassung an verschiedene Randbedingungen, wie z.B. unterschiedliche Umgebungstemperaturen, möglich ist durch eine Kältemittelumschichtung von einem Kältefach in das andere.In one embodiment of the invention, the second diverter valve has a second switching position, in which the second input of the second diverter valve is connected in a permeable manner to the evaporator outlet of the second evaporator, and the first input of the second diverter valve is impermeable to the refrigerant. Thereby, the technical advantage is achieved that a flexible operation of the refrigerator with an adaptation to different boundary conditions, such as. different ambient temperatures, is possible by a refrigerant transfer from a refrigeration compartment in the other.

In einer erfindungsgemäßen Ausführungsform wird das Kältegerät in einem Normalbetrieb betrieben, in dem sich zumindest zeitweise das erste Umlenkventil in der ersten Schaltstellung und das zweite Umlenkventil zeitgleich in der ersten Schaltstellung befinden. Dadurch wird der technische Vorteil erreicht, dass der erste Verdampfer in den Kältemittelkreislauf eingeschleift und der zweite Verdampfer vollständig vom Kältekreislauf getrennt werden kann. So ist eine ungewollte Verlagerung von Kältemittel aus dem zweiten Verdampfer in den ersten Verdampfer ausgeschlossen. Daher ist ein Betrieb mit optimalen Füllgrad möglich.In one embodiment of the invention, the refrigeration device is operated in a normal mode in which at least temporarily the first diverter valve in the first switching position and the second diverter valve are simultaneously in the first switching position. As a result, the technical advantage is achieved that the first evaporator looped into the refrigerant circuit and the second evaporator can be completely separated from the refrigeration cycle. Thus, an unwanted shift of refrigerant from the second evaporator is excluded in the first evaporator. Therefore, an operation with optimal filling degree is possible.

In einer erfindungegemäßen Ausführungsform wird das Kältegerät in einem weiteren Normalbetrieb betrieben, in dem sich zumindest zeitweise das erste Umlenkventil in der zweiten Schaltstellung und das zweite Umlenkventil zeitgleich in der zweiten Schaltstellung befinden. Dadurch wird der technische Vorteil erreicht, dass der zweite Verdampfer in den Kältemittelkreislauf eingeschleift und der erste Verdampfer vollständig vom Kältekreislauf getrennt werden kann. Somit ist ein Betrieb beider Verdampfer mit jeweils optimalen Füllgrad möglich.In a erfindungegemäßen embodiment, the refrigeration device is operated in a further normal operation in which at least temporarily, the first diverter valve in the second switching position and the second diverter valve are simultaneously in the second switching position. As a result, the technical advantage is achieved that the second evaporator looped into the refrigerant circuit and the first evaporator can be completely separated from the refrigeration cycle. Thus, an operation of both evaporators, each with optimal filling level is possible.

In einer vorteilhaften Ausführungsform ist das Kältegerät in einem Übertragungsbetrieb betreibbar, in dem sich zumindest zeitweise das erste Umlenkventil in der ersten Schaltstellung und das das zweite Umlenkventil in der zweiten Schaltstellung zeitgleich befinden. Dadurch wird der technische Vorteil erreicht, dass Kältemittel von einem ersten Verdampfer in den zweiten Verdampfer verlagert werden kann. So kann der Füllgrad durch einen Betrieb im Übertragungsbetrieb angepasst werden.In an advantageous embodiment, the refrigeration device is operable in a transfer mode in which at least temporarily the first diverter valve in the first switching position and the second diverter valve in the second switching position are simultaneously. As a result, the technical advantage is achieved that refrigerant can be displaced from a first evaporator in the second evaporator. Thus, the degree of filling can be adjusted by operation in transmission mode.

In einer vorteilhaften Ausführungsform ist das Kältegerät in einem Übertragungsbetrieb betreibbar, in dem sich zumindest zeitweise das erste Umlenkventil in der zweiten Schaltstellung und das das zweite Umlenkventil in der ersten Schaltstellung zeitgleich befinden. Dadurch wird der technische Vorteil erreicht, dass Kältemittel auch von dem zweiten Verdampfer in den ersten Verdampfer verlagert werden kann. So kann der Füllgrad beider Verdampfer durch einen Betrieb im Übertragungsbetrieb angepasst werden.In an advantageous embodiment, the refrigeration device is operable in a transfer mode, in which at least temporarily the first diverter valve in the second switching position and the second diverter valve in the first switching position are simultaneously. As a result, the technical advantage is achieved that refrigerant can be displaced from the second evaporator in the first evaporator. Thus, the degree of filling of both evaporators can be adjusted by operation in transmission mode.

In einer vorteilhaften Ausführungsform weist der Kältemittelkreislauf einen Verflüssiger auf, wobei zwischen dem Verflüssiger und dem ersten Umlenkventil ein Stoppventil vorgesehen ist. Dadurch wird der technische Vorteil erreicht, dass eine ungewollte Kältemittelverlagerung vom Verflüssiger zum Verdampfer während Stillstandzeiten des Verdichters unterbunden werden können.In an advantageous embodiment, the refrigerant circuit has a condenser, wherein a stop valve is provided between the condenser and the first diverter valve. As a result, the technical advantage is achieved that an unwanted refrigerant shift from the condenser to the evaporator during downtime of the compressor can be prevented.

In einer vorteilhaften Ausführungsform unterbindet in einem Übertragungsbetrieb bei angetriebenem Verdichter ein Stoppventil zumindest zeitweise eine Kältemittelströmung im Kältemittelkreislauf. Dadurch wird der technische Vorteil erreicht, dass durch die Saugwirkung des Verdichters Kältemittel aus dem ersten Verdampfer und/oder dem zweiten Verdampfer angesaugt werden kann.In an advantageous embodiment, in a transfer mode with a driven compressor, a stop valve at least temporarily prevents a refrigerant flow in the refrigerant circuit. As a result, the technical advantage is achieved that can be sucked by the suction of the compressor refrigerant from the first evaporator and / or the second evaporator.

In einer erfindungsgemäßen Ausführungsform weist das Kältegerät eine Steuerung auf, die zumindest mit dem ersten Umlenkventil und dem zweiten Umlenkventil zum Ansteuern des ersten Umlenkventil und zweiten Umlenkventils verbunden ist. Dadurch wird der technische Vorteil erreicht, dass durch eine gezielte Ansteuerung ein flexibler Betrieb des Kältegeräts mit einer Anpassung an verschiedene Randbedingungen, wie z.B. unterschiedliche Umgebungstemperaturen, möglich ist.In one embodiment of the invention, the refrigeration device has a control which is connected at least to the first diverter valve and the second diverter valve for driving the first diverter valve and the second diverter valve. As a result, the technical advantage is achieved that by a selective control of a flexible operation of the refrigerator with an adaptation to various boundary conditions, such as. different ambient temperatures, is possible.

In einer vorteilhaften Ausführungsform ist die Steuerung zumindest messsignaleübertragend mit einem Temperatursensor verbunden. Dadurch wird der technische Vorteil erreicht, dass die Steuerung z.B. bei Überschreiten eines vorgegebenen Schwellwerts für die erfasste Temperatur von dem Normalbetrieb in den Übertragungsbetrieb wechselt und so selbsttätig eine Anpassung des Füllgrads vornimmt, sodass auch bei extremen Temperaturen, wie z.B. in den Tropen ein Betrieb mit einem optimalen Füllgrad möglich ist.In an advantageous embodiment, the control is at least connected to a temperature sensor for transmitting measuring signals. This achieves the technical advantage that the controller, for example, when exceeding a predetermined threshold for the detected temperature of the normal operation in the transfer mode changes and thus automatically makes an adjustment of the degree of filling, so that even at extreme temperatures, such as in the tropics operation with an optimal degree of filling is possible.

Weitere Ausführungsbeispiele werden Bezug nehmend auf die beiliegenden Zeichnungen erläutert. Es zeigen:

  • Fig. 1 eine Vorderansicht eines Kältegeräts, und
  • Fig. 2 eine schematische Darstellung eines Kältemittelkreislaufes des Kältegeräts der Fig. 1.
Further embodiments will be explained with reference to the accompanying drawings. Show it:
  • Fig. 1 a front view of a refrigerator, and
  • Fig. 2 a schematic representation of a refrigerant circuit of the refrigeration device of Fig. 1 ,

Fig. 1 zeigt einen Kühlschrank als Ausführungsbeispiel für ein Kältegerät 100. Das Kältegerät 100 ist im vorliegenden Ausführungsbeispiel als Kühl-Gefrier-Kombination ausgebildet und weist ferner im vorliegenden Ausführungsbeispiel ein Twin-Nofrost-System auf. Fig. 1 shows a refrigerator as an exemplary embodiment of a refrigeration device 100. The refrigeration device 100 is formed in the present embodiment as a refrigerator-freezer combination and also has in the present embodiment, a twin-Nofrost system.

Das Kältegerät 100 weist im vorliegenden Ausführungsbeispiel ein erstes, oberes Kältefach 102 auf, das im vorliegenden Ausführungsbeispiel als Gefrierfach ausgebildet ist. Daneben weist das Kältegerät 100 im vorliegenden Ausführungsbeispiel ein zweites, unteres Kältefach 104 auf, das im vorliegenden Ausführungsbeispiel als Kühlfach ausgebildet ist.In the present exemplary embodiment, the refrigeration appliance 100 has a first, upper refrigeration compartment 102, which is designed as a freezer compartment in the present exemplary embodiment. In addition, the refrigeration device 100 in the present embodiment, a second, lower cooling compartment 104, which is formed in the present embodiment as a cooling compartment.

Fig. 2 zeigt ein Ausführungsbeispiel eines Kältemittelkreislaufs 200 eines derartigen Kältegeräts 100. Fig. 2 1 shows an exemplary embodiment of a refrigerant circuit 200 of such a refrigeration device 100.

Der Kältemittelkreislauf 200 weist einen Verdichter 202, einen Verflüssiger 204, ein Stoppventil 206, ein erstes Umlenkventil 208, eine erste Drossel 210, eine zweite Drossel 212, einen ersten Verdampfer 214, einen zweiten Verdampfer 216, ein zweites Umlenkventil 218 und einen Saugrohr-Drosselrohr-Wärmetauscher 220 auf.The refrigerant circuit 200 includes a compressor 202, a condenser 204, a stop valve 206, a first diverter valve 208, a first throttle 210, a second throttle 212, a first evaporator 214, a second evaporator 216, a second diverter valve 218, and a draft tube throttle tube Heat exchanger 220 on.

Der Verdichter 202 ist im vorliegenden Ausführungsbeispiel ein mechanisch angetriebenes Bauteil, das Kältemitteldampf von einem der beiden Verdampfer 214, 216 absaugt und gegen einen höheren Druck zum Verflüssiger 204 fördert.The compressor 202 is in the present embodiment, a mechanically driven component, the refrigerant vapor from one of the two evaporators 214, 216 sucks and promotes against a higher pressure to the condenser 204.

Der Verflüssiger 204 ist als Wärmetauscher ausgebildet, in dem nach der Kompression das verdampfte Kältemittel durch Wärmeabgabe an ein äußeres Kühlmedium, d.h. die Umgebungsluft, verflüssigt wird.The condenser 204 is formed as a heat exchanger in which, after compression, the vaporized refrigerant is released by heat release to an external cooling medium, i. the ambient air is liquefied.

Der erste Verdampfer 214 und der zweite Verdampfer 216 sind im vorliegenden Ausführungsbeispiel als Wärmetauscher ausgebildet, in dem nach einer Expansion das flüssige Kältemittel durch Wärmeaufnahme von dem zu kühlenden Medium, d.h. Luft im Inneren des Kühlschranks, verdampft wird. Ferner sind im vorliegenden Ausführungsbeispiel sind der erste Verdampfer 214 und/oder der zweite Verdampfer 216 als statischer Verdampfer ausgebildet. Somit sind keine Ventilatoren zur Zwangsbestromung des ersten Verdampfers 214 und/oder des zweiten Verdampfers 216 nötig.The first evaporator 214 and the second evaporator 216 are formed in the present embodiment as a heat exchanger in which, after expansion, the liquid refrigerant by heat absorption from the medium to be cooled, i. Air inside the refrigerator, is evaporated. Further, in the present embodiment, the first evaporator 214 and / or the second evaporator 216 are formed as a static evaporator. Thus, no fans are required for forced energization of the first evaporator 214 and / or the second evaporator 216.

Dabei ist im vorliegenden Ausführungsbeispiel der erste Verdampfer 214 dem ersten Kältefach 102 und der zweite Verdampfer 216 dem zweiten Kältefach 104 zugeordnet. Im vorliegenden Ausführungsbeispiel sind sowohl der erste Verdampfer 214 als auch der zweite Verdampfer 216 als Lamellenverdampfer ausgebildet.In the present exemplary embodiment, the first evaporator 214 is assigned to the first refrigeration compartment 102 and the second evaporator 216 to the second refrigeration compartment 104. In the present embodiment, both the first evaporator 214 and the second evaporator 216 are formed as a fin evaporator.

Dem ersten Verdampfer 214 ist die erste Drossel 210 und dem zweiten Verdampfer 216 ist die zweite Drossel 212 zugeordnet. Die Drosseln 210, 212 sind Vorrichtungen zur Verminderung des Druckes durch Querschnittsverminderung.The first evaporator 214 is the first throttle 210 and the second evaporator 216 is the second throttle 212 associated. The throttles 210, 212 are devices for reducing the pressure by necking.

Die erste Drossel 210 und der erste Verdampfer 214 sind in Reihe geschaltet, und die zweite Drossel 212 und der zweite Verdampfer 216 sind in Reihe geschaltet, wobei diese beiden Reihenschaltungen im vorliegenden Ausführungsbeispiel parallel geschaltet sind. D.h. der Kältekreislauf 200 teilt sich in zwei Parallelzweige 274, 276, wobei im vorliegenden Ausführungsbeispiel der Verdichter 202, der Verflüssiger 204, das Stoppventil 206 und der Saugrohr-Drosselrohr-Wärmetauscher 220 in einem Hauptzweig 278 des Kältekreislaufs 200 angeordnet sind.The first throttle 210 and the first evaporator 214 are connected in series, and the second throttle 212 and the second evaporator 216 are connected in series, wherein these two series circuits are connected in parallel in the present embodiment. That the refrigeration cycle 200 is divided into two parallel branches 274, 276, wherein in the present embodiment, the compressor 202, the condenser 204, the stop valve 206 and the intake manifold throttle tube heat exchanger 220 are arranged in a main branch 278 of the refrigeration cycle 200.

Das Kältemittel ist ein Fluid, das für die Wärmeübertragung in dem kälteerzeugenden System verwendet wird, das bei niedrigen Temperaturen und niedrigem Druck des Fluides Wärme aufnimmt und bei höherer Temperatur und höherem Druck des Fluides Wärme abgibt, wobei üblicherweise Zustandsänderungen des Fluides inbegriffen sind.The refrigerant is a fluid used for heat transfer in the cryogenic system that absorbs heat at low temperatures and low pressure of the fluid and releases heat at higher temperature and pressure of the fluid, usually including changes in state of the fluid.

Außerdem umfasst der Kältemittelkreislauf 200 im vorliegenden Ausführungsbeispiel das Stoppventil 206, das im vorliegenden Ausführungsbeispiel ein ansteuerbares Magnetventil ist, mit dem eine Kältemittelströmung im Kältemittelkreislauf 200 unterbrochen werden kann.In addition, the refrigerant circuit 200 in the present embodiment includes the stop valve 206, which is a controllable solenoid valve in the present embodiment, with a refrigerant flow in the refrigerant circuit 200 can be interrupted.

Ferner umfasst der Kältemittelkreislauf 200 im vorliegenden Ausführungsbeispiel den Saugrohr-Drosselrohr-Wärmetauscher 220, so dass auch die Restkälte des aus dem Verdampfer ausströmenden Kältemittels genutzt wird.Furthermore, in the present exemplary embodiment, the refrigerant circuit 200 comprises the intake manifold throttle tube heat exchanger 220, so that the residual refrigeration of the refrigerant flowing out of the evaporator is also utilized.

Das erste Umlenkventil 208 weist im vorliegenden Ausführungsbeispiel einen Eingang 222 sowie einen ersten Ausgang 224 und einen zweiten Ausgang 226 auf. Das zweite Umlenkventil 218 weist einen ersten Eingang 228 und einen zweiten Eingang 230 sowie einen Ausgang 232 auf. Mit dem ersten Umlenkventil 208 kann Kältemittel wahlweise in den ersten Parallelzweig 274 oder in den zweiten Parallelzweig 276 geleitet werden, und mit dem zweiten Umlenkventil 218 kann wahlweise der erste Parallelzweig 274 oder der zweite Parallelzweig 276 mit dem Verdichter 202 verbunden werden.In the present exemplary embodiment, the first diverter valve 208 has an input 222 and a first output 224 and a second output 226. The second diverter valve 218 has a first input 228 and a second input 230 and an output 232. With the first diverter valve 208, refrigerant can be selectively directed into the first parallel branch 274 or into the second parallel branch 276, and with the second diverter valve 218, either the first parallel branch 274 or the second parallel branch 276 can be connected to the compressor 202.

Im vorliegenden Ausführungsbeispiel sind sowohl das erste Umlenkventil 208 als auch das zweite Umlenkventil 218 als 3/2-Wegeventil ausgebildet. 3/2-Wegeventile weisen zwei Ventilsitze auf, wobei wechselseitig immer einer der beiden Ventilsitze geöffnet oder geschlossen bleibt. Somit ist im Fall in einer ersten Schaltstellung des ersten Umlenkventils 208 der erste Ausgang 224 geöffnet und der zweite Ausgang 226 geschlossen, oder in einer zweiten Schaltstellung des ersten Umlenkventils 208 ist der erste Ausgang 224 geschlossen und der zweite Ausgang 226 geöffnet. Im Fall des zweiten Umlenkventils 218 ist in einer ersten Schaltstellung des zweiten Umlenkventils 218 der erste Eingang 228 geöffnet und der zweite Eingang 230 geschlossen, oder in einer zweiten Schaltstellung des zweiten Umlenkventils 218 ist der erste Eingang 228 geschlossen und der zweite Eingang 230 geöffnet.In the present embodiment, both the first diverter valve 208 and the second diverter valve 218 are designed as a 3/2-way valve. 3/2-way valves have two valve seats, whereby alternately always one of the two valve seats remains open or closed. Thus, in the case in a first switching position of the first diverter valve 208, the first output 224 is open and the second output 226 is closed, or in a second switching position of the first diverter valve 208, the first output 224 is closed and the second output 226 is opened. In the case of the second diverter valve 218, in a first switching position of the second diverter valve 218, the first input 228 is opened and the second input 230 is closed, or in a second switching position of the second diverter valve 218, the first input 228 is closed and the second input 230 is opened.

Der Verdichter 202 weist einen Verdichterausgang 234 auf, der mit einem Verflüssigereingang 236 des Verflüssigers 204 kältemittelführend verbunden ist.The compressor 202 has a compressor outlet 234, which is connected to a condenser inlet 236 of the condenser 204 refrigerant leading.

Ein Verflüssigerausgang 238 des Verflüssigers 204 ist mit einem Eingangsanschluss 240 des Stoppventils 206 kältemittelführend verbunden.A condenser exit 238 of the condenser 204 is connected to an input port 240 of the stop valve 206 refrigerant leading.

Ein Ausgangsanschluss 242 des Stoppventils 206 ist mit dem Eingang 222 des ersten Umlenkventils 208 kältemittelführend verbunden.An output port 242 of the stop valve 206 is connected to the inlet 222 of the first diverter valve 208 refrigerant leading.

Der erste Ausgang 224 des ersten Umlenkventils 208 ist mit einem Drosseleingang 244 der ersten Drossel 210 verbunden.The first output 224 of the first diverter valve 208 is connected to a throttle input 244 of the first throttle 210.

Ein Drosselausgang 246 der ersten Drossel 210 ist mit einem Verdampfereingang 248 des ersten Verdampfers 214 kältemittelführend verbunden.A throttle output 246 of the first throttle 210 is connected to an evaporator inlet 248 of the first evaporator 214 refrigerant leading.

Ein Verdampferausgang 250 des ersten Verdampfers 214 ist mit dem ersten Eingang 230 des zweiten Umlenkventils 218 kältemittelführend verbunden.An evaporator outlet 250 of the first evaporator 214 is connected to the first input 230 of the second diverter valve 218 refrigerant leading.

Der zweite Ausgang 226 des ersten Umlenkventils 208 ist mit einem Drosseleingang 252 der zweiten Drossel 212 kältemittelführend verbunden.The second output 226 of the first diverter valve 208 is connected to a throttle inlet 252 of the second throttle 212 refrigerant leading.

Ein Drosselausgang 254 der zweiten Drossel 212 ist mit einem Verdampfereingang 256 des zweiten Verdampfers 216 kältemittelführend verbunden.A throttle output 254 of the second throttle 212 is connected to an evaporator input 256 of the second evaporator 216 refrigerant leading.

Ein Verdampferausgang 258 des zweiten Verdampfers 214 ist mit dem zweiten Eingang 228 des zweiten Umlenkventils 218 kältemittelführend verbunden.An evaporator outlet 258 of the second evaporator 214 is connected to the second input 228 of the second diverter valve 218 refrigerant leading.

Der Ausgang 232 des zweiten Umlenkventils 218 ist mit einem Wärmetauschereingang 260 des Saugrohr-Drosselrohr-Wärmetauschers 220 kältemittelführend verbunden.The output 232 of the second diverter valve 218 is connected to a heat exchanger inlet 260 of the intake manifold throttle tube heat exchanger 220 refrigerant leading.

Ein Wärmetauscherausgang 262 des Saugrohr-Drosselrohr-Wärmetauschers 220 ist über ein Saugrohr 266 mit einem Verdichtereingang 264 des Verdichters 202 kältemittelführend verbunden.A heat exchanger outlet 262 of the intake manifold-to-choke heat exchanger 220 is connected via a suction pipe 266 to a compressor inlet 264 of the compressor 202 refrigerant leading.

Das erste Umlenkventil 208 und das zweite Umlenkventil 218 sind über Steuerleitungen 270 steuerungssignaleübertragend mit einer Steuerung 268 verbunden. Ferner sind das Stoppventil 206 über eine Steuerleitungen 280 und der Verdichter 202 über eine Steuerleitungen 282 steuerungssignaleübertragend mit einer Steuerung 268 verbunden.The first diverter valve 208 and the second diverter valve 218 are connected to a controller 268 via control lines 270 to transmit control signals. Furthermore, the stop valve 206 is connected via a control lines 280 and the compressor 202 via a control lines 282 control signal transmitting with a controller 268 connected.

Im Normalbetrieb steuert die Steuerung 268 das erste Umlenkventil 208 und das zweite Umlenkventil 218 in die erste Schaltstellung. Zugleich steuert die Steuerung 268 das zweite Umlenkventil 218 in die erste Schaltstellung. Somit strömt in der ersten Phase des Normalbetriebszyklus Kältemittel durch die erste Drossel 210 und den ersten Verdampfer 214 und kühlt somit das dem ersten Verdampfer 214 zugeordnete Kältefach 102. Hingegen sind in der ersten Phase des Normalbetriebszyklus die zweite Drossel 212 und der zweite Verdampfer 216 vom Kältemittelkreislauf 200 abgetrennt.In normal operation, the controller 268 controls the first diverter valve 208 and the second diverter valve 218 to the first switching position. At the same time, the controller 268 controls the second one Diverter valve 218 in the first switching position. Thus, in the first phase of the normal operating cycle, refrigerant flows through the first throttle 210 and the first evaporator 214 and thus cools the refrigeration compartment 102 associated with the first evaporator 214. On the other hand, in the first phase of the normal operating cycle, the second throttle 212 and the second evaporator 216 are from the refrigerant circuit 200 separated.

In einer zweiten Phase des Normalbetriebszyklus steuert die Steuerung 268 das erste Umlenkventil 208 in die zweite Schaltstellung. Zugleich steuert die Steuerung 268 das zweite Umlenkventil 218 in die zweite Schaltstellung. Somit strömt in der zweiten Phase des Normalbetriebszyklus Kältemittel durch die zweite Drossel 212 und den zweiten Verdampfer 216 und kühlt somit das dem zweiten Verdampfer 216 zugeordnete Kältefach 104. Hingegen sind in der zweiten Phase des Normalbetriebszyklus die erste Drossel 210 und der erste Verdampfer 214 vom Kältemittelkreislauf 200 abgetrennt.In a second phase of the normal operating cycle, the controller 268 controls the first diverter valve 208 to the second switching position. At the same time, the controller 268 controls the second diverter valve 218 in the second switching position. Thus, in the second phase of the normal operating cycle, refrigerant flows through the second orifice 212 and the second evaporator 216 and thus cools the refrigeration compartment 104 associated with the second evaporator 216. On the other hand, in the second phase of the normal operation cycle, the first orifice 210 and the first evaporator 214 are from the refrigerant cycle 200 separated.

Abweichend von der im vorliegenden Ausführungsbeispiel kann der Normalbetriebszyklus mit der oben beschriebenen zweiten Phase beginnen gefolgt von der ersten Phase.Notwithstanding that in the present embodiment, the normal operation cycle may begin with the second phase described above followed by the first phase.

Durch das wechselseitige Abtrennen jeweils einer Drossel 210, 212 und eines Verdampfers 214, 216 können sowohl der erste Verdampfer 214 als auch der zweite Verdampfer 216 jeweils mit einer optimalen Füllmenge an Kältemittel betrieben werden, d.h. mit einem optimalen Füllgrad. Daher muss kein Kältemittel aus dem jeweils anderen Verdampfer 214, 216 abgesaugt werden, sodass hierfür keine Energie aufgewendet werden muss. Somit wird der Energieverbrauch des Kältegeräts 100 reduziert.By mutually disconnecting a respective one of throttles 210, 212 and an evaporator 214, 216, both the first evaporator 214 and the second evaporator 216 may each be operated with an optimum charge amount of refrigerant, i. with an optimal filling level. Therefore, no refrigerant has to be sucked out of the respective other evaporator 214, 216, so that no energy has to be expended for this purpose. Thus, the power consumption of the refrigeration device 100 is reduced.

Ferner kann im vorliegenden Ausführungsbeispiel die Steuerung 268 das erste Umlenkventil 208 und das zweite Umlenkventil 218 in einem Übertragungsbetrieb betreiben.Further, in the present embodiment, the controller 268 may operate the first diverter valve 208 and the second diverter valve 218 in a transmission mode.

In dem Übertragungsbetrieb wird z.B. Kältemittel von dem zweiten Verdampfer 216 abgesaugt, um ausreichend Kältemittel für den Betrieb des ersten Verdampfers 214 zur Verfügung zu haben. Hierzu steuert die Steuerung 268 das erste Umlenkventil 208 in seine erste Schaltstellung. Ferner steuert die Steuerung 268 das zweite Umlenkventil 218 in seine zweite Schaltstellung,. Nun wird Kältemittel aus dem zweiten Verdampfer 216 angesaugt und anschließend zum Normalbetrieb gewechselt.In the transfer operation, for example, refrigerant is drawn off from the second evaporator 216 in order to have sufficient refrigerant available for the operation of the first evaporator 214. For this purpose, the controller 268 controls the first diverter valve 208 in its first switching position. Further, the controller 268 controls the second diverter valve 218 to its second switching position. Now refrigerant is sucked from the second evaporator 216 and then changed to normal operation.

Ferner kann im vorliegenden Ausführungsbeispiel auch Kältemittel aus dem ersten Verdampfer 214 angesaugt werden. Hierzu steuert die Steuerung 268 das erste Umlenkventil 208 in seine zweite Schaltstellung,. Ferner steuert die Steuerung 268 das zweite Umlenkventil 218 in seine erste Schaltstellung. Nun wird Kältemittel aus dem ersten Verdampfer 214 angesaugt und anschließend zum Normalbetrieb gewechselt.Furthermore, in the present exemplary embodiment, it is also possible to draw in refrigerant from the first evaporator 214. For this purpose, the controller 268 controls the first diverter valve 208 in its second switching position. Further, the controller 268 controls the second diverter valve 218 in its first switching position. Now refrigerant is sucked from the first evaporator 214 and then changed to normal operation.

Aufgrund unterschiedlicher Füllgrade des Verflüssigers 204 bei Betrieb des ersten Verdampfers 214 und des zweiten Verdampfers 216 ergibt sich bei jedem Wechseln von der ersten Phase zur zweiten Phase des Normalbetriebs eine Veränderung der effektiven Kältemittelfüllmenge. Durch einen Wechsel von dem Normalbetrieb in den Übertragungsbetrieb, z.B. innerhalb vorgegebener Intervalle, wird erreicht, dass eine Verlagerung von Kältemittel im Normalbetrieb, verursacht durch unterschiedliche Betriebstemperaturen des ersten Verdampfers 214 und des zweiten Verdampfers 216, wieder rückgängig gemacht werden kann, so dass ein Betrieb des ersten Verdampfer 214 als auch des zweiten Verdampfer 216 mit dem jeweils optimalen Füllgrad gewährleistet ist. Alternativ oder zusätzlich kann in dem Übertragungsbetrieb bei betriebenen Verdichter 202 das Stoppventil 206 in seinen Sperrzustand gebracht werden, so dass eine ungewollte Kältemittelströmung im Kältemittelkreislauf 200 unterbunden ist. Durch die Saugwirkung des Verdichters 202 kann dann aus dem ersten Verdampfer 214 und/oder zweiten Verdampfer 216 Kältemittel abgesaugt werden.Due to different filling levels of the condenser 204 during operation of the first evaporator 214 and the second evaporator 216 results in each change from the first phase to the second phase of normal operation, a change in the effective refrigerant charge. By changing from the normal mode to the transmission mode, e.g. Within predetermined intervals, it is achieved that a shift of refrigerant in normal operation, caused by different operating temperatures of the first evaporator 214 and the second evaporator 216, can be reversed, so that operation of the first evaporator 214 and the second evaporator 216 with the optimal filling level is guaranteed. Alternatively or additionally, in the transfer mode with operated compressor 202, the stop valve 206 can be brought into its blocking state, so that an unwanted refrigerant flow in the refrigerant circuit 200 is prevented. Due to the suction effect of the compressor 202, it is then possible to extract refrigerant from the first evaporator 214 and / or the second evaporator 216.

Ferner ist im vorliegenden Ausführungsbeispiel die Steuerung 268 mit einem Temperatursensor 272 verbunden. Wenn der mit dem Temperatursensor 272 erfasste Temperaturwert, z.B. die Umgebungstemperatur des Kältegeräts, einen vorgegebenen Schwellwert überschreitet, wird von der Steuerung 268 zum Übertragungsbetrieb gewechselt, um eine Anpassung der Kältemittelmenge an die herrschenden Randbedingungen vorzunehmen. So kann z.B. bei tropischen Randbedingungen (hohe Kälteleitung wegen hoher Umgebungstemperaturen bei hoher Luftfeuchtigkeit) ein Kondensieren von Feuchtigkeit an dem Saugrohr 266 verhindert werden.Further, in the present embodiment, the controller 268 is connected to a temperature sensor 272. When the temperature value detected by the temperature sensor 272, e.g. the ambient temperature of the refrigerator exceeds a predetermined threshold is changed by the controller 268 to the transmission mode to make an adjustment of the refrigerant amount to the prevailing boundary conditions. Thus, e.g. In tropical boundary conditions (high refrigerant line due to high ambient temperatures at high humidity) condensation of moisture on the suction tube 266 can be prevented.

Ferner kann der Kältemittelkreislauf 200 dazu dienen, neben dem ersten, als Gefrierfach, ausgebildeten Kältefach 102 und dem zweiten, als Kühlfach ausgebildeten Kältefach 104, ein drittes Kältefach zu kühlen, z.B. ein Frischefach, oder noch weitere Kältefächer, wie ein viertes oder fünftes Kältefach etc.. Jedem der Kältefächer ist dann ein Verdampfer zugeordnet, der in einem Parallelzweig des Kältemittelskreislaufs 200 angeordnet ist. Somit ist die Anzahl der Verdampfer gleich der Anzahl der Parallelzweige des Kältemittelkreislaufs 200. Entsprechend weist dann das erste Umlenkventil 208 eine der Anzahl der Parallelzweige entsprechende Anzahl von Ausgängen auf und das zweite Umlenkventil 218 weist eine entsprechende Anzahl von Eingängen auf. Ferner weisen dann das erste Umlenkventil 208 und das zweite Umlenkventil 218 dann eine der Anzahl der Parallelzweige entsprechende Anzahl von Schaltstellungen auf.Furthermore, the refrigerant circuit 200 may serve to cool a third refrigeration compartment in addition to the first refrigeration compartment 102 designed as a freezer compartment and the second refrigeration compartment 104 designed as a refrigeration compartment, for example a freshness compartment or even further refrigeration compartments, such as a fourth or fifth refrigeration compartment, etc .. Each of the cold storage is then associated with an evaporator, which is arranged in a parallel branch of the refrigerant circuit 200. Consequently Accordingly, the first diverter valve 208 has a number of outputs corresponding to the number of parallel branches and the second diverter valve 218 has a corresponding number of inputs. Furthermore, the first deflection valve 208 and the second deflection valve 218 then have a number of switching positions corresponding to the number of parallel branches.

Bezugszeichen listeReference number list

100100
KältegerätThe refrigerator
102102
erstes Kältefachfirst cold compartment
104104
zweites Kältefachsecond cold compartment
200200
KältemittelkreislaufRefrigerant circulation
202202
Verdichtercompressor
204204
Verflüssigercondenser
206206
Stoppventilstop valve
208208
erstes Umlenkventilfirst diverter valve
210210
erste Drosselfirst throttle
212212
zweite Drosselsecond throttle
214214
erster Verdampferfirst evaporator
216216
zweiter Verdampfersecond evaporator
218218
zweites Umlenkventilsecond diverter valve
220220
Saugrohr-Drosselrohr-WärmetauscherManifold throttle tube heat exchanger
222222
Eingang des ersten UmlenkventilsInput of the first diverter valve
224224
erster Ausgang des ersten Umlenkventilsfirst output of the first diverter valve
226226
zweiter Ausgang des ersten Umlenkventilssecond output of the first diverter valve
228228
erster Eingang des zweiten Umlenkventilsfirst input of the second diverter valve
230230
zweiter Eingang des zweiten Umlenkventilssecond input of the second diverter valve
232232
Ausgang des zweiten UmlenkventilsOutput of the second diverter valve
234234
Verdichterausgangcompressor output
236236
Verflüssigereingangcondenser inlet
238238
Verflüssigerausgangcondenser exit
240240
Eingangsanschlussinput port
242242
Ausgangsanschlussoutput port
244244
Drosseleingang der ersten DrosselThrottle input of the first throttle
246246
Drosselausgang der ersten DrosselThrottle output of the first throttle
248248
Verdampfereingang des ersten VerdampfersEvaporator inlet of the first evaporator
250250
Verdampferausgang des ersten VerdampfersEvaporator outlet of the first evaporator
252252
Drosseleingang der zweiten DrosselThrottle input of the second throttle
254254
Drosselausgang der zweiten DrosselThrottle output of the second throttle
256256
Verdampfereingang des zweiten VerdampfersEvaporator input of the second evaporator
258258
Verdampferausgang des zweiten VerdampfersEvaporator outlet of the second evaporator
260260
Wärmetauschereingangheat exchanger inlet
262262
Wärmetauscherausgangheat exchanger output
264264
Verdichtereingangcompressor inlet
266266
Saugrohrsuction tube
268268
Steuerungcontrol
270270
Steuerleitungcontrol line
272272
Temperatursensortemperature sensor
274274
erster Parallelzweigfirst parallel branch
276276
zweiter Parallelzweigsecond parallel branch
278278
Hauptzweigmain branch
280280
Steuerleitungencontrol lines
282282
Steuerleitungencontrol lines

Claims (8)

  1. Refrigerator (100) with a refrigerant circuit (200) which has a compressor (202) and at least a first evaporator (214) and a second evaporator (216), wherein the refrigerant circuit (200) has a main branch (278) and at least a first parallel branch (274) and a second parallel branch (276), wherein the compressor (202), the first evaporator (214) and the second evaporator (216) are arranged in the main branch (278), in the first parallel branch (274) and in the second parallel branch (276) in each case, and wherein a diverter valve (208) with an input (222) and at least a first output (224) and a second output (226) is arranged between a compressor output (234) of the compressor (202) and an evaporator input (248) of the first evaporator (214) and an evaporator input (256) of the second evaporator (216), wherein the input (222), the first output (224) and the second output (226) are connected to the main branch (278), to the first parallel branch (274) and to the second parallel branch (276) so as to conduct refrigerant in each case, wherein a second diverter valve (218) with at least a first input (228) and a second input (230) and an output (232) is arranged between a compressor input (264) of the compressor (202) and an evaporator output (250) of the first evaporator (214) and an evaporator output (258) of the second evaporator (216), wherein the first input (230), the second input (230) and the output (232) are connected to the first parallel branch (274), to the second parallel branch (276) and to the refrigerant circuit (200) so as to conduct refrigerant in each case, characterised in that the refrigerator (100) has a controller (268) which is connected at least to the first diverter valve (208) and to the second diverter valve (218) in order to actuate the first diverter valve (208) and the second diverter valve (218) and the controller (268) is configured such that the refrigerator (100) is operated in a normal mode, in which the first diverter valve (208) is at least temporarily in a first switch position and the second diverter valve (218) is at the same time in a first switch position, wherein in the first switch position of the first diverter valve (208), the first output (224) of the first diverter valve (208) is connected, in a manner permitting the flow of refrigerant, to the evaporator input (248) of the first evaporator (214) and the second output (226) of the first diverter valve (208) is blocked in a manner preventing the flow of refrigerant, and wherein in the first switch position of the second diverter valve (218), the first input (228) of the second diverter valve (218) is connected, in a manner permitting the flow of refrigerant, to the evaporator output (250) of the first evaporator (214), and the second input (230) of the second diverter valve (218) is blocked in a manner preventing the flow of refrigerant, and the refrigerator (100) is operated in a further normal mode in which the first diverter valve (208) is at least temporarily in a second switch position and the second diverter valve (218) is at the same time in a second switch position, wherein in the second switch position of the first diverter valve (208), the second output (226) of the first diverter valve (208) is connected, in a manner permitting the flow of refrigerant, to an evaporator input (256) of the second evaporator (216), and the first output (224) of the first diverter valve (208) is blocked in a manner preventing the flow of refrigerant, and wherein in the second switch position of the second diverter valve (218), the second input (230) of the second diverter valve (218) is connected, in a manner permitting the flow of refrigerant, to an evaporator output (258) of the second evaporator (216) and the first input (228) of the second diverter valve (218) is blocked in a manner preventing the flow of refrigerant.
  2. Refrigerator (100) according to claim 1, characterised in that a first throttle (210) is arranged between the first diverter valve (208) and the evaporator input (248) of the first evaporator (214) and a second throttle (212) is arranged between the second diverter valve (218) and the evaporator input (256) of the second evaporator (216).
  3. Refrigerator (100) according to claim 2, characterised in that a capillary tube-suction line heat exchanger (220) is arranged in the refrigerant circuit (200) between the compressor (202) and the first evaporator (214) and the second evaporator (216) and is connected in a heat-transmitting manner to the first throttle (210) and/or to the second throttle (212).
  4. Refrigerator (100) according to one of the preceding claims, characterised in that the refrigerator (100) can be operated in a transmission mode in which the first diverter valve (208) is at least temporarily in a first switch position and the second diverter valve (218) is at the same time in a second switch position, wherein in the first switch position of the first diverter valve (208), the first output (224) of the first diverter valve (208) is connected, in a manner permitting the flow of refrigerant, to the evaporator input (248) of the first evaporator (214) and the second output (226) of the first diverter valve (208) is blocked in a manner preventing the flow of refrigerant, and wherein in the second switch position of the second diverter valve (218), the second input (230) of the second diverter valve is connected, in a manner permitting the flow of refrigerant, to an evaporator output (258) of the second evaporator (216), and the first input (228) of the second diverter valve (218) is blocked in a manner preventing the flow of refrigerant.
  5. Refrigerator (100) according to one of the preceding claims, characterised in that the refrigerator (100) can be operated in a transmission mode, in which the first diverter valve (208) is at least temporarily in a second switch position and the second diverter valve (218) is at the same time in a first switch position, wherein in the second switch position of the first diverter valve (208), the second output (226) of the first diverter valve (208) is connected, in a manner permitting the flow of refrigerant, to an evaporator input (256) of the second evaporator (216) and the first output (224) of the first diverter valve (208) is blocked in a manner preventing the flow of refrigerant, and wherein in the first switch position of the second diverter valve (218), the first input (228) of the second diverter valve (218) is connected, in a manner permitting the flow of refrigerant, to the evaporator output (250) of the first evaporator (214) and the second input (230) of the second diverter valve (218) is blocked in a manner preventing the flow of refrigerant.
  6. Refrigerator (100) according to one of the preceding claims, characterised in that the refrigerant circuit (200) has a condenser (204), wherein a stop valve (206) is provided between the condenser (204) and the first diverter valve (218).
  7. Refrigerator (100) according to one of the preceding claims, characterised in that in a transmission mode with a powered compressor (202) a stop valve (206) at least temporarily prevents a flow of refrigerant in the refrigerant circuit (200).
  8. Refrigerator (100) according to one of the preceding claims, characterised in that the refrigerator (100) has a controller (268) which is connected to a temperature sensor (272) at least for the transmission of measuring signals.
EP13771483.8A 2012-10-09 2013-10-02 Refrigerator with two evaporators Not-in-force EP2906882B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012218345.0A DE102012218345A1 (en) 2012-10-09 2012-10-09 Refrigerating appliance with two evaporators
PCT/EP2013/070501 WO2014056767A1 (en) 2012-10-09 2013-10-02 Refrigeration appliance with two evaporators

Publications (2)

Publication Number Publication Date
EP2906882A1 EP2906882A1 (en) 2015-08-19
EP2906882B1 true EP2906882B1 (en) 2016-09-07

Family

ID=49301489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13771483.8A Not-in-force EP2906882B1 (en) 2012-10-09 2013-10-02 Refrigerator with two evaporators

Country Status (4)

Country Link
EP (1) EP2906882B1 (en)
CN (1) CN104903663B (en)
DE (1) DE102012218345A1 (en)
WO (1) WO2014056767A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217672A1 (en) * 2014-09-04 2016-03-10 BSH Hausgeräte GmbH Refrigerating appliance and chiller for it
DE102014217673A1 (en) * 2014-09-04 2016-03-10 BSH Hausgeräte GmbH Refrigerating appliance and chiller for it
BR102015023711A2 (en) * 2015-09-15 2017-03-21 Whirlpool Sa multiple evaporation cooling system
DE102016203895A1 (en) * 2016-03-09 2017-09-14 BSH Hausgeräte GmbH Refrigerating appliance with a freezer compartment and a refrigerant circuit and method for operating a refrigeration appliance
CN109539618B (en) * 2018-12-25 2023-04-28 长虹美菱股份有限公司 Multi-circulation refrigerating system of air-cooled refrigerator and control method thereof
DE102019201291A1 (en) * 2019-02-01 2020-08-06 BSH Hausgeräte GmbH Refrigerator with parallel evaporators and operating procedures therefor
CN112833604B (en) * 2019-11-25 2024-01-12 博西华电器(江苏)有限公司 Refrigeration device and method for a refrigeration device
CN112923635B (en) * 2019-12-05 2024-03-05 博西华电器(江苏)有限公司 Refrigeration appliance and method for a refrigeration appliance
DE102020207648A1 (en) * 2020-06-22 2021-12-23 BSH Hausgeräte GmbH Refrigeration device with an intake manifold heat exchanger and method for operating a refrigeration device with an intake manifold heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3431452A1 (en) * 1984-08-27 1986-02-27 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Cooling or freezing apparatus used as a heat pump
CN100439816C (en) * 2003-11-28 2008-12-03 株式会社东芝 Refrigerator
DE102006015989A1 (en) 2006-04-05 2007-10-11 BSH Bosch und Siemens Hausgeräte GmbH Method for operating a refrigeration device with parallel-connected evaporators and refrigeration device therefor

Also Published As

Publication number Publication date
EP2906882A1 (en) 2015-08-19
WO2014056767A1 (en) 2014-04-17
CN104903663A (en) 2015-09-09
CN104903663B (en) 2019-04-23
DE102012218345A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
EP2906882B1 (en) Refrigerator with two evaporators
EP3344931B1 (en) Refrigeration device comprising multiple storage chambers
WO2007115879A1 (en) Method for operating a refrigerating device comprising evaporators which are connected in parallel and refrigerating device therefor
WO2009141282A2 (en) Cooling appliance storing coolant in the condenser, and corresponding method
EP2697579A1 (en) Evaporation device for a refrigerator
DE102012211270A1 (en) Refrigeration device has controller for controlling one valve and another valve depending on one temperature in one frozen food compartment and another temperature in another frozen food compartment
DE102015207838A1 (en) Combination refrigerator and operating method therefor
EP1350068B1 (en) Method for regulating a cooling appliance
EP3426989A1 (en) Refrigerator having a freezer box and a refrigerant circuit and method for operating a refrigerator
EP2732226A2 (en) Refrigeration appliance having a plurality of chambers
WO2016034461A1 (en) Refrigerator having several storage compartments
DE19832682C2 (en) Defrosting device for an evaporator of a heat pump or an air conditioner
WO2016034446A1 (en) Refrigeration appliance and refrigerating machine therefor
DE102012222240A1 (en) Cooling device, particularly domestic refrigerator, has compressor, two cooling zones, three heat exchangers and valve assemblies, where compressor is connected with first heat exchanger and second heat exchanger in refrigerant circuit
WO2022063634A1 (en) Refrigeration appliance
DE102015221441A1 (en) Refrigeration device with a throttle element
EP2796812A1 (en) Refrigeration and/or freezer device
DE102014217673A1 (en) Refrigerating appliance and chiller for it
EP2810003B1 (en) Refrigeration device having two storage chambers
WO2012110294A2 (en) Domestic refrigeration appliance having unregulated expansion valves
EP1808655A2 (en) Refrigeration system
WO2014060315A1 (en) Refrigeration device
DE102014222849A1 (en) Domestic refrigerator and chiller for it
DE102011084826A1 (en) Cold apparatus e.g. household cold apparatus, for e.g. storing food and/or beverages at certain temperature in e.g. home, has valve selectively connecting supply line to vaporizer or another valve and outlet with compressor
DE102014211133A1 (en) Refrigerating appliance and chiller for it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013004407

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0005020000

Ipc: F25B0040000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 11/02 20060101ALI20160329BHEP

Ipc: F25B 5/02 20060101ALI20160329BHEP

Ipc: F25B 40/00 20060101AFI20160329BHEP

Ipc: F25B 41/04 20060101ALI20160329BHEP

INTG Intention to grant announced

Effective date: 20160418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004407

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 827247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170109

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004407

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

26N No opposition filed

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161002

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131002

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 827247

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221031

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013004407

Country of ref document: DE