EP2902728B1 - Automatic detection of coolant fill levels in refrigerant circuits - Google Patents

Automatic detection of coolant fill levels in refrigerant circuits Download PDF

Info

Publication number
EP2902728B1
EP2902728B1 EP15150586.4A EP15150586A EP2902728B1 EP 2902728 B1 EP2902728 B1 EP 2902728B1 EP 15150586 A EP15150586 A EP 15150586A EP 2902728 B1 EP2902728 B1 EP 2902728B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
expansion valve
opening
determined
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15150586.4A
Other languages
German (de)
French (fr)
Other versions
EP2902728A1 (en
Inventor
Frank Dziwak
Stefan Sobotta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP2902728A1 publication Critical patent/EP2902728A1/en
Application granted granted Critical
Publication of EP2902728B1 publication Critical patent/EP2902728B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the invention relates to a method for automatic detection of refrigerant charge in refrigeration circuits.
  • EP 1923646 A1 is a refrigeration cycle with an electronic expansion valve known, by means of which the overheating can be adjusted.
  • EP 2088391 A2 shows a method for detecting refrigerant charge in a refrigeration cycle according to the preamble of claim 1.
  • the invention has for its object to determine refrigerant shortage or overfilling automatically.
  • Evaporator 3 a first temperature sensor 11 between the condenser 2 and expansion valve 4, a first pressure sensor 10 between the compressor 1 and the condenser 2, a second temperature sensor 13 and a second pressure sensor 12 between the evaporator 3 and compressor 1 and a third temperature sensor 9 between the compressor 1 and the condenser 2.
  • the condenser 2 is connected to a heating circuit with a heating circuit pump 6 and a volume flow sensor 5.
  • the evaporator 3 is connected to a brine circuit with brine circuit pump 7.
  • a control 15 is used to control the heat pump.
  • the compressor 1 in the refrigerant circuit 8 has the task to raise the superheated refrigerant flowing from the evaporator 3 at the temperature T s of the evaporation pressure p 0 to the condensing pressure p c .
  • the further superheated refrigerant vapor exits at the discharge nozzle of the compressor 1 with the hot gas temperature T d , and flows through the hot gas line to the condenser 2.
  • the condenser 2 has the task to the superheated refrigerant vapor flowing from the compressor 1 to (cool), to liquefy and thereby to pass the enthalpy to the heating water, and then to subcool the refrigerant.
  • the refrigerant flows in liquid form and still under condensing pressure p c through the liquid line to the electronic expansion valve 4.
  • the subcooling of the refrigerant is necessary to ensure proper operation of the expansion valve 4, since gas bubbles the proper operation of the expansion valve. 4 would disturb. An incorrectly injected amount of refrigerant in the evaporator 3 would in turn damage the compressor 1.
  • supercooling ⁇ T U improves performance, as more enthalpy is drawn from the source as subcooling increases.
  • the electronic expansion valve 4 has the task to relax the supercooled refrigerant with the inlet temperature T EI of condensing pressure p c back to evaporation pressure p 0 so that it can get into the evaporator 3 via the injection line.
  • the injected refrigerant amount is determined by the opening degree of the expansion valve 4.
  • the opening degree of the expansion valve 4 is set in the case of an electronic expansion valve 4 with stepping motor 14 by a controller 15 on the number of steps of the stepping motor 14.
  • the controlled variable used here is the so-called overheating ⁇ T O , the difference between the evaporation temperature T 0 and the compressor suction nozzle temperature, the suction temperature T S.
  • the evaporation temperature T 0 is determined via the evaporation pressure p 0 , which is measured by the second pressure sensor 12, and corresponds to the temperature at which the entire refrigerant has evaporated.
  • liquid refrigerant is evaporated.
  • the necessary enthalpy of vaporization is withdrawn from the brine circuit connected to the primary side of the evaporator 3.
  • the control 15 ensures that only so much refrigerant is injected from the electronic expansion valve 4 that it completely evaporates in the evaporator 3 and the compressor 1 is supplied with a predetermined superheating ⁇ T O via the suction line with the suction temperature T S.
  • FIG. 2 shows the operation of the refrigeration cycle in the log p - h diagram. For comparison, certain operating points with Roman numerals I to IV in both the device according to FIG. 1 , as well as in the diagram according to FIG. 2 shown.
  • IV represents the state downstream of the evaporator 3 upstream of the compressor 1.
  • the refrigerant is in vapor form with the suction temperature T S and the evaporation pressure p 0 .
  • the compressor 1 the refrigerant is compressed, whereby the pressure on the condensing pressure p c increases. At the same time the temperature rises to the hot gas temperature T d .
  • the refrigerant is now in state I.
  • the condenser 2 the refrigerant is isobaric cooled, whereby the refrigerant passes through the wet steam area and condenses out. After passing through the wet steam area, the liquid refrigerant is still slightly undercooled, so that the temperature T EI sets (state II).
  • the refrigerant is depressurized to evaporating pressure p 0 and thereby cools to the temperature T E0 down (state III).
  • the refrigerant absorbs isobaric heat, so that the refrigerant evaporates.
  • the overheating ⁇ T o is an important factor for detecting the refrigerant shortage.
  • the evaporation pressure p 0 is determined by means of the second pressure sensor 12 between the evaporator 3 and the compressor 1. From this it is possible to determine the temperature T 0 at which the wet steam region will leave. From the temperature T 0 at the evaporation pressure p 0 and the temperature of the second temperature sensor 13 between the evaporator 3 and the compressor 1, the superheating ⁇ T o is determined as the difference. The variable cross section of the expansion valve 4 is changed by means of the stepping motor 14 until a predetermined overheating ⁇ T o, should set.
  • the degree of opening of the expansion valve 4 is determined and held at a predetermined superheating .DELTA.T o, soll .
  • a setpoint opening degree of the expansion valve 4 is determined from a stored characteristic map or algorithm for the overheating ⁇ T o, soll and the high pressure p c and the hot gas temperature T d ; this is in FIG. 3 shown. Now, the difference between the measured opening degree and the target opening degree of the expansion valve 4 is determined.
  • the condensing pressure p c is determined. From this, the boiling temperature at which the wet steam region is left can be determined. From the boiling point at the condensing pressure p c and the temperature of the first temperature sensor 11 between the condenser 2 and expansion valve 4, the subcooling ⁇ T U is determined as the difference. From a stored map or algorithm is to the superheating .DELTA.T o, soll and the high pressure p c and the hot gas temperature T d, a target subcooling .DELTA.T U, soll determined. Now the difference between measured subcooling ⁇ T U and target subcooling ⁇ T U, soll is determined.
  • the detected opening degree of the expansion valve 4 is larger than the target opening degree by a predetermined deviation, there is a refrigerant shortage, whereas if the detected opening degree of the expansion valve 4 is smaller than the target opening degree by a predetermined deviation, there is a refrigerant surplus.
  • the specified deviations may be different for refrigerant shortage and excess refrigerant. If there is a deviation by a first, predetermined amount, a warning signal is initially output. If a second, larger, predetermined amount is exceeded, the refrigerant circuit is switched off.

Description

Die Erfindung bezieht sich auf ein Verfahren zur automatischen Erkennung von Kältemittelfüllmengen in Kältekreisläufen.The invention relates to a method for automatic detection of refrigerant charge in refrigeration circuits.

Beim Befüllen des Kältekreislaufs kann es zu einem Überfüllen oder Kältemittelmangel kommen. Durch Leckagen kann es danach zu einem Kältemittelverlust kommen. Für einen optimalen Betrieb des Kältekreislaufs ist es von größter Bedeutung, dass die korrekte Kältemittelmenge zur Verfügung steht. Häufig wird eine Abweichung erst bei einer Wartung oder Störung festgestellt, so dass der Kältekreislauf über einen längeren Zeitraum zumindest mit reduzierter Effizienz betrieben wird. In ungünstigen Fällen kann es zu Schädigungen der Anlage führen.When filling the refrigeration cycle, overfilling or lack of refrigerant may occur. Leaks can lead to a loss of refrigerant afterwards. For optimal operation of the refrigeration cycle it is of utmost importance that the correct amount of refrigerant is available. Frequently, a deviation is detected only during maintenance or malfunction, so that the refrigeration cycle is operated at least with reduced efficiency over a longer period of time. In unfavorable cases, it can lead to damage to the system.

Aus EP 1923646 A1 ist ein Kältekreislauf mit einem elektronischen Expansionsventil bekannt, mittels dessen die Überhitzung eingestellt werden kann. EP 2088391 A2 zeigt ein Verfahren zur Erkennung von Kältemittelfüllmengen in einem Kältekreislauf gemäß dem Oberbegriff von Anspruch 1.Out EP 1923646 A1 is a refrigeration cycle with an electronic expansion valve known, by means of which the overheating can be adjusted. EP 2088391 A2 shows a method for detecting refrigerant charge in a refrigeration cycle according to the preamble of claim 1.

Der Erfindung liegt die Aufgabe zugrunde, Kältemittelmangel oder -überfüllung automatisch festzustellen.The invention has for its object to determine refrigerant shortage or overfilling automatically.

Diese Aufgabe wird gemäß den Merkmalen des unabhängigen Anspruchs 1 gelöst.This object is achieved according to the features of the independent claim 1.

Verdampfer 3, einem ersten Temperatursensor 11 zwischen Kondensator 2 und Expansionsventil 4, einem ersten Drucksensor 10 zwischen Kompressor 1 und Kondensator 2, einem zweiten Temperatursensor 13 sowie einem zweiten Drucksensor 12 zwischen Verdampfer 3 und Kompressor 1 und einem dritten Temperatursensor 9 zwischen Kompressor 1 und Kondensator 2. Der Kondensator 2 ist mit einem Heizkreislauf mit einer Heizkreispumpe 6 sowie einem Volumenstromsensor 5 verbunden. Der Verdampfer 3 ist mit einem Solekreislauf mit Solekreispumpe 7 verbunden. Eine Regelung 15 dient der Regelung der Wärmepumpe.Evaporator 3, a first temperature sensor 11 between the condenser 2 and expansion valve 4, a first pressure sensor 10 between the compressor 1 and the condenser 2, a second temperature sensor 13 and a second pressure sensor 12 between the evaporator 3 and compressor 1 and a third temperature sensor 9 between the compressor 1 and the condenser 2. The condenser 2 is connected to a heating circuit with a heating circuit pump 6 and a volume flow sensor 5. The evaporator 3 is connected to a brine circuit with brine circuit pump 7. A control 15 is used to control the heat pump.

Der Kompressor 1 in dem Kältekreis 8 hat die Aufgabe, das aus dem Verdampfer 3 strömende, überhitzte Kältemittel mit der Temperatur Ts von Verdampfungsdruck p0 auf Verflüssigungsdrucks pc anzuheben. Der weiter überhitzte Kältemitteldampf tritt am Druckstutzen des Kompressors 1 mit der Heißgastemperatur Td aus, und durchströmt die Heißgasleitung zum Kondensator 2. Der Kondensator 2 hat die Aufgabe, den vom Kompressor 1 strömenden, überhitzten Kältemitteldampf zu enthitzen (abzukühlen), zu verflüssigen und dabei die Enthalpie an das Heizwasser zu übergeben, sowie anschließend das Kältemittel zu unterkühlen. Nach dem Kondensator 2 strömt das Kältemittel in flüssiger Form und immer noch unter Verflüssigungsdruck pc durch die Flüssigkeitsleitung zum elektronischen Expansionsventil 4. Das Unterkühlen des Kältemittels ist notwendig, um einen ordnungsgemäßen Betrieb des Expansionsventils 4 zu gewährleisten, da Gasblasen den einwandfreien Betrieb des Expansionsventils 4 stören würden. Eine falsch eingespritzte Kältemittelmenge in den Verdampfer 3 würde wiederum dem Kompressor 1 schaden. Darüber hinaus wirkt eine Unterkühlung ΔTU leistungssteigernd, da mit wachsender Unterkühlung mehr Enthalpie aus der Quelle gezogen wird.The compressor 1 in the refrigerant circuit 8 has the task to raise the superheated refrigerant flowing from the evaporator 3 at the temperature T s of the evaporation pressure p 0 to the condensing pressure p c . The further superheated refrigerant vapor exits at the discharge nozzle of the compressor 1 with the hot gas temperature T d , and flows through the hot gas line to the condenser 2. The condenser 2 has the task to the superheated refrigerant vapor flowing from the compressor 1 to (cool), to liquefy and thereby to pass the enthalpy to the heating water, and then to subcool the refrigerant. After the condenser 2, the refrigerant flows in liquid form and still under condensing pressure p c through the liquid line to the electronic expansion valve 4. The subcooling of the refrigerant is necessary to ensure proper operation of the expansion valve 4, since gas bubbles the proper operation of the expansion valve. 4 would disturb. An incorrectly injected amount of refrigerant in the evaporator 3 would in turn damage the compressor 1. In addition, supercooling ΔT U improves performance, as more enthalpy is drawn from the source as subcooling increases.

Das elektronische Expansionsventil 4 hat die Aufgabe, das unterkühlte Kältemittel mit der Eintrittstemperatur TEI von Verflüssigungsdruck pc wieder auf Verdampfungsdruck p0 zu entspannen, damit dieses über die Einspritzleitung in den Verdampfer 3 gelangen kann. Die eingespritzte Kältemittelmenge wird über den Öffnungsgrad des Expansionsventils 4 bestimmt. Der Öffnungsgrad des Expansionsventils 4 wird im Falle eines elektronischen Expansionsventils 4 mit Schrittmotor 14 von einer Regelung 15 über die Anzahl der Schritte des Schrittmotors 14 eingestellt. Als Regelgröße dient dabei die sogenannte Überhitzung ΔTO, die Differenz aus Verdampfungstemperatur T0 und Kompressorsaugstutzentemperatur, der Saugtemperatur TS. Die Verdampfungstemperatur T0 wird über den Verdampfungsdruck p0, der vom dem zweiten Drucksensor 12 gemessen wird, ermittelt und entspricht der Temperatur, bei welcher das gesamte Kältemittel verdampft ist. Im Verdampfer 3 wird das vom Expansionsventil 4 kommende flüssige Kältemittel verdampft. Die nötige Verdampfungsenthalpie wird dem auf der Primärseite des Verdampfers 3 angeschlossenem Solekreis entzogen. Die Regelung 15 sorgt dafür, dass vom elektronischen Expansionsventil 4 nur so viel Kältemittel eingespritzt wird, dass es im Verdampfer 3 komplett verdampft und mit einer vorgegebenen Überhitzung ΔTO über die Saugleitung mit Saugtemperatur TS den Kompressor 1 zugeführt wird.The electronic expansion valve 4 has the task to relax the supercooled refrigerant with the inlet temperature T EI of condensing pressure p c back to evaporation pressure p 0 so that it can get into the evaporator 3 via the injection line. The injected refrigerant amount is determined by the opening degree of the expansion valve 4. The opening degree of the expansion valve 4 is set in the case of an electronic expansion valve 4 with stepping motor 14 by a controller 15 on the number of steps of the stepping motor 14. The controlled variable used here is the so-called overheating ΔT O , the difference between the evaporation temperature T 0 and the compressor suction nozzle temperature, the suction temperature T S. The evaporation temperature T 0 is determined via the evaporation pressure p 0 , which is measured by the second pressure sensor 12, and corresponds to the temperature at which the entire refrigerant has evaporated. In the evaporator 3 coming from the expansion valve 4 liquid refrigerant is evaporated. The necessary enthalpy of vaporization is withdrawn from the brine circuit connected to the primary side of the evaporator 3. The control 15 ensures that only so much refrigerant is injected from the electronic expansion valve 4 that it completely evaporates in the evaporator 3 and the compressor 1 is supplied with a predetermined superheating ΔT O via the suction line with the suction temperature T S.

Figur 2 zeigt den Betrieb des Kältekreislaufs im log p - h - Diagramm. Zum Vergleich sind bestimmte Betriebspunkte mit römischen Ziffern I bis IV sowohl in der Vorrichtung gemäß Figur 1, als auch im Diagramm gemäß Figur 2 dargestellt. FIG. 2 shows the operation of the refrigeration cycle in the log p - h diagram. For comparison, certain operating points with Roman numerals I to IV in both the device according to FIG. 1 , as well as in the diagram according to FIG. 2 shown.

IV stellt den Zustand stromab des Verdampfers 3 stromauf des Kompressors 1 dar. Das Kältemittel liegt dampfförmig mit der Saugtemperatur TS sowie dem Verdampfungsdruck p0 vor. Im Kompressor 1 wird das Kältemittel komprimiert, wodurch der Druck auf den Verflüssigungsdruck pc steigt. Zugleich steigt die Temperatur auf die Heißgastemperatur Td. Das Kältemittel ist nun im Zustand I. Im Kondensator 2 wird das Kältemittel isobar abgekühlt, wodurch das Kältemittel das Nassdampfgebiet durchläuft und dabei auskondensiert. Nach dem Durchschreiten des Nassdampfgebiets wird das flüssige Kältemittel noch etwas unterkühlt, so dass sich die Temperatur TEI einstellt (Zustand II). Im Expansionsventil 4 wird das Kältemittel auf Verdampfungsdruck p0 entspannt und kühlt sich dabei auf die Temperatur TE0 ab (Zustand III). Im Verdampfer 3 nimmt das Kältemittel isobar Wärme auf, so dass das Kältemittel verdampft. Nachdem bei der Verdampfungstemperatur T0 das Naßdampfgebiet durchschritten ist und das gesamte Kältemittel dampfförmig vorliegt, stellt sich bei der Überhitzung ΔTo = Ts - T0 die Saugtemperatur TS ein (Zustand IV).IV represents the state downstream of the evaporator 3 upstream of the compressor 1. The refrigerant is in vapor form with the suction temperature T S and the evaporation pressure p 0 . In the compressor 1, the refrigerant is compressed, whereby the pressure on the condensing pressure p c increases. At the same time the temperature rises to the hot gas temperature T d . The refrigerant is now in state I. In the condenser 2, the refrigerant is isobaric cooled, whereby the refrigerant passes through the wet steam area and condenses out. After passing through the wet steam area, the liquid refrigerant is still slightly undercooled, so that the temperature T EI sets (state II). In the expansion valve 4, the refrigerant is depressurized to evaporating pressure p 0 and thereby cools to the temperature T E0 down (state III). In the evaporator 3, the refrigerant absorbs isobaric heat, so that the refrigerant evaporates. After the wet steam region has passed through at the evaporation temperature T 0 and the entire refrigerant is in vapor form, the superheat ΔT o = T s -T 0 sets the suction temperature T S (state IV).

Beim erfindungsgemäßen Verfahren ist die Überhitzung ΔTo eine wichtige Größe zur Erkennung des Kältemittelmangels.In the method according to the invention, the overheating ΔT o is an important factor for detecting the refrigerant shortage.

Hierzu wird mittels des zweiten Drucksensors 12 zwischen Verdampfer 3 und Kompressor 1 der Verdampfungsdruck p0 bestimmt. Hieraus lässt sich die Temperatur T0, bei der das Naßdampfgebiet verlassen wird, bestimmen. Aus der Temperatur T0 beim Verdampfungsdruck p0 sowie der Temperatur des zweiten Temperatursensors 13 zwischen Verdampfer 3 und Kompressor 1 wird als Differenz die Überhitzung ΔTo bestimmt. Der variable Querschnitt des Expansionsventils 4 wird mittels des Schrittmotors 14 verändert, bis sich eine vorgegebene Überhitzung ΔTo,soll einstellt.For this purpose, the evaporation pressure p 0 is determined by means of the second pressure sensor 12 between the evaporator 3 and the compressor 1. From this it is possible to determine the temperature T 0 at which the wet steam region will leave. From the temperature T 0 at the evaporation pressure p 0 and the temperature of the second temperature sensor 13 between the evaporator 3 and the compressor 1, the superheating ΔT o is determined as the difference. The variable cross section of the expansion valve 4 is changed by means of the stepping motor 14 until a predetermined overheating ΔT o, should set.

Der Öffnungsgrad des Expansionsventils 4 wird bei vorgegebener Überhitzung ΔTo,soll bestimmt und festgehalten. Zugleich wird aus einem hinterlegten Kennfeld oder Algorithmus zu der Überhitzung ΔTo,soll und dem Hochdruck pc sowie der Heißgastemperatur Td ein Sollöffnungsgrad des Expansionsventils 4 bestimmt; dies ist in Figur 3 dargestellt. Nun wird die Differenz zwischen dem gemessenen Öffnungsgrad und dem Sollöffnungsgrad des Expansionsventils 4 bestimmt.The degree of opening of the expansion valve 4 is determined and held at a predetermined superheating .DELTA.T o, soll . At the same time, a setpoint opening degree of the expansion valve 4 is determined from a stored characteristic map or algorithm for the overheating ΔT o, soll and the high pressure p c and the hot gas temperature T d ; this is in FIG. 3 shown. Now, the difference between the measured opening degree and the target opening degree of the expansion valve 4 is determined.

Mittels des ersten Drucksensors 10 zwischen Kompressor 1 und Kondensator 2 wird der Verflüssigungsdruck pc bestimmt. Hieraus lässt sich die Siedetemperatur, bei der das Naßdampfgebiet verlassen wird, bestimmen. Aus der Siedetemperatur beim Verflüssigungsdruck pc sowie der Temperatur des ersten Temperatursensors 11 zwischen Kondensator 2 und Expansionsventil 4 wird als Differenz die Unterkühlung ΔTU bestimmt. Aus einem hinterlegten Kennfeld oder Algorithmus wird zu der Überhitzung ΔTo,soll und dem Hochdruck pc sowie der Heißgastemperatur Td ein Soll-Unterkühlung ΔTU,soll bestimmt. Nun wird die Differenz zwischen gemessenem Unterkühlung ΔTU und Soll-Unterkühlung ΔTU,soll bestimmt.By means of the first pressure sensor 10 between the compressor 1 and the condenser 2, the condensing pressure p c is determined. From this, the boiling temperature at which the wet steam region is left can be determined. From the boiling point at the condensing pressure p c and the temperature of the first temperature sensor 11 between the condenser 2 and expansion valve 4, the subcooling ΔT U is determined as the difference. From a stored map or algorithm is to the superheating .DELTA.T o, soll and the high pressure p c and the hot gas temperature T d, a target subcooling .DELTA.T U, soll determined. Now the difference between measured subcooling ΔT U and target subcooling ΔT U, soll is determined.

Bei einer vorgegebenen Abweichung zwischen dem erfasstem Öffnungsgrad und dem Sollöffnungsgrad des Expansionsventils 4 und / oder bei einer vorgegebenen Abweichung zwischen der gemessenen Unterkühlung ΔTU und der Soll-Unterkühlung ΔTU,soll liegt ein Kältemittelmangel oder Kältemittelüberschuss vor. Erfindungsgemäß reicht optional das Vorliegen einer Differenz aus oder müssen beide Abweichungen gegeben sein.For a given deviation between the observed one opening degree and the target opening degree of the expansion valve 4 and / or at a predetermined difference between the measured subcooling .DELTA.T U and the target subcooling .DELTA.T U, should there is a lack of refrigerant or refrigerant surplus. According to the invention, the presence of a difference is optionally sufficient or both deviations must be given.

Wenn der erfasste Öffnungsgrad des Expansionsventils 4 um eine vorgegebene Abweichung größer als der Sollöffnungsgrad ist, liegt ein Kältemittelmangel vor, während wenn der erfasste Öffnungsgrad des Expansionsventils 4 um eine vorgegebene Abweichung kleiner als der Sollöffnungsgrad ist, ein Kältemittelüberschuss vorliegt. Hierbei können die vorgegebenen Abweichungen bei Kältemittelmangel und Kältemittelüberschuss unterschiedlich sein. Bei einer Abweichung um einen ersten, vorgegebenen Betrag wird zunächst ein Warnsignal ausgegeben. Ist ein zweiter, größerer, vorgegebener Betrag überschritten, so wird der Kältemittelkreislauf abgeschaltet.When the detected opening degree of the expansion valve 4 is larger than the target opening degree by a predetermined deviation, there is a refrigerant shortage, whereas if the detected opening degree of the expansion valve 4 is smaller than the target opening degree by a predetermined deviation, there is a refrigerant surplus. Here, the specified deviations may be different for refrigerant shortage and excess refrigerant. If there is a deviation by a first, predetermined amount, a warning signal is initially output. If a second, larger, predetermined amount is exceeded, the refrigerant circuit is switched off.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

  • Kompressor (1),Compressor (1),
  • Kondensator (2),Capacitor (2),
  • Verdampfer (3),Evaporator (3),
  • Expansionsventil (4)Expansion valve (4)
  • Kältekreislauf (8)Refrigeration circuit (8)
  • dritten Temperatursensor 9third temperature sensor 9
  • erster Drucksensor (10)first pressure sensor (10)
  • erster Temperatursensor (11)first temperature sensor (11)
  • zweiten Drucksensor (12)second pressure sensor (12)
  • zweiten Temperatursensor (13)second temperature sensor (13)
  • Schrittmotor 14Stepper motor 14
  • Regelung 15Regulation 15

Claims (5)

  1. Method for automatic detection of refrigerant filling quantities in cooling circuits (8), preferably a heat pump, with a compressor (1), a condenser (2), an expansion valve (4) with variable cross-section as well as detection of a degree of opening, an evaporator (3), a first pressure sensor (10) between the compressor (1) and the expansion valve (4), a first temperature sensor (11) between the condenser (2) and the expansion valve (4), a second pressure sensor (12) as well as a second temperature sensor (13) between the evaporator (3) and the compressor (1), characterized in that the overheating ΔTO is determined from the pressure determined by the second pressure sensor (12) and the temperatures of the second temperature sensor (13),
    the variable cross-section of the expansion valve (4) is altered until a predetermined overheating ΔTO,soll occurs,
    whereupon one or both of the following checks are carried out:
    a) the degree of opening of the expansion valve (4) is determined for a predetermined overheating ΔTO,soll,
    a target degree of opening of the expansion valve (4) is determined for the overheating ΔTO,soll from a stored characteristic map or algorithm,
    the difference between the measured degree of opening and the target degree of opening of the expansion valve (4) is determined,
    wherein for a predetermined deviation between the detected degree of opening and the target degree of opening of the expansion valve (4) there is a shortage of refrigerant or a surplus of refrigerant,
    b) the undercooling ΔTU is determined from the pressure detected by the first pressure sensor (10) and the temperatures of the first temperature sensor (11),
    a target undercooling ΔTU,soll is determined for the overheating ΔTO,soll from a stored characteristic map or algorithm,
    the difference between the measured undercooling ΔTU and the target undercooling ΔTU,soll is determined,
    wherein for a predetermined deviation between the measured undercooling ΔTU and the target undercooling ΔTU,soll there is a shortage of refrigerant or a surplus of refrigerant.
  2. Method for automatic detection of refrigerant filling quantities according to claim 1,
    characterized in that there is a shortage of refrigerant if the detected degree of opening of the expansion valve (4) is larger than the target degree of opening by a predetermined deviation,
    while there is a surplus of refrigerant if the detected degree of opening of the expansion valve (4) is smaller than the target degree of opening by a predetermined deviation.
  3. Method for automatic detection of refrigerant filling quantities according to claim 1 or 2,
    characterized in that the predetermined deviations are different for a shortage of refrigerant and a surplus of refrigerant.
  4. Method for automatic detection of refrigerant filling quantities according to any of claims 1 to 3,
    characterized in that the cooling circuit is switched off if the deviation is exceeded.
  5. Method for automatic detection of refrigerant filling quantities according to any of claims 1 to 3,
    characterized in that an early warning signal is outputted if a first, predetermined deviation is exceeded and/or the cooling circuit is switched off if a second, predetermined deviation is exceeded.
EP15150586.4A 2014-01-31 2015-01-09 Automatic detection of coolant fill levels in refrigerant circuits Active EP2902728B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50064/2014A AT515455B1 (en) 2014-01-31 2014-01-31 Automatic detection of refrigerant charge in refrigeration circuits

Publications (2)

Publication Number Publication Date
EP2902728A1 EP2902728A1 (en) 2015-08-05
EP2902728B1 true EP2902728B1 (en) 2017-04-26

Family

ID=52440548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15150586.4A Active EP2902728B1 (en) 2014-01-31 2015-01-09 Automatic detection of coolant fill levels in refrigerant circuits

Country Status (5)

Country Link
EP (1) EP2902728B1 (en)
AT (1) AT515455B1 (en)
DK (1) DK2902728T3 (en)
ES (1) ES2633272T3 (en)
PL (1) PL2902728T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141607A (en) * 2017-02-28 2018-09-13 三菱重工サーマルシステムズ株式会社 Refrigerant amount determination device, air conditioning system, refrigerant amount determination method and program
CN112781290A (en) * 2020-04-10 2021-05-11 青岛海尔新能源电器有限公司 Heat pump system control method and heat pump system
CN112833596B (en) * 2021-01-21 2022-09-30 四川长虹空调有限公司 Method for judging state of refrigerant of refrigerating system
CN114087710B (en) * 2021-11-12 2022-11-11 珠海格力电器股份有限公司 Fluorine-lack detection method and device for air conditioner, storage medium and electronic equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571566B1 (en) * 2002-04-02 2003-06-03 Lennox Manufacturing Inc. Method of determining refrigerant charge level in a space temperature conditioning system
JP4269616B2 (en) * 2002-09-24 2009-05-27 株式会社Ihi Control method and apparatus for supercooled water production apparatus
JP3988780B2 (en) * 2005-09-09 2007-10-10 ダイキン工業株式会社 Refrigeration equipment
JP4904908B2 (en) * 2006-04-28 2012-03-28 ダイキン工業株式会社 Air conditioner
JP4225357B2 (en) * 2007-04-13 2009-02-18 ダイキン工業株式会社 Refrigerant filling apparatus, refrigeration apparatus and refrigerant filling method
JP4245064B2 (en) * 2007-05-30 2009-03-25 ダイキン工業株式会社 Air conditioner
KR101488390B1 (en) * 2008-02-05 2015-01-30 엘지전자 주식회사 Method for calculating the mass of a refrigerant in air conditioning apparatus
US8466798B2 (en) * 2011-05-05 2013-06-18 Emerson Electric Co. Refrigerant charge level detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AT515455B1 (en) 2016-05-15
PL2902728T3 (en) 2017-09-29
DK2902728T3 (en) 2017-08-07
EP2902728A1 (en) 2015-08-05
AT515455A1 (en) 2015-09-15
ES2633272T3 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
EP2902728B1 (en) Automatic detection of coolant fill levels in refrigerant circuits
DE602004011870T2 (en) Device and method for controlling the degree of superheating in a heat pump system
CN104729033B (en) The antifreeze method and apparatus of the handpiece Water Chilling Units of air-conditioner set
EP2933442B1 (en) Device and method for detecting leaks in closed cycle processes
DE112018008199T5 (en) air conditioning
DE112013006124T5 (en) Refrigerant management in a HVAC system
DE112015006774T5 (en) Refrigerator and method of operating the refrigerator
DE19935226C1 (en) Procedure for monitoring the refrigerant level in a refrigeration system
EP3730873A2 (en) Method for operating a heat pump with a vapour compression system
EP3816543B1 (en) Method for controlling an expansion valve
EP3196570B1 (en) Flash tank and air conditioner having the same
EP1965154B1 (en) Heat pump device
CN111727129A (en) Apparatus and method for lubricant management in electric vehicles
EP3574269B1 (en) Expansion unit for installation in a refrigerant circuit
DE102007010645A1 (en) A method of controlling a compression refrigeration system and a compression refrigeration system
DE102008052210A1 (en) Method for determining filling level of refrigerating agent, which is to be reduced, in refrigeration cycle, involves arranging temperature sensor at air outlet of evaporator
DE102017213973A1 (en) Method for operating a refrigeration system of a vehicle having a refrigerant circuit having a cooling and heating function
EP3922926B1 (en) Method for controlling a defrosting process of an evaporator of a compression cooling system and compression cooling system
DE19832682C2 (en) Defrosting device for an evaporator of a heat pump or an air conditioner
WO2016059197A1 (en) Method for controlling or regulating a coolant circuit of a motor vehicle air conditioning system
WO2016034446A1 (en) Refrigeration appliance and refrigerating machine therefor
DE102019119754B3 (en) Method for operating a refrigeration cycle of a motor vehicle and refrigeration cycle
DE102014200221A1 (en) Method for controlling and / or regulating a heating air conditioning system in a motor vehicle
EP3922930B1 (en) Compression cooling system and method for operating a compression cooling system
EP2827081B1 (en) Method for controlling a heat pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160125

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 888246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015000907

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170803

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2633272

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170727

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015000907

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150109

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 9

Ref country code: ES

Payment date: 20230201

Year of fee payment: 9

Ref country code: CH

Payment date: 20230201

Year of fee payment: 9

Ref country code: AT

Payment date: 20230207

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230122

Year of fee payment: 9

Ref country code: PL

Payment date: 20230103

Year of fee payment: 9

Ref country code: IT

Payment date: 20230131

Year of fee payment: 9

Ref country code: DE

Payment date: 20230103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240201

Year of fee payment: 10