EP2895734B1 - Ignition system for an internal combustion engine - Google Patents

Ignition system for an internal combustion engine Download PDF

Info

Publication number
EP2895734B1
EP2895734B1 EP13759775.3A EP13759775A EP2895734B1 EP 2895734 B1 EP2895734 B1 EP 2895734B1 EP 13759775 A EP13759775 A EP 13759775A EP 2895734 B1 EP2895734 B1 EP 2895734B1
Authority
EP
European Patent Office
Prior art keywords
connection
bypass
switch
energy
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13759775.3A
Other languages
German (de)
French (fr)
Other versions
EP2895734A1 (en
Inventor
Tim Skowronek
Thomas Pawlak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2895734A1 publication Critical patent/EP2895734A1/en
Application granted granted Critical
Publication of EP2895734B1 publication Critical patent/EP2895734B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • F02P3/0442Opening or closing the primary coil circuit with electronic switching means with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0853Layout of circuits for control of the dwell or anti-dwell time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Definitions

  • the present invention relates to an ignition system for an internal combustion engine.
  • the present invention relates to an ignition system for internal combustion engines, to which increased requirements by (high) charge and dilute, flame retardant mixtures ( ⁇ >> 1, lean-layer concepts, high EGR rates) exist.
  • GB717676 shows a step-up transformer for an ignition system in which a controlled via a vibration switch circuit part is used in the manner of a boost converter to supply a spark generated by the step-up transformer with electrical energy.
  • WO 2009/106100 A1 shows a constructed according to a high-voltage capacitor ignition system circuitry in which stored in a capacitor energy is passed on the one hand to the primary side of a transformer and on the other hand via a bypass with a diode on a spark gap.
  • US 2004/000878 A1 shows an ignition system in which a memory on the secondary side, comprising a plurality of capacitors, is charged in order to supply a spark generated by a transformer with electrical energy.
  • WO9304279 A1 shows an ignition system with two energy sources.
  • An energy source transmits electrical energy via a transformer to a spark gap, while the second energy source between a secondary side terminal of the transformer and the electrical ground is arranged.
  • the JP S60 169675 A and the JP H07 174063 A show an ignition system in which a capacitor is charged via a capacitor connected in parallel.
  • ignition systems for internal combustion engines are based on a high-voltage generator, for example a step-up transformer, by means of which energy originating from the vehicle battery or a generator is converted to high voltages, by means of which a spark gap is supplied in order to ignite a combustible mixture in the internal combustion engine.
  • a current flowing through the step-up transformer is abruptly interrupted, whereupon the energy stored in the magnetic field of the step-up transformer discharges in the form of a spark.
  • ignition systems are known in the prior art which have a plurality of spark events in succession in order to increase the probability of the presence of an ignitable mixture at the location of one of the spark events.
  • Another known from the prior art problem is that the entire during the spark impact converted electrical energy must be stored in the high voltage generator, whereby the high voltage generator is comparatively large and thus expensive and takes up much space. Due to the discharge characteristic of the high-voltage generator, such a high current flows, in particular at the beginning of the spark strike, that the electrodes of the spark gap are eroded. In this case, such a high current to ensure a spark is physically not required. Only the required duration of the spark strike is ensured in this way by accepting the disadvantages described above. It is therefore an object of the present invention to overcome the aforementioned disadvantages of the prior art.
  • the ignition system according to the invention also has a high voltage generator, such as a step-up transformer, with a primary side connected to a power source and a secondary side connected to a spark gap.
  • a high voltage generator such as a step-up transformer
  • the principle of operation of the high voltage generator corresponds to that known from the prior art, and therefore need not be further explained.
  • a spark gap likewise known from the prior art, is provided, which is set up to conduct a current transmitted by the high-voltage generator to the secondary side.
  • the spark gap can be arranged, for example, in a spark plug.
  • a bypass is provided according to the invention, which can transmit electrical energy from the electrical energy source at the high voltage generator to the secondary side.
  • a bypass here is a variety of possible circuits conceivable, of which individual will be discussed in more detail below.
  • the bypass is arranged to sustain longer and more reliably an arc generated by the high voltage generator over the spark gap than would be possible by means of the magnetic energy stored in the high voltage generator.
  • the bypass is adapted to support a decaying electrical signal in the secondary coil of the high voltage generator from a predefined time or from a predefined current intensity of the current.
  • a logic may be provided in the ignition system according to the invention, which performs a time measurement and / or determines a current intensity and, in response to reaching corresponding predefined reference values, causes the bypass to output a secondary-side electrical signal.
  • spark duration can preferably be generated between 0.5 ms to 5 ms in the event of spark currents, preferably within the limits of 30 mA to 100 mA of different polarity (polarity of the voltage supply).
  • the high voltage generator is configured as a step-up transformer and has a primary coil on the primary side and a secondary coil on the secondary side. Both coils may be magnetically coupled together by means of a transformer core (e.g., sheet iron).
  • the bypass is arranged to transmit an electrical voltage in addition to the step-up transformer, which adds to a transformer voltage lying across the secondary coil of the step-up transformer. In this way, the bypass allows a "support" of the spark current by an entry of additional electrical energy to the spark gap.
  • the high voltage generator may be configured as a high voltage capacitor ignition (HCC) system.
  • HCC high voltage capacitor ignition
  • the bypass one or (advantageously for common handling of the sometimes occurring high voltages) a plurality of energy storage, preferably one or more capacitors, connected in series and / or parallel, capacitances, the first terminal is connected to a secondary side terminal of the high voltage generator and the second terminal is connected to the electrical ground, in particular, an inductance between the power source and the capacitance is provided switchable.
  • the bypass provides a secondary-side energy storage, by means of which the decaying electrical signal can be supported in the secondary coil of the high voltage generator from a predefined time or from a predefined current.
  • an inductance between the power source and the capacitor may be switchably provided.
  • the capacitance and the inductance form a resonant circuit, by means of which a temporary increase in the electrical potential at the first terminal of the capacitance is possible.
  • a current is first passed through the inductance and a discharge of the stored energy in the inductance is forced to the capacitance, can be provided at suitably selected switching times very high voltages without the required energy within a high voltage generator to have to cache.
  • a non-linear dipole for example in the form of a diode, which has flow direction in the direction of the capacitance.
  • a non-linear dipole for example in the form of a diode, this is done for reasons of brevity and readability. It will be apparent to those skilled in the art that voltages may sometimes be present across the non-linear dipoles called diode, which may be coped with more conveniently by several components, such as diodes connected in series.
  • each of the diodes can be configured as a Zener diode.
  • an included switch may also be closed in response to a signal when a predefined first current direction is to be expected in the non-linear branch and then opened when a predefined second (oppositely directed) current direction in the nonlinear branch is to be expected.
  • a plurality of diodes can be advantageously used in the following and high voltages applied, the statements made above also apply accordingly.
  • a switchable connection between a common connection between the inductance and the diode on the one hand and the electrical ground on the other hand can be provided.
  • a current measuring means for example, between an output terminal of the high voltage generator and the capacitance may be provided, which may be configured for example as a shunt resistor.
  • This current measuring means may further be arranged, for example, between capacitance and ground or in the path of the diode, and be set up to give a signal to a switch in the bypass so that it can react to a critical current intensity in the secondary-side mesh.
  • an overvoltage protection for example, a diode may be provided parallel to the capacitance, which protects the capacitance against an overvoltage.
  • a reverse zener diode can be used to relieve excessively high capacitance.
  • a voltage measurement and / or a power measurement may be carried out, for example via the capacitance, in order to obtain information about the ignition current and / or the ignition output.
  • the inductor is designed as a transformer or transformer with a primary side and a secondary side, wherein a first terminal of the primary side is connected to the power source and a second terminal of the primary side is connected via a switch with the electrical ground. Further, a first terminal of the secondary side of the transformer is connected to the power source and a second terminal of the secondary side of the transformer, as described above, connected to the diode.
  • a suitable choice of the transmission ratio can be used in this way a switch provided on the primary side to switch a secondary side flowing current. Due to the transmission ratio favorable conditions for dimensioning the switch and in this way a safer and more cost-effective implementation of the ignition system according to the invention.
  • a method for generating a spark for an internal combustion engine is proposed.
  • a spark by means of an energy source of extracted electrical energy, which is given via a high voltage generator with a primary side and a secondary side to a spark gap is generated first.
  • the spark is maintained by means of electrical energy, which is transmitted from the energy source via a bypass to the secondary side.
  • the electrical energy is provided to maintain the spark as a controlled pulse train, for example in the kilohertz range, preferably between 10kHz and 100kHz, from the power source.
  • the electrical energy for maintaining the spark is coupled as electrical voltage in series or parallel to the secondary side of the high voltage generator.
  • a coupling-in section of the bypass in conjunction with the secondary-side coil of the high-voltage generator forms a mesh whose voltage lies parallel to the spark gap.
  • FIG. 1 shows a timing diagram of the ignition current, that of the current which flows when penetrating the spark gap within the secondary-side coil of the step-up transformer as a high voltage generator.
  • a region 103 is marked, within which the current is so high that the electrodes of the spark plug can be damaged by increased erosion.
  • the region 104 marks those (low) currents within which a required stability of the arc for igniting ignitable mixture can not be guaranteed.
  • the energy conducted to the spark gap according to the present invention divides into two energy components provided by a current flowing through the step-up transformer to generate a spark and a current flowing through the bypass to maintain a spark.
  • the step-up transformer small in size compared to the prior art
  • the current without the bypass according to the invention would steeply decrease (corresponding to the discharge of the small secondary inductance with respect to conventional secondary inductances) (see illustration in FIG. 1 , 101) and would "disappear" shortly after its formation in the area 104.
  • the current intensity on the secondary side can be maintained over a much longer time range between the critical regions 103 and 104 (see illustration in FIG. 1 , 102).
  • the energy stored in the secondary coil discharges, as in the prior art, which leads to a steeply falling spark current. This results in a total current, which, however, dips into the unstable region 104 much later than the current intensity 100 of the known ignition system.
  • FIG. 2 shows a circuit with which the in FIG. 1 illustrated current waveforms 101, 102 can be realized.
  • an ignition system 1 which comprises a step-up transformer 2 as a high voltage generator whose primary side 3 can be supplied from an electrical energy source 5 via a first switch 30 with electrical energy.
  • the secondary side 4 of the step-up transformer 2 is powered by an inductive coupling of the primary coil 8 and the secondary coil 9 with electrical energy and has a known from the prior art diode 23 for Einschaltfunkenunterd Wegung, which diode may alternatively be replaced by the diode 21.
  • a spark gap 6 is provided to ground 14, via which the ignition current i 2 is to ignite the combustible gas mixture.
  • a bypass 7 (surrounded by a dot-dash line) between the electric power source 5 and the secondary side 4 of the step-up transformer 2.
  • an inductor 15 is connected via a switch 22 and a diode 16 to a capacitor 10, one end of which is connected to the secondary coil 9 and the other end to the electrical ground 14.
  • the inductance serves as an energy store in order to maintain a current flow.
  • the diode 16 is oriented in the direction of the capacitance 10 conductive.
  • the structure of the bypass 7 is thus for example comparable to a boost converter.
  • a shunt 19 is provided as a current measuring means or voltage measuring means, the measuring signal of the switch 22 and switch 27 is supplied.
  • the switches 22, 27 are arranged to respond to a defined range of the current intensity i 2 through the secondary coil 9.
  • the diode 16 facing terminal of the switch 22 is connected via a further switch 27 to the electrical ground 14 connectable.
  • a Zener diode 21 is connected in reverse direction parallel to the capacitor 10.
  • switching signals 28, 29 are indicated, by means of which the switches 22, 27 can be controlled. While the switching signal 28 represents switching on and “staying closed” for an entire ignition cycle, the switching signal 29 outlines a simultaneous alternating signal between "closed” and "open".
  • FIG. 3 shows in the diagram a a short and steep rise of the primary coil current i ZS , which occurs during the time in which the switch 30 (see diagram 3c) is in the ON state.
  • the primary coil current i ZS drops to 0 A.
  • Diagram b shows the profiles of the secondary coil current i 2 , as they are suitable for use of the in FIG. 2 shown system with (301) and without (300) Bypass.
  • a secondary coil current i 2 which quickly without bypass (300) against 0 drops.
  • t HSS The total time during which the bypass is used
  • t i The time period during which energy is given to the upstream side of the step-up transformer 2.
  • the starting time of t HSS opposite t i can be chosen variable.
  • FIG. 4 shows one opposite FIG. 2 Alternative and inventive embodiment of a circuit of an ignition system 1 according to the present invention.
  • a fuse 26 is provided at the entrance of the circuit.
  • a capacitance 17 is provided parallel to the input of the circuit or parallel to the electric power source 5.
  • the inductance 15 has been replaced by a transformer having a primary side 15_1 and a secondary side 15_2, the primary side 15_1 having a primary coil and the secondary side 15_2 having a secondary coil.
  • the first terminals of the transformer are respectively connected to the electric power source 5 and the fuse 26.
  • a second terminal of the primary side 15_1 is connected via a switch 27 to the electrical ground 14.
  • the second terminal of the secondary side 15_2 of the transformer 15 is now connected directly to the diode 16 without a switch. Due to the transmission ratio, a switching operation by the switch 27 in the branch of the primary side 15_1 also acts on the secondary side 15_2. However, since current and voltage according to the gear ratio on one side are higher or lower than on the other side of the transformer 15, can be found for switching operations more favorable dimensions for the switch 27. For example, lower switching voltages can be realized, whereby the dimensioning of the switch 27 is simpler and less expensive.
  • the switch 27 is controlled via a drive 24, which is connected via a driver 25 to the switch 27. As in FIG.
  • a shunt 19 is provided to the secondary side current i 2 and the To measure voltage across the capacitance 10 and provide this or the driver 24 of the switch 27.
  • the control 24 receives a control signal s HSS .
  • the introduction of energy via the bypass into the secondary side can be switched on and off via this. It is also possible to control the power of the electrical variable introduced through the bypass or into the spark gap, in particular via the frequency and / or the pulse-pause ratio via a suitable control signal.
  • a non-linear dipole symbolized below by a high-voltage diode 33, are connected in parallel to the secondary-side coil of the boost converter.
  • This high-voltage diode 33 bridges the high-voltage generator 2 on the secondary side, whereby the energy supplied by the bypass 7 in the form of a boost converter (surrounded by a dot-dash line) is conducted directly to the spark gap 6 without being led through the secondary coil 9 of the high voltage generator 2. Thus, no losses on the secondary coil 9 and the efficiency increases.
  • the remaining elements of in FIG. 4 The drawings shown correspond to those as shown in FIG. 2 shown and discussed above.
  • FIG. 5 shows an alternative embodiment of the in FIG. 4 featured circuit.
  • This is a high-voltage diode 33 with flow direction to the spark gap between the energy storage 10 of the bypass 7 in the form of a boost converter (surrounded by a dotted line) and the spark gap 6 is arranged.
  • the high voltage diode 33 bridges the high voltage generator 2 on the secondary side, whereby the energy supplied by the bypass 7 is led directly to the spark gap 6, without being guided by the secondary coil 9 of the high voltage generator 2.
  • no losses on the secondary coil 9 and the efficiency increases.
  • FIG. 6 shows time diagrams for a) the ignition coil current i ZS , b) the bypass current i HSS , c) the output voltage across the spark gap 6, d) the secondary coil current i 2 for the in FIG. 4 shown ignition system without (501) and with (502) using the bypass according to the invention, e) the switching signal 31 of the switch 30 and f) the switching signal 32 of the switch 27 for the pulse signal in the bypass 7. Zu already in connection with FIG. 3 The diagrams shown are referred to the above discussion for the sake of brevity.
  • Diagram b) also illustrates the current consumption of the bypass 7 according to the invention, which comes about through a pulse-shaped actuation of the switch 27.
  • clock rates in the range of several tens of kHz have proven to be suitable as switching frequency, in order to realize appropriate voltages on the one hand and acceptable efficiencies on the other hand.
  • the integer multiples of 10,000 Hz in the range between 10 and 100 kHz may be mentioned as possible range limits.
  • a high voltage generator is provided to generate a spark according to the prior art.
  • a bypass is set up to maintain the existing arc over the spark gap.
  • a bypass takes energy from, for example, the same energy source as the primary side of the high voltage generator and uses this to support the decaying edge of the transformer voltage and thus to delay its drop below the burning voltage.
  • the skilled artisan recognizes preferred embodiments of the bypass according to the invention as working in the manner of a boost converter circuit structures.
  • the input of the boost converter is connected in parallel to the electrical energy source, while the output of the boost converter is arranged in series or parallel to the secondary coil of the high voltage generator.
  • energy source is to be interpreted broadly within the scope of the present invention and may include other energy conversion devices (eg, DC-DC converters). It is also apparent to those skilled in the art that the inventive idea is not limited to an objective energy source.

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft ein Zündsystem für eine Verbrennungskraftmaschine. Insbesondere betrifft die vorliegende Erfindung ein Zündsystem für Verbrennungskraftmaschinen, an welches erhöhte Anforderungen durch (Hoch-)aufladung und verdünnte, schwer entflammbare Gemische (λ>>1, Mager-Schichtkonzepte, hohe AGR-Raten) bestehen.The present invention relates to an ignition system for an internal combustion engine. In particular, the present invention relates to an ignition system for internal combustion engines, to which increased requirements by (high) charge and dilute, flame retardant mixtures (λ >> 1, lean-layer concepts, high EGR rates) exist.

GB717676 zeigt einen Step-Up-Transformator für ein Zündsystem, bei welchem ein über einen Vibrationsschalter gesteuerter Schaltungsteil nach Art eines Hochsetzstellers verwendet wird, um einen über den Step-Up-Transformator erzeugten Funken mit elektrischer Energie zu versorgen. GB717676 shows a step-up transformer for an ignition system in which a controlled via a vibration switch circuit part is used in the manner of a boost converter to supply a spark generated by the step-up transformer with electrical energy.

WO 2009/106100 A1 zeigt eine entsprechend einem Hochspannungs-Kondensator-Zündsystem aufgebaute Schaltungsanordnung, bei welcher in einem Kondensator gespeicherte Energie einerseits auf die Primärseite eines Transformators und andererseits über einen Bypass mit einer Diode auf eine Funkenstrecke geleitet wird. WO 2009/106100 A1 shows a constructed according to a high-voltage capacitor ignition system circuitry in which stored in a capacitor energy is passed on the one hand to the primary side of a transformer and on the other hand via a bypass with a diode on a spark gap.

US 2004/000878 A1 zeigt ein Zündsystem, bei welchem ein sekundärseitiger, mehrere Kondensatoren umfassender Speicher aufgeladen wird, um einen mittels eines Transformators erzeugten Funken mit elektrischer Energie zu versorgen. US 2004/000878 A1 shows an ignition system in which a memory on the secondary side, comprising a plurality of capacitors, is charged in order to supply a spark generated by a transformer with electrical energy.

WO9304279 A1 zeigt ein Zündsystem mit zwei Energiequellen. Eine Energiequelle überträgt elektrische Energie über einen Transformator an eine Funkenstrecke, während die zweite Energiequelle zwischen einem sekundärseitigen Anschluss des Transformators und der elektrischen Masse angeordnet ist. WO9304279 A1 shows an ignition system with two energy sources. An energy source transmits electrical energy via a transformer to a spark gap, while the second energy source between a secondary side terminal of the transformer and the electrical ground is arranged.

Die JP S60 169675 A und die JP H07 174063 A zeigen ein Zündsystem, bei dem ein Kondensator über einen parallel geschalteten Kondensator geladen wird. Bekanntermaßen basieren Zündsysteme für Verbrennungskraftmaschinen auf einem Hochspannungserzeuger, beispielsweise einem Aufwärtstransformator, mittels welchem aus der Fahrzeugbatterie bzw. einem Generator stammende Energie auf hohe Spannungen gewandelt wird, mittels welcher eine Funkenstrecke versorgt wird, um brennfähiges Gemisch in der Verbrennungskraftmaschine zu entzünden. Hierzu wird ein durch den Aufwärtstransformator fließender Strom abrupt unterbrochen, worauf die im Magnetfeld des Aufwärtstransformator gespeicherte Energie sich in Form eines Funkens entlädt. Um die Entzündung des brennfähigen Gemisches besonders zuverlässig zu gewährleisten, sind im Stand der Technik Zündsysteme bekannt, welche mehrere Funkenereignisse zeitlich hintereinander aufweisen, um die Wahrscheinlichkeit des Vorhandenseins eines zündfähigen Gemisches am Ort eines der Funkenereignisse zu erhöhen.
Ein weiteres aus dem Stand der Technik bekanntes Problem besteht darin, dass die gesamte während des Funkenschlages umgesetzte elektrische Energie im Hochspannungserzeuger gespeichert sein muss, wodurch der Hochspannungserzeuger vergleichsweise groß und damit kostspielig wird und viel Bauraum beansprucht.
Aufgrund der Entladecharakteristik des Hochspannungserzeugers fließt insbesondere zu Beginn des Funkenschlages ein so hoher Strom, dass die Elektroden der Funkenstrecke erodiert werden. Dabei ist ein derartig hoher Strom zur Sicherstellung eines Funkens physikalisch nicht erforderlich. Lediglich die erforderliche Dauer des Funkenschlages wird auf diese Weise unter Inkaufnahme der zuvor beschriebenen Nachteile sichergestellt.
Es ist daher eine Aufgabe der vorliegenden Erfindung, die vorgenannten Nachteile des Standes der Technik auszuräumen.
The JP S60 169675 A and the JP H07 174063 A show an ignition system in which a capacitor is charged via a capacitor connected in parallel. As is known, ignition systems for internal combustion engines are based on a high-voltage generator, for example a step-up transformer, by means of which energy originating from the vehicle battery or a generator is converted to high voltages, by means of which a spark gap is supplied in order to ignite a combustible mixture in the internal combustion engine. For this purpose, a current flowing through the step-up transformer is abruptly interrupted, whereupon the energy stored in the magnetic field of the step-up transformer discharges in the form of a spark. In order to ensure the ignition of the combustible mixture particularly reliably, ignition systems are known in the prior art which have a plurality of spark events in succession in order to increase the probability of the presence of an ignitable mixture at the location of one of the spark events.
Another known from the prior art problem is that the entire during the spark impact converted electrical energy must be stored in the high voltage generator, whereby the high voltage generator is comparatively large and thus expensive and takes up much space.
Due to the discharge characteristic of the high-voltage generator, such a high current flows, in particular at the beginning of the spark strike, that the electrodes of the spark gap are eroded. In this case, such a high current to ensure a spark is physically not required. Only the required duration of the spark strike is ensured in this way by accepting the disadvantages described above.
It is therefore an object of the present invention to overcome the aforementioned disadvantages of the prior art.

Offenbarung der ErfindungDisclosure of the invention

Die vorgenannte Aufgabe wird erfindungsgemäß gelöst durch ein Zündsystem sowie ein Verfahren zur Erzeugung und Aufrechterhaltung eines Zündfunkens. Wie aus dem Stand der Technik bekannt, weist auch das erfindungsgemäße Zündsystem einen Hochspannungserzeuger, wie beispielsweise einen Aufwärtstransformator, mit einer Primärseite, welche mit einer Energiequelle verbunden ist, und einer Sekundärseite, welche mit einer Funkenstrecke verbunden ist, auf. Auch die prinzipielle Funktionsweise des Hochspannungserzeugers entspricht der aus dem Stand der Technik bekannten, und muss daher nicht weiter erläutert werden. Weiter ist eine ebenfalls aus dem Stand der Technik bekannte Funkenstrecke vorgesehen, welche eingerichtet ist, einen durch den Hochspannungserzeuger auf die Sekundärseite übertragenen Strom zu führen. Die Funkenstrecke kann dabei beispielsweise in einer Zündkerze angeordnet sein. Da zur Aufrechterhaltung eines bestehenden Lichtbogens über der Funkenstrecke geringere Spannungen als zur anfänglichen Erzeugung desselben erforderlich sind, wird erfindungsgemäß ein Bypass vorgesehen, welcher elektrische Energie von der elektrischen Energiequelle am Hochspannungserzeuger vorbei zur Sekundärseite übertragen kann.
Als Bypass ist hierbei eine Vielzahl möglicher Schaltungen denkbar, von welchen einzelne nachfolgend eingehender diskutiert werden. Um die im Stand der Technik bekannten Nachteile auszuräumen, ist der Bypass eingerichtet, einen mittels des Hochspannungserzeugers erzeugten Lichtbogen über der Funkenstrecke länger und zuverlässiger aufrechtzuerhalten, als dies mittels der im Hochspannungserzeuger gespeicherten magnetischen Energie möglich wäre. Erfindungsgemäß ist der Bypass eingerichtet, ein abklingendes elektrisches Signal in der Sekundärspule des Hochspannungserzeugers ab einem vordefinierten Zeitpunkt oder ab einer vordefinierten Stromstärke des Stromes zu stützen. Mit anderen Worten kann eine Logik im erfindungsgemäßen Zündsystem vorgesehen sein, welche eine Zeitmessung durchführt und/oder eine Stromstärke ermittelt und im Ansprechen auf ein Erreichen entsprechender vordefinierter Referenzwerte den Bypass zur Ausgabe eines sekundärseitigen elektrischen Signals veranlasst. Auf diese Weise können Funkendauern bevorzugt zwischen 0,5 ms bis 5 ms bei Funkenströmen bevorzugt in den Grenzen von 30 mA bis 100 mA unterschiedlicher Polarität (Polarität des Spannungsangebotes) erzeugt werden. Dies bietet den Vorteil, dass die über den Hochspannungserzeuger zu übertragende Energie sich stark verringert und somit der Anfangsfunkenstrom sinkt, wodurch Funkenerosion an den Elektroden der Funkenstrecke reduziert werden kann und der Hochspannungserzeuger deutlich kleiner ausgelegt werden kann, als dies im Stand der Technik der Fall ist.
The aforementioned object is achieved by an ignition system and a method for generating and maintaining a spark. As is known from the prior art, the ignition system according to the invention also has a high voltage generator, such as a step-up transformer, with a primary side connected to a power source and a secondary side connected to a spark gap. The principle of operation of the high voltage generator corresponds to that known from the prior art, and therefore need not be further explained. Furthermore, a spark gap, likewise known from the prior art, is provided, which is set up to conduct a current transmitted by the high-voltage generator to the secondary side. The spark gap can be arranged, for example, in a spark plug. Since lower voltages are required to maintain an existing arc over the spark gap than for the initial generation of the same, a bypass is provided according to the invention, which can transmit electrical energy from the electrical energy source at the high voltage generator to the secondary side.
As a bypass here is a variety of possible circuits conceivable, of which individual will be discussed in more detail below. To overcome the drawbacks known in the art, the bypass is arranged to sustain longer and more reliably an arc generated by the high voltage generator over the spark gap than would be possible by means of the magnetic energy stored in the high voltage generator. According to the invention, the bypass is adapted to support a decaying electrical signal in the secondary coil of the high voltage generator from a predefined time or from a predefined current intensity of the current. In other words, a logic may be provided in the ignition system according to the invention, which performs a time measurement and / or determines a current intensity and, in response to reaching corresponding predefined reference values, causes the bypass to output a secondary-side electrical signal. In this way, spark duration can preferably be generated between 0.5 ms to 5 ms in the event of spark currents, preferably within the limits of 30 mA to 100 mA of different polarity (polarity of the voltage supply). This offers the advantage of being over the power to be transmitted to the high voltage generator is greatly reduced and thus the initial spark current decreases, whereby spark erosion at the electrodes of the spark gap can be reduced and the high voltage generator can be made significantly smaller than is the case in the prior art.

Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.The dependent claims show preferred developments of the invention.

Bevorzugt ist der Hochspannungserzeuger als Aufwärtstransformator ausgestaltet und weist primärseitig eine Primärspule und sekundärseitig eine Sekundärspule auf. Beide Spulen können mittels eines Transformatorkerns (z.B. aus Eisenblechen) magnetisch miteinander gekoppelt sein. Dabei ist der Bypass eingerichtet, eine elektrische Spannung zusätzlich zum Aufwärtstransformator zu übertragen, die sich zu einer über der Sekundärspule des Aufwärtstransformators liegenden transformierten Spannung addiert. Auf diese Weise ermöglicht der Bypass ein "Stützen" des Funkenstromes durch einen Eintrag zusätzlicher elektrischer Energie zur Funkenstrecke.Preferably, the high voltage generator is configured as a step-up transformer and has a primary coil on the primary side and a secondary coil on the secondary side. Both coils may be magnetically coupled together by means of a transformer core (e.g., sheet iron). In this case, the bypass is arranged to transmit an electrical voltage in addition to the step-up transformer, which adds to a transformer voltage lying across the secondary coil of the step-up transformer. In this way, the bypass allows a "support" of the spark current by an entry of additional electrical energy to the spark gap.

Alternativ kann der Hochspannungserzeuger als Hochspannungs-Kondensator-Zündungs(HKZ)-System ausgestaltet sein. Solche und andere Systeme zur Hochspannungserzeugung sowie ihre Funktionsweise sind im Stand der Technik bekannt und beschrieben, so dass eine nähere Betrachtung hier nicht erforderlich ist.Alternatively, the high voltage generator may be configured as a high voltage capacitor ignition (HCC) system. Such and other systems for high voltage generation and their operation are known and described in the prior art, so that a closer examination is not required here.

Weiter bevorzugt kann der Bypass einen oder (vorteilhafterweise zur gemeinsamen Handhabung der mitunter auftretenden hohen Spannungen) mehrere Energiespeicher, bevorzugt eine Kapazität oder mehrere, in Reihe und/oder parallel geschaltete, Kapazitäten enthalten, dessen erster Anschluss mit einem sekundärseitigen Anschluss des Hochspannungserzeugers verbunden ist und dessen zweiter Anschluss mit der elektrischen Masse verbunden ist, wobei insbesondere eine Induktivität zwischen der Energiequelle und der Kapazität schaltbar vorgesehen ist. Auf diese Weise stellt der Bypass einen sekundärseitigen Energiespeicher bereit, mittels welchem das abklingende elektrische Signal in der Sekundärspule des Hochspannungserzeugers ab einem vordefinierten Zeitpunkt oder ab einer vordefinierten Stromstärke gestützt werden kann. Wie in Verbindung mit den beigefügten Zeichnungsfiguren näher erläutert wird, kann zum Laden der Kapazität eine Induktivität zwischen der Energiequelle und der Kapazität schaltbar vorgesehen sein. Die Kapazität und die Induktivität bilden bei geschlossenem Schalter einen Schwingkreis, mittels welchem ein zeitweises Erhöhen des elektrischen Potentials am ersten Anschluss der Kapazität möglich ist. Insbesondere für den Fall, dass zunächst ein Strom durch die Induktivität geleitet wird und durch einen Schaltvorgang ein Entladen der in der Induktivität gespeicherten Energie auf die Kapazität erzwungen wird, können bei geeignet gewählten Schaltzeiten sehr hohe Spannungen bereitgestellt werden, ohne die erforderliche Energie innerhalb eines Hochspannungserzeugers zwischenspeichern zu müssen.More preferably, the bypass one or (advantageously for common handling of the sometimes occurring high voltages) a plurality of energy storage, preferably one or more capacitors, connected in series and / or parallel, capacitances, the first terminal is connected to a secondary side terminal of the high voltage generator and the second terminal is connected to the electrical ground, in particular, an inductance between the power source and the capacitance is provided switchable. In this way, the bypass provides a secondary-side energy storage, by means of which the decaying electrical signal can be supported in the secondary coil of the high voltage generator from a predefined time or from a predefined current. As further explained in connection with the accompanying drawing figures For example, in order to charge the capacitor, an inductance between the power source and the capacitor may be switchably provided. When the switch is closed, the capacitance and the inductance form a resonant circuit, by means of which a temporary increase in the electrical potential at the first terminal of the capacitance is possible. In particular, in the event that a current is first passed through the inductance and a discharge of the stored energy in the inductance is forced to the capacitance, can be provided at suitably selected switching times very high voltages without the required energy within a high voltage generator to have to cache.

Weiter bevorzugt kann zwischen der Induktivität und der Kapazität ein nichtlinearer Zweipol, beispielsweise in Form einer Diode, vorgesehen sein, welcher in Richtung der Kapazität Flussrichtung aufweist. Auf diese Weise kann verhindert werden, dass bei geschlossenem Schalter Energie aus der Kapazität in Richtung der Induktivität "entweicht". Wenn im Rahmen der vorliegenden Erfindung von einer "Diode" als nichtlinearer Zweipol die Rede ist, erfolgt dies aus Gründen der Kürze und Lesbarkeit. Dem Fachmann ist ersichtlich, dass mitunter Spannungen über den als Diode bezeichneten nichtlinearen Zweipolen anliegen können, welche ggf. durch mehrere Bauteile gemeinsam, wie z.B. durch in Reihe geschaltete Dioden, besser und sicherer bewältigt werden können. Dabei kann jede der Dioden als Zenerdiode ausgestaltet sein. Ggf. kann auch ein enthaltener Schalter im Ansprechen auf ein Signal vorteilhaft dann geschlossen werden, wenn eine vordefinierte erste Stromrichtung im nichtlinearen Zweig zu erwarten ist und dann geöffnet werden, wenn eine vordefinierte zweite (entgegengesetzt gerichtete) Stromrichtung im nichtlinearen Zweig zu erwarten ist. Wenn im Folgenden mehrere Dioden vorteilhaft verwendet und mit hohen Spannungen beaufschlagt werden können, gelte das zuvor Gesagte auch für diese entsprechend. Insbesondere kann eine schaltbare Verbindung zwischen einem gemeinsamen Anschluss zwischen der Induktivität und der Diode einerseits und der elektrischen Masse andererseits vorgesehen sein. Auf diese Weise ist es möglich, bei geschlossenem Schalter einen Stromfluss durch die Induktivität zu provozieren, und durch Öffnen des Schalters den Strom über die Diode auf die Kapazität umzuleiten. Bei geeigneter Wahl des Puls-Pause-Verhältnis und/oder der Ansteuerfrequenz kann hierbei eine hohe Spannung bei sehr gutem Wirkungsgrad erzeugt werden.More preferably, between the inductance and the capacitance, a non-linear dipole, for example in the form of a diode, can be provided, which has flow direction in the direction of the capacitance. In this way, it is possible to prevent energy from "escaping" from the capacitance in the direction of the inductance when the switch is closed. In the context of the present invention, when a "diode" is mentioned as a non-linear dipole, this is done for reasons of brevity and readability. It will be apparent to those skilled in the art that voltages may sometimes be present across the non-linear dipoles called diode, which may be coped with more conveniently by several components, such as diodes connected in series. In this case, each of the diodes can be configured as a Zener diode. Possibly. For example, an included switch may also be closed in response to a signal when a predefined first current direction is to be expected in the non-linear branch and then opened when a predefined second (oppositely directed) current direction in the nonlinear branch is to be expected. If a plurality of diodes can be advantageously used in the following and high voltages applied, the statements made above also apply accordingly. In particular, a switchable connection between a common connection between the inductance and the diode on the one hand and the electrical ground on the other hand can be provided. In this way, it is possible to provoke a current flow through the inductance when the switch is closed, and to redirect the current through the diode to the capacitance by opening the switch. With a suitable choice of the pulse-pause ratio and / or the drive frequency in this case a high voltage can be generated with very good efficiency.

Weiter bevorzugt kann ein Strommessmittel, beispielsweise zwischen einer Ausgangsklemme des Hochspannungserzeugers und der Kapazität, vorgesehen sein, welches beispielsweise als Shunt-Widerstand ausgestaltet sein kann. Dieses Strommessmittel kann weiter z.B. zwischen Kapazität und Masse oder im Pfad der Diode angeordnet und dabei eingerichtet sein, ein Signal an einen Schalter im Bypass zu geben, so dass dieser auf eine kritische Stromstärke in der sekundärseitigen Masche reagieren kann. Alternativ oder zusätzlich kann einen Überspannungsschutz, beispielsweise eine Diode parallel zur Kapazität vorgesehen sein, welche die Kapazität gegen eine Überspannung absichert. Beispielsweise kann eine Zenerdiode in Sperrrichtung verwendet werden, um bei zu hoher Spannung über der Kapazität Entlastung zu schaffen.
Alternativ oder zusätzlich kann eine Spannungsmessung und/oder eine Leistungsmessung durchgeführt werden, beispielsweise über der Kapazität, um Aufschluss über den Zündstrom und/oder die Zündleistung zu erhalten.
Further preferably, a current measuring means, for example, between an output terminal of the high voltage generator and the capacitance may be provided, which may be configured for example as a shunt resistor. This current measuring means may further be arranged, for example, between capacitance and ground or in the path of the diode, and be set up to give a signal to a switch in the bypass so that it can react to a critical current intensity in the secondary-side mesh. Alternatively or additionally, an overvoltage protection, for example, a diode may be provided parallel to the capacitance, which protects the capacitance against an overvoltage. For example, a reverse zener diode can be used to relieve excessively high capacitance.
Alternatively or additionally, a voltage measurement and / or a power measurement may be carried out, for example via the capacitance, in order to obtain information about the ignition current and / or the ignition output.

Die Induktivität ist als Übertrager bzw. Transformator mit einer Primärseite und einer Sekundärseite ausgestaltet, wobei ein erster Anschluss der Primärseite mit der Energiequelle verbunden ist und ein zweiter Anschluss der Primärseite über einen Schalter mit der elektrischen Masse verbunden ist. Weiter ist ein erster Anschluss der Sekundärseite des Transformators mit der Energiequelle verbunden und ein zweiter Anschluss der Sekundärseite des Transformators, wie zuvor beschrieben, mit der Diode verbunden. Bei geeigneter Wahl des Übertragungsverhältnisses kann auf diese Weise ein primärseitig vorgesehener Schalter verwendet werden, um einen sekundärseitig fließenden Strom zu schalten. Aufgrund des Übersetzungsverhältnisses ergeben sich günstige Bedingungen zur Dimensionierung des Schalters und auf diese Weise eine sicherere und kostengünstigere Realisierung des erfindungsgemäßen Zündsystems.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zur Erzeugung eines Zündfunkens für eine Verbrennungskraftmaschine vorgeschlagen. Dabei wird ein Zündfunke mittels einer Energiequelle entnommener elektrischer Energie, welche über einen Hochspannungserzeuger mit einer Primärseite und einer Sekundärseite auf eine Funkenstrecke gegeben wird, zunächst erzeugt. Erfindungsgemäß wird der Zündfunke mittels elektrischer Energie, welche aus der Energiequelle über einen Bypass auf die Sekundärseite übertragen wird, aufrechterhalten. Die elektrische Energie wird zum Aufrechterhalten des Zündfunkens als eine gesteuerte Pulsfolge, beispielsweise im Kilohertz-Bereich, bevorzugt zwischen 10kHz und 100kHz, aus der Energiequelle bereitgestellt. Bei der vorgenannten Tastung im kHz-Bereich bietet sich die Möglichkeit, Spannungen im Bereich bis zu mehreren 1000 V bei einem verbesserten Wirkungsgrad zu erzeugen, welche zur Stützung des Zündfunkens verwendet werden kann, wenn die im Hochspannungserzeuger gespeicherte Energie nicht mehr ausreicht, um den Lichtbogen zuverlässig aufrechtzuerhalten. Über die bereits genannten Vorteile hinaus bietet die Anwendung der vorliegenden Erfindung Vorteile hinsichtlich des Wirkungsgrades des elektrischen Zündsystems sowie neue Diagnosefunktionsmöglichkeiten. Sowohl für das grundsätzliche Verfahren gemäß diesem Aspekt der vorliegenden Erfindung als auch für die nachfolgend beschriebenen Weiterbildungen gilt, dass die in Verbindung mit dem erfindungsgemäßen Zündsystem gemachten Ausführungen entsprechend gelten.
Weiter bevorzugt wird die elektrische Energie zum Aufrechterhalten des Zündfunkens als elektrische Spannung in Reihe oder parallel zur Sekundärseite des Hochspannungserzeugers eingekoppelt. Mit anderen Worten bildet ein Einkopplungsabschnitt des Bypasses in Verbindung mit der sekundärseitigen Spule des Hochspannungserzeugers eine Masche, deren Spannung parallel zur Funkenstrecke liegt.
The inductor is designed as a transformer or transformer with a primary side and a secondary side, wherein a first terminal of the primary side is connected to the power source and a second terminal of the primary side is connected via a switch with the electrical ground. Further, a first terminal of the secondary side of the transformer is connected to the power source and a second terminal of the secondary side of the transformer, as described above, connected to the diode. With a suitable choice of the transmission ratio can be used in this way a switch provided on the primary side to switch a secondary side flowing current. Due to the transmission ratio favorable conditions for dimensioning the switch and in this way a safer and more cost-effective implementation of the ignition system according to the invention.
According to another aspect of the present invention, a method for generating a spark for an internal combustion engine is proposed. In this case, a spark by means of an energy source of extracted electrical energy, which is given via a high voltage generator with a primary side and a secondary side to a spark gap is generated first. According to the invention, the spark is maintained by means of electrical energy, which is transmitted from the energy source via a bypass to the secondary side. The electrical energy is provided to maintain the spark as a controlled pulse train, for example in the kilohertz range, preferably between 10kHz and 100kHz, from the power source. In the above-mentioned sampling in the kHz range, it is possible to generate voltages in the range up to several 1000 V at an improved efficiency, which can be used to support the spark, when the stored energy in the high voltage generator is no longer sufficient to the arc to maintain it reliably. In addition to the advantages already mentioned, the application of the present invention offers advantages in terms of the efficiency of the electrical ignition system and new diagnostic capabilities. Both for the basic method according to this aspect of the present invention and for the further developments described below, the statements made in connection with the ignition system according to the invention apply correspondingly.
More preferably, the electrical energy for maintaining the spark is coupled as electrical voltage in series or parallel to the secondary side of the high voltage generator. In other words, a coupling-in section of the bypass in conjunction with the secondary-side coil of the high-voltage generator forms a mesh whose voltage lies parallel to the spark gap.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitenden Zeichnungen im Detail beschrieben. In den Zeichnungen ist:

Figur 1
ein Zeitdiagramm zum Vergleich sich gemäß dem Stand der Technik und der vorliegenden Erfindung einstellender Zündströme;
Figur 2
ein Schaltbild gemäß einem ersten Ausführungsbeispiel eines nicht erfindungsgemäßen Zündsystems;
Figur 3
Darstellungen von Strom-Zeitdiagrammen sowie zugehöriger Schaltsequenzen für die in Figur 2 gezeigte Schaltung;
Figur 4
ein Schaltbild gemäß einem zweiten Ausführungsbeispiel eines erfindungsgemäßen Zündsystems;
Figur 5
ein Schaltbild gemäß einem dritten Ausführungsbeispiel eines erfindungsgemäßen Zündsystems; und
Figur 6
Darstellungen von Strom-Zeitdiagrammen sowie zugehöriger Schaltsequenzen für die in Figur 4 und Figur 5 gezeigte Schaltung;
Hereinafter, embodiments of the invention will be described in detail with reference to the accompanying drawings. In the drawings:
FIG. 1
a timing chart for comparison according to the prior art and the present invention adjusting ignition currents;
FIG. 2
a circuit diagram according to a first embodiment of a non-inventive ignition system;
FIG. 3
Representations of current-time diagrams and associated switching sequences for the in FIG. 2 shown circuit;
FIG. 4
a circuit diagram according to a second embodiment of an ignition system according to the invention;
FIG. 5
a circuit diagram according to a third embodiment of an ignition system according to the invention; and
FIG. 6
Representations of current-time diagrams and associated switching sequences for the in FIG. 4 and FIG. 5 shown circuit;

Ausführungsformen der ErfindungEmbodiments of the invention

Figur 1 zeigt ein Zeitdiagramm des Zündstromes, also desjenigen Stromes, welcher beim Durchschlagen der Funkenstrecke innerhalb der sekundärseitigen Spule des Aufwärtstransformators als Hochspannungserzeuger fließt. Dabei ist ein Bereich 103 markiert, innerhalb dessen der Strom so hoch ist, dass die Elektroden der Zündkerze durch erhöhte Erosion Schaden nehmen können. Der Bereich 104 markiert diejenigen (geringen) Stromstärken, innerhalb derer eine erforderliche Stabilität des Lichtbogens zum Zünden zündfähigen Gemisches nicht gewährleistet werden kann. So verläuft, wie eingangs beschrieben, ein durch Zündsysteme des Standes der Technik realisierter Strom 100 nach einem steilen Anstieg bis in den die Elektroden gefährdenden Bereich 103 und fällt danach im Wesentlichen linear (in Annäherung an eine exponentielle Entlade-Funktion) ab. Demgegenüber teilt sich die gemäß der vorliegenden Erfindung zur Funkenstrecke geleitete Energie in zwei Energieanteile auf, welche durch einen durch den Aufwärtstransformator fließenden Strom zur Erzeugung eines Zündfunkens und einen durch den Bypass fließenden Strom zur Aufrechterhaltung eines Zündfunkens bereitgestellt werden. Nachdem der (gegenüber dem Stand der Technik kleiner dimensionierte) Aufwärtstransformator einen Lichtbogen erzeugt hat, würde der Strom ohne den erfindungsgemäßen Bypass steil (entsprechend der Entladung der kleinen Sekundärinduktivität - im Bezug auf herkömmliche Sekundärinduktivitäten)abnehmen (vergleiche Darstellung in Figur 1, 101) und würde schon kurz nach seiner Entstehung im Bereich 104 "verschwinden". Mittels des erfindungsgemäßen Bypasses kann die Stromstärke auf der Sekundärseite, genauer gesagt, in der Funkenstrecke, über einen wesentlich längeren Zeitbereich zwischen den kritischen Bereichen 103 und 104 gehalten werden (vergleiche Darstellung in Figur 1, 102). Nach Abschalten des Bypasses entlädt sich die in der Sekundärspule gespeicherte Energie, wie im Stand der Technik, was zu einem steil abfallenden Funkenstrom führt. Somit ergibt sich ein Gesamtstrom, welcher jedoch deutlich später als die Stromstärke 100 des bekannten Zündsystems in den instabilen Bereich 104 eintaucht.
Figur 2 zeigt eine Schaltung, mit welcher die in Figur 1 dargestellten Stromverläufe 101, 102 realisiert werden können. Dargestellt ist ein Zündsystem 1, welches einen Aufwärtstransformator 2 als Hochspannungserzeuger umfasst, dessen Primärseite 3 aus einer elektrischen Energiequelle 5 über einen ersten Schalter 30 mit elektrischer Energie versorgt werden kann. Die Sekundärseite 4 des Aufwärtstransformators 2 wird über eine induktive Kopplung der Primärspule 8 und der Sekundärspule 9 mit elektrischer Energie versorgt und weist eine aus dem Stand der Technik bekannte Diode 23 zur Einschaltfunkenunterdrückung auf, wobei diese Diode alternativ durch die Diode 21 ersetzt werden kann. In einer Masche mit der Sekundärspule 9 und der Diode 23 ist eine Funkenstrecke 6 gegen Masse 14 vorgesehen, über welche der Zündstrom i2 das brennfähige Gasgemisch entflammen soll. Es ist ein Bypass 7 (umrandet mit einer strichpunktierten Linie) zwischen der elektrischen Energiequelle 5 und der Sekundärseite 4 des Aufwärtstransformators 2 vorgesehen. Hierzu ist eine Induktivität 15 über einen Schalter 22 und eine Diode 16 mit einer Kapazität 10 verbunden, deren eines Ende mit der Sekundärspule 9 und deren anderes Ende mit der elektrischen Masse 14 verbunden ist. Die Induktivität dient hierbei als Energiespeicher, um einen Stromfluss aufrecht zu erhalten. Die Diode 16 ist in Richtung der Kapazität 10 leitfähig orientiert. Der Aufbau des Bypass 7 ist somit beispielsweise vergleichbar mit einem Hochsetzsteller. Zwischen der Kapazität 10 und der Sekundärspule 9 ist ein Shunt 19 als Strommessmittel oder Spannungsmessmittel vorgesehen, dessen Messsignal dem Schalter 22 sowie Schalter 27 zugeführt wird. Auf diese Weise sind die Schalter 22, 27 eingerichtet, auf einen definierten Bereich der Stromstärke i2 durch die Sekundärspule 9 zu reagieren. Die der Diode 16 zugewandte Klemme des Schalters 22 ist über einen weiteren Schalter 27 mit der elektrischen Masse 14 verbindbar. Zur Absicherung der Kapazität 10 ist eine Zenerdiode 21 in Sperrrichtung parallel zur Kapazität 10 geschaltet. Des Weiteren sind Schaltsignale 28, 29 angedeutet, mittels welcher die Schalter 22, 27 angesteuert werden können. Während das Schaltsignal 28 ein Einschalten und "Geschlossenbleiben" für einen gesamten Zündzyklus darstellt, skizziert das Schaltsignal 29 ein zeitgleiches Wechselsignal zwischen "geschlossen" und "offen". Bei geschlossenem Schalter 22 wird die Induktivität 15 über die elektrische Energiequelle 5 mit einem Strom versorgt, welcher bei geschlossenen Schaltern 22, 27 unmittelbar in die elektrische Masse 14 fließt. Bei offenem Schalter 27 wird der Strom über die Diode 16 und den Anschluss 35 auf den Kondensator 10 geleitet. Die sich im Ansprechen auf den Strom in den Kondensator 10 einstellende Spannung addiert sich zu der über der Sekundärspule 9 des Aufwärtstransformators 2 abfallenden Spannung, wodurch der Lichtbogen an der Funkenstrecke 6 gestützt wird. Dabei entlädt sich jedoch der Kondensator 10, so dass durch Schließen des Schalters 27 Energie in das magnetische Feld der Induktivität 15 gebracht werden kann, um bei einem erneuten Öffnen des Schalters 27 diese Energie wieder auf den Kondensator 10 zu laden. Erkennbar wird die Ansteuerung 31 des in der Primärseite 3 vorgesehenen Schalters 30 deutlich kürzer gehalten, als dies für die Schalter 22 und 27 der Fall ist. Diese Vorgänge werden in Verbindung mit Figur 3 eingehender diskutiert. Da der Schalter 22 für die erfindungsgemäßen Vorgänge keine entscheidende Funktion übernimmt, sondern die Schaltung lediglich ein- bzw. ausschaltet, ist dieser lediglich optional und kann daher auch entfallen.
FIG. 1 shows a timing diagram of the ignition current, that of the current which flows when penetrating the spark gap within the secondary-side coil of the step-up transformer as a high voltage generator. In this case, a region 103 is marked, within which the current is so high that the electrodes of the spark plug can be damaged by increased erosion. The region 104 marks those (low) currents within which a required stability of the arc for igniting ignitable mixture can not be guaranteed. Thus, as described in the introduction, a current 100 realized by ignition systems of the prior art runs after a steep rise to the region 103 which endangers the electrodes and subsequently drops essentially linearly (in approximation with an exponential discharge function). On the other hand, the energy conducted to the spark gap according to the present invention divides into two energy components provided by a current flowing through the step-up transformer to generate a spark and a current flowing through the bypass to maintain a spark. After the step-up transformer (smaller in size compared to the prior art) has produced an arc, the current without the bypass according to the invention would steeply decrease (corresponding to the discharge of the small secondary inductance with respect to conventional secondary inductances) (see illustration in FIG FIG. 1 , 101) and would "disappear" shortly after its formation in the area 104. By means of the bypass according to the invention, the current intensity on the secondary side, more precisely, in the spark gap, can be maintained over a much longer time range between the critical regions 103 and 104 (see illustration in FIG FIG. 1 , 102). After switching off the bypass, the energy stored in the secondary coil discharges, as in the prior art, which leads to a steeply falling spark current. This results in a total current, which, however, dips into the unstable region 104 much later than the current intensity 100 of the known ignition system.
FIG. 2 shows a circuit with which the in FIG. 1 illustrated current waveforms 101, 102 can be realized. Shown is an ignition system 1, which comprises a step-up transformer 2 as a high voltage generator whose primary side 3 can be supplied from an electrical energy source 5 via a first switch 30 with electrical energy. The secondary side 4 of the step-up transformer 2 is powered by an inductive coupling of the primary coil 8 and the secondary coil 9 with electrical energy and has a known from the prior art diode 23 for Einschaltfunkenunterdrückung, which diode may alternatively be replaced by the diode 21. In a mesh with the secondary coil 9 and the diode 23, a spark gap 6 is provided to ground 14, via which the ignition current i 2 is to ignite the combustible gas mixture. There is provided a bypass 7 (surrounded by a dot-dash line) between the electric power source 5 and the secondary side 4 of the step-up transformer 2. For this purpose, an inductor 15 is connected via a switch 22 and a diode 16 to a capacitor 10, one end of which is connected to the secondary coil 9 and the other end to the electrical ground 14. The inductance serves as an energy store in order to maintain a current flow. The diode 16 is oriented in the direction of the capacitance 10 conductive. The structure of the bypass 7 is thus for example comparable to a boost converter. Between the capacitor 10 and the secondary coil 9, a shunt 19 is provided as a current measuring means or voltage measuring means, the measuring signal of the switch 22 and switch 27 is supplied. In this way, the switches 22, 27 are arranged to respond to a defined range of the current intensity i 2 through the secondary coil 9. The diode 16 facing terminal of the switch 22 is connected via a further switch 27 to the electrical ground 14 connectable. To hedge the capacitor 10, a Zener diode 21 is connected in reverse direction parallel to the capacitor 10. Furthermore, switching signals 28, 29 are indicated, by means of which the switches 22, 27 can be controlled. While the switching signal 28 represents switching on and "staying closed" for an entire ignition cycle, the switching signal 29 outlines a simultaneous alternating signal between "closed" and "open". When the switch 22 is closed, the inductance 15 is supplied via the electrical energy source 5 with a current which flows directly into the electrical ground 14 when the switches 22, 27 are closed. When the switch 27 is open, the current is conducted to the capacitor 10 via the diode 16 and the connection 35. The voltage in response to the current in the capacitor 10 adjusting voltage adds to the voltage across the secondary coil 9 of the step-up transformer 2 voltage, whereby the arc is supported on the spark gap 6. In this case, however, the capacitor 10 discharges, so that energy 27 can be brought into the magnetic field of the inductor 15 by closing the switch 27 to recharge this energy to the capacitor 10 at a reopening of the switch 27. It can be seen that the control 31 of the switch 30 provided in the primary side 3 is kept considerably shorter than is the case for the switches 22 and 27. These processes are associated with FIG. 3 discussed in more detail. Since the switch 22 does not assume a decisive function for the processes according to the invention, but merely switches the circuit on or off, this is merely optional and can therefore also be dispensed with.

Figur 3 zeigt im Diagramm a einen kurzen und steilen Anstieg des Primärspulenstroms iZS, welcher sich während derjenigen Zeit einstellt, in welcher sich der Schalter 30 (siehe Diagramm 3c) im leitenden Zustand ("ON") befindet. Mit Ausschalten des Schalters 30 fällt auch der Primärspulenstrom iZS auf 0 A ab. Diagramm b zeigt die Verläufe des Sekundärspulenstroms i2, wie sie sich für eine Verwendung des in Figur 2 dargestellten Systems 1 mit (301) und ohne (300) Bypass ergeben. Sobald sich der Primärspulenstrom iZS aufgrund eines Öffnens des Schalters 30 zu 0 ergibt und sich damit die im Aufwärtstransformator gespeicherte magnetische Energie in Form eines Lichtbogens über der Funkenstrecke 6 entlädt, stellt sich ein Sekundärspulenstrom i2 ein, der ohne Bypass (300) rasch gegen 0 abfällt. Im Gegensatz hierzu wird durch einen geschlossenen Schalter 22 (siehe Diagramm d) und eine pulsförmige Ansteuerung (siehe Diagramm e, Schaltsignal 29) des Schalters 27 ein im Wesentlichen konstanter Sekundärspulenstrom i2 (301) über die Funkenstrecke 6 getrieben. Wobei der Sekundärstrom i2 von der Brennspannung an der Funkenstrecke 6 abhängt und hier der Einfachheit halber von einer konstanten Brennspannung ausgegangen wird. Erst nach Unterbrechung des Bypasses 7 durch Öffnen des Schalters 22 und Öffnen des Schalters 27 fällt nun auch der Sekundärspulenstrom i2 gegen 0 ab. Aus Diagramm b) ist erkennbar, dass die jeweils abfallende Flanke um eine Zeitdauer tHSS_a verzögert wird. Die gesamte Zeitdauer, während welcher der Bypass verwendet wird, ist als tHSS und die Zeitdauer, während welcher Energie primärseitig in den Aufwärtstransformator 2 gegeben wird, als ti gekennzeichnet. Der Startzeitpunkt von tHSS gegenüber ti kann variabel gewählt werden. FIG. 3 shows in the diagram a a short and steep rise of the primary coil current i ZS , which occurs during the time in which the switch 30 (see diagram 3c) is in the ON state. When the switch 30 is switched off, the primary coil current i ZS drops to 0 A. Diagram b shows the profiles of the secondary coil current i 2 , as they are suitable for use of the in FIG. 2 shown system with (301) and without (300) Bypass. As soon as the primary coil current i ZS due to an opening of the switch 30 to 0 results and thus discharges the magnetic energy stored in the step-up transformer in the form of an arc over the spark gap 6, a secondary coil current i 2 , which quickly without bypass (300) against 0 drops. In contrast, by a closed switch 22 (see diagram d) and a pulse-shaped control (see diagram e, switching signal 29) of Switch 27 a substantially constant secondary coil current i 2 (301) over the spark gap 6 driven. Wherein the secondary current i 2 depends on the burning voltage at the spark gap 6 and is assumed here for the sake of simplicity of a constant burning voltage. Only after interruption of the bypass 7 by opening the switch 22 and opening the switch 27 now also the secondary coil current i 2 drops to 0 from. It can be seen from diagram b) that the respective falling edge is delayed by a time t HSS_a . The total time during which the bypass is used is denoted as t HSS and the time period during which energy is given to the upstream side of the step-up transformer 2 is t i . The starting time of t HSS opposite t i can be chosen variable.

Figur 4 zeigt eine gegenüber Figur 2 alternative und erfindungsgemäße Ausführungsform einer Schaltung eines Zündsystems 1 gemäß der vorliegenden Erfindung. Am Eingang der Schaltung, mit anderen Worten also am Anschluss zur elektrischen Energiequelle 5, ist eine Sicherung 26 vorgesehen. Zur Stabilisierung der Eingangsspannung ist darüber hinaus eine Kapazität 17 parallel zum Eingang der Schaltung bzw. parallel zur elektrischen Energiequelle 5 vorgesehen. Weiter ist die Induktivität 15 durch einen Transformator mit einer Primärseite 15_1 und einer Sekundärseite 15_2 ersetzt worden, wobei die Primärseite 15_1 eine Primärspule und die Sekundärseite 15_2 eine Sekundärspule aufweist. Die ersten Anschlüsse des Transformators sind jeweils mit der elektrischen Energiequelle 5 bzw. der Sicherung 26 verbunden. Dabei ist ein zweiter Anschluss der Primärseite 15_1 über einen Schalter 27 mit der elektrischen Masse 14 verbunden. Der zweite Anschluss der Sekundärseite 15_2 des Transformators 15 ist nun ohne Schalter direkt mit der Diode 16 verbunden. Aufgrund des Übertragungsverhältnisses wirkt ein Schaltvorgang durch den Schalter 27 im Zweig der Primärseite 15_1 auch auf der Sekundärseite 15_2. Da jedoch Strom und Spannung gemäß dem Übersetzungsverhältnis auf der einen Seite höher bzw. niedriger als auf der anderen Seite des Transformators 15 sind, lassen sich für Schaltvorgänge günstigere Dimensionierungen für den Schalter 27 finden. Beispielsweise können geringere Schaltspannungen realisiert werden, wodurch die Dimensionierung des Schalters 27 einfacher und kostengünstiger möglich ist. Gesteuert wird der Schalter 27 über eine Ansteuerung 24, welche über einen Treiber 25 mit dem Schalter 27 verbunden ist. Wie in Figur 2 gezeigt, ist ein Shunt 19 vorgesehen, um den sekundärseitigen Strom i2 bzw. die Spannung über der Kapazität 10 zu messen und diesen bzw. diese der Ansteuerung 24 des Schalters 27 bereitzustellen. Überdies erhält die Ansteuerung 24 ein Steuersignal sHSS. Über dieses kann einerseits die Einbringung von Energie über den Bypass in die Sekundärseite ein- und ausgeschaltet werden. Dabei kann auch die Leistung der durch den Bypass bzw. in die Funkenstrecke eingebrachten elektrischen Größe, insbesondere über die Frequenz und/oder das Puls-Pause-Verhältnis über ein geeignetes Steuersignal gesteuert werden. Optional kann ein nichtlinearer Zweipol, im Folgenden durch eine Hochspannungsdiode 33 symbolisiert, der sekundärseitigen Spule des Hochsetzstellers parallel geschaltet werden. Diese Hochspannungsdiode 33 überbrückt den Hochspannungserzeuger 2 sekundärseitig, wodurch die durch den Bypass 7 in Form eines Hochsetzstellers (umrandet mit einer strichpunktierten Linie) gelieferte Energie direkt an die Funkenstrecke 6 geführt wird, ohne durch die Sekundärspule 9 des Hochspannungserzeugers 2 geführt zu werden. Somit entstehen keine Verluste über der Sekundärspule 9 und der Wirkungsgrad steigt. Die übrigen Elemente der in Figur 4 dargestellten Zeichnung korrespondieren mit denjenigen, wie sie in Figur 2 gezeigt und oben bereits diskutiert worden sind. FIG. 4 shows one opposite FIG. 2 Alternative and inventive embodiment of a circuit of an ignition system 1 according to the present invention. At the entrance of the circuit, in other words at the connection to the electrical energy source 5, a fuse 26 is provided. To stabilize the input voltage beyond a capacitance 17 is provided parallel to the input of the circuit or parallel to the electric power source 5. Furthermore, the inductance 15 has been replaced by a transformer having a primary side 15_1 and a secondary side 15_2, the primary side 15_1 having a primary coil and the secondary side 15_2 having a secondary coil. The first terminals of the transformer are respectively connected to the electric power source 5 and the fuse 26. In this case, a second terminal of the primary side 15_1 is connected via a switch 27 to the electrical ground 14. The second terminal of the secondary side 15_2 of the transformer 15 is now connected directly to the diode 16 without a switch. Due to the transmission ratio, a switching operation by the switch 27 in the branch of the primary side 15_1 also acts on the secondary side 15_2. However, since current and voltage according to the gear ratio on one side are higher or lower than on the other side of the transformer 15, can be found for switching operations more favorable dimensions for the switch 27. For example, lower switching voltages can be realized, whereby the dimensioning of the switch 27 is simpler and less expensive. The switch 27 is controlled via a drive 24, which is connected via a driver 25 to the switch 27. As in FIG. 2 a shunt 19 is provided to the secondary side current i 2 and the To measure voltage across the capacitance 10 and provide this or the driver 24 of the switch 27. Moreover, the control 24 receives a control signal s HSS . On the one hand, the introduction of energy via the bypass into the secondary side can be switched on and off via this. It is also possible to control the power of the electrical variable introduced through the bypass or into the spark gap, in particular via the frequency and / or the pulse-pause ratio via a suitable control signal. Optionally, a non-linear dipole, symbolized below by a high-voltage diode 33, are connected in parallel to the secondary-side coil of the boost converter. This high-voltage diode 33 bridges the high-voltage generator 2 on the secondary side, whereby the energy supplied by the bypass 7 in the form of a boost converter (surrounded by a dot-dash line) is conducted directly to the spark gap 6 without being led through the secondary coil 9 of the high voltage generator 2. Thus, no losses on the secondary coil 9 and the efficiency increases. The remaining elements of in FIG. 4 The drawings shown correspond to those as shown in FIG FIG. 2 shown and discussed above.

Figur 5 zeigt eine alternative Ausführungsform der in Figur 4 vorgestellten Schaltung. Darin ist eine Hochspannungsdiode 33 mit Flußrichtung zur Funkenstrecke zwischen dem Energiespeicher 10 des Bypasses 7 in Form eines Hochsetzstellers (umrandet mit einer strichpunktierten Linie) und der Funkenstrecke 6 angeordnet. Hierdurch überbrückt die Hochspannungsdiode 33 den Hochspannungserzeuger 2 sekundärseitig, wodurch die durch den Bypass 7 gelieferte Energie direkt an die Funkenstrecke 6 geführt wird, ohne durch die Sekundärspule 9 des Hochspannungserzeugers 2 geführt zu werden. Somit entstehen keine Verluste über der Sekundärspule 9 und der Wirkungsgrad steigt. FIG. 5 shows an alternative embodiment of the in FIG. 4 featured circuit. This is a high-voltage diode 33 with flow direction to the spark gap between the energy storage 10 of the bypass 7 in the form of a boost converter (surrounded by a dotted line) and the spark gap 6 is arranged. As a result, the high voltage diode 33 bridges the high voltage generator 2 on the secondary side, whereby the energy supplied by the bypass 7 is led directly to the spark gap 6, without being guided by the secondary coil 9 of the high voltage generator 2. Thus, no losses on the secondary coil 9 and the efficiency increases.

Figur 6 zeigt Zeitdiagramme für a) den Zündspulenstrom iZS, b) den Bypassstrom iHSS, c) die ausgangsseitige Spannung über der Funkenstrecke 6, d) den Sekundärspulenstrom i2 für das in Figur 4 dargestellte Zündsystem ohne (501) und mit (502) Verwendung des erfindungsgemäßen Bypasses, e) das Schaltsignal 31 des Schalters 30 und f) das Schaltsignal 32 des Schalters 27 für das Pulssignal im Bypass 7. Zu den bereits in Verbindung mit Figur 3 gezeigten Diagrammen wird der Kürze halber auf die obige Diskussion verwiesen. FIG. 6 shows time diagrams for a) the ignition coil current i ZS , b) the bypass current i HSS , c) the output voltage across the spark gap 6, d) the secondary coil current i 2 for the in FIG. 4 shown ignition system without (501) and with (502) using the bypass according to the invention, e) the switching signal 31 of the switch 30 and f) the switching signal 32 of the switch 27 for the pulse signal in the bypass 7. Zu already in connection with FIG. 3 The diagrams shown are referred to the above discussion for the sake of brevity.

Diagramm b) veranschaulicht überdies die Stromaufnahme des erfindungsgemäßen Bypasses 7, welche durch eine pulsförmige Ansteuerung des Schalters 27 zustande kommt. In der Praxis haben sich als Schaltfrequenz Taktraten im Bereich mehrerer zehn kHz bewährt, um einerseits entsprechende Spannungen und andererseits akzeptable Wirkungsgrade zu realisieren. Beispielhaft seien die ganzzahligen Vielfachen von 10000 Hz im Bereich zwischen 10 und 100 kHz als mögliche Bereichsgrenzen genannt. Zur Regelung der an die Funkenstrecke abgegebenen Leistung empfiehlt sich dabei eine, insbesondere stufenlose, Regelung des Puls-Pause-Verhältnisses des Signals 29 bzw. 32 zur Erzeugung eines entsprechenden Ausgangssignals. Zudem ist es auch möglich, durch einen zusätzlichen DC-DC-Wandler die von der elektrischen Energiequelle gelieferte Spannung zu erhöhen, bevor diese im erfindungsgemäßen Bypass weiter verarbeitet wird. Es sei zur Kenntnis genommen, dass konkrete Auslegungen von vielen schaltungsinhärenten und externen Randbedingungen abhängen. Es stellt den befassten Fachmann vor keine unzumutbaren Probleme, die für seinen Zweck und die von ihm zu berücksichtigenden Randbedingungen geeigneten Dimensionierungen selbst vorzunehmen.Diagram b) also illustrates the current consumption of the bypass 7 according to the invention, which comes about through a pulse-shaped actuation of the switch 27. In practice, clock rates in the range of several tens of kHz have proven to be suitable as switching frequency, in order to realize appropriate voltages on the one hand and acceptable efficiencies on the other hand. By way of example, the integer multiples of 10,000 Hz in the range between 10 and 100 kHz may be mentioned as possible range limits. To control the power delivered to the spark gap, it is advisable to control the pulse-pause ratio of the signal 29 or 32, in particular stepless, in order to produce a corresponding output signal. In addition, it is also possible to increase the voltage supplied by the electrical energy source by means of an additional DC-DC converter before it is further processed in the bypass according to the invention. It should be noted that concrete interpretations depend on many circuit-inherent and external constraints. It does not present to the skilled person any unreasonable problems of self-design for his purpose and for the constraints which he has to take into account.

Es ist ein Kerngedanke der vorliegenden Erfindung, zwei Funktionen, welche die Aufwärtstransformatoren bekannter Zündsysteme in sich vereint haben, erfindungsgemäß vorteilhaft aufzuspalten, um eine geeignete Dimensionierung des Hochspannungserzeugers und effizientere Ausnutzung der elektrischen Energie zu ermöglichen. Hierzu wird ein Hochspannungserzeuger vorgesehen, um gemäß dem Stand der Technik einen Zündfunken zu generieren. Ein Bypass ist eingerichtet, um den bestehenden Lichtbogen über der Funkenstrecke aufrechtzuerhalten. Hierzu entnimmt ein Bypass Energie aus beispielsweise derselben Energiequelle wie die Primärseite des Hochspannungserzeugers und verwendet diese, um die abklingende Flanke der Transformatorspannung zu stützen und ihr Abfallen unterhalb der Brennspannung somit zu verzögern. Der Fachmann erkennt dabei bevorzugte Ausführungsformen des erfindungsgemäßen Bypasses als nach Art eines Hochsetzstellers arbeitende Schaltungsstrukturen. Dabei ist der Eingang des Hochsetzstellers parallel zur elektrischen Energiequelle geschaltet, während der Ausgang des Hochsetzstellers in Reihe oder parallel zur Sekundärspule des Hochspannungserzeugers angeordnet ist. Der Begriff "Energiequelle" ist im Rahmen der vorliegenden Erfindung breit auszulegen und kann weitere Energiewandlungseinrichtungen (z.B. DC-DC-Wandler) umfassen. Dem Fachmann ist überdies ersichtlich, dass der Erfindungsgedanke nicht auf eine gegenständliche Energiequelle beschränkt ist.
Auch wenn die erfindungsgemäßen Aspekte und vorteilhaften Ausführungsformen anhand der in Verbindung mit den beigefügten Zeichnungsfiguren erläuterten Ausführungsbeispielen im Detail beschrieben worden sind, sind für den Fachmann Modifikationen und Kombinationen von Merkmalen der dargestellten Ausführungsbeispiele möglich, ohne den Bereich der vorliegenden Erfindung zu verlassen, deren Schutzbereich durch die beigefügten Ansprüche definiert wird.
It is a core idea of the present invention to advantageously split two functions which have combined the step-up transformers of known ignition systems in accordance with the invention, in order to allow suitable dimensioning of the high-voltage generator and more efficient utilization of the electrical energy. For this purpose, a high voltage generator is provided to generate a spark according to the prior art. A bypass is set up to maintain the existing arc over the spark gap. For this purpose, a bypass takes energy from, for example, the same energy source as the primary side of the high voltage generator and uses this to support the decaying edge of the transformer voltage and thus to delay its drop below the burning voltage. The skilled artisan recognizes preferred embodiments of the bypass according to the invention as working in the manner of a boost converter circuit structures. In this case, the input of the boost converter is connected in parallel to the electrical energy source, while the output of the boost converter is arranged in series or parallel to the secondary coil of the high voltage generator. The term "energy source" is to be interpreted broadly within the scope of the present invention and may include other energy conversion devices (eg, DC-DC converters). It is also apparent to those skilled in the art that the inventive idea is not limited to an objective energy source.
Although the aspects and advantageous embodiments of the invention have been described in detail with reference to the embodiments explained in connection with the accompanying drawings, modifications and combinations of features of the illustrated embodiments are possible for the skilled person, without departing from the scope of the present invention, the scope of protection the appended claims are defined.

Claims (14)

  1. Ignition system (1) for generating an ignition spark in a spark gap (6) of an internal combustion engine, comprising
    - a first input connection (5) for connection to an energy source (5) and a high-voltage output (34) for connection to the spark gap (6),
    - at least one high-voltage generator (2) with a primary side (3) and a secondary side (4) in each case,
    - a bypass (7) for transmitting electrical energy to the secondary side (4) of the high-voltage generator (2), wherein the bypass (7) is set up to support a decaying electrical signal in a secondary coil (9) of the high-voltage generator (2) as of a predefined time or as of a predefined current intensity of the current,
    - wherein the bypass (7) is electrically connected to the first input connection (5) and comprises one or more capacitances (10) as energy stores (10) and a switch (27), wherein energy can be transmitted from the electrical energy source (5) to the high-voltage output (34) by means of pulsed control of the switch (27),
    characterized in that
    - the bypass (7) additionally has an inductance (15) and a diode (16), wherein
    - a first connection of the inductance (15) is connected to the energy source (5) and a second connection of the inductance (15) is connected to a first connection of the diode (16), wherein
    - the switch (27) is set up to connect the second connection or a third connection of the inductance (15) to the electrical earth (14),
    - a second connection of the diode (16) is connected to a first connection of the energy store (10), and
    - a second connection of the energy store (10) is connected to the electrical earth (14), and a Zener diode (21), in particular, is connected in parallel with the capacitance (10), wherein
    - the inductance (15) is in the form of a transformer having a primary side (15_1) and a secondary side (15_2), wherein a first connection of the primary side (15_1) is connected to the energy source (5) and a second connection of the primary side (15_1) is connected to the electrical earth (14) via a switch (27), and wherein a first connection of the secondary side (15_2) is connected to the energy source (5) and a second connection of the secondary side (15_2) is connected to the first non-linear two-terminal network (16).
  2. Ignition system according to Claim 1, wherein the energy provided via the bypass can be transmitted until the pulsed control of the switch (27) of the bypass has been concluded.
  3. Ignition system according to Claim 1, also comprising
    a means for measuring current (19) and/or for measuring voltage and/or for measuring power, which means transmits a measurement signal to a controller (24) controlling the switch (27).
  4. Ignition system according to Claim 1 or 3, wherein
    - the high-voltage generator (2) is in the form of a step-up transformer and has a primary coil (8) on the primary side,
    - the bypass (7) is set up to generate a voltage which is added to a voltage across the secondary coil (9) or is fed in in parallel with the secondary coil (9), and, in particular,
    - an input capacitance (17) is provided in parallel with the energy source (5).
  5. Ignition system according to one of the preceding claims, wherein the bypass (7) contains an energy store (10), for example a capacitance, wherein, in particular, its
    - first connection is connected to a secondary-side connection of the high-voltage generator (2), and its
    - second connection is connected to the electrical earth (14), wherein, an inductance (15), in particular, is provided between the energy source (5) and the energy store (10), preferably in a switchable manner.
  6. Ignition system according to one of the preceding claims, wherein a first non-linear two-terminal network (16), for example in the form of a first diode, is provided between the inductance (15) and the energy store (10), which two-terminal network has a flow direction in the direction of the capacitance (10), and wherein the switch (27) is provided between a common connection (35) of the inductance (15) and the first non-linear two-terminal network (16), on the one hand, and the electrical earth (14), on the other hand.
  7. Ignition system according to Claim 6, wherein the switch (22, 27) is a transistor.
  8. Ignition system according to one of the preceding claims, wherein
    - a shunt resistor for measuring the ignition current or the voltage across the energy store (10) is provided as a means for measuring current (19) and/or for measuring voltage and/or for measuring power, which shunt resistor is set up to provide a signal for controlling at least one switch (22, 27) in the bypass (7), and/or
    - a second non-linear two-terminal network (21), in particular in the form of a second diode, in parallel with the energy store (10) protects the latter from an overvoltage.
  9. Ignition system according to one of the preceding claims, wherein the bypass (7) comprises a boost converter and/or the high-voltage generator (2) is bridged, on the secondary side, by a third non-linear two-terminal network (33), in particular in the form of a third diode.
  10. Method for operating an ignition system, wherein the ignition system comprises
    - a first input connection (5) for connection to an energy source (5) and a high-voltage output (34) for connection to the spark gap (6),
    - at least one high-voltage generator (2) with a primary side (3) and a secondary side (4) in each case,
    - a bypass (7) for transmitting electrical energy to the secondary side (4) of the high-voltage generator (2), wherein the bypass (7) is set up to support a decaying electrical signal in a secondary coil (9) of the high-voltage generator (2) as of a predefined time or as of a predefined current intensity of the current, wherein the bypass is electrically connected to the first input connection (5) and comprises one or more capacitances as energy stores (10) and a switch (27),
    - wherein the bypass (7) additionally has an inductance (15) and a diode (16), wherein a first connection of the inductance (15) is connected to the energy source (5) and a second connection of the inductance (15) is connected to a first connection of the diode (16), wherein the switch (27) is set up to connect the second connection or a third connection of the inductance (15) to the electrical earth (14), wherein a second connection of the diode (16) is connected to a first connection of the energy store (10) and a second connection of the energy store (10) is connected to the electrical earth (14), and a Zener diode (21), in particular, is connected in parallel with the capacitance (10), wherein the inductance (15) is in the form of a transformer having a primary side (15_1) and a secondary side (15_2), wherein a first connection of the primary side (15_1) is connected to the energy source (5) and a second connection of the primary side (15_1) is connected to the electrical earth (14) via a switch (27), and wherein a first connection of the secondary side (15_2) is connected to the energy source (5) and a second connection of the secondary side (15_2) is connected to the first non-linear two-terminal network (16),
    characterized in that
    the switch (27) is controlled in a pulsed manner via a signal (29, 32), and in that the power of the energy transmitted by the bypass (7) is controlled using the frequency and/or the pulse-pause ratio of the switch (27).
  11. Method according to Claim 10, characterized in that the switching frequency is, in particular, in the kilohertz range, preferably between 10 kHz and 100 kHz.
  12. Method according to Claim 10, characterized in that the energy provided via the bypass (7) is transmitted until the pulsed control of the switch (27) has been concluded.
  13. Method according to Claim 10, characterized in that the electrical energy for maintaining the ignition spark is coupled in as an electrical voltage in series or in parallel with the secondary side (4) of the high-voltage generator (2).
  14. Method according to Claim 10, comprising the steps of:
    - outputting a signal to a switch (27) in the bypass and, on the basis of the signal,
    - reacting to a critical current intensity in the secondary-side mesh.
EP13759775.3A 2012-09-12 2013-09-12 Ignition system for an internal combustion engine Active EP2895734B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012216182 2012-09-12
DE102013218213 2013-09-11
PCT/EP2013/068872 WO2014041050A1 (en) 2012-09-12 2013-09-12 Ignition system for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2895734A1 EP2895734A1 (en) 2015-07-22
EP2895734B1 true EP2895734B1 (en) 2019-03-27

Family

ID=53127890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13759775.3A Active EP2895734B1 (en) 2012-09-12 2013-09-12 Ignition system for an internal combustion engine

Country Status (7)

Country Link
US (1) US9784230B2 (en)
EP (1) EP2895734B1 (en)
JP (1) JP6017046B2 (en)
CN (1) CN104603449B (en)
BR (1) BR112015005394A2 (en)
MX (1) MX344034B (en)
WO (1) WO2014041050A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218227A1 (en) 2012-09-12 2014-05-28 Robert Bosch Gmbh Ignition system for an internal combustion engine
EP2895734B1 (en) 2012-09-12 2019-03-27 Robert Bosch GmbH Ignition system for an internal combustion engine
JP6318708B2 (en) * 2013-04-11 2018-05-09 株式会社デンソー Ignition control device
DE102014216030A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
DE102014213073A1 (en) * 2014-07-04 2016-01-07 Siemens Aktiengesellschaft High voltage device for a vehicle
JP6128249B1 (en) * 2016-03-29 2017-05-17 デンソートリム株式会社 LOAD DRIVE DEVICE FOR INTERNAL COMBUSTION ENGINE AND IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINE
DE102016205431A1 (en) * 2016-04-01 2017-10-05 Robert Bosch Gmbh Method for operating an ignition system
DE112018008214T5 (en) 2018-12-18 2021-09-02 Mitsubishi Electric Corporation Ignition device for an internal combustion engine
CN112012865B (en) * 2019-05-28 2021-11-26 联合汽车电子有限公司 Engine ignition system
CN110259619A (en) * 2019-06-03 2019-09-20 昆山凯迪汽车电器有限公司 Igniting drive module, ignition drive circuit and Iganition control system
CN110285002A (en) * 2019-06-03 2019-09-27 昆山凯迪汽车电器有限公司 Igniting drive module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174063A (en) * 1993-12-20 1995-07-11 Hanshin Electric Co Ltd Superposed electric discharge type ignitor

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB717676A (en) * 1950-03-15 1954-11-03 Bendix Aviat Corp Improvements in electrical ignition systems
DE2139360C3 (en) * 1971-08-06 1982-02-11 Robert Bosch Gmbh, 7000 Stuttgart Ignition system for internal combustion engines with capacitive and inductive energy storage
JPS51114535A (en) * 1975-03-31 1976-10-08 Nippon Denso Co Ltd Ignition system of internal combustion engine
US4349008A (en) * 1979-11-09 1982-09-14 Wainwright Basil E Apparatus for producing spark ignition of an internal combustion engine
JPS5720555A (en) * 1980-07-10 1982-02-03 Nippon Soken Inc Igniter for internal combustion engine
US4495446A (en) * 1982-12-27 1985-01-22 General Electric Company Lighting unit with improved control sequence
JPS6065281A (en) * 1983-09-20 1985-04-15 Hitachi Ltd High-energy ignitor
JPS60169675A (en) * 1984-02-13 1985-09-03 Nissan Motor Co Ltd Ignitor for internal-combustion engine
JPS60204965A (en) * 1984-03-28 1985-10-16 Nissan Motor Co Ltd Ignition unit of internal-combustion engine
DE3472434D1 (en) 1984-11-22 1988-08-04 Bernard Hue Impulse oscillator ignition system for an internal-combustion engine
JPS61218773A (en) * 1985-03-25 1986-09-29 Hitachi Ltd Long discharge, high energy ignitor
FR2611814B1 (en) * 1987-02-26 1991-06-21 Thomson Semiconducteurs AUTOMOTIVE IGNITION DEVICE
JPH01142269A (en) * 1987-11-27 1989-06-05 Hitachi Ltd Ignition device
JP2774992B2 (en) * 1989-10-03 1998-07-09 アイシン精機株式会社 Ignition device for internal combustion engine
JP3106434B2 (en) 1991-08-02 2000-11-06 住友電気工業株式会社 Optoelectronic integrated circuits
US5197448A (en) * 1991-08-23 1993-03-30 Massachusetts Institute Of Technology Dual energy ignition system
JP2554569B2 (en) 1991-12-13 1996-11-13 阪神エレクトリック株式会社 Overlapped discharge ignition device for internal combustion engine
JPH06213119A (en) 1993-01-18 1994-08-02 Mitsubishi Electric Corp Piezoelectric ignition device
JPH08338298A (en) * 1995-06-09 1996-12-24 Nippondenso Co Ltd Burning state detecting device for internal combustion engine
US5654868A (en) * 1995-10-27 1997-08-05 Sl Aburn, Inc. Solid-state exciter circuit with two drive pulses having indendently adjustable durations
JP3146953B2 (en) * 1995-11-17 2001-03-19 トヨタ自動車株式会社 Ion current detection circuit of internal combustion engine
US5636620A (en) * 1996-05-22 1997-06-10 General Motors Corporation Self diagnosing ignition control
DE19838003C2 (en) 1998-08-21 2000-08-24 Bosch Gmbh Robert Device for generating a stabilized consumer voltage
JP2000240542A (en) * 1999-02-18 2000-09-05 Hanshin Electric Co Ltd Lap discharging type ignition device for internal combustion engine
CA2296615A1 (en) 2000-01-19 2001-07-19 Megatech Electro Inc. Engine management system for an internal combustion engine provided with a low voltage electrical supply
DE10003109A1 (en) * 2000-01-26 2001-08-02 Bosch Gmbh Robert Method for generating a sequence of high-voltage ignition sparks and high-voltage ignition device
AT409406B (en) * 2000-10-16 2002-08-26 Jenbacher Ag IGNITION SYSTEM WITH AN IGNITION COIL
JP2003068484A (en) 2001-06-14 2003-03-07 Denso Corp Discharge lamp device and light projecting device using it
JP3940622B2 (en) * 2001-11-29 2007-07-04 日本特殊陶業株式会社 Ignition device for internal combustion engine
CN2527734Y (en) 2002-02-06 2002-12-25 朱滢元 Ignition system for petrol engine
KR100535998B1 (en) * 2002-04-12 2005-12-12 이이다 덴키 고교 가부시키가이샤 Ignition timing control method for internal combustion engine-use ignition device and ignition timing control device
US6670777B1 (en) * 2002-06-28 2003-12-30 Woodward Governor Company Ignition system and method
JP4209640B2 (en) * 2002-07-03 2009-01-14 新電元工業株式会社 Boost power supply for engine generator
US6805109B2 (en) * 2002-09-18 2004-10-19 Thomas L. Cowan Igniter circuit with an air gap
US6647974B1 (en) * 2002-09-18 2003-11-18 Thomas L. Cowan Igniter circuit with an air gap
JP2004239115A (en) * 2003-02-04 2004-08-26 San Jidosha Kogyo:Kk Voltage stabilizer for battery
EP1465342A1 (en) * 2003-04-01 2004-10-06 STMicroelectronics S.r.l. Multichannel electronic ignition device with high voltage controller
US6935323B2 (en) * 2003-07-01 2005-08-30 Caterpillar Inc Low current extended duration spark ignition system
US7165542B2 (en) * 2003-11-26 2007-01-23 Autotronic Controls Corporation High energy ignition method and system using pre-dwell control
US6820602B1 (en) * 2003-11-26 2004-11-23 Autotronic Controls Corporation High energy ignition method and system
SE527259C2 (en) * 2004-06-22 2006-01-31 Mecel Ab Method and apparatus for controlling the current in a spark plug
JP3106434U (en) * 2004-07-07 2005-01-06 三郎 藤田 Ignition stabilization device for gasoline engine
DE102005012282A1 (en) 2005-03-17 2006-09-21 Conti Temic Microelectronic Gmbh Circuit for triggering passenger protection device, has ignition energy storage that is rechargeable by electrical system, where charging of storage is interrupted with occurrence of humidity in arrangement
DE102005034294A1 (en) 2005-07-22 2007-01-25 Conti Temic Microelectronic Gmbh Circuit arrangement for passenger protection system for motor vehicle, has common energy storage provided for loads e.g. ignition units and sensors, and common step-down-converter generating reduced on-board power supply voltage for loads
EP2017465B1 (en) * 2006-07-07 2014-03-12 Hristo Atanasov Batchvarov Electronic high frequency plasma ignition
DE102006040982A1 (en) * 2006-08-31 2008-03-20 Michael Reimann Energy storage-high current-ignition for electrical circuit for ignition of combustible gas fuel mixture in combustion chamber of spark ignition internal combustion engine, has high voltage condenser ignition and transistor coil ignition
JP4803008B2 (en) * 2006-12-05 2011-10-26 株式会社デンソー Ignition control device for internal combustion engine
WO2009106100A1 (en) * 2008-02-29 2009-09-03 Michael Reimann Single energy store high current ignition
JP5158055B2 (en) * 2009-02-19 2013-03-06 株式会社デンソー Plasma ignition device
US8555867B2 (en) * 2009-06-18 2013-10-15 Arvind Srinivasan Energy efficient plasma generation
EP2325476B1 (en) 2009-11-20 2016-04-13 Delphi Technologies, Inc. Coupled multi-charge ignition system with an intelligent controlling circuit
JP5685025B2 (en) * 2010-07-22 2015-03-18 ダイヤモンド電機株式会社 Control system for internal combustion engine
JP4902775B1 (en) * 2010-09-15 2012-03-21 三菱電機株式会社 Ignition device for internal combustion engine
US8286617B2 (en) * 2010-12-23 2012-10-16 Grady John K Dual coil ignition
US20120186569A1 (en) * 2011-01-24 2012-07-26 Diamond Electric Mfg. Co., Ltd. Internal combustion engine ignition system
DE102012106207B3 (en) * 2012-03-14 2013-05-23 Borgwarner Beru Systems Gmbh Method for actuating spark plug in combustion engine of vehicle, involves charging and discharging primary and secondary windings repeatedly, and disconnecting primary windings from direct current supply until start signal is produced
EP2639446A1 (en) * 2012-03-16 2013-09-18 Delphi Automotive Systems Luxembourg SA Ignition system
EP2888772B1 (en) * 2012-08-22 2020-06-03 Daramic, LLC Battery separator with gel impregnated nonwoven for lead acid battery
EP2895734B1 (en) * 2012-09-12 2019-03-27 Robert Bosch GmbH Ignition system for an internal combustion engine
DE102013218227A1 (en) * 2012-09-12 2014-05-28 Robert Bosch Gmbh Ignition system for an internal combustion engine
US20140109886A1 (en) 2012-10-22 2014-04-24 Transient Plasma Systems, Inc. Pulsed power systems and methods
CN105102809B (en) * 2013-04-11 2018-02-09 株式会社电装 Igniter
EP2873850A1 (en) * 2013-11-14 2015-05-20 Delphi Automotive Systems Luxembourg SA Method and apparatus to control a multi spark ignition system for an internal combustion engine
DE102014216030A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
DE102014216044A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
DE102014216040A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Ignition system and method for operating an ignition system
JP6000320B2 (en) * 2014-11-18 2016-09-28 三菱電機株式会社 High frequency discharge ignition device
JP6470066B2 (en) * 2015-02-23 2019-02-13 サンケン電気株式会社 Ignition device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174063A (en) * 1993-12-20 1995-07-11 Hanshin Electric Co Ltd Superposed electric discharge type ignitor

Also Published As

Publication number Publication date
CN104603449A (en) 2015-05-06
US9784230B2 (en) 2017-10-10
BR112015005394A2 (en) 2017-07-04
CN104603449B (en) 2017-06-27
US20150219062A1 (en) 2015-08-06
MX2015003120A (en) 2015-10-22
EP2895734A1 (en) 2015-07-22
JP2015529774A (en) 2015-10-08
JP6017046B2 (en) 2016-10-26
WO2014041050A1 (en) 2014-03-20
MX344034B (en) 2016-12-01

Similar Documents

Publication Publication Date Title
EP2895734B1 (en) Ignition system for an internal combustion engine
DE102013218227A1 (en) Ignition system for an internal combustion engine
DE19840765C2 (en) Method and integrated ignition unit for the ignition of an internal combustion engine
WO2015071047A1 (en) Ignition system and method for operating an ignition system
WO2012130649A1 (en) Method and device for extending the combustion duration of a spark ignited by a spark plug in an internal combustion engine
EP3069007A1 (en) Ignition system and method for operating an ignition system
EP3069010A1 (en) Ignition system and method for operating an ignition system
WO2015071049A1 (en) Ignition system and method for operating an ignition system
EP3069008A1 (en) Ignition system and method for operating an ignition system for an internal combustion engine
EP2326147A2 (en) Operating control device for operating a light
EP2564674B1 (en) Method and control circuit for starting a gas-discharge lamp
EP3177824B1 (en) Ignition system and method for controlling an ignition system for an internal combustion engine with spark ignition
EP1741319A1 (en) Device for generation of voltage pulse sequences in particular for operation of capacitive discharge lamps
EP3436687B1 (en) Method for operating a with a step-up converter provided spark system
EP2389047B1 (en) Switching device and method for the efficient operation of a capacitive load
EP1105643A1 (en) Electronic circuit for pulse generation
DE10231511A1 (en) Ignition coil device for internal combustion engine has combustion current supply device with second transformer device with second drive unit, both transformer secondaries connected to ignition plug
WO2012037973A2 (en) Method for starting a high-pressure discharge lamp
WO2015071056A1 (en) Ignition system and method for limiting a cut-off current of a boost converter in an ignition system
WO2015071061A1 (en) Ignition system and method for stabilizing an output power of a step-up converter in an ignition system
WO2015071046A1 (en) Ignition system and method for operating an ignition system
EP1238195A2 (en) Controllable ignition circuit
DE102010029146A1 (en) Circuit arrangement for igniting high-pressure discharge lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180131

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012497

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1113392

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012497

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

26N No opposition filed

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190912

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1113392

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220930

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502013012497

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 11