EP2890887A1 - Dispositif électrothermique pour système de propulsion, notamment pour turboréacteur, système de propulsion comprenant un tel dispositif électrothermique, et procédé associé - Google Patents

Dispositif électrothermique pour système de propulsion, notamment pour turboréacteur, système de propulsion comprenant un tel dispositif électrothermique, et procédé associé

Info

Publication number
EP2890887A1
EP2890887A1 EP13756388.8A EP13756388A EP2890887A1 EP 2890887 A1 EP2890887 A1 EP 2890887A1 EP 13756388 A EP13756388 A EP 13756388A EP 2890887 A1 EP2890887 A1 EP 2890887A1
Authority
EP
European Patent Office
Prior art keywords
primary
air flow
chamber
heated
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13756388.8A
Other languages
German (de)
English (en)
Inventor
Xavier MORIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2890887A1 publication Critical patent/EP2890887A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/411Electric propulsion
    • B64G1/415Arcjets or resistojets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0093Electro-thermal plasma thrusters, i.e. thrusters heating the particles in a plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines

Definitions

  • Electrothermal device for a propulsion system in particular for a turbojet engine, a propulsion system comprising such an electrothermal device, and associated method.
  • the invention relates to propulsion systems, in particular but not exclusively turbojet engines, and relates more particularly to a thermoelectric device for such a propulsion system.
  • thermochemical turbojet engine results from the acceleration of the air between the inlet formed by an air sleeve and the outlet formed by a nozzle.
  • the acceleration is produced by the combustion of a mixture comprising, for example, kerosene and compressed air.
  • the ignition of the mixture makes it possible to greatly expand the gases that escape from the turbojet engine via the nozzle which, because of its convergent section, increases the speed of the air.
  • Part of the energy produced is recovered at the outlet of the nozzle by a solid turbine turbine of a compressor placed at the inlet of the turbojet engine which compresses the air entering the combustion chamber.
  • the variation in air velocity between the inlet and the outlet of the reactor creates a quantity of movement, or thrust, towards the rear of the turbojet engine which, by reaction, causes a forward displacement of the turbojet engine, and therefore of the airplane equipped with the turbojet engine.
  • thermochemical turbojet engine A major feature of the use of a thermochemical turbojet engine is the use of fossil energy to generate sufficient thrust.
  • Aerospace machines such as space satellites include several propulsion systems.
  • One of the propulsion systems is an electric propulsion system only used for space maneuvers, the thrust for orbiting being generally generated by a thermochemical propulsion system.
  • the electric propulsion systems used may be electrothermal propulsion systems, that is to say based on the transformation of electrical energy into thermal energy, capable, on the one hand, of converting electrical energy into thermal energy. by heat transfer between an electric arc and a propellant fluid, and on the other hand, converting thermal energy into kinetic energy by expanding the heated fluid through a nozzle to generate a thrust.
  • An electrothermal "arcj et" type propulsion system on a satellite uses electrical energy generally provided by solar panels to generate an electric arc that reacts with the propellant to increase its temperature.
  • thermoelectric propulsion has the advantage over a thermochemical propulsion to avoid embarking a heavy foil energy and whose performance is less good for ignition.
  • the electrical energy can be supplied from any suitable source of electrical energy, for example, battery packs.
  • Most electrothermal propulsion systems comprise a positively polarized nozzle-shaped anode and a cylindrical cathode having a negatively polarized conical end.
  • the anode and the cathode are kept close together, separated by an isolator.
  • the nozzle defines an expansion chamber having a narrow passage on a rear portion and a diverging opening on a front portion.
  • the cathode is aligned with the axis longitudinal direction of the anode nozzle, the conical end of the cathode extending into the narrow passage of the expansion chamber.
  • the reactor is filled with a gas, or propellant, and a high voltage is applied between the cathode and the anode to generate an electric arc.
  • the electric arc generated between the electrodes ionizes the gas so as to maintain a plasma and thus a conduction channel between the cathode and the anode, until the gas reaches a high temperature, the temperature rise and gas pressure causing expansion and subsequent acceleration of the propellant gas.
  • the electrothermal propulsion systems generally used have limited effectiveness.
  • the efficiency is in fact less than 50%, that is to say that less than half of the electrical energy is converted into kinetic energy, the residual energy being lost in heat energy and in ionized particles.
  • Losses of heat energy represent only a part of the initial electrical energy. Efficiency is in fact mainly limited by ionization losses and dissociation of particles that are called “cold flows" or more commonly in English “frozen flows”. These losses come from ionization, dissociation, or more generally from the passage of particles to excited mo lecular states trapping part of the energy. These losses occur when the gas or propellant is heated at high temperature by the electric arc before being ejected through the nozzle. In standard electro-electric arc boosters, the heated propellant remains for too short a time in high pressure areas and at lower temperatures, in the course of the expansion chamber, to allow atomic recombination or de-excitation of the excited mo lecules.
  • US Pat. No. 4,882,465 discloses an electro-electric arc propulsion system for the propulsion of satellites for space maneuvers only. This system comprises a secondary injection of propellant fluid to reduce the losses due to the "frozen flows" and to improve the propulsive efficiency.
  • this type of propulsion is generally used for satellite maneuvers because the thrust generated by such a thruster remains low for lack of propellant fluid mass.
  • the inj ection of a secondary flow of propellant fluid is performed through a passage formed in the anode, making it more difficult to produce the anode.
  • the known electric arc propulsion systems do not generate sufficient thrust to allow the propulsion of an aerospace machine, including aeronautical, especially in an atmospheric environment, such as an aircraft.
  • the thrust is limited by the amount of gas ejected and losses, the amount of gas entering the narrow passage being limited because of the risk that the electric arc is "blown" into the narrow passage.
  • the invention proposes to solve the problems mentioned above and to allow to heat a flow of air large enough to allow the propulsion of an aerospace or aeronautic machine while avoiding significant losses.
  • an electrothermal device for a propulsion system comprising a primary chamber comprising an anode nozzle provided with an inlet passage, a cathode point at least partially inserted in the inlet passageway, a primary air inlet opening into the inlet passage, and a voltage generator arranged between the anode nozzle and the cathode tip so as to generate an electric arc on the path of the air injected into the primary chamber.
  • the device comprises a secondary chamber in which circulates a secondary air flow in heat exchange relationship with the heated primary air flow from the primary chamber, the secondary air flow. having a temperature lower than the heated primary air flow exiting the primary chamber.
  • the primary chamber thus provides a first heated air stream at high temperature for heat exchange to heat the secondary air stream conveyed by the secondary combustion chamber.
  • this device thus makes it possible to obtain a large flow of heated air, in particular before passing through the turbine of the turbojet engine. This reduces the "cold flow” losses of the primary air flow while allowing to heat a relatively large gas flow without "blowing" the arc.
  • the secondary air stream has a temperature lower than the temperature of the heated primary air flow, the interaction between the two flows makes it possible to reduce the energy losses of the heated primary air flow due to the " frozen flows.
  • the lower temperature of the secondary air stream causes the excited ions and molecules of the heated primary air flow to de-energize and recombine, and consequently to release additional radiative energy for, in particular, the heating of the flow secondary.
  • the efficiency of the heating by the electric arc is thus significantly improved by the interaction between the cold secondary air flow and the heated primary air flow.
  • the electrothermal device comprises means for separating a flow of compressed air into a primary air flow and a secondary air flow.
  • the portion of the compressed air stream taken to form the primary air flow injected into the primary chamber can be sized to maximize the flow of heated primary air without the risk of blowing the electric arc generated in the primary chamber by too much flow.
  • the rest of the compressed air stream is used to form the secondary air stream.
  • the secondary chamber comprises the primary chamber. It may be directed to take a portion of the compressed air stream entering the secondary chamber and deliver the heated primary air stream in the same direction as the secondary air stream.
  • the primary chamber opens orthogonally into the secondary chamber so that the heated primary air flow is orthogonal to the secondary air flow, so as to increase the heat exchange section.
  • the electrothermal device may advantageously furthermore comprise at least one additional primary chamber capable of delivering an additional primary air stream heated by an electric arc generated from a voltage generator on the path of the first additional air stream injected into the the additional primary chamber, the additional chamber being in heat exchange relation with the secondary air flow.
  • additional primary chambers makes it possible to multiply the number of primary chambers in heat exchange relation with the secondary chamber, which makes it possible to increase the average temperature of the airflow at the outlet of the electrothermal device, or to increase the dimensions of the secondary air flow for the same airflow temperature at the outlet of the combustion device.
  • the invention also relates to a propulsion system comprising an electrothermal device as defined above for generating a flow of propellant.
  • a propulsion system comprising an electrothermal device as defined above for generating a flow of propellant.
  • an aerospace or aeronautical craft comprising at least one propulsion system as defined above.
  • a method of electrothermal treatment of air in a propulsion system comprising the injection of a primary air flow into a primary chamber, the generation of an arc in the path of the primary air flow injected into the primary chamber.
  • a secondary air stream is injected into a secondary chamber in heat exchange relationship with the primary air stream heated in the primary chamber, the secondary air stream having a lower temperature than the heated primary air flow exiting the primary chamber. the primary chamber.
  • a flow of compressed air is separated into a primary air flow and a secondary air flow, the secondary air flow being greater than the primary air flow.
  • the heated primary air stream is injected in the direction of the secondary air stream to maximize the amount of airflow in the exit direction of the electrothermal device.
  • At least one additional primary air stream is injected into an additional primary chamber, the additional primary air stream is heated by means of an electric arc generated in the additional primary chamber, the primary air flow. additional heated being in heat exchange relationship with the secondary air flow.
  • FIG. 1 schematically illustrates a sectional view of an electrothermal device according to a first embodiment of the invention
  • FIG. 2 diagrammatically represents a sectional view of a turbojet engine comprising an electrothermal device according to a second embodiment of the invention
  • Figure 3 shows a flowchart of a method of electrothermal treatment of air, according to one mo implementation of the invention.
  • FIG. 1 is schematically illustrated a sectional view of a first embodiment of an electric electrothermal device according to the invention.
  • the electrothermal device is intended to be integrated in a jet propulsion system, in particular for aerospace machines, including aeronautical, for displacements in the atmosphere, or astronautical for space displacements, and constitutes a propulsion device intended, in operation , generating a thrust generated by an acceleration of a gas between the inlet and the outlet of the device.
  • the electrothermal device 1 comprises a primary chamber 2 mounted inside a secondary chamber 3, the secondary chamber 3 having dimensions greater than those of the primary chamber 2.
  • the secondary chamber 3 comprises an air intake opening 4 allowing an inj ection of a propellant fluid, such as air, and an exhaust outlet 5 for expelling the air from the secondary chamber 3. , and therefore of the electrothermal device 1.
  • a propellant fluid such as air
  • the primary chamber 2 is a primary heating chamber for heating a portion of the air admitted to the input of the device. It comprises an anode 6 here in the form of a nozzle comprising an inlet passage 7 and an expansion opening 8. It will be noted, however, that it is not beyond the scope of the invention when the anode adopts a shape profile. straight and not curved in a nozzle. Entrance passage 7 includes a narrower section than the rest of the anode 6.
  • the primary chamber 2 also comprises a cathode 9 in the form of a tip with a cylindrical body and a conical tip. The cathode 9 is aligned with the longitudinal axis of the anode nozzle 6. The cathode 9 is inserted into the primary chamber so that the conical tip is situated in the vicinity of the inlet passage 7.
  • the primary chamber 2 further comprises an air inlet 10 facing the air intake opening 4 of the secondary chamber 3 and opening onto the inlet passage 7.
  • the primary chamber 2 also comprises a current generator 11 electrically connected between the anode nozzle 6 and the cathode 9.
  • the current generator 11 is configured to apply a potential difference between the negatively polarized cathode 9 and the positively polarized anode 6. and thus generating an electric arc 12 between the tip of the cathode 9 and the anode nozzle 6, in the inlet passage 7.
  • the electric arc 12 is thus generated on the path of the primary air flow 13 injected into the primary chamber 3 through the air inlet 10 into the inlet passage 7.
  • the electric arc 12 allows the ionization the primary air flow 13 and the creation of a plasma for heating the primary air flow 13 through the inlet passage 7.
  • a heated primary air flow 14 then escapes through the opening of expansion 8.
  • the primary air flow 13 injected into the primary chamber 2 is injected with a swirling path initiated for example by the rotary vanes of a compressor placed upstream of the electrothermal device 1.
  • the swirling path of the primary air flow 13 makes it possible to increase the amount of air interacting directly with the electric arc 12, and thus optimize the heating of the secondary air flow 15 without increasing the flow and risk of blowing the electric arc 12.
  • the secondary chamber 3 receives a secondary air flow 15 through the air intake opening 4 which is mixed with the heated primary air flow 14 at the outlet of the primary chamber 2.
  • the secondary chamber 3 constitutes therefore a secondary heating chamber for heating a portion of the air flow admitted through the opening 4 but not removed by the primary chamber, under the action of the primary air flow 14 heated.
  • the secondary air flow 15 also has a swirling path initiated for example by the blades of a compressor.
  • the vortex trajectory makes it possible to improve the mixing between the heated primary air flow 14 and the secondary air flow 15, by increasing the distance, and therefore the surface, of interaction between the two flows 14 and 15. It could be however, alternatively, provide a secondary air injection in a straight path.
  • the heating of the flow delivered to the exhaust outlet resulting from the mixing of the primary and secondary air streams 15 makes it possible to increase the pressure and, consequently, the speed of the outlet flow.
  • the primary air stream 13 is produced by taking, with the aid of the air inlet, a portion of the secondary air stream 15 admitted into the device 1 at the level of the opening admission 4.
  • FIG. 2 schematically represents a sectional view of a turbojet engine comprising an electrothermal propulsion device according to one embodiment of the invention.
  • the electrothermal turbojet engine comprises an enclosure 21 comprising an intake stage 22 and an outlet stage 23 separated by a heat treatment stage 24.
  • the intake stage 22 comprises a compressor 25 and the outlet stage 23 comprises a turbine 26.
  • the turbine 26 is mechanically coupled to the compressor 25 by a transmission shaft 27.
  • the compressor 25 comprises, in this embodiment, a plurality of compression vane wheels 28 so as to increase the compression factor, and thus increasing the amount of compressed air injected into the combustion stage 24.
  • the turbine 26 comprises a plurality of impellers 29 for increasing the quantity of air expelled and the force transmitted by the transmission shaft 27 to the compressor 25 via the transmission shaft 27.
  • the combustion stage 24 may be equipped with a device 1 as described above with reference to FIG. 1, it is here provided with an electrothermal device 100 according to a second embodiment of the invention.
  • the elements of the electrothermal device 100 according to the second embodiment identical to the electrothermal device 1 according to the first embodiment have the same reference numerals.
  • the electrothermal device 1 00 is intended to provide heat treatment of the intake air inlet to generate an increase in the gas pressure and its expansion and its subsequent acceleration to generate, in exit, a push.
  • the electrothermal device 100 according to the second embodiment differs from the electrothermal device 1 according to the first embodiment in that it comprises two primary chambers 2 arranged in a single cylindro-annular secondary chamber 3.
  • the two primary chambers 2 are arranged on either side of the transmission shaft 27 and are each mounted on an arm B fixed on a sleeve 30 disposed around the transmission shaft 27 and delimiting the radially inner wall of the transmission shaft 27.
  • the sleeve 30 is independent of the transmission shaft 27 so as to remain stationary when the transmission shaft 27 is rotated.
  • This arrangement makes it possible to generate two flows of heated primary air 14 distributed on either side of the transmission shaft 27 and thus to increase the amount of heated primary air intended to heat the secondary air flow 15 of which the temperature is lower than that of the heated primary air flow 14.
  • the primary air flows 13 entering the primary chambers 2 are taken from the compressed air stream delivered by the compressor 25, the unfiltered compressed air stream forming the secondary air stream. circulating in the secondary chamber 3.
  • the primary air flow 13 and the secondary air stream 15 therefore have the same initial temperature at the input of the electrothermal device 100, before being heated.
  • the secondary air stream 15 is heated by the heated primary air flow 14 at the outlet of the primary chambers 2.
  • the heated, primary 14 and secondary 15 heated air streams, thus mixed, are then delivered to the impeller 29 of the turbine 26 which are rotated and drive the compressor 24 of the intake stage 22 via the transmission shaft 27.
  • the electrical energy generating the electric arcs 12 between the anodes 6 and the cathodes 9 is converted in the primary chambers 2 into heat energy.
  • This heat energy is transferred by the heated primary air streams 14 to the secondary air stream 15 so as to generate a heated outlet air stream.
  • the supply of heat energy to the outlet air flow generates a consecutive increase in kinetic energy, the temperature difference between the inlet and the outlet of the turbojet engine 20, that is to say between the intake stage 22 and the output stage 23, generating a pressure difference and air velocity resulting in the appearance of a thrust force of the turbojet 20 forward which is added to the force generated by the air flow.
  • turbojet comprising an electrothermal device comprising more than two primary chambers so as to increase the amount of heated primary air flow.
  • turbojet engine comprising a single primary chamber.
  • a hollow transmission shaft inside which is injected the air flow tablet delivered by the compressor, the hollow shaft comprising an electrothermal device with a central primary chamber.
  • FIG. 3 is a flowchart of a method for the electrothermal treatment of the air sucked into a turbojet according to one embodiment of the invention.
  • the electrothermal treatment method comprises in a first step 301, the admission of a flow of compressed air in an electrothermal device comprising a primary heat treatment chamber 2 disposed in a secondary chamber 3 of heat treatment.
  • a part 13 of the compressed air flow admitted into the electrothermal device is withdrawn and this primary air stream 13 is injected into the primary chamber 2.
  • an electric arc 12 is generated on the path of the primary air flow 13 injected into the primary chamber 2 so as to ionize the air and form a plasma for heating the primary air flow 13 and thus forming a heated primary air flow 14.
  • a secondary air stream 15 is injected into a secondary chamber 3, the secondary air stream 15 being formed from the stream of compressed air remaining after the sampling carried out in step 302 to form the primary air flow 13.
  • the secondary air flow 15 is then at a temperature below the temperature of the heated primary air flow 14.
  • the secondary chamber 3 is made so that the secondary air flow 15 is in heat exchange relation with the first heated air flow 14 when it leaves the primary chamber 2.
  • This heat exchange allows a In addition to reducing the energy losses due to the "frozen flows", the lower temperature of the secondary air flow forces the recombination of the molecules and ions in excited states at the outlet of the primary chamber 2.
  • the heat exchange between the heated primary air flow 14 and the secondary air flow 15 also makes it possible to heating the secondary air stream 15 and thus obtaining at the outlet of the electrothermal device an outlet air stream having a temperature greater than the temperature of the admitted compressed air flow.
  • the outlet air stream can then be delivered to a turbine of a turbojet engine to actuate the transmission shaft connecting the compressor 25 to the turbine 26, before being expelled from the turbojet engine 20 and generating a thrust force to the front of the turbojet 20.
  • the invention thus provides an electrothermal device capable of heating a flow of air large enough to allow the propulsion of an aerospace machine.
  • the electrothermal device makes it possible to increase the energy efficiency of an electric arc electrothermal treatment chamber and to increase the amount of heated air in a turbojet engine.
  • electrothermal device which has just been described makes it possible to increase the duration during which the air flow is in conditions favorable to the recovery of "frozen flows", that is to say ionization losses and dissociation of particles, reducing the speed of the primary flow.
  • the primary heat treatment chamber 2 opens in the axis of the secondary heat treatment chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Ce dispositif (1, 100) électrothermique comprend une chambre primaire (2) comportant une tuyère anodique (6) munie d'un passage d'entrée (7), une pointe cathodique (9) au moins partiellement insérée dans le passage d'entrée (7), et une entrée (10) d'air primaire débouchant dans le passage d'entrée (7), et un générateur de tension (11) disposé entre la tuyère anodique (6) et la pointe cathodique (9) de manière à générer un arc électrique (12) sur le trajet du flux d'air primaire (13) injecté dans la chambre primaire (2). Il comprend une chambre secondaire (3) dans laquelle circule un flux d'air secondaire (15) en relation d'échange thermique avec le flux d'air primaire chauffé (14) issu de la chambre primaire (2), le flux d'air secondaire (15) possédant une température inférieure au flux d'air primaire chauffé (14) sortant de la chambre primaire (2).

Description

Dispositif électrothermique pour système de propulsion, notamment pour turboréacteur, système de propulsion comprenant un tel dispositif électrothermique, et procédé associé.
L 'invention concerne les systèmes de propulsion, notamment mais non exclusivement les turboréacteurs, et se rapporte plus particulièrement à un dispositif thermoélectrique pour un tel système de propulsion.
Les avions utilisent souvent des systèmes de propulsion à réaction, nommés turboréacteurs, basés sur l'utilisation d'une énergie chimique telle que du kérosène. La poussée générée par un turboréacteur thermochimique résulte de l ' accélération de l ' air entre l ' entrée formée par une manche à air et la sortie formée par une tuyère. L ' accélération est produite par la combustion d'un mélange comprenant par exemple du kérosène et de l ' air comprimé. L 'inflammation du mélange permet de fortement dilater les gaz qui s ' échappent du turboréacteur par la tuyère qui, en raison de sa section convergente, augmente la vitesse de l ' air. Une partie de l ' énergie produite est récupérée à la sortie de la tuyère par une turbine so lidaire d'un compresseur placé en entrée du turboréacteur qui permet de comprimer l ' air entrant dans la chambre de combustion.
La variation de vitesse de l ' air entre l ' entrée et la sortie du réacteur crée une quantité de mouvement, ou poussée, vers l ' arrière du turboréacteur qui, par réaction, engendre un déplacement vers l ' avant du turboréacteur, et donc de l ' avion équipé du turboréacteur.
Différents problèmes se posent avec ce type de propulsion chimique. Ces problèmes sont principalement liés à la combustion incomplète du kérosène, au filtrage du kérosène ainsi qu' à son pompage, à l ' émission de dioxyde de carbone et d' autres particules polluantes, et aux risques inhérents à l 'utilisation d'un carburant (par exemple incendies, dégagement de gaz toxiques, ... ) . L 'inconvénient maj eur lié à l 'utilisation d'un turboréacteur thermochimique concerne l 'utilisation d'une énergie fossile pour générer une poussée suffisante.
Les engins aérospatiaux tels que des satellites spatiaux comprennent plusieurs systèmes de propulsion. L 'un des systèmes de propulsion est un système de propulsion électrique uniquement utilisé pour les manœuvres spatiales, la poussée pour la mise en orbite étant généralement générée par un système de propulsion thermochimique.
Les systèmes de propulsion électrique utilisés peuvent être des systèmes de propulsion électrothermique, c ' est-à-dire fondés sur la transformation d'une énergie électrique en énergie thermique, capables, d'une part, de convertir une énergie électrique en une énergie thermique par transfert de chaleur entre un arc électrique et un fluide propulseur, et d' autre part, de convertir l ' énergie thermique en énergie cinétique par expansion du fluide chauffé au travers d' une tuyère pour générer une poussée.
Un système de propulsion électrothermique de type « arcj et » embarqué sur un satellite utilise l' énergie électrique fournie généralement par des panneaux so laires pour générer un arc électrique qui réagit avec le fluide propulseur pour augmenter sa température.
Ce type de propulsion thermoélectrique présente l ' avantage par rapport à une propulsion thermochimique d' éviter d' embarquer une énergie fo ssile lourde et dont le rendement est moins bon pour l ' allumage. En effet, l ' énergie électrique peut être fournie à partir de toute source d' énergie électrique appropriée, par exemple des batteries d' alimentation.
La plupart des systèmes de propulsion électrothermique comprennent une anode en forme de tuyère polarisée positivement et une cathode cylindrique ayant une extrémité conique polarisée négativement. L ' anode et la cathode sont maintenues à proximité, séparées par un iso lant. La tuyère définit une chambre d' expansion comportant un passage étroit sur une portion arrière et une ouverture divergente sur une portion avant. La cathode est alignée avec l ' axe longitudinal de la tuyère anodique, l ' extrémité conique de la cathode s ' étendant dans le passage étroit de la chambre d' expansion.
Le réacteur est rempli d'un gaz, ou fluide propulseur, et une haute tension est appliquée entre la cathode et l ' anode de manière à générer un arc électrique. L ' arc électrique généré entre les électrodes ionise le gaz de manière à entretenir un plasma et donc un canal de conduction entre la cathode et l ' anode, jusqu' à ce que le gaz atteigne une haute température, l' augmentation de la température et de la pression du gaz engendrant une expansion et une accélération consécutive du gaz propulseur.
Les systèmes de propulsion électrothermique généralement utilisés possèdent une efficacité limitée. Le rendement est en effet inférieur à 50%, c ' est-à-dire que moins de la moitié de l ' énergie électrique est convertie en énergie cinétique, l ' énergie résiduelle étant perdue en énergie calorifique et en particules ionisées .
Les pertes par énergie calorifique ne représentent qu'une part de l ' énergie électrique initiale. L ' efficacité est en fait principalement limitée par des pertes par ionisation et de dissociation des particules qu' on nomme « flux froids » ou plus communément en anglais « frozen flows » . Ces pertes proviennent de l'ionisation, de la dissociation, ou plus généralement du passage des particules à des états mo léculaires excités emprisonnant une partie de l ' énergie. Ces pertes se produisent lorsque le gaz ou le fluide propulseur est chauffé à haute température par l ' arc électrique avant d' être éj ecté au travers de la tuyère. Dans des propulseurs électrothermiques standard à arc électrique, le fluide propulseur chauffé demeure pendant une durée trop courte dans des zones à haute pression et à plus faibles températures, en l'o ccurrence la chambre d' expansion, pour permettre une recombinaison des atomes ou une désexcitation des mo lécules excitées .
Par conséquent, l' énergie des ions et mo lécules encore dans des états excités est perdue et non disponible pour la poussée du réacteur.
En plus de ces pertes dans le réacteur, les propulseurs à arc électrique usuels ne tolèrent pas d' importantes variations dans le fluide propulseur car l ' arc peut être « soufflé » par un flux de fluide propulseur trop important, rompant le canal de conduction formé par le plasma.
On connaît, du document US 4 882 465 , un système de propulsion électrothermique à arc électrique destiné à la propulsion de satellites pour des manœuvres spatiales uniquement. Ce système comprend une inj ection secondaire de fluide propulseur pour réduire les pertes dues aux « frozen flows » et améliorer l ' efficacité de propulsion.
Cependant, ce type de propulsion n' est généralement utilisé que pour les manœuvres des satellites car la poussée générée par un tel propulseur reste faible par manque de masse de fluide propulseur. De plus, l' inj ection d'un flux secondaire de fluide propulseur est réalisée au travers d'un passage formé dans l ' anode, complexifiant la réalisation de l ' anode.
En effet, les systèmes connus de propulsion à arc électrique ne permettent pas de générer une poussée suffisante pour permettre la propulsion d'un engin aérospatial, notamment aéronautique, en particulier dans un environnement atmosphérique, tel qu 'un avion. La poussée est limitée par la quantité de gaz éj ecté et par les pertes, la quantité de gaz entrant dans le passage étroit étant limitée à cause des risques que l ' arc électrique soit « soufflé » dans le passage étroit.
L 'invention se propose de résoudre les problèmes mentionnés ci-dessus et de permettre de chauffer un flux d ' air assez important pour permettre la propulsion d'un engin aérospatial ou aéronautique tout en évitant des pertes importantes.
Selon un aspect de l' invention, il est proposé un dispositif électrothermique pour système de propulsion, comprenant une chambre primaire comportant une tuyère anodique munie d 'un passage d' entrée, une pointe cathodique au moins partiellement insérée dans le passage d' entrée, une entrée d' air primaire débouchant dans le passage d' entrée, et un générateur de tension disposé entre la tuyère anodique et la pointe cathodique de manière à générer un arc électrique sur le trajet de l'air injecté dans la chambre primaire.
Selon une caractéristique générale de l'invention, le dispositif comprend une chambre secondaire dans laquelle circule un flux d'air secondaire en relation d'échange thermique avec le flux d'air primaire chauffé issu de la chambre primaire, le flux d'air secondaire possédant une température inférieure au flux d'air primaire chauffé sortant de la chambre primaire.
La chambre primaire fournit ainsi un premier flux d'air chauffé à haute température permettant par échange thermique de chauffer le flux d'air secondaire acheminé par la chambre de combustion secondaire. Lorsqu'il est intégré à un système de propulsion, par exemple à un turboréacteur, ce dispositif permet ainsi d'obtenir un grand flux d'air chauffé, notamment avant le passage dans la turbine du turboréacteur. Cela permet de réduire les pertes en « flux froids » du flux d'air primaire tout en permettant de chauffer un flux de gaz relativement important sans toutefois « souffler » l'arc.
D'autre part, le flux d'air secondaire ayant une température plus faible que la température du flux d'air primaire chauffé, l'interaction entre les deux flux permet de réduire les pertes énergétiques du flux d'air primaire chauffé dues aux « frozen flows ». La température plus faible du flux d'air secondaire incite les ions et molécules excités du flux d'air primaire chauffé à se désexciter et à se recombiner, et de dégager par conséquent de l'énergie radiative supplémentaire pour, notamment, le chauffage du flux secondaire. Le rendement du chauffage par l'arc électrique est ainsi nettement amélioré par l'interaction entre le flux d'air secondaire froid et le flux d'air primaire chauffé.
Avantageusement, le dispositif électrothermique comprend des moyens de séparation d'un flux d'air comprimé en un flux d'air primaire et un flux d'air secondaire.
Lorsque le dispositif est intégré à un turboréacteur, en séparant ainsi un flux d'air comprimé par le compresseur d'entrée du turboréacteur, la portion du flux d'air comprimé prélevée pour former le flux d'air primaire injecté dans la chambre primaire peut être dimensionnée pour maximiser le flux d'air primaire chauffé sans risquer de souffler l'arc électrique généré dans la chambre primaire par un flux trop important. Le reste du flux d'air comprimé est utilisé pour former le flux d'air secondaire.
De préférence, la chambre secondaire comprend la chambre primaire. Elle peut être dirigée de manière à prélever une partie du flux d'air comprimé entrant dans la chambre secondaire et à délivrer le flux d'air primaire chauffé dans la même direction que le flux d'air secondaire.
En variante, la chambre primaire débouche orthogonalement dans la chambre secondaire de sorte que le flux d'air primaire chauffé soit orthogonal au flux d'air secondaire, de manière à augmenter la section d'échange thermique.
Le dispositif électrothermique peut avantageusement comprendre en outre au moins une chambre primaire supplémentaire apte à délivrer un flux d'air primaire supplémentaire chauffé par un arc électrique généré à partir d'un générateur de tension sur le trajet du premier flux d'air supplémentaire injecté dans la chambre primaire supplémentaire, la chambre supplémentaire étant en relation d'échange thermique avec le flux d'air secondaire.
L'ajout de chambres primaires supplémentaires permet de multiplier le nombre de chambres primaires en relation d'échange thermique avec la chambre secondaire ce qui permet d'augmenter la température moyenne du flux d'air en sortie du dispositif électrothermique, ou d'augmenter les dimensions du flux d'air secondaire pour une même température de flux d'air en sortie du dispositif de combustion.
L'invention a également pour objet un système de propulsion comprenant un dispositif électrothermique tel que défini ci-dessus pour engendrer un flux de gaz propulseur. Selon un autre aspect de l'invention, il est proposé un engin aérospatial ou aéronautique comprenant au moins un système de propulsion tel que défini ci-dessus.
Selon encore un autre aspect de l'invention, il est proposé un procédé de traitement électrothermique d'air dans un système de propulsion, comprenant l'injection d'un flux d'air primaire dans une chambre primaire, la génération d'un arc électrique sur le trajet du flux d'air primaire injecté dans la chambre primaire.
On injecte un flux d'air secondaire dans une chambre secondaire en relation d'échange thermique avec le flux d'air primaire chauffé dans la chambre primaire, le flux d'air secondaire possédant une température inférieure au flux d'air primaire chauffé sortant de la chambre primaire.
Avantageusement, on sépare un flux d'air comprimé en un flux d'air primaire et un flux d'air secondaire, le flux d'air secondaire étant plus important que le flux d'air primaire.
De préférence, on injecte le flux d'air primaire chauffé dans la direction du flux d'air secondaire pour maximiser la quantité de flux d'air dans la direction de sortie du dispositif électrothermique.
Avantageusement, on injecte au moins un flux d'air primaire supplémentaire dans une chambre primaire supplémentaire, on chauffe le flux d'air primaire supplémentaire à l'aide d'un arc électrique généré dans la chambre primaire supplémentaire, le flux d'air primaire supplémentaire chauffé étant en relation d'échange thermique avec le flux d'air secondaire.
D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée de modes de réalisation et d'un mode de mise en œuvre de l'invention, nullement limitatifs, et des dessins annexés, sur lesquels :
la figure 1 illustre de manière schématique une vue en coupe d'un dispositif électrothermique selon un premier mode de réalisation de l'invention ; la figure 2 représente schématiquement une vue en coupe d'un turboréacteur comprenant un dispositif électrothermique selon un second mo de de réalisation de l' invention ;
la figure 3 présente un organigramme d'un procédé de traitement électrothermique de l ' air, selon un mo de de mise en œuvre de l 'invention.
Sur la figure 1 est illustrée de manière schématique une vue en coupe d'un premier mode de réalisation d'un dispositif électrothermique électrique selon l 'invention. Le dispositif électrothermique est destiné à être intégré à un système de propulsion à réaction, notamment pour engins aérospatiaux, y compris aéronautiques, pour des déplacements dans l ' atmosphère, ou astronautiques pour des déplacements spatiaux, et constitue un dispositif de propulsion destiné, en fonctionnement, à générer une poussée engendrée par une accélération d'un gaz entre l ' entrée et la sortie du dispositif.
Le dispositif électrothermique 1 comprend une chambre primaire 2 montée à l' intérieur d'une chambre secondaire 3 , la chambre secondaire 3 possédant des dimensions supérieures à celles de la chambre primaire 2.
La chambre secondaire 3 comprend une ouverture 4 d' admission d ' air permettant une inj ection d'un fluide propulseur, tel que de l ' air, et une sortie d' échappement 5 permettant d' expulser l ' air de la chambre secondaire 3 , et par conséquent du dispositif électrothermique 1 .
La chambre primaire 2 constitue une chambre de chauffage primaire assurant le chauffage d'une partie de l ' air admis en entrée du dispositif. Elle comprend une anode 6 ici en forme de tuyère comportant un passage d' entrée 7 et une ouverture d' expansion 8. On notera toutefois que l'on ne sort pas du cadre de l' invention lorsque l ' anode adopte un profil de forme droite et non courbée en tuyère. Le passage d' entrée 7 comprend une section plus étroite que le reste de l'anode 6. La chambre primaire 2 comprend également une cathode 9 en forme de pointe avec un corps cylindrique et une pointe conique. La cathode 9 est alignée avec l'axe longitudinal de la tuyère anodique 6. La cathode 9 est insérée dans la chambre primaire de manière que la pointe conique soit située au voisinage du passage d'entrée 7.
La chambre primaire 2 comprend en outre une entrée 10 d'air en regard de l'ouverture 4 d'admission d'air de la chambre secondaire 3 et débouchant sur le passage d'entrée 7.
La chambre primaire 2 comprend également un générateur de courant 11 électriquement raccordé entre la tuyère anodique 6 et la cathode 9. Le générateur de courant 11 est configuré pour appliquer une différence de potentiel entre la cathode 9 polarisée négativement et l'anode 6 polarisée positivement, et ainsi engendrer un arc électrique 12 entre la pointe de la cathode 9 et la tuyère anodique 6, dans le passage d'entrée 7.
L'arc électrique 12 est ainsi généré sur la trajectoire du flux d'air primaire 13 injecté dans la chambre primaire 3 par l'entrée 10 d'air jusque dans le passage d'entrée 7. L'arc électrique 12 permet l'ionisation du flux d'air primaire 13 et la création d'un plasma permettant de chauffer le flux d'air primaire 13 traversant le passage d'entrée 7. Un flux d'air primaire chauffé 14 s'échappe ensuite par l'ouverture d'expansion 8.
Le flux d'air primaire 13 injecté dans la chambre primaire 2 est injecté avec une trajectoire tourbillonnaire initiée par exemple par les aubes rotatives d'un compresseur placé en amont du dispositif électrothermique 1. La trajectoire tourbillonnaire du flux d'air primaire 13 permet d'augmenter la quantité d'air interagissant directement avec l'arc électrique 12, et ainsi d'optimiser le chauffage du flux d'air secondaire 15 sans augmenter le flux et risquer de souffler l'arc électrique 12. Bien entendu, on pourrait également, en variante, prévoir une injection d'air primaire selon une trajectoire droite, ou rectiligne. La chambre secondaire 3 reçoit un flux d'air secondaire 15 à travers l'ouverture 4 d'admission d'air qui vient se mélanger au flux d'air primaire chauffé 14 à la sortie de la chambre primaire 2. La chambre secondaire 3 constitue dès lors une chambre de chauffage secondaire assurant le chauffage d'une portion du flux d'air admis par l'ouverture 4 mais non prélevée par la chambre primaire, sous l'action du flux d'air primaire 14 chauffé. Le flux d'air secondaire 15 possède également une trajectoire tourbillonnaire initiée par exemple par les pâles d'un compresseur. La trajectoire tourbillonnaire permet d'améliorer le mélange entre le flux d'air primaire chauffé 14 et le flux d'air secondaire 15, en augmentant la distance, et donc la surface, d'interaction entre les deux flux 14 et 15. On pourrait toutefois, en variante, prévoir une injection d'air secondaire selon une trajectoire droite.
Comme on le conçoit, le chauffage du flux délivré en sortie 5 d'échappement résultant du mélange des flux d'air primaire 13 et secondaire 15 permet d'augmenter la pression et, par conséquent, la vitesse du flux de sortie.
Dans ce premier mode de réalisation, le flux d'air primaire 13 est réalisé en prélevant à l'aide de l'entrée 10 d'air une portion du flux d'air secondaire 15 admis dans le dispositif 1 au niveau de l'ouverture d'admission 4.
Sur la figure 2 est représentée de manière schématique une vue en coupe d'un turboréacteur comprenant un dispositif électrothermique de propulsion selon un mode de réalisation de l'invention.
Le turboréacteur 20 électrothermique comprend une enceinte 21 comportant un étage d'admission 22 et un étage de sortie 23 séparés par un étage de traitement thermique 24. L'étage d'admission 22 comprend un compresseur 25 et l'étage de sortie 23 comprend une turbine 26. La turbine 26 est mécaniquement couplée au compresseur 25 par un arbre de transmission 27. Le compresseur 25 comprend, dans ce mode de réalisation, une pluralité de roues à aubes 28 de compression de manière à augmenter le facteur de compression, et ainsi augmenter la quantité d' air comprimé inj ecté dans l ' étage de combustion 24. De la même manière, la turbine 26 comprend une pluralité de roues à aubes 29 permettant d' augmenter la quantité d ' air expulsé et la force transmise par l ' arbre de transmission 27 au compresseur 25 via l ' arbre de transmission 27.
Bien que l ' étage de combustion 24 puisse être équipé d 'un dispositif 1 tel que décrit précédemment en référence à la figure 1 , il est ici pourvu d'un dispositif électrothermique 100 selon un second mode de réalisation de l' invention. Les éléments du dispositif électrothermique 100 selon le second mode de réalisation identiques au dispositif électrothermique 1 selon le premier mode de réalisation comportent les mêmes références numériques. Comme dans l ' exemple de réalisation décrit précédemment, le dispositif électrothermique 1 00 est destiné à assurer un traitement thermique de l ' air admis en entrée pour engendrer une augmentation de la pression du gaz et son expansion ainsi que son accélération consécutive pour générer, en sortie, une poussée.
Le dispositif électrothermique 100 selon le second mode de réalisation diffère du dispositif électrothermique 1 selon le premier mode de réalisation en ce qu' il comprend deux chambres primaires 2 disposées dans une unique chambre secondaire 3 cylindro-annulaire.
Les deux chambres primaires 2 sont disposées de part et d' autre de l ' arbre de transmission 27 et sont montées chacune sur un bras B fixé sur un manchon 30 disposé autour de l' arbre de transmission 27 et délimitant la paroi radialement interne de la chambre secondaire 3. Le manchon 30 est indépendant de l ' arbre de transmission 27 de manière à rester fixe lorsque l ' arbre de transmission 27 est mis en rotation. Cette disposition permet de générer deux flux d' air primaire chauffé 14 répartis de part et d' autre de l ' arbre de transmission 27 et ainsi d' augmenter la quantité d ' air primaire chauffé destiné à chauffer le flux d' air secondaire 15 dont la température est inférieure à celle des flux d' air primaire chauffé 14. Dans ce mode de réalisation, les flux d'air primaire 13 entrant dans les chambres primaires 2 sont prélevés dans le flux d'air comprimé délivré par le compresseur 25, le flux d'air comprimé non prélevé formant le flux d'air secondaire 15 circulant dans la chambre secondaire 3. Dans le second mode de réalisation, les flux d'air primaire 13 et le flux d'air secondaire 15 ont donc la même température initiale en entrée du dispositif électrothermique 100, avant d'être chauffé.
Le flux d'air secondaire 15 est chauffé par les flux d'air primaire chauffé 14 en sortie des chambres primaires 2. Les flux d'air chauffé, primaire 14 et secondaire 15, ainsi mélangés sont alors délivrés aux roues à aubes 29 de la turbine 26 qui sont mises en rotation et entraînent le compresseur 24 de l'étage d'admission 22 via l'arbre de transmission 27.
L'énergie électrique engendrant les arcs électriques 12 entre les anodes 6 et les cathodes 9 est convertie dans les chambres primaires 2 en énergie calorifique. Cette énergie calorifique est transférée par les flux d'air primaire chauffé 14 au flux d'air secondaire 15 de manière à générer un flux d'air de sortie chauffé. Comme indiqué précédemment, l'apport d'énergie calorifique au flux d'air de sortie engendre une augmentation consécutive de l'énergie cinétique, la différence de température entre l'entrée et la sortie du turboréacteur 20, c'est-à-dire entre l'étage d'admission 22 et l'étage de sortie 23, générant une différence de pression et de vitesse de l'air entraînant l'apparition d'une force de poussée du turboréacteur 20 vers l'avant qui s'ajoute à la force générée par le débit d'air.
Dans un autre mode de réalisation, il est possible d'envisager un turboréacteur comprenant un dispositif électrothermique comprenant plus de deux chambres primaires de manière à augmenter la quantité de flux d'air primaire chauffé.
Il est également possible d'envisager un turboréacteur comprenant une seule chambre primaire. Dans ce cas, on prévoira un arbre de transmission creux à l'intérieur duquel est injecté le flux d'air comprimé délivré par le compresseur, l'arbre creux comprenant un dispositif électrothermique avec une chambre primaire centrale.
Sur la figure 3 est présenté un organigramme d'un procédé de traitement électrothermique de l'air aspiré dans un turboréacteur selon un mode de mise en œuvre de l'invention.
Le procédé de traitement électrothermique comprend dans une première étape 301, l'admission d'un flux d'air comprimé dans un dispositif électrothermique comprenant une chambre de traitement thermique primaire 2 disposée dans une chambre secondaire 3 de traitement thermique.
Dans une étape suivante 302, on prélève une partie 13 du flux d'air comprimé admis dans le dispositif électrothermique et on injecte ce flux d'air primaire 13 dans la chambre primaire 2.
Puis, dans une étape 303, on génère un arc électrique 12 sur le trajet du flux d'air primaire 13 injecté dans la chambre primaire 2 de manière à ioniser l'air et former un plasma permettant de chauffer le flux d'air primaire 13 et ainsi former un flux d'air primaire chauffé 14.
Dans une étape suivante 304, on injecte un flux d'air secondaire 15 dans une chambre secondaire 3, le flux d'air secondaire 15 étant formé à partir du flux d'air comprimé restant après le prélèvement réalisé à l'étape 302 pour former le flux d'air primaire 13. Le flux d'air secondaire 15 est alors à une température inférieure à la température du flux d'air primaire chauffé 14.
La chambre secondaire 3 est réalisée de sorte que le flux d'air secondaire 15 soit en relation d'échange thermique avec le premier flux d'air chauffé 14 lorsque celui-ci sort de la chambre primaire 2. Cet échange thermique permet d'une part de réduire les pertes énergétiques dues aux « frozen flows », la température plus faible du flux d'air secondaire 15 forçant la recombinaison des molécules et des ions se trouvant dans des états excités à la sortie de la chambre primaire 2. D'autre part, l'échange thermique entre le flux d'air primaire chauffé 14 et le flux d'air secondaire 15 permet également de chauffer le flux d' air secondaire 15 et d' obtenir ainsi en sortie du dispositif électrothermique un flux d' air de sortie possédant une température supérieure à la température du flux d' air comprimé admis .
Le flux d ' air de sortie peut alors être délivré à une turbine d'un turboréacteur pour actionner l ' arbre de transmission reliant le compresseur 25 à la turbine 26, avant d' être expulsé du turboréacteur 20 et de générer une force de poussée vers l ' avant du turboréacteur 20.
L 'invention fournit ainsi un dispositif électrothermique capable de chauffer un flux d' air assez important pour permettre la propulsion d'un engin aérospatial. Le dispositif électrothermique permet d' augmenter le rendement énergétique d'une chambre de traitement électrothermique à arc électrique et d' augmenter la quantité d' air chauffé dans un turboréacteur.
On notera en outre que le dispositif électrothermique qui vient d' être décrit permet d' augmenter la durée pendant laquelle le flux d' air se situe dans des conditions favorables à la récupération des « frozen flows », c ' est-à-dire des pertes par ionisation et de dissociation des particules, en réduisant la vitesse du flux primaire.
On notera enfin que l' invention n' est pas limitée aux mo des de réalisation décrits précédemment.
En effet, dans les exemples de réalisation décrits en référence aux figures 1 et 2, la chambre de traitement thermique primaire 2 débouche dans l ' axe de la chambre de traitement thermique secondaire.
Il serait également possible, en variante, d' orienter différemment la chambre de traitement primaire de manière qu ' elle soit orientée orthogonalement à la chambre secondaire de telle sorte que le flux d' air primaire chauffé soit orthogonal au flux d ' air secondaire afin d' augmenter la section d' échange thermique entre les deux flux d' air primaire et secondaire.

Claims

REVENDICATIONS
1. Dispositif (1, 100) électrothermique pour système de propulsion, comprenant une chambre primaire (2) comportant une tuyère anodique (6) munie d'un passage d'entrée (7), une pointe cathodique (9) au moins partiellement insérée dans le passage d'entrée (7), une entrée d'air (10) primaire débouchant dans le passage d'entrée (7), et un générateur de tension (11) disposé entre la tuyère anodique (6) et la pointe cathodique (9) de manière à générer un arc électrique (12) sur le trajet du flux d'air primaire (13) injecté dans la chambre primaire (2), caractérisé en ce qu'il comprend une chambre secondaire (3) dans laquelle circule un flux d'air secondaire (3) en relation d'échange thermique avec le flux d'air primaire chauffé (14) issu de la chambre primaire (2), le flux d'air secondaire (15) possédant une température inférieure au flux d'air primaire chauffé (14) sortant de la chambre primaire (2).
2. Dispositif (1, 100) selon la revendication 1, comprenant des moyens de séparation d'un flux d'air comprimé en un flux d'air primaire (13) et un flux d'air secondaire (15).
3. Dispositif (1, 100) selon l'une des revendications 1 ou 2, dans lequel la chambre secondaire (3) comprend la chambre primaire (2)·
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la chambre primaire s'étend parallèlement à la chambre secondaire de manière à délivrer un flux d'air chauffé dans la même direction que le flux d'air secondaire.
5. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la chambre primaire s'étend perpendiculairement à la chambre secondaire de manière à délivrer un flux d'air chauffé orthogonal au flux d'air secondaire.
6. Dispositif (1, 100) selon l'une quelconque des revendications 1 à 5, comprenant en outre au moins une chambre primaire supplémentaire apte à délivrer un flux d'air primaire supplémentaire chauffé par un arc électrique généré à partir d'un générateur de tension sur le trajet du premier flux d'air supplémentaire injecté dans la chambre primaire supplémentaire, la chambre supplémentaire étant en relation d'échange thermique avec le flux d'air secondaire (15).
7. Système de propulsion, caractérisé en ce qu'il comprend un dispositif (100) électrothermique selon l'une quelconque des revendications 1 à 6.
8. Engin aérospatial comprenant au moins un système de propulsion (20) selon la revendication 7.
9. Procédé de traitement électrothermique d'air dans un système de propulsion, comprenant l'injection d'un flux primaire d'air (13) dans une chambre primaire (2), la génération d'un arc électrique (12) sur le trajet du flux d'air primaire injecté dans la chambre primaire (2), caractérisé en ce qu'on injecte un flux d'air secondaire (15) dans une chambre secondaire (3) en relation d'échange thermique avec le flux d'air primaire chauffé (14) dans la chambre primaire (2), le flux d'air secondaire (15) possédant une température inférieure au flux d'air primaire chauffé (14) sortant de la chambre primaire (2).
10. Procédé selon la revendication 9, dans lequel on sépare un flux d'air comprimé en un flux d'air primaire (13) et un flux d'air secondaire (15), le flux d'air secondaire (15) étant plus grand que le flux d'air primaire (13).
11. Procédé selon l'une des revendications 9 ou 10, dans lequel on injecte le flux d'air primaire chauffé (14) dans la direction du flux d'air secondaire (15).
12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel on injecte au moins un flux d'air primaire supplémentaire dans une chambre primaire supplémentaire, on chauffe le flux d'air primaire supplémentaire à l'aide d'un arc électrique généré dans la chambre primaire supplémentaire, le flux d'air primaire supplémentaire chauffé étant en relation d'échange thermique avec le flux d'air secondaire (15).
EP13756388.8A 2012-08-28 2013-08-26 Dispositif électrothermique pour système de propulsion, notamment pour turboréacteur, système de propulsion comprenant un tel dispositif électrothermique, et procédé associé Withdrawn EP2890887A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258040A FR2995017B1 (fr) 2012-08-28 2012-08-28 Dispositif electrothermique pour systeme de propulsion, notamment pour turboreacteur, systeme de propulsion comprenant un tel dispositif electrothermique, et procede associe.
PCT/EP2013/067637 WO2014033091A1 (fr) 2012-08-28 2013-08-26 Dispositif électrothermique pour système de propulsion, notamment pour turboréacteur, système de propulsion comprenant un tel dispositif électrothermique, et procédé associé

Publications (1)

Publication Number Publication Date
EP2890887A1 true EP2890887A1 (fr) 2015-07-08

Family

ID=47003133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13756388.8A Withdrawn EP2890887A1 (fr) 2012-08-28 2013-08-26 Dispositif électrothermique pour système de propulsion, notamment pour turboréacteur, système de propulsion comprenant un tel dispositif électrothermique, et procédé associé

Country Status (4)

Country Link
US (1) US10047732B2 (fr)
EP (1) EP2890887A1 (fr)
FR (1) FR2995017B1 (fr)
WO (1) WO2014033091A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10559864B2 (en) 2014-02-13 2020-02-11 Birmingham Technologies, Inc. Nanofluid contact potential difference battery
FR3018315A1 (fr) * 2014-03-07 2015-09-11 Elwing Europ S A Dispositif electrothermique de generation d'energie mecanique optimise, et systeme de propulsion associe
FR3018311A1 (fr) * 2014-03-07 2015-09-11 Elwing Europ S A Dispositif electrothermique de generation d'energie mecanique thermiquement optimise, et systeme de propulsion associe
FR3026281B1 (fr) 2014-09-25 2018-08-24 L'oreal Organe d'application comportant deux parties assemblees.
US11493066B2 (en) * 2016-01-20 2022-11-08 Soliton Holdings Generalized jet-effect and enhanced devices
CN110318963B (zh) * 2019-07-08 2020-07-17 哈尔滨工业大学 一种基于热节流阀的工质流量供给量调节装置
FR3101383B1 (fr) * 2019-09-26 2023-06-09 Tarek Romain Imtital Propulseur électrothermique à double-flux
US11649525B2 (en) 2020-05-01 2023-05-16 Birmingham Technologies, Inc. Single electron transistor (SET), circuit containing set and energy harvesting device, and fabrication method
US11713140B2 (en) * 2020-06-11 2023-08-01 The Aerospace Corporation Lithium ion battery de-orbiter
US11417506B1 (en) 2020-10-15 2022-08-16 Birmingham Technologies, Inc. Apparatus including thermal energy harvesting thermionic device integrated with electronics, and related systems and methods
US11616186B1 (en) 2021-06-28 2023-03-28 Birmingham Technologies, Inc. Thermal-transfer apparatus including thermionic devices, and related methods
US20240278939A1 (en) * 2023-02-20 2024-08-22 Eagle Technology, Llc Satellite propulsion system including combustion chamber and electrical arc heater and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577461A (en) * 1983-06-22 1986-03-25 Cann Gordon L Spacecraft optimized arc rocket
US6145298A (en) * 1997-05-06 2000-11-14 Sky Station International, Inc. Atmospheric fueled ion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3071705A (en) * 1958-10-06 1963-01-01 Grumman Aircraft Engineering C Electrostatic propulsion means
GB897577A (en) * 1959-07-15 1962-05-30 Bristol Siddeley Engines Ltd Improvements in or relating to apparatus for producing a jet consisting of a plasma of ions and electrons
US3593525A (en) * 1969-02-19 1971-07-20 Us Army Rocket motor thrust controller
US4882465A (en) * 1987-10-01 1989-11-21 Olin Corporation Arcjet thruster with improved arc attachment for enhancement of efficiency
GB2241746A (en) * 1990-03-03 1991-09-11 Whittaker D G M Method of energising a working fluid and deriving useful work.
US6357700B1 (en) * 2000-10-02 2002-03-19 Anthony Italo Provitola Electrically powered spacecraft/airship
US6834492B2 (en) * 2001-06-21 2004-12-28 Busek Company, Inc. Air breathing electrically powered hall effect thruster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577461A (en) * 1983-06-22 1986-03-25 Cann Gordon L Spacecraft optimized arc rocket
US6145298A (en) * 1997-05-06 2000-11-14 Sky Station International, Inc. Atmospheric fueled ion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014033091A1 *

Also Published As

Publication number Publication date
US10047732B2 (en) 2018-08-14
WO2014033091A1 (fr) 2014-03-06
FR2995017A1 (fr) 2014-03-07
US20150211499A1 (en) 2015-07-30
FR2995017B1 (fr) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2014033091A1 (fr) Dispositif électrothermique pour système de propulsion, notamment pour turboréacteur, système de propulsion comprenant un tel dispositif électrothermique, et procédé associé
EP2643579B1 (fr) Propulseur combine turboreacteur et statoreacteur
EP0333585B1 (fr) Propulseur combiné turbo-fusée aérobie
EP3345290B1 (fr) Generateur magnetohydrodynamique.
WO2012156595A1 (fr) Statoréacteur à chambre de détonation, engin volant comprenant un tel statoréacteur.
FR2649160A1 (fr) Propulseur electrothermique a chambre d'arc a rendement ameliore
FR2987081A1 (fr) Ensemble et procede propulsifs
EP0403372B1 (fr) Propulseur combiné turbofusée statoréacteur à réchauffe et son procédé de fonctionnement
FR3042543B1 (fr) Torche d'allumage pour moteur fusee
EP3066330B1 (fr) Ensemble propulsif et procédé d'alimentation en ergols
FR2664659A1 (fr) Propulseur a reaction et a arc electrique et anode pour un tel propulseur.
FR2651835A1 (fr) Propulseur a reaction assiste par un arc electrique.
US7021043B2 (en) Jet engine using exhaust gas
RU2387582C2 (ru) Комплекс для реактивного полета
FR3018311A1 (fr) Dispositif electrothermique de generation d'energie mecanique thermiquement optimise, et systeme de propulsion associe
FR3018315A1 (fr) Dispositif electrothermique de generation d'energie mecanique optimise, et systeme de propulsion associe
US20120047872A1 (en) Hydrogen gas generator for jet engines
EP0939216B1 (fr) Moteur mixte susceptible de mettre en oeuvre au moins un mode statoréacteur et un mode superstatoréacteur
WO2014191637A2 (fr) Dispositif de propulsion de type aérobie et / ou anaérobie à fonctionnement en régime permanent de type combiné et simultané et systèmes et ensembles propulsés comportant un tel dispositif
FR3044047A1 (fr) Dispositif de propulsion de type aerobie et/ou anaerobie a fonctionnement en regime permanent de type combine et simultane et systemes et ensembles propulses comportant un tel dispositif
FR3101383A1 (fr) Propulseur électrothermique à double-flux
FR3142749A1 (fr) Procédé de lancement d’un véhicule spatial
CN115535309A (zh) 一种空气燃料推动卫星的装置和方法
FR3065202A1 (fr) Propulseur spatial
EP1359309A1 (fr) Turbine à gaz comportant un dispositif de mélange de gaz à lobes et à tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180618

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210302