EP2884169B1 - Wirbelbettvorrichtung - Google Patents

Wirbelbettvorrichtung Download PDF

Info

Publication number
EP2884169B1
EP2884169B1 EP13197372.9A EP13197372A EP2884169B1 EP 2884169 B1 EP2884169 B1 EP 2884169B1 EP 13197372 A EP13197372 A EP 13197372A EP 2884169 B1 EP2884169 B1 EP 2884169B1
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
chamber
solid particles
heat transfer
common
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13197372.9A
Other languages
English (en)
French (fr)
Other versions
EP2884169A1 (de
Inventor
Klaus-Dieter Pohl
Pieter Blättermann
Pieter Koch
Oguzhan Narin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doosan Lentjes GmbH
Original Assignee
Doosan Lentjes GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13197372.9A priority Critical patent/EP2884169B1/de
Application filed by Doosan Lentjes GmbH filed Critical Doosan Lentjes GmbH
Priority to PL13197372.9T priority patent/PL2884169T3/pl
Priority to RS20160747A priority patent/RS55111B1/sr
Priority to PCT/EP2014/067496 priority patent/WO2015090637A1/en
Priority to US15/038,347 priority patent/US20160290632A1/en
Priority to CN201480063959.8A priority patent/CN105745494A/zh
Priority to ARP140104209A priority patent/AR098355A1/es
Publication of EP2884169A1 publication Critical patent/EP2884169A1/de
Application granted granted Critical
Publication of EP2884169B1 publication Critical patent/EP2884169B1/de
Priority to HK16110130.2A priority patent/HK1221987A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/005Fluidised bed combustion apparatus comprising two or more beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection

Definitions

  • the invention relates to so-called Circulating Fluidized Bed Apparatus (CFBA) and its components, in particular
  • CFBA Circulating Fluidized Bed Apparatus
  • the aerated particulate material/fuel mixture allows to promote the incineration process and effectivity.
  • the Incineration charge is fluidized by the air/gas, often blown in via nozzles.
  • the fluidized bed comprises a so-called denseboard area, above said grate and adjacent to the said permeable reactor bottom, while the density of the particulate material within the fluidized bed gets less within the upper part of the reactor space, also called the freeboard area of the fluidized bed.
  • the reaction chamber is often limited by outer water tube walls; made of tubes, through which water runs, wherein said tubes are either welded directly to each other to give a wall structure or with fins/ribs between parallel running tube sections.
  • the CFBR typically has at least one outlet port at its upper end, wherein said outlet port allows the mixture of gas and solid particles exhausted from the reactor, to flow into at least one associated separator.
  • US 7520249 B2 discloses a CFBR comprising a reaction chamber which is subdivided into a combustion sub-chamber and a cooling sub-chamber as well as at least one separator, that receives flue gas from the combustion sub-chamber and separates particles from said flue gas.
  • the CFBR further comprises an external bed, which receives particles from such separator, and provides the particles to the combustion sub-chamber again.
  • US 5299532 refers to a CFBR with a number of heat exchangers for the solid particles, extracted from a combustion chamber, wherein the number of heat exchangers communicate with each other via corresponding opendings, through which the solid particles may flow to mix.
  • the invention provides the following improvement with respect to a Circulating Fluidized Bed Apparatus, hereinafter also called CFBA, fluidized bed apparatus or apparatus and its components.
  • CFBA Circulating Fluidized Bed Apparatus
  • the improvement refers to a fluidized bed apparatus according to claim 1.
  • the totally suspended (for example hanging) construction allows to adapt the thermal expansions of the associated construction elements and avoids mechanical forces, thermo-mechanical forces and/or moments between adjacent construction parts.
  • each separator is followed by one heat exchanger (with a syphon like seal in between), while the improvement reduces the number of construction parts insofar as at least two, or three, or all (namely n) heat exchangers are combined into one element.
  • Cooling means water cooled walls are designed as common walls between adjacent sections of a combined heat exchanger.
  • the heat transfer means can be designed in a wall-like pattern and extending substantially parallel to the main flow direction of the solid particles on their way to and through the outlet port.
  • the wall like structure (a flat and compact design of an individual heat transfer means) in combination with its orientation are the main features, allowing to arrange a group (set) of multiple heat transfer means at a distance to each other with channels like "cavities/gaps" in between, extending as well in the flow/transport direction of the solid particles towards the outlet area of the chamber.
  • wall like does not refer to a cubic design with flat surfaces but the overall volume which the respective heat transfer means.
  • a tube, meandering (zig-zag) such that the central longitudinal axis of the tube lies in one imaginary plane is an example for a wall-like pattern.
  • Tube sections may extend in different directions along two axis of the coordinate system.
  • This design allows the solid particles within the fluidized bed to flow between said individual heat transfer means, namely within said spaces (channels) formed between adjacent heat transfer means, without any obstacles (baffles) but including the option to flow from one of said channels/spaces/gaps into an adjacent one.
  • the fluidized bed heat exchanger comprises at least two heat transfer means within one chamber, each being provided with a heat transfer medium inlet port and a heat transfer medium outlet port, wherein a first heat transfer means is designed as a reheater and second heat transfer means is designed as a superheater to achieve a heat transfer medium pressure above that of the reheater.
  • This design is best realized with at least two distinct groups/sets of heat transfer means to provide different thermodynamic features within the FBHE and to allow to optimize the heat transfer and efficiency of the FBHE.
  • All heat transfer means for example distinct steam tubes
  • All heat transfer means may be linked to one central steam feeding line and steam outlet line respectively. Insofar the extra work for installation is reduced to one further feeding and extracting line, in case of two groups of heat exchangers, while allowing to achieve different thermodynamic conditions within the chamber.
  • This embodiment relates to feeding of the particulate material into the fluidized bed heat exchanger (FBHE).
  • FBHE fluidized bed heat exchanger
  • the FBHE (its inner chamber/space) typically has a cubic or cylindrical shape of high volume.
  • This embodiment allows to distribute the solid particles on their way into the chamber over a much larger area, depending on the shape and size of the distribution means. At the same time the density of the solids within the particle stream is reduced, which further increases the heat transfer efficiency from the hot particles into the heat transfer medium (a brine, steam or the like).
  • the heat transfer medium a brine, steam or the like.
  • transition region includes the end section of the inlet port adjacent to the chamber of the FBHE as well the adjacent section of the chamber and any area in between.
  • Said means for introducing the fluidizing gas can be provided by a multiplicity of nozzles arranged along the bottom area of said chamber and different nozzles being charged with different gas pressure.
  • At least one baffle may extend downwardly from the chamber ceiling of the FBHE, substantially perpendicular to a straight line between inlet port and outlet port, with its lower end at a distance to the heat transfer means.
  • This at least one baffle does not influence the flow of the solid particles within the part of the FBHE equipped with the heat transfer means as it is arranged above said heat transfer means and only serves to redirect the incoming solid particle stream (downwardly) and to equalize the pressure above the fluidized bed and along the horizontal cross section of the chamber, in particular, if provided with opening(s).
  • the baffles have the function of separation walls and avoid short circuits of the solid material flow (directly from the inlet port to the outlet port). They urge the solid particle stream to penetrate into the heat transfer zone between the heat transfer means (the channels mentioned above).
  • Figure 1 discloses the general concept of a fluidized bed apparatus and its main components according to the present invention.
  • the fluidized bed heat exchanger 24 displays an inlet port 22 at its upper end (in Figure 2 : top left) and an outlet port 30 at its upper end (in Figure 2 : top right), I. e. opposite to each other.
  • Said outlet port 30 provides return means for solid particles transported along transfer duct 20 into said FBHE and is provided within a common wall 14w of chamber 14 and FBHE 24.
  • Outlet port 30 comprises multiple flow through openings, arranged in a horizontal row with a distance to each other along a corresponding wall section of said wall 14w.
  • Said wall 14w is water-cooled, namely constructed of vertically extending tubes with fins running between adjacent tubes.
  • the tubes are cooled by water fed through said tubes.
  • the through holes having the function of discrete outlet ports are shown in Figure 2 in a slightly inclined orientation, with a lower end towards the fluidized bed heat exchanger 24 and a higher end towards the fluidized bed reactor chamber 14.
  • This inclined orientation can be provided as part of a 3-dimensional profile (for example as a convexity 14w') of said wall 14w towards the inner space/chamber of the fluidized bed heat exchanger 24 as shown in dotted lines in Figure 2 and characterized by numeral 30'.
  • FIG 2 further shows the design and construction of heat transfer means 28 within the fluidized bed heat exchanger 24. In the Figure only one of said heat transfer means is shown. Further heat transfer means of equal design are placed at a distance to each other within FBHE 24 (perpendicular to the plane of projection).
  • each of said means 28 is designed in a wall-like pattern and extending substantially parallel to the main flow direction of the solid particles on their way to and through the outlet port 30, symbolized in Figure 2 by arrow S.
  • All tubes 28 are connected to the same feeding line 42 and outlet line 44.
  • the meandering tubes not only give the heat transfer means 28 a wall-like pattern but as well a grid-like structure to allow the particulate material to pass through as well in a horizontal direction.
  • the horizontally extending sections of said tubes are about three times longer than the vertically extending sections ( Figure 2 is not drawn to scale). Adjacent horizontal sections extent to a distance to each other being about the tube diameter.
  • the heat transfer means 28 extent about more than 60 % of the chamber height, being the distance between a chamber bottom 24b and a chamber sealing 24c.
  • each of said wall-like heat transfer means 28 extends from slightly above bottom 24b to slightly below inlet port 22 and from slightly off wall 14w to slightly off opposite wall 24w.
  • the particulate material may take a direct way from the inlet port 22 to the outlet port 30 (see arrow S) along the channels/gaps C formed between adjacent tubes (heat transfer means), as may be seen in Figure 3 .
  • Fluidization of the particulate material within FBHE 24 is achieved by air nozzles 46 in the bottom area 24b.
  • the particulate material is circulated by said purging means within FBHE 24 in order to optimize heat transfer from the hot solid particles P onto the steam flowing within tube like heat transfer means 28.
  • FIG. 4 differs from that of Figures 2 , 3 insofar as two baffles 50, 52 extent from sealing 24c downwardly, ending shortly above heat transfer means 28. These baffles 50, 52 extend substantially perpendicular to a straight line between inlet port 22 and outlet port 30 (dotted line L).
  • Both baffles 50, 52 extend between opposite walls of FBHE 24 (only one, namely 24s is shown), being the walls bridging said walls 14w, 24w.
  • the baffles 50, 52 are arranged at a distance to each other.
  • Each of said baffles 50, 52 comprise one opening symbolized by dotted line O to allow pressure adjustment (equalization) within the inner space of FBHE 24.
  • the said baffle(s) 50, 52 may as well be designed like a curtain, fulfilling the same function as a continuous board, namely to urge the particulate material to flow through said channels C ( Figure 3 ) between adjacent heat transfer means 28 on their way between inlet port 22 and outlet port 30.
  • outlet port 30 is extended, namely protruding into circulating fluidized bed reactor 10.
  • multiplicity of heat transfer means 28 is split into two groups.
  • a first group G1 is made of a number of heat transfer means 28 as shown in Figures 2 , 3 with the exception that the horizontal extension between walls 24w, 14w is much shorter and ending about half the way between said walls 14w, 24w.
  • This group G1 of multiple heat transfer tubes 28 connected to a common feeding line 42 and a common outlet line 44 is characterized by a feeding temperature of 480°C and an outlet temperature of 560°C of the heat transfer medium (steam) and an average steam pressure of 32 bar, thus fulfilling the function of a so called reheater.
  • the second group G2 of several heat transfer means 28 is constructed the same way as group G1 but connected so separate inlet lines 42' and outlet lines 44' for said steam and designed to achieve a heat transfer medium temperature of between 510°C (inlet temperature) and 565°C (outlet temperature) as well as an average 170 bar pressure. This allows to use the tubes of group G2 as a so called superheater.
  • tubes of group G2 are arranged closer to the outlet port 30 and adjacent to wall 14w while tubes of group G1 are arranged adjacent to wall 24w with a distance between groups G1 and G2.
  • Figure 6 is a top view of Figure 5 along line 6-6 in Figure 5 .
  • the fluidized bed heat exchanger 24 displays a different design around inlet port 22, which widens towards the inner space of chamber 24, wherein said widened section 22w is further inclined towards the bottom area 24b of FBHE 24 to provide a distributor means allowing the entering stream of solid particles to spread over substantially the full width of said inner space of chamber 24, wherein the width is defined by the distance of side wall 24s.
  • This distributor means (section 22s) are arranged in a transition region defined by end section of inlet port 22 and the adjacent section of chamber 24, extending upstream of said heat transfer means 28 and extending over about 2/3 of the chamber width.
  • Ribs 22r protrude from the surface of said distributor 22s and are arranged in a star-like pattern.
  • Figure 8 displays an FBHE 24 characterized by a modified bottom area 24b.
  • Each nozzle comprises an outer end 46o, protruding downwardly from the outer surface of bottom 24b and an inner end 46i, protruding into the hollow space of FHBE 24 equipped with groups G1, G2 of heat exchange tubes 28.
  • the nozzles 46 are assembled into five nozzle sets N1, N2, N3, N4 and N5, one behind the other in a row between walls 24w and 14w. All nozzles 46 of a nozzle set are commonly connected to a respective common gas channel 48. If air is fed along one of these channels all corresponding nozzles 46 will be activated to allow air to enter into FBHE 24.
  • discrete nozzle sets N1... N5 with discrete channels 48 make it possible to set different air pressure in different channels and accordingly to introduce air into the fluidized bed of solid particles within FBHE under different pressure at different areas to optimize homogenisation of the particles within the fluidized bed.
  • a similar design may be used to improve the syphon-type seal 26 between separator 18 and FBHE 24 or reactor 10 respectively.
  • the multiplicity of air nozzles 27 is split into three nozzles sets SN1, SN2 and SN3, each with a certain number of nozzles 27, and each coupled to a respective air duct D1, D2 and D3, feeding air to the respective nozzles 27 under same or different pressure.
  • the air ducts D1..D3 have a funnel shape at their upper ends.
  • Figure 9 represents a fluidized bed apparatus wherein its main components, namely the CFBR 10, the FBHE 24 as well as corresponding separators 18 are mounted in a suspended manner to a central supporting structure, namely a frame 60.
  • the frame 60 has the shape of an inverted U with its legs 601 fixed within ground GR.
  • the FBHE 24 is mounted in a suspended manner from separator 18.
  • the fluidized bed heat exchanger has no refractory lining; all walls are water cooled metal walls.
  • the hanging structure allows an integration of a syphon 26 with its return duct 26r without transferring mechanical forces or moments between the respective construction parts.
  • the lowermost point LP1 of outlet port 30 of fluidized bed heat exchanger 24 enters the circulating fluidized bed reactor 10 at a height of >0,15L, calculated from the lowermost end of the axial length L of CFBR 10.
  • the lowermost end is defined by grate 12 of the fluidized bed.
  • the minimum distance of >0,1L, better >0,2L allows to place the return means 30 out of the so called denseboard DB and avoids the risk of any backflow of solid particles from the fluidized bed within reactor 10 into the associated construction elements like FBHE 24.
  • This feature may be combined with sloped outlet ports 30 as disclosed in Figure 2 or sloped return ducts 26r.
  • the lowermost point of return duct 26r of syphon 26 enters the CFBR at a height of the denseboard DB, close to grate 12 and below outlet port 30.
  • Figure 10 discloses an embodiment with three corresponding fluidized bed heat exchangers 24.1, 24.2, 24.3 which are mechanically connected to provide one common fluidized bed heat exchanger 24 of corresponding, suitable size, with water-cooled intermediate walls 24i. Again: all three wall sections 14w of the common heat exchanger 24 are part of the reactor wall 14, i.e. a common water-cooled wall with integrated outlet openings 30.
  • Walls 14i, 14w are made of metal tubes, welded to each other and connected with a fluid source to feed cooling water through said tubes.

Claims (9)

  1. Fließbettapparat mit einem Reaktor (10) mit zirkulierende Wirbelschicht, mit mindestens einem Auslass (16) an seinem oberen Abschnitt (18), wobei der Auslass (16) es ermöglicht, dass eine Mischung aus Gas und festen Bestandteilen aus dem Wirbelschichtreaktor (10) in eine Zahl (n) zugehöriger Trenneinrichtungen (18) fließt, um die festen Teilchen vom Gas zu trennen, einer Zahl (n) von Mitteln (20), um die abgetrennten festen Teilchen von den (n) Trenneinrichtungen (18) in eine Zahl (bis zu n) diskreter Fließbett-Wärmetauscher (24.1, 24.2, 24.3) zu überführen und Rückführrnitteln zum Transport wenigstens eines Teils der festen Teilchen zurück von den diskreten Fließbett-Wärmetauschern (24) in den Reaktor (10) mit zirkulierender Wirbelschicht, wobei
    jeder diskrete Fließbett-Wärmetauscher eine Kammer umfasst, die mindestens einen Einlass für feste Teilchen und mindestens einen Auslass für feste Teilchen im Abstand zu dem mindestens einen Einlass aufweist, Mittel zur Zuführung eines Fluidisierungsgases vom Bodenbereich der Kammer in die Kammer, eine Vielzahl von Wärmetauschermitteln in der Kammer, wobei ein einzelnes Wärmetauschermittel in einer wandähnlichen Struktur gestaltet ist und eine Vielzahl von Wärmetauschermitteln in Abstand zueinander mit Kanälen dazwischen angeordnet ist, wobei die Wärmeübertragungsmittel und die Kanäle sich im Wesentlichen parallel zur Hauptfließrichtung der festen Teilchen auf ihrem Weg zu und durch den Auslass erstrecken,
    die Zahl (bis zu n) diskreter Fließbett-Wärmetauscher (24.1, 24.2, 24.3) mechanisch verbunden ist, um einen gemeinsamen Fließbett-Wärmetauscher (24) zu bilden, mit einer wassergekühlten Zwischenwand (24i) zwischen benachbarten diskreten Fließbettwärmetauschern (24.1, 24.2, 24.3), wobei der Reaktor (10) mit zirkulierender Wirbelschicht, die (n) Trenneinrichtung(en) (18) und der gemeinsame Fließbett-Wärmetauscher (24) hängend befestigt sind.
  2. Fließbettapparat nach Anspruch 1, wobei die diskreten Fließbett-Wärmetauscher (24.1, 24.2, 24.3) in einer Reihe arrangiert sind, um den gemeinsamen Fließbett-Wärmetauscher (24) zu bilden.
  3. Fließbettapparat nach Anspruch 1, wobei die wassergekühlten Zwischenwände (24i) wassergekühlte Rohre umfassen.
  4. Fließbettapparat nach Anspruch 1, wobei die wassergekühlten Zwischenwände (24i) wassergekühlte Rohre aufweisen, wobei benachbarte Rohre durch metallische Stege verbunden sind.
  5. Fließbett nach Anspruch 1, wobei der gemeinsame Fließbett-Wärmetauscher (24) an der/den Trenneinrichtung(en) (18) hängt.
  6. Fließbettapparat mit einem zirkulierenden Wirbelschichtreaktor (10) nach Anspruch 1, wobei der gemeinsame Fließbett-Wärmetauscher (24) und der Reaktor (10) mit zirkulierender Wirbelschicht eine gemeinsame Wand (14w) aufweisen.
  7. Fließbettapparat nach Anspruch 6, wobei die gemeinsame Wand (14w) wassergekühlt ist.
  8. Fließbettapparat nach Anspruch 6, wobei die gemeinsame Wand (14w) eine oder mehrere Öffnungen aufweist, die die Funktion von Rückführmitteln erfüllen.
  9. Fließbettapparat nach Anspruch 1, wobei der gemeinsame Fließbettwärme-tauscher (24) Kammerwände (14w) aufweist, die zumindest teilweise wassergekühlt sind.
EP13197372.9A 2013-12-16 2013-12-16 Wirbelbettvorrichtung Active EP2884169B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL13197372.9T PL2884169T3 (pl) 2013-12-16 2013-12-16 Urządzenie ze złożem fluidalnym
RS20160747A RS55111B1 (sr) 2013-12-16 2013-12-16 Uređaj sa fluidizovanim slojem
EP13197372.9A EP2884169B1 (de) 2013-12-16 2013-12-16 Wirbelbettvorrichtung
US15/038,347 US20160290632A1 (en) 2013-12-16 2014-08-15 Fluidized Bed Apparatus
PCT/EP2014/067496 WO2015090637A1 (en) 2013-12-16 2014-08-15 Fluidized bed apparatus
CN201480063959.8A CN105745494A (zh) 2013-12-16 2014-08-15 流化床设备
ARP140104209A AR098355A1 (es) 2013-12-16 2014-11-10 Aparato de lecho fluidizado
HK16110130.2A HK1221987A1 (zh) 2013-12-16 2016-08-25 流化床設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13197372.9A EP2884169B1 (de) 2013-12-16 2013-12-16 Wirbelbettvorrichtung

Publications (2)

Publication Number Publication Date
EP2884169A1 EP2884169A1 (de) 2015-06-17
EP2884169B1 true EP2884169B1 (de) 2016-07-27

Family

ID=49766982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13197372.9A Active EP2884169B1 (de) 2013-12-16 2013-12-16 Wirbelbettvorrichtung

Country Status (8)

Country Link
US (1) US20160290632A1 (de)
EP (1) EP2884169B1 (de)
CN (1) CN105745494A (de)
AR (1) AR098355A1 (de)
HK (1) HK1221987A1 (de)
PL (1) PL2884169T3 (de)
RS (1) RS55111B1 (de)
WO (1) WO2015090637A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571299A (zh) * 2016-01-28 2016-05-11 福建省玛塔农业发展有限公司 生产牡蛎壳粉的焙烧设备及焙烧工艺
EP3222911B1 (de) 2016-03-21 2018-09-19 Doosan Lentjes GmbH Fliessbettwärmetauscher und entsprechende verbrennungsvorrichtung
US20170356642A1 (en) * 2016-06-13 2017-12-14 The Babcock & Wilcox Company Circulating fluidized bed boiler with bottom-supported in-bed heat exchanger
FI127753B (en) 2017-06-09 2019-01-31 Bioshare Ab Recovery of chemicals from fuel streams

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169418A (en) * 1977-06-23 1979-10-02 Vfe Corp. Method and a system for incinerating combustible wastes
US4615715A (en) 1985-03-15 1986-10-07 Foster Wheeler Energy Corporation Water-cooled cyclone separator
US5239946A (en) * 1992-06-08 1993-08-31 Foster Wheeler Energy Corporation Fluidized bed reactor system and method having a heat exchanger
US5772969A (en) * 1992-11-10 1998-06-30 Foster Wheeler Energia Oy Method and apparatus for recovering heat in a fluidized bed reactor
US5299532A (en) * 1992-11-13 1994-04-05 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having multiple furnace and recycle sections
US5537941A (en) * 1994-04-28 1996-07-23 Foster Wheeler Energy Corporation Pressurized fluidized bed combustion system and method with integral recycle heat exchanger
US5522160A (en) * 1995-01-05 1996-06-04 Foster Wheeler Energia Oy Fluidized bed assembly with flow equalization
US5911201A (en) * 1996-01-13 1999-06-15 Llb Lurgi Lentjes Babcock Energietechnik Gmbh Steam boiler with pressurized circulating fluidized bed firing
JPH10253011A (ja) * 1997-03-13 1998-09-25 Hitachi Zosen Corp 燃焼装置
US6305330B1 (en) * 2000-03-03 2001-10-23 Foster Wheeler Corporation Circulating fluidized bed combustion system including a heat exchange chamber between a separating section and a furnace section
FI114289B (fi) 2000-04-07 2004-09-30 Foster Wheeler Energia Oy Laite hiukkasten erottamiseksi kuumista kaasuista
FR2891893B1 (fr) * 2005-10-07 2007-12-21 Alstom Technology Ltd Reacteur a lit fluidise circulant a procede de combustion convertible
CN101311626B (zh) * 2007-05-25 2012-03-14 巴布考克及威尔考克斯公司 整体式流化床灰冷却器
CN102840577B (zh) * 2011-06-23 2015-03-25 中国科学院工程热物理研究所 带紧凑式外置双流化床换热器的循环流化床锅炉
CN102809150A (zh) * 2012-08-28 2012-12-05 云南电力试验研究院(集团)有限公司电力研究院 一种基于外置式换热器的循环流化床锅炉排渣方法

Also Published As

Publication number Publication date
EP2884169A1 (de) 2015-06-17
CN105745494A (zh) 2016-07-06
WO2015090637A1 (en) 2015-06-25
US20160290632A1 (en) 2016-10-06
HK1221987A1 (zh) 2017-06-16
PL2884169T3 (pl) 2016-12-30
AR098355A1 (es) 2016-05-26
RS55111B1 (sr) 2016-12-30

Similar Documents

Publication Publication Date Title
EP2361148B1 (de) Kessel mit zirkulierender wirbelschicht
EP2884169B1 (de) Wirbelbettvorrichtung
PL198809B1 (pl) Obiegowe fluidyzacyjne urządzenie kotłowe
EP0995065B1 (de) Wirbelschichtreaktor
US10900660B2 (en) Fluidized bed heat exchanger
KR100808417B1 (ko) 순환식 유동층 반응기 시스템의 배열체
EP2884172A1 (de) Wirbelbettsiphon
EP2884170A1 (de) Wirbelbettvorrichtung
EP2884162A1 (de) Wirbelbett-Wärmetauscher
EP2884164A1 (de) Wirbelbett-Wärmetauscher
EP2884165A1 (de) Wirbelbett-Wärmetauscher
KR20140138298A (ko) 순환 유동층 보일러
EP2884168A1 (de) Wirbelbettvorrichtung und Befestigungskomponenten
EP2884167A1 (de) Wirbelbettvorrichtung
EP2884166A1 (de) Wirbelbett-Wärmetauscher
EP3054215B1 (de) Fließbettwärmetauscher
FI119974B (fi) Leijukerrosreaktorijärjestelmä ja menetelmä sen valmistamiseksi
KR102106395B1 (ko) 유동층 열교환기 및 이에 대응하는 소각 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140815

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160421

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 816111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013009807

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 816111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 22543

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013009807

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20211203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221208

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231208

Year of fee payment: 11

Ref country code: FR

Payment date: 20231219

Year of fee payment: 11

Ref country code: FI

Payment date: 20231218

Year of fee payment: 11

Ref country code: DE

Payment date: 20231214

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231204

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231204

Year of fee payment: 11