EP2879341B1 - Channel-estimation method for FBMC telecommunication system - Google Patents

Channel-estimation method for FBMC telecommunication system Download PDF

Info

Publication number
EP2879341B1
EP2879341B1 EP14192852.3A EP14192852A EP2879341B1 EP 2879341 B1 EP2879341 B1 EP 2879341B1 EP 14192852 A EP14192852 A EP 14192852A EP 2879341 B1 EP2879341 B1 EP 2879341B1
Authority
EP
European Patent Office
Prior art keywords
sub
preamble
channel
carrier
carriers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14192852.3A
Other languages
German (de)
French (fr)
Other versions
EP2879341A1 (en
Inventor
Jean-Baptiste Dore
Vincent Berg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2879341A1 publication Critical patent/EP2879341A1/en
Application granted granted Critical
Publication of EP2879341B1 publication Critical patent/EP2879341B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26534Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/2654Filtering per subcarrier, e.g. filterbank multicarrier [FBMC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0236Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols using estimation of the other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03783Details of reference signals
    • H04L2025/03796Location of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26416Filtering per subcarrier, e.g. filterbank multicarrier [FBMC]

Definitions

  • the present invention generally relates to the field of telecommunication systems using filter bank multi-carrier modulation, also referred to as FBMC (Filter Bank Multi-Carrier) systems.
  • FBMC Filter Bank Multi-Carrier
  • Telecommunication systems using multi-carrier modulation are well known in the state of the art.
  • the principle of such modulation consists in dividing the transmission band into a plurality of frequency sub-channels associated with sub-carriers and in modulating each of these sub-carriers by the data to be transmitted.
  • OFDM modulation Orthogonal Frequency Division Multiplexing
  • WiMAX wireless broadband internet access
  • DVD-T digital broadcasting systems
  • xDSL asymmetric digital
  • LTE fourth generation of cellular telephony
  • each block of OFDM symbols is preceded by a guard interval or else by a cyclic prefix, longer than the time spread of the impulse response of the channel, so as to eliminate the interference. intersymbol.
  • the insertion of a guard interval or a prefix however leads to a loss of spectral efficiency.
  • the spectral occupancy of an OFDM signal being noticeably greater than the band of sub-carriers that it uses in Due to the spreading of the secondary lobes, OFDM modulation is not an optimal solution for applications requiring high out-of-band rejection ratios.
  • a filter bank modulation or FBMC can be used as an alternative to OFDM modulation.
  • FBMC modulation is based on a synthesis by bank of filters on transmission and an analysis by bank of filters on reception.
  • the Fig. 1 schematically represents the structure of a first FBMC transmission/reception system known from the state of the art.
  • Each block of N symbols is supplied in parallel to N input channels of a preprocessing module 110, referred to as OQAM (Offset QAM) preprocessing.
  • This pre-processing module performs an OQAM-type data modulation, that is to say temporally demultiplexes the real part and the imaginary part of x k [ n ] with a rate of 2 f .
  • Each of the N processing channels corresponds to a sub-channel.
  • the outputs of the polyphase, oversampled and delayed filters are summed by adder 139 before transmission on channel 150.
  • Polyphase filters are frequency-translated versions of k / MT of a prototype filter whose impulse response is of duration KT , i.e. the output of one polyphase filter temporally overlaps the output of the adjacent polyphase filter by M samples. As a result, a polyphase filter output temporally overlaps K other polyphase filter outputs. The coefficient K is therefore called the overlapping factor .
  • the received signal is sampled with a rate Nf .
  • the samples are supplied in the form of blocks of size N to an analysis filter bank, 160, comprising a plurality of delays, 163, arranged in parallel and varying from 0 to N -1 sampling periods, in the order inverse of the delays 137.
  • the analysis filters have a combined impulse response and reversed in time with respect to the corresponding synthesis filter. Since the prototype filter is real-valued and time-reversed, an analysis filter can be shown to have the same impulse response as the corresponding synthesis filter.
  • the combination of a synthesis filter with the corresponding analysis filter gives a Nyquist filter.
  • the symbols at the output of the synthesis filters then undergo an FFT (fast Fourier transform) of size N at 170, the various frequency components of the FFT then being supplied to the post-processing module 180 carrying out an inverse processing from that of pretreatment 110.
  • FFT fast Fourier transform
  • the synthesis/analysis filtering being carried out in the time domain, respectively at the output of the IFFT module and at the input of the FFT module, the FBMC system illustrated in Fig. 1 will be said to be implemented in the time domain.
  • the FBMC system is capable of representation in the frequency domain as described in the document of M. Bellanger et al. entitled “FBMC physical layer: a primer” available on the website www.ict-phydyas.org .
  • FIG. 2 An implementation of the FBMC system in the frequency domain is shown in Fig. 2 .
  • Fig. 2 the pre-processing module 210 performing an OQAM modulation of the data to be transmitted.
  • Each of the data is then spread in frequency over an interval of 2K-1 adjacent sub-carriers centered on a sub-channel sub-carrier, each data being weighted by the (real) value taken by the transfer function of the synthesis filter at the corresponding frequency.
  • the frequency spreading and filtering module by the prototype filter is designated by 220. It will be understood that this operation is equivalent to that of the filtering by the synthesis filters 133 in the temporal implementation.
  • Data of the same parity i and i + 2 are spectrally separated and those of opposite parities i and i + 1 overlap as shown in Fig. 3A .
  • this overlap does not generate interference since two data items of opposite parity are necessarily located respectively on the real axis and the imaginary axis.
  • the data d i [ n ] and d i +2 [ n ] are real values (represented by solid lines) while the data d i +1 [ n ] is an imaginary value (represented by dotted lines).
  • the frequency-spread and filtered data is then subjected to an IFFT of size KN at 230.
  • the size of the IFFT is extended by a factor K by compared to that of the Fig. 1 , the filtering by the synthesis filters being found here performed upstream of the IFFT, in the frequency domain.
  • the outputs of the IFFT are then combined in the combiner 240 as shown in Fig. 4 .
  • the set of samples at the output of the IFFT represents an FBMC symbol in the time domain, it being understood that the real part and the imaginary part of this symbol are shifted by T /2.
  • the signal thus obtained is then translated into the RF band.
  • the signal received, demodulated in baseband, is sampled by the receiver at the rate Nf.
  • a sliding FFT (the window of the sliding FFT of KT between two FFT calculations) of size KN is performed in the FFT module, 260, on blocks of consecutive KN samples.
  • the outputs of the FFT are then subjected to spectral filtering and despreading in module 270.
  • obtaining data having ranks of same parity for example I r not and I + 2 r not use blocks of disjoint samples whereas those of two consecutive ranks, of inverse parities, overlap.
  • the despreading of real data is represented by continuous lines while that of imaginary data is represented by dotted lines.
  • Data I r not thus obtained are then supplied to a post-processing module 280, performing the inverse processing to that of the module 210, in other words an OQAM demodulation.
  • One of the problems to be solved in FBMC systems is to perform the estimation of the transmission channel. This channel estimate is necessary in order to be able to equalize the signal in reception and restore the transmitted message.
  • a so-called one-coefficient equalization is generally performed per sub-carrier, at least as long as the time spread of the channel remains less than the duration of the guard interval (or of the prefix).
  • the Fig. 3 illustrates a known equalization scheme for an OFDM receiver.
  • the received signal is subjected to an FFT in the module 310 after baseband demodulation and analog-digital conversion.
  • a channel estimator 320 estimates the (complex) attenuation coefficients for each sub-carrier of the OFDM multiplex and transmits these coefficients to an equalization module operating on each of the sub-carriers.
  • the equalization module 330 can perform an equalization by subcarrier of the ZF ( Zero Forcing ) type or of the MMSE ( Minimum Mean Square Error ) type in a manner known per se.
  • Channel estimation in an OFDM system typically requires inserting pilot symbols, that is to say symbols known to the receiver, in a frame of OFDM symbols transmitted by the transmitter. These pilot symbols are distributed on different sub-carriers of the OFDM multiplex.
  • the channel estimator is then able to determine the (complex) attenuation coefficient of the channel for each of the sub-carriers carrying a pilot symbol and, if necessary, to deduce therefrom the attenuation coefficients of the remaining sub-carriers at using an interpolation in the frequency domain.
  • Channel estimation in FBMC telecommunication systems uses similar techniques. You will find in the article of E. Kofidis et al. entitled “Preamble-based channel estimation in OFDM/OQAM systems: a review”, May 8, 2013 , a review of different channel estimation methods in systems using FBMC modulation.
  • pilot symbols cannot be performed as in OFDM insofar as the time and frequency multiplexing in an FBMC frame does not guarantee the orthogonality of the components in phase and in quadrature (i.e. say of the real and imaginary parts of the received pilot symbols).
  • a symbol at time n and on carrier k can generate interference in a neighborhood in time and frequency around the position ( n , k ), this interference being real or imaginary depending on the position considered within this neighborhood.
  • the equalization is generally carried out in the frequency domain, after the filtering by the prototype filter (that is to say at the output of the FFT module 170 of the Fig. 1 or module 270 of the Fig. 2 ).
  • the aforementioned article by Bellanger proposes alternatively to carry it out, in the frequency domain, before filtering by the prototype filter (that is to say between the FFT module 260 and the filter 270 of the Fig. 2 ).
  • this document does not specify how to perform the channel estimation then. Indeed, at this stage, the impulse response of the system is modified due to the absence of filtering by the prototype filter and the channel estimation is not trivial.
  • the article " OFDM and FMBC transmission techniques: a compatible high performance proposal for broadband power line communications" by M Bellanger, ISPLC 2010 teaches a method that uses a weighting function to reduce edge effects.
  • the object of the present invention is to propose a channel estimation method in an FBMC telecommunication system, which does not have the aforementioned drawbacks, in particular which does not require pre-emphasis at the transmitter level and which is simple to implement. implemented.
  • the pilot symbols may in particular all be identical.
  • a sub-carrier on Q consecutive subcarriers carries a pilot symbol, Q being an integer greater than or equal to 2, the other subcarriers carrying a zero symbol.
  • the channel estimation is performed only on the stationary part of the preamble, the weighting coefficients relating to the same sub-carrier and to successive blocks, are identical and equal to 1 ⁇ k , where v is the number of successive blocks taken into consideration for the estimation of the channel coefficient relative to the sub-carrier, ⁇ k depending on the impulse response of the prototype filter as well as on the pilot symbols present in the time and frequency medium of this filter.
  • the weighting coefficients ( ⁇ n , k ) relating to the same sub-carrier and to different blocks are a function of the impulse response of the prototype filter, of the size of the preamble, of the pilot symbols present in the time and frequency support of the prototype filter and the type of data used in the frame.
  • the channel estimate relating to a sub-carrier is advantageously obtained as an MRC combination of estimates made from the successive blocks obtained over the entire duration of the preamble.
  • Said weighting coefficients can be calculated iteratively, the channel coefficients estimated from the weighting coefficients obtained during an iteration being used to estimate the data following the preamble, during the following iteration and, conversely, the data thus estimated during an iteration being used to update said weighting coefficients at the following iteration.
  • the invention also relates to an equalization method within an FBMC receiver, in which a channel estimation is carried out as indicated above, from the pilot symbols distributed in time and frequency within the preamble and in which a ZF or MMSE type equalization is carried out on the data symbols following the preamble, by means of the channel coefficients estimated for the said plurality of sub-carriers.
  • the transmitter can be a base station and the receiver a terminal (downlink) or the transmitter can be a terminal and the receiver a base station (uplink).
  • the signal transmitted by the transmitter comprises a preamble consisting of pilot symbols, followed by data symbols.
  • the pilot symbols and the data symbols are subject to FBMC modulation as described in the introduction.
  • the basic idea of the invention is to perform the equalization upstream of the filtering by the prototype filter, by choosing an appropriate form of preamble and by combining for each subcarrier channel estimates obtained at instants of successive reception within the preamble.
  • the Fig. 5 represents the form of a preamble transmitted by an FBMC transmitter, before transposition into the RF band.
  • one sub-carrier out of two is transmitted with a pilot symbol, the other sub-carriers being assigned null symbols.
  • the successive pilot symbols within the preamble are identical.
  • one out of two sub-carriers carries the sequence of pilot symbols +1,+1,...,+1 and the other sub-carriers carry zero sequences, this for the entire duration of the preamble.
  • Three distinct zones can be distinguished in the waveform of the preamble: a first zone, 510, at the start of the preamble, corresponding to a transient state of duration substantially equal to the rise time of the prototype filter, a second zone, 520, corresponding to a steady state, in which the envelope of the signal is substantially constant, and a third zone, 530, at the end of the preamble, again corresponding to a transient state, of duration substantially equal to the fall time of the prototype filter.
  • the preamble waveform in the first transient region is generally not symmetrical to that in the second transient region. Indeed, during the second transient zone, the data following the preamble influence the waveform due to the time overlap of the prototype filters.
  • the preamble can be represented by the following table in which, as previously, the rows correspond to the sub-carriers and the columns to the instants of transmission: P0 _ P0 _ P0 _ P0 _ ... ...
  • provision may be made for one out of two sub-carriers to carry a pilot symbol (for example the sub-carriers of even indices) and for the other sub-carriers to carry zero symbols.
  • This variant can be declined in a more general way, by providing that a sub-carrier on Q ( Q integer greater than or equal to 2) consecutive sub-carriers will carry a pilot symbol, the other sub-carriers carrying a zero symbol.
  • the pilot symbols may be identical.
  • the preamble will have the following structure: P P P P ... P P 0 0 0 0 ... 0 0 P P P P P ... P P 0 0 0 0 ... 0 0 ⁇ ⁇ ⁇ ... ⁇ ⁇ P P P P ... P P P
  • the channel estimation is performed from the pilot symbols of the preamble in the steady state zone, i.e. after the rise time of the prototype filter, the rise of the filter starting at the beginning of the preamble and before the fall time of the prototype filter, the fall of the filter ending at the end of the preamble.
  • the symbols transmitted on the various sub-carriers are not only affected by an attenuation coefficient (complex coefficient) but also by a noise which we will assume Gaussian additive white.
  • the first embodiment however assumes that the preamble is long enough for a steady state to be established. More precisely, for a prototype filter of duration KN, the preamble must be of duration at least equal to (2 K -1) N. This preamble duration can be penalizing when the data frames are short (high overhead/data ratio) . In this case, it will be preferred to implement the second embodiment of the invention.
  • a preamble composed of a predetermined pattern of pilot symbols is transmitted.
  • the pattern may consist of the temporal repetition of an elementary pattern as in the first embodiment.
  • the constancy constraint over time can be relaxed, in other words it is not necessary for the pilot symbols carried by the same sub-carrier to be identical.
  • P p , i is the pilot symbol carried by the subcarrier of index p at instant of transmission i .
  • MRC Maximum Ratio Combining
  • the instants of reception considered can here be chosen outside the steady state, in particular during the first transient zone 510 or during the second transient zone 530 of the Fig. 5 .
  • data symbols appear in the sum in the denominator of the expression (9) as well as in that in the denominator of the expression (10), due to the overflow of the support of the prototype filter on the part "data" of the frame.
  • Statistical processing is then used by averaging over the various possible data symbols. It can be assumed for this purpose that the probability density of the OQAM symbols is evenly distributed.
  • weighting coefficients ⁇ n , k taking into account the type of prototype filter, the rise time (equal to the fall time) of the prototype filter, the size of the preamble, the type of data used in the frame.
  • the weighting coefficients are then stored in a table ( look-up table ) of the receiver which is addressed by the aforementioned parameters.
  • the channel estimation makes it possible to refine the estimation of these data and therefore the weighting coefficients.
  • the more precise estimation of the data makes it possible to update the weighting coefficients and to refine the channel estimation.
  • the iterations can be stopped when a convergence criterion is satisfied or after a predetermined number of iterations.
  • the Fig. 6 illustrates an example of an FBMC receiver implementing a channel estimation method according to one embodiment of the invention.
  • the FBMC receiver shown uses a frequency implementation as shown in Fig. 2 .
  • the received signal is translated into baseband and sampled at the rate Nf and subjected to an FFT of size KN, in the FFT module, 610.
  • the extraction module For each block of samples output from the FFT, the extraction module, 620, extracts the received pilot symbols.
  • the extraction of the pilot symbols takes place during the stationary regime of the preamble
  • the second embodiment it can take place during all or part of the preamble, independently of the stationary or transient nature of the part considered.
  • the channel estimation module, 630 performs channel estimation using expression (7) or (12), depending on the embodiment considered.
  • the complex coefficients ⁇ k or ⁇ n , k are stored in a memory 635. If necessary, this memory can be addressed by parameters (filter length, preamble size, etc.) as explained above.
  • the channel coefficient estimates ⁇ h k ⁇ for each subcarrier k carrying a pilot symbol are supplied to the interpolation module 640. This module determines the missing channel coefficients by interpolation. Thus, when the channel coefficient is estimated only for a subcarrier on Q , it will be possible to proceed by interpolation to an estimation of channel coefficients for the remaining subcarriers.
  • the channel coefficients for all the sub-carriers are then supplied to the equalization module 650.
  • the symbols are filtered in the frequency domain by an analysis filter bank (frequency-translated copies of the prototype filter), 660, then supplied to an OQAM demodulation module.
  • an analysis filter bank frequency-translated copies of the prototype filter
  • the channel estimation method according to the first or the second embodiment of the invention can also be applied in the case of a time-based implementation of the FBMC receiver.
  • the equalization is carried out in the time domain downstream of the filtering by the bank of analysis filters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne de manière générale le domaine des systèmes de télécommunication utilisant une modulation multi-porteuse à banc de filtres, encore dénommés systèmes FBMC (Filter Bank Multi-Carrier).The present invention generally relates to the field of telecommunication systems using filter bank multi-carrier modulation, also referred to as FBMC (Filter Bank Multi-Carrier) systems.

ÉTAT DE LA TECHNIQUE ANTÉRIEUREPRIOR ART

Les systèmes de télécommunication utilisant une modulation multi-porteuse sont bien connus dans l'état de la technique. Le principe d'une telle modulation consiste à diviser la bande de transmission en une pluralité de sous-canaux fréquentiels associés à des sous-porteuses et à moduler chacune de ces sous-porteuses par les données à transmettre.Telecommunication systems using multi-carrier modulation are well known in the state of the art. The principle of such modulation consists in dividing the transmission band into a plurality of frequency sub-channels associated with sub-carriers and in modulating each of these sub-carriers by the data to be transmitted.

La modulation multi-porteuse la plus répandue est sans aucun doute la modulation OFDM (Orthogonal Frequency Division Multiplexing). Celle-ci est mise en œuvre dans les réseaux locaux sans fil WLAN, WiFi, dans l'accès internet sans fil à haut débit (WiMAX), les systèmes de radiodiffusion numérique (DVB-T, ISDB-T, DAB), les liaisons numériques asymétriques (xDSL), la quatrième génération de téléphonie cellulaire (LTE), etc.The most widespread multi-carrier modulation is undoubtedly the OFDM modulation (Orthogonal Frequency Division Multiplexing). This is implemented in wireless local area networks WLAN, WiFi, in wireless broadband internet access (WiMAX), digital broadcasting systems (DVB-T, ISDB-T, DAB), asymmetric digital (xDSL), the fourth generation of cellular telephony (LTE), etc.

Dans un système de transmission OFDM, chaque bloc de symboles OFDM est précédé d'un intervalle de garde ou bien d'un préfixe cyclique, de longueur supérieure à l'étalement temporel de la réponse impulsionnelle du canal, de manière à éliminer l'interférence intersymbole. L'insertion d'un intervalle de garde ou d'un préfixe conduit toutefois à une perte d'efficacité spectrale. Enfin, l'occupation spectrale d'un signal OFDM étant sensiblement plus importante que la bande de sous-porteuses qu'il utilise en raison de l'étalement des lobes secondaires, la modulation OFDM n'est pas une solution optimale pour des applications nécessitant de forts taux de réjection hors bande.In an OFDM transmission system, each block of OFDM symbols is preceded by a guard interval or else by a cyclic prefix, longer than the time spread of the impulse response of the channel, so as to eliminate the interference. intersymbol. The insertion of a guard interval or a prefix however leads to a loss of spectral efficiency. Finally, the spectral occupancy of an OFDM signal being noticeably greater than the band of sub-carriers that it uses in Due to the spreading of the secondary lobes, OFDM modulation is not an optimal solution for applications requiring high out-of-band rejection ratios.

Une modulation par banc de filtres ou FBMC (Filter Bank Multi Carrier) peut être utilisée comme alternative à la modulation OFDM.A filter bank modulation or FBMC (Filter Bank Multi Carrier) can be used as an alternative to OFDM modulation.

Une comparaison entre les systèmes FBMC et les systèmes OFDM est présentée dans l'article de B. Farhang-Bouroujeny intitulé « OFDM versus filter bank multicarrier » publié dans IEEE Signal Processing Magazine, pp. 91-112, Mars 2011 .A comparison between FBMC systems and OFDM systems is presented in the article by B. Farhang-Bouroujeny entitled “OFDM versus filter bank multicarrier” published in IEEE Signal Processing Magazine, pp. 91-112, March 2011 .

Le principe de la modulation FBMC est basé sur une synthèse par banc de filtres à l'émission et une analyse par banc de filtres à la réception.The principle of FBMC modulation is based on a synthesis by bank of filters on transmission and an analysis by bank of filters on reception.

La Fig. 1 représente de manière schématique la structure d'un premier système d'émission/ réception FBMC connu de l'état de la technique.The Fig. 1 schematically represents the structure of a first FBMC transmission/reception system known from the state of the art.

Cette structure a été décrite en détail dans l'article de B. Hirosaki intitulé « An orthogonally multiplexed QAM system using the discrète Fourier transform » publié dans IEEE Trans on Comm., vol. 29 No. 7, pp. 982-989, Juillet 1981 , ainsi que dans l'article de P. Siohan et al. intitulé « Analysis and design of OFDM/OQAM systems based on filterbank theory" publié dans IEEE Trans. on signal processing, vol. 50, No 5, pp. 1170-1183, Mai 2002 .This structure has been described in detail in the article by B. Hirosaki entitled “An orthogonally multiplexed QAM system using the discrete Fourier transform” published in IEEE Trans on Comm., vol. 29 No. 7, p. 982-989, July 1981 , as well as in the article by P. Siohan et al. entitled "Analysis and design of OFDM/OQAM systems based on filterbank theory" published in IEEE Trans. on signal processing, vol. 50, No 5, pp. 1170-1183, May 2002 .

Au niveau de l'émetteur, les symboles de modulation QAM à transmettre avec une cadence Nff =1/T sont groupés par blocs de taille N, x 0[n],...,x N-1[n], n est l'indice temporel du bloc. Chaque bloc de N symboles est fourni en parallèle à N voies d'entrée d'un module de prétraitement 110, dit prétraitement OQAM (Offset QAM). Ce module de prétraitement effectue une modulation des données de type OQAM, c'est-à-dire démultiplexe temporellement la partie réelle et la partie imaginaire de xk [n] avec une cadence de 2f.At the transmitter level, the QAM modulation symbols to be transmitted with a rate Nf where f =1/ T are grouped into blocks of size N, x 0 [ n ],..., x N -1 [ n ] , where n is the time index of the block. Each block of N symbols is supplied in parallel to N input channels of a preprocessing module 110, referred to as OQAM (Offset QAM) preprocessing. This pre-processing module performs an OQAM-type data modulation, that is to say temporally demultiplexes the real part and the imaginary part of x k [ n ] with a rate of 2 f .

Les échantillons ainsi obtenus sont fournis sous la forme de blocs de taille N à un banc de filtres de synthèse 120, constitué d'un module IFFT (transformée de Fourier rapide inverse) de taille N, 130, d'une pluralité N de filtres polyphasés 133, d'une pluralité de sur-échantillonneurs 135, de facteur M = N / 2, en sortie des différents filtres polyphasés, et enfin d'une pluralité de retards, 137, arrangés en parallèle et variant de 0 à N - 1 périodes d'échantillonnage. Chacune des N voies de traitement correspond à un sous-canal.The samples thus obtained are supplied in the form of blocks of size N to a bank of synthesis filters 120, consisting of an IFFT (inverse fast Fourier transform) module of size N, 130, of a plurality N of polyphase filters 133, of a plurality of over-samplers 135, of factor M = N /2, at the output of the various filters polyphase, and finally a plurality of delays, 137, arranged in parallel and varying from 0 to N - 1 sampling periods. Each of the N processing channels corresponds to a sub-channel.

Les sorties des filtres polyphasés, sur-échantillonnées et retardées sont sommées par l'additionneur 139 avant transmission sur le canal 150.The outputs of the polyphase, oversampled and delayed filters are summed by adder 139 before transmission on channel 150.

Les filtres polyphasés sont des versions translatées en fréquence de k / MT d'un filtre prototype dont la réponse impulsionnelle est de durée KT, autrement dit la sortie d'un filtre polyphasé recouvre temporellement la sortie du filtre polyphasé adjacent de M échantillons. Il en résulte qu'une sortie de filtre polyphasé recouvre temporellement K autres sorties de filtres polyphasés. Le coefficient K est dénommé pour cette raison coefficient de recouvrement (overlapping factor).Polyphase filters are frequency-translated versions of k / MT of a prototype filter whose impulse response is of duration KT , i.e. the output of one polyphase filter temporally overlaps the output of the adjacent polyphase filter by M samples. As a result, a polyphase filter output temporally overlaps K other polyphase filter outputs. The coefficient K is therefore called the overlapping factor .

Du côté du récepteur, le signal reçu est échantillonné avec une cadence Nf . Les échantillons sont fournis sous forme de blocs de taille N à un banc de filtres d'analyse, 160, comprenant une pluralité de retards, 163, arrangés en parallèle et variant de 0 à N -1 périodes d'échantillonnage, dans l'ordre inverse des retards 137. Les flux d'échantillons issus des différents retards sont ensuite décimés d'un facteur M = N / 2 par les décimateurs 165 puis filtrés par les filtres d'analyse 167. Les filtres d'analyse ont une réponse impulsionnelle conjuguée et inversée temporellement par rapport au filtre de synthèse correspondant. Etant donné que le filtre prototype est à valeurs réelles et symétrique par inversion temporelle, on peut montrer qu'un filtre d'analyse a la même réponse impulsionnelle que le filtre de synthèse correspondant. La combinaison d'un filtre de synthèse avec le filtre d'analyse correspondant (produit des fonctions de transfert) donne un filtre de Nyquist.On the receiver side, the received signal is sampled with a rate Nf . The samples are supplied in the form of blocks of size N to an analysis filter bank, 160, comprising a plurality of delays, 163, arranged in parallel and varying from 0 to N -1 sampling periods, in the order inverse of the delays 137. The streams of samples coming from the various delays are then decimated by a factor M = N /2 by the decimators 165 then filtered by the analysis filters 167. The analysis filters have a combined impulse response and reversed in time with respect to the corresponding synthesis filter. Since the prototype filter is real-valued and time-reversed, an analysis filter can be shown to have the same impulse response as the corresponding synthesis filter. The combination of a synthesis filter with the corresponding analysis filter (product of the transfer functions) gives a Nyquist filter.

Les symboles en sortie des filtres de synthèse font ensuite l'objet d'une FFT (transformée de Fourier rapide) de taille N en 170, les différentes composantes fréquentielles de la FFT étant ensuite fournies au module de post-traitement 180 effectuant un traitement inverse de celui du prétraitement 110.The symbols at the output of the synthesis filters then undergo an FFT (fast Fourier transform) of size N at 170, the various frequency components of the FFT then being supplied to the post-processing module 180 carrying out an inverse processing from that of pretreatment 110.

Le filtrage de synthèse/analyse étant réalisé dans le domaine temporel, respectivement en sortie du module IFFT et en entrée du module FFT, le système FBMC illustré en Fig. 1 sera dit implémenté dans le domaine temporel.The synthesis/analysis filtering being carried out in the time domain, respectively at the output of the IFFT module and at the input of the FFT module, the FBMC system illustrated in Fig. 1 will be said to be implemented in the time domain.

Le système FBMC est susceptible de représentation dans le domaine fréquentiel comme décrit dans le document de M. Bellanger et al. intitulé « FBMC physical layer : a primer » disponible sur le site www.ict-phydyas.org . The FBMC system is capable of representation in the frequency domain as described in the document of M. Bellanger et al. entitled “FBMC physical layer: a primer” available on the website www.ict-phydyas.org .

Une implémentation du système FBMC dans le domaine fréquentiel est représentée en Fig. 2.An implementation of the FBMC system in the frequency domain is shown in Fig. 2 .

On retrouve en Fig. 2 le module de prétraitement 210 effectuant une modulation OQAM des données à transmettre.We find in Fig. 2 the pre-processing module 210 performing an OQAM modulation of the data to be transmitted.

Chacune des données est ensuite étalée en fréquence sur un intervalle de 2K-1 sous-porteuses adjacentes centré sur une sous-porteuse de sous-canal, chaque donnée étant pondérée par la valeur (réelle) prise par la fonction de transfert du filtre de synthèse à la fréquence correspondante. Autrement dit chaque symbole OQAM di [n] est étalé sur 2K -1 sous-porteuses adjacentes pour donner : d i , k n = d i n G k , k = K + 1 , , 0 , .. K 1

Figure imgb0001
Each of the data is then spread in frequency over an interval of 2K-1 adjacent sub-carriers centered on a sub-channel sub-carrier, each data being weighted by the (real) value taken by the transfer function of the synthesis filter at the corresponding frequency. In other words, each OQAM symbol d i [ n ] is spread over 2 K -1 adjacent sub-carriers to give: I , k not = I not G k , k = K + 1 , , 0 , .. K 1
Figure imgb0001

Le module d'étalement en fréquence et de filtrage par le filtre prototype est désigné par 220. On comprendra que cette opération est équivalente à celle du filtrage par les filtres de synthèse 133 dans l'implémentation temporelle.The frequency spreading and filtering module by the prototype filter is designated by 220. It will be understood that this operation is equivalent to that of the filtering by the synthesis filters 133 in the temporal implementation.

Les données de même parité i et i + 2 sont séparées spectralement et celles de parités contraires i et i + 1 se chevauchent comme représenté en Fig. 3A. Ce chevauchement n'engendre toutefois pas d'interférence puisque deux données de parités contraires sont nécessairement respectivement situées sur l'axe réel et l'axe imaginaire. Par exemple, en Fig. 3A, les données di [n] et d i+2[n] sont des valeurs réelles (représentées en traits continus) alors que la donnée d i+1[n] est une valeur imaginaire (représentée par des traits en pointillés).Data of the same parity i and i + 2 are spectrally separated and those of opposite parities i and i + 1 overlap as shown in Fig. 3A . However, this overlap does not generate interference since two data items of opposite parity are necessarily located respectively on the real axis and the imaginary axis. For example, in Fig. 3A , the data d i [ n ] and d i +2 [ n ] are real values (represented by solid lines) while the data d i +1 [ n ] is an imaginary value (represented by dotted lines).

Les données étalées en fréquence et filtrées font ensuite l'objet d'une IFFT de taille KN en 230. On notera que la taille de l'IFFT est étendue d'un facteur K par rapport à celle de la Fig. 1, le filtrage par les filtres de synthèse se retrouvant ici réalisé en amont de l'IFFT, dans le domaine fréquentiel.The frequency-spread and filtered data is then subjected to an IFFT of size KN at 230. Note that the size of the IFFT is extended by a factor K by compared to that of the Fig. 1 , the filtering by the synthesis filters being found here performed upstream of the IFFT, in the frequency domain.

Les sorties de la IFFT sont ensuite combinées dans le module de combinaison 240 comme indiqué en Fig. 4. L'ensemble des échantillons en sortie de l'IFFT représente un symbole FBMC dans le domaine temporel, étant entendu que la partie réelle et la partie imaginaire de ce symbole sont décalées de T / 2 . Les symboles FBMC ayant chacun une durée KT et se succédant à la cadence f = 1/T, un symbole FBMC est combiné dans le module 240 avec les K / 2 symboles FBMC précédents et K / 2 symboles FBMC suivants. Pour cette raison K est encore appelé facteur de chevauchement (overlapping factor).The outputs of the IFFT are then combined in the combiner 240 as shown in Fig. 4 . The set of samples at the output of the IFFT represents an FBMC symbol in the time domain, it being understood that the real part and the imaginary part of this symbol are shifted by T /2. The FBMC symbols each having a duration KT and succeeding each other at the rate f =1/ T , an FBMC symbol is combined in the module 240 with the K /2 preceding FBMC symbols and K /2 following FBMC symbols. For this reason K is also called overlapping factor .

Il est à noter que l'opération de combinaison en 240 est équivalente à celle intervenant au sein des filtres de synthèse de la Fig. 1.It should be noted that the combination operation at 240 is equivalent to that occurring within the synthesis filters of the Fig. 1 .

Le signal ainsi obtenu est ensuite translaté en bande RF.The signal thus obtained is then translated into the RF band.

Après transmission sur le canal 250, le signal reçu, démodulé en bande de base, est échantillonné par le récepteur à la cadence Nf . After transmission on channel 250, the signal received, demodulated in baseband, is sampled by the receiver at the rate Nf.

Une FFT glissante (la fenêtre de la FFT glissant de KT entre deux calculs de FFT) de taille KN est effectuée dans le module FFT, 260, sur des blocs de KN échantillons consécutifs.A sliding FFT (the window of the sliding FFT of KT between two FFT calculations) of size KN is performed in the FFT module, 260, on blocks of consecutive KN samples.

Les sorties de la FFT sont ensuite soumises à un filtrage et un désétalement spectral dans le module 270. L'opération de désétalement a lieu dans le domaine fréquentiel comme représenté en Fig. 3B. Plus précisément les échantillons d i , k r n

Figure imgb0002
, k = -K + 1,..., 0,..K - 1 correspondant aux 2K-1 fréquences (i-1)K + 1,...iK ,... (i+1)K-1 de la FFT sont multipliés par les valeurs de la fonction de transfert du filtre d'analyse (translatée en fréquence de celle du filtre prototype) aux fréquences en question et les résultats obtenus sont sommés, soit : d i r n = k = K + 1 K 1 G k d i , k r n
Figure imgb0003
The outputs of the FFT are then subjected to spectral filtering and despreading in module 270. The despreading operation takes place in the frequency domain as shown in Fig. 3B . Specifically the samples I , k r not
Figure imgb0002
, k = - K + 1,..., 0,.. K - 1 corresponding to the 2 K -1 frequencies ( i -1) K + 1,... iK ,... ( i +1) K - 1 of the FFT are multiplied by the values of the transfer function of the analysis filter (translated in frequency from that of the prototype filter) at the frequencies in question and the results obtained are summed, i.e.: I r not = k = K + 1 K 1 G k I , k r not
Figure imgb0003

On notera que, comme en Fig. 3A, l'obtention de données ayant des rangs de même parité, par exemple d i r n

Figure imgb0004
et d i + 2 r n
Figure imgb0005
font appel à des blocs d'échantillons disjoints alors que ceux de deux rangs consécutifs, de parités inverses, se chevauchent. Ainsi, l'obtention de la donnée d i + 1 r n
Figure imgb0006
fait appel aux échantillons d i , k r n
Figure imgb0007
, k = 1,.., K -1 ainsi qu'aux échantillons d i + 2 , k r n
Figure imgb0008
, k = -K + 1,...,1 .Note that, as in Fig. 3A , obtaining data having ranks of same parity, for example I r not
Figure imgb0004
and I + 2 r not
Figure imgb0005
use blocks of disjoint samples whereas those of two consecutive ranks, of inverse parities, overlap. Thus, obtaining the data I + 1 r not
Figure imgb0006
calls for samples I , k r not
Figure imgb0007
, k = 1,.., K -1 as well as to the samples I + 2 , k r not
Figure imgb0008
, k = -K + 1,...,1 .

Le désétalement de données réelles est représenté par des traits continus alors que celui des données imaginaires est représenté par des traits en pointillés.The despreading of real data is represented by continuous lines while that of imaginary data is represented by dotted lines.

Il est également important de noter que le filtrage par les filtres d'analyse est ici réalisé dans le domaine fréquentiel, en aval de la FFT, contrairement au mode de réalisation de la Fig. 1.It is also important to note that the filtering by the analysis filters is here carried out in the frequency domain, downstream of the FFT, contrary to the embodiment of the Fig. 1 .

Les données d i r n

Figure imgb0009
ainsi obtenues sont ensuite fournies à un module de post-traitement 280, effectuant le traitement inverse de celui du module 210, autrement dit une démodulation OQAM.Data I r not
Figure imgb0009
thus obtained are then supplied to a post-processing module 280, performing the inverse processing to that of the module 210, in other words an OQAM demodulation.

Un des problèmes à résoudre dans les systèmes FBMC est d'effectuer l'estimation du canal de transmission. Cette estimation de canal est nécessaire pour pouvoir égaliser le signal en réception et restituer le message transmis.One of the problems to be solved in FBMC systems is to perform the estimation of the transmission channel. This channel estimate is necessary in order to be able to equalize the signal in reception and restore the transmitted message.

Dans les systèmes OFDM, on effectue généralement une égalisation dite à un coefficient par sous-porteuse, à tout le moins tant que l'étalement temporel du canal reste inférieur à la durée de l'intervalle de garde (ou du préfixe).In OFDM systems, a so-called one-coefficient equalization is generally performed per sub-carrier, at least as long as the time spread of the channel remains less than the duration of the guard interval (or of the prefix).

La Fig. 3 illustre un schéma d'égalisation connu pour un récepteur OFDM.The Fig. 3 illustrates a known equalization scheme for an OFDM receiver.

Le signal reçu est soumis à une FFT dans le module 310 après démodulation en bande de base et conversion analogique-digitale.The received signal is subjected to an FFT in the module 310 after baseband demodulation and analog-digital conversion.

Un estimateur de canal 320 estime les coefficients d'atténuation (complexes) pour chaque sous-porteuse du multiplex OFDM et transmet ces coefficients à un module d'égalisation opérant sur chacune des sous-porteuses. Le module d'égalisation 330 peut effectuer une égalisation par sous-porteuse de type ZF (Zero Forcing) ou de type MMSE (Minimum Mean Square Error) de manière connue en soi.A channel estimator 320 estimates the (complex) attenuation coefficients for each sub-carrier of the OFDM multiplex and transmits these coefficients to an equalization module operating on each of the sub-carriers. The equalization module 330 can perform an equalization by subcarrier of the ZF ( Zero Forcing ) type or of the MMSE ( Minimum Mean Square Error ) type in a manner known per se.

L'estimation de canal dans un système OFDM requiert généralement l'insertion de symboles pilotes, c'est-à-dire de symboles connus du récepteur, dans une trame de symboles OFDM transmis par l'émetteur. Ces symboles pilotes sont distribués sur des différentes sous-porteuses du multiplex OFDM. L'estimateur de canal est alors capable de déterminer le coefficient d'atténuation (complexe) du canal pour chacune des sous-porteuses portant un symbole pilote et, le cas échéant, en déduire les coefficients d'atténuation des sous-porteuses restantes à l'aide d'une interpolation dans le domaine fréquentiel.Channel estimation in an OFDM system typically requires inserting pilot symbols, that is to say symbols known to the receiver, in a frame of OFDM symbols transmitted by the transmitter. These pilot symbols are distributed on different sub-carriers of the OFDM multiplex. The channel estimator is then able to determine the (complex) attenuation coefficient of the channel for each of the sub-carriers carrying a pilot symbol and, if necessary, to deduce therefrom the attenuation coefficients of the remaining sub-carriers at using an interpolation in the frequency domain.

L'estimation de canal dans les systèmes de télécommunication FBMC utilise des techniques similaires. On trouvera dans l'article de E. Kofidis et al. intitulé « Preamble-based channel estimation in OFDM/OQAM systems : a review », 8 mai 2013 , une revue de différentes méthodes d'estimation de canal dans les systèmes utilisant une modulation FBMC.Channel estimation in FBMC telecommunication systems uses similar techniques. You will find in the article of E. Kofidis et al. entitled “Preamble-based channel estimation in OFDM/OQAM systems: a review”, May 8, 2013 , a review of different channel estimation methods in systems using FBMC modulation.

Toutefois, l'insertion de symboles pilotes ne peut être effectué comme en OFDM dans la mesure où le multiplexage en temps et en fréquence dans une trame FBMC ne garantit pas l'orthogonalité des composantes en phase et en quadrature (c'est-à-dire des parties réelle et imaginaire des symboles pilotes reçus).However, the insertion of pilot symbols cannot be performed as in OFDM insofar as the time and frequency multiplexing in an FBMC frame does not guarantee the orthogonality of the components in phase and in quadrature (i.e. say of the real and imaginary parts of the received pilot symbols).

Le tableau ci-dessous donne la réponse impulsionnelle d'un canal FBMC pour un exemple de filtre prototype et un facteur de chevauchement K = 4. On a noté n l'indice temporel et k l'indice de la sous-porteuse. k/n n-2 n-1 n n+1 n+2 k-1 -0.125 -0.206j 0.239 0.206j -0.125 k 0 0.564 1 0.564 0 k+1 -0.125 0.206j 0.239 -0.206j -0.125 The table below gives the impulse response of an FBMC channel for an example of a prototype filter and an overlap factor K = 4. We denote by n the temporal index and k the index of the sub-carrier. k / n n -2 n -1 not n +1 n +2 k -1 -0.125 -0.206d 0.239 0.206d -0.125 k 0 0.564 1 0.564 0 k +1 -0.125 0.206d 0.239 -0.206d -0.125

On comprend ainsi qu'un symbole au temps n et sur la porteuse k peut engendrer une interférence dans un voisinage en temps et en fréquence autour de la position (n, k), cette interférence étant réelle ou imaginaire selon la position considérée au sein de ce voisinage.It is thus understood that a symbol at time n and on carrier k can generate interference in a neighborhood in time and frequency around the position ( n , k ), this interference being real or imaginary depending on the position considered within this neighborhood.

Ainsi si un symbole pilote +1 est transmis en position (n, k) et une donnée imaginaire αj est transmise en position (n, k -1), on reçoit les symboles suivants : k/n n-2 n-1 n n+1 n+2 k-1 -0.125 0.564α - 0.206j 0.239+αj 0.564α + 0.206j -0.125 k -0.125 aj 0.564 + 0.206j 1+0.239αj 0.564 - 0.206j -0.125αj k+1 -0.125 0.206j 0.239 -0.206j -0.125 Thus if a pilot symbol +1 is transmitted in position ( n , k ) and an imaginary datum αj is transmitted in position ( n, k -1), the following symbols are received: k / n n -2 n -1 not n +1 n +2 k-1 -0.125 0.564α - 0.206j 0.239+αj 0.564α + 0.206j -0.125 k -0.125 aj 0.564 + 0.206d 1+0.239αj 0.564 - 0.206d -0.125αj k +1 -0.125 0.206d 0.239 -0.206d -0.125

On comprend dans cet exemple que si l'on peut récupérer la partie réelle du coefficient de canal de transmission, h k R

Figure imgb0010
, il n'en va pas de même pour la partie imaginaire de ce coefficient. Inversement si la donnée adjacente au symbole pilote avait été réelle, on n'aurait pu estimer la partie imaginaire du coefficient de canal de transmission, h k I
Figure imgb0011
, mais non sa partie réelle.We understand in this example that if we can recover the real part of the transmission channel coefficient, h k R
Figure imgb0010
, it is not the same for the imaginary part of this coefficient. Conversely, if the data adjacent to the pilot symbol had been real, it would not have been possible to estimate the imaginary part of the transmission channel coefficient, h k I
Figure imgb0011
, but not its real part.

Pour remédier à cette difficulté, il a été notamment proposé de calculer les données environnantes de manière à annuler l'interférence affectant le symbole pilote à la réception (cf. article de E. Kofidis précité). Toutefois, cela introduit de la complexité du côté de l'émetteur (calcul complexe du préambule) et augmente la latence du système. En outre, cette préaccentuation peut conduire localement à des niveaux élevés de PAPR (Peak-to-Average Power Ratio) et donc à des problèmes de saturation des amplificateurs.To remedy this difficulty, it has been proposed in particular to calculate the surrounding data so as to cancel the interference affecting the pilot symbol on reception (cf. article by E. Kofidis cited above). However, this introduces complexity on the transmitter side (complex calculation of the preamble) and increases the latency of the system. Furthermore, this pre-emphasis can lead locally to high levels of PAPR ( Peak-to-Average Power Ratio ) and therefore to amplifier saturation problems.

Quelle que soit l'implémentation, temporelle ou fréquentielle, du récepteur, l'égalisation est généralement réalisée dans le domaine fréquentiel, après le filtrage par le filtre prototype (c'est-à-dire en sortie du module FFT 170 de la Fig. 1 ou du module 270 de la Fig. 2). L'article de Bellanger précité propose alternativement de la réaliser, dans le domaine fréquentiel, avant filtrage par le filtre prototype (c'est-à-dire entre le module FFT 260 et le filtre 270 de la Fig. 2). Toutefois, ce document ne précise comment effectuer alors l'estimation de canal. En effet, à ce stade, la réponse impulsionnelle du système est modifiée en raison de l'absence de filtrage par le filtre prototype et l'estimation de canal n'est pas triviale. L'article " OFDM and FMBC transmission techniques : a compatible high performance proposai for broadband power line communications" par M Bellanger, ISPLC 2010 , enseigne une méthode qui utilise une fonction de pondération pour réduire les effets de bord.Whatever the implementation, temporal or frequency, of the receiver, the equalization is generally carried out in the frequency domain, after the filtering by the prototype filter (that is to say at the output of the FFT module 170 of the Fig. 1 or module 270 of the Fig. 2 ). The aforementioned article by Bellanger proposes alternatively to carry it out, in the frequency domain, before filtering by the prototype filter (that is to say between the FFT module 260 and the filter 270 of the Fig. 2 ). However, this document does not specify how to perform the channel estimation then. Indeed, at this stage, the impulse response of the system is modified due to the absence of filtering by the prototype filter and the channel estimation is not trivial. The article " OFDM and FMBC transmission techniques: a compatible high performance proposal for broadband power line communications" by M Bellanger, ISPLC 2010 , teaches a method that uses a weighting function to reduce edge effects.

Le but de la présente invention est de proposer une méthode d'estimation de canal dans un système de télécommunication FBMC, ne présentant pas les inconvénients précités, notamment qui n'exige pas de préaccentuation au niveau de l'émetteur et qui soit simple à mettre en œuvre.The object of the present invention is to propose a channel estimation method in an FBMC telecommunication system, which does not have the aforementioned drawbacks, in particular which does not require pre-emphasis at the transmitter level and which is simple to implement. implemented.

EXPOSÉ DE L'INVENTIONDISCLOSURE OF THE INVENTION

La présente invention est définie par les méthodes des revendications 1 et 4. D'autres modes de réalisation font l'objet des revendications dépendantes. En termes généraux, l'invention concerne une méthode d'estimation de canal pour un système de télécommunication FBMC comprenant un émetteur et un récepteur, l'émetteur étant équipé d'un banc de filtres de synthèse et le récepteur étant équipé d'un banc de filtres d'analyse, les filtres d'analyse et de synthèse étant des versions décalées en fréquence d'un filtre prototype, le signal transmis par l'émetteur comprenant un préambule suivi de symboles de données, le préambule comprenant des symboles pilotes distribués en temps et en fréquence, sur une pluralité de sous-porteuses, dans laquelle:

  • on effectue une FFT sur le signal reçu par le récepteur, avant que celui-ci ne soit filtré par le banc de filtres d'analyse;
  • on extrait des blocs de composantes en sortie de la FFT les symboles pilotes reçus pendant tout ou partie du préambule ;
  • on effectue une estimation des coefficients du canal pour ladite pluralité de sous-porteuses en combinant pour chaque sous-porteuse les composantes relatives à cette sous-porteuse et à des blocs successifs au moyen d'une pluralité de coefficients de pondération prédéterminés.
The present invention is defined by the methods of claims 1 and 4. Further embodiments are subject of the dependent claims. In general terms, the invention relates to a channel estimation method for an FBMC telecommunication system comprising a transmitter and a receiver, the transmitter being equipped with a bank of synthesis filters and the receiver being equipped with a bank of analysis filters, the analysis and synthesis filters being frequency shifted versions of a prototype filter, the signal transmitted by the transmitter comprising a preamble followed by data symbols, the preamble comprising pilot symbols distributed in time and frequency, over a plurality of subcarriers, wherein:
  • an FFT is performed on the signal received by the receiver, before the latter is filtered by the bank of analysis filters;
  • the pilot symbols received during all or part of the preamble are extracted from the blocks of components at the output of the FFT;
  • the coefficients of the channel are estimated for said plurality of sub-carriers by combining, for each sub-carrier, the components relating to this sub-carrier and to successive blocks by means of a plurality of predetermined weighting coefficients.

Les caractéristiques spécifiques de la solution revendiquée sont divulguées plus loin.The specific features of the claimed solution are disclosed below.

Le préambule est avantageusement constitué d'une répétition dans le temps des mêmes symboles pilotes distribués sur ladite pluralité de sous-porteusesThe preamble advantageously consists of a repetition over time of the same pilot symbols distributed over said plurality of sub-carriers

Les symboles pilotes peuvent être notamment tous identiques.The pilot symbols may in particular all be identical.

De préférence, on prévoit qu'à chaque instant de transmission, une sous-porteuse sur Q sous-porteuses consécutives porte un symbole pilote, Q étant un entier supérieur ou égal à 2, les autres sous-porteuses portant un symbole nul.Preferably, it is provided that at each instant of transmission, a sub-carrier on Q consecutive subcarriers carries a pilot symbol, Q being an integer greater than or equal to 2, the other subcarriers carrying a zero symbol.

Selon un premier mode de réalisation, l'estimation de canal n'est effectuée que sur la partie stationnaire du préambule, les coefficients de pondération relatifs à une même sous-porteuse et à des blocs successifs, sont identiques et égaux à 1 νσ k

Figure imgb0012
, où v est le nombre de blocs successifs pris en considération pour l'estimation du coefficient de canal relatif à la sous-porteuse, σk dépendant de la réponse impulsionnelle du filtre prototype ainsi que des symboles pilotes présents dans le support temporel et fréquentiel de ce filtre.According to a first embodiment, the channel estimation is performed only on the stationary part of the preamble, the weighting coefficients relating to the same sub-carrier and to successive blocks, are identical and equal to 1 νσ k
Figure imgb0012
, where v is the number of successive blocks taken into consideration for the estimation of the channel coefficient relative to the sub-carrier, σ k depending on the impulse response of the prototype filter as well as on the pilot symbols present in the time and frequency medium of this filter.

Selon un second mode de réalisation, les coefficients de pondération (µ n,k ) relatifs à une même sous-porteuse et à des blocs différents sont fonction de la réponse impulsionnelle du filtre prototype, de la taille du préambule, des symboles pilotes présents dans le support temporel et fréquentiel du filtre prototype et du type de données utilisées dans la trame.According to a second embodiment, the weighting coefficients ( µ n , k ) relating to the same sub-carrier and to different blocks are a function of the impulse response of the prototype filter, of the size of the preamble, of the pilot symbols present in the time and frequency support of the prototype filter and the type of data used in the frame.

L'estimation de canal relatif à une sous-porteuse est avantageusement obtenue comme une combinaison MRC d'estimations effectuées à partir des blocs successifs obtenus sur toute la durée du préambule.The channel estimate relating to a sub-carrier is advantageously obtained as an MRC combination of estimates made from the successive blocks obtained over the entire duration of the preamble.

Lesdits coefficients de pondération peuvent être calculés de manière itérative, les coefficients de canal estimés à partir des coefficients de pondération obtenus lors d'une itération étant utilisés pour estimer les données suivant le préambule, lors de l'itération suivante et, inversement, les données ainsi estimées lors d'une itération étant utilisées pour mettre à jour lesdits coefficients de pondération à l'itération suivante.Said weighting coefficients can be calculated iteratively, the channel coefficients estimated from the weighting coefficients obtained during an iteration being used to estimate the data following the preamble, during the following iteration and, conversely, the data thus estimated during an iteration being used to update said weighting coefficients at the following iteration.

On peut effectuer une interpolation dans le domaine fréquentiel entre des coefficients du canal pour obtenir un coefficient de canal relatif à une sous-porteuse ne portant pas de symbole pilote.It is possible to perform an interpolation in the frequency domain between the coefficients of the channel to obtain a channel coefficient relating to a sub-carrier not carrying a pilot symbol.

L'invention a également trait à une méthode d'égalisation au sein d'un récepteur FBMC, dans laquelle on effectue une estimation de canal comme indiqué ci-dessus, à partir des symboles pilotes distribués en temps et en fréquence au sein du préambule et dans laquelle on effectue une égalisation de type ZF ou MMSE sur les symboles de données suivant le préambule, au moyen des coefficients de canal estimés pour ladite pluralité de sous-porteuses.The invention also relates to an equalization method within an FBMC receiver, in which a channel estimation is carried out as indicated above, from the pilot symbols distributed in time and frequency within the preamble and in which a ZF or MMSE type equalization is carried out on the data symbols following the preamble, by means of the channel coefficients estimated for the said plurality of sub-carriers.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF DRAWINGS

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de modes de réalisation préférentiels de l'invention faite en référence aux figures jointes parmi lesquelles :

  • La Fig. 1 représente une première implémentation d'un système de télécommunication FBMC connu de l'état de la technique ;
  • La Fig. 2 représente une seconde implémentation d'un système de télécommunication FBMC connu de l'état de la technique ;
  • La Fig. 3A illustre l'étalement spectral réalisé en amont du module IFFT de la Fig. 2 ;
  • La Fig. 3B illustre le désétalement spectral réalisé en aval du module FFT dans la Fig. 2 ;
  • La Fig. 4 illustre la combinaison des symboles FBMC dans la Fig. 2 ;
  • La Fig. 5 illustre un exemple de signal en sortie d'un émetteur FBMC, avant conversion RF ;
  • La Fig. 6 représente schématiquement un exemple de récepteur FBMC mettant en œuvre une méthode d'estimation de canal selon un mode de réalisation de l'invention.
Other characteristics and advantages of the invention will appear on reading preferred embodiments of the invention made with reference to the attached figures, including:
  • The Fig. 1 represents a first implementation of an FBMC telecommunication system known from the state of the art;
  • The Fig. 2 represents a second implementation of an FBMC telecommunication system known from the state of the art;
  • The Fig. 3A illustrates the spectral spreading carried out upstream of the IFFT module of the Fig. 2 ;
  • The Fig. 3B illustrates the spectral despreading carried out downstream of the FFT module in the Fig. 2 ;
  • The Fig. 4 illustrates the combination of FBMC symbols in the Fig. 2 ;
  • The Fig. 5 illustrates an example of an output signal from an FBMC transmitter, before RF conversion;
  • The Fig. 6 schematically represents an example of an FBMC receiver implementing a channel estimation method according to an embodiment of the invention.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED DISCUSSION OF PARTICULAR EMBODIMENTS

Nous considérerons dans la suite un système de télécommunication FBMC comprenant au moins un émetteur et un récepteur. Par exemple l'émetteur peut être une station de base et le récepteur un terminal (liaison descendante) ou bien l'émetteur peut être un terminal et le récepteur une station de base (liaison montante).We will consider below an FBMC telecommunication system comprising at least one transmitter and one receiver. For example, the transmitter can be a base station and the receiver a terminal (downlink) or the transmitter can be a terminal and the receiver a base station (uplink).

Le signal transmis par l'émetteur comprend un préambule constitué de symboles pilotes, suivi de symboles de données. Les symboles pilotes et les symboles de données font l'objet d'une modulation FBMC comme décrit en introduction.The signal transmitted by the transmitter comprises a preamble consisting of pilot symbols, followed by data symbols. The pilot symbols and the data symbols are subject to FBMC modulation as described in the introduction.

L'idée à la base de l'invention est d'effectuer l'égalisation en amont du filtrage par le filtre prototype, en choisissant une forme appropriée de préambule et en combinant pour chaque sous-porteuse des estimations de canal obtenues en des instants de réception successifs au sein du préambule.The basic idea of the invention is to perform the equalization upstream of the filtering by the prototype filter, by choosing an appropriate form of preamble and by combining for each subcarrier channel estimates obtained at instants of successive reception within the preamble.

La Fig. 5 représente la forme d'un préambule émis par un émetteur FBMC, avant la transposition en bande RF.The Fig. 5 represents the form of a preamble transmitted by an FBMC transmitter, before transposition into the RF band.

Dans cet exemple, on a supposé que l'on transmettait un symbole pilote une sous-porteuse sur deux, les autres sous-porteuses se voyant affecter des symboles nuls. Pour une même sous-porteuse, les symboles pilotes successifs au sein du préambule sont identiques. Ainsi, dans le cas présent, une sous-porteuse sur deux transporte la séquence de symboles pilotes +1,+1,...,+1 et les autres sous-porteuses transportent des séquences nulles, ce pendant toute la durée du préambule.In this example, it has been assumed that one sub-carrier out of two is transmitted with a pilot symbol, the other sub-carriers being assigned null symbols. For the same sub-carrier, the successive pilot symbols within the preamble are identical. Thus, in the present case, one out of two sub-carriers carries the sequence of pilot symbols +1,+1,...,+1 and the other sub-carriers carry zero sequences, this for the entire duration of the preamble.

On distingue dans la forme d'onde du préambule trois zones distinctes : une première zone, 510, au début du préambule, correspondant à un régime transitoire de durée sensiblement égale au temps de montée du filtre prototype, une seconde zone, 520, correspondant à un régime stationnaire, dans laquelle l'enveloppe du signal est sensiblement constante, et une troisième zone, 530, en fin de préambule, correspondant à nouveau à un régime transitoire, de durée sensiblement égale au temps de descente du filtre prototype.Three distinct zones can be distinguished in the waveform of the preamble: a first zone, 510, at the start of the preamble, corresponding to a transient state of duration substantially equal to the rise time of the prototype filter, a second zone, 520, corresponding to a steady state, in which the envelope of the signal is substantially constant, and a third zone, 530, at the end of the preamble, again corresponding to a transient state, of duration substantially equal to the fall time of the prototype filter.

La forme d'onde du préambule dans la première zone de régime transitoire n'est généralement pas symétrique de celle dans la seconde zone de régime transitoire. En effet, pendant la seconde zone transitoire, les données qui font suite au préambule viennent influencer la forme d'onde en raison du recouvrement temporel des filtres prototypes.The preamble waveform in the first transient region is generally not symmetrical to that in the second transient region. Indeed, during the second transient zone, the data following the preamble influence the waveform due to the time overlap of the prototype filters.

Dans un premier mode de réalisation, on suppose que l'on transmet un motif de symboles pilotes se répétant pendant toute la durée du préambule. Autrement dit, à chaque instant de transmission n du préambule, l'émetteur transmet le bloc de symboles : x 0 n = P 0 ; x 1 n = P 1 ; ; x N 1 n = P N 1

Figure imgb0013
les symboles pilotes P 0,...,P N-1 étant respectivement portés par les N sous porteuses. En définitive, le préambule peut être représenté par le tableau suivant dans lequel, comme précédemment, les lignes correspondent aux sous-porteuses et les colonnes aux instants de transmission : P 0 P 0 P 0 P 0 ... P 0 P 0 P 1 P 1 P 1 P 1 ... P 1 P 1 P 2 P 2 P 2 P 2 ... P 2 P 2 ... P N-1 P N-1 P N-1 P N-1 ... P N-1 P N-1 In a first embodiment, it is assumed that a repeating pattern of pilot symbols is transmitted throughout the duration of the preamble. In other words, at each transmission instant n of the preamble, the transmitter transmits the block of symbols: x 0 not = P 0 ; x 1 not = P 1 ; ; x NOT 1 not = P NOT 1
Figure imgb0013
the pilot symbols P 0 ,..., P N -1 being respectively carried by the N sub-carriers. Ultimately, the preamble can be represented by the following table in which, as previously, the rows correspond to the sub-carriers and the columns to the instants of transmission: P0 _ P0 _ P0 _ P0 _ ... P0 _ P0 _ P1 _ P1 _ P1 _ P1 _ ... P1 _ P1 _ P2 _ P2 _ P2 _ P2 _ ... P2 _ P2 _ ... P N -1 P N -1 P N -1 P N -1 ... P N -1 P N -1

Dans une variante avantageuse de réalisation on pourra prévoir qu'une sous-porteuse sur deux portera un symbole pilote (par exemple les sous porteuses d'indices pairs) et que les autres sous-porteuses porteront des symboles nuls. Cette variante pourra être déclinée de manière plus générale, en prévoyant qu'une sous-porteuse sur Q (Q entier supérieur ou égal à 2) sous-porteuses consécutives portera un symbole pilote, les autres sous-porteuses portant un symbole nul.In an advantageous embodiment variant, provision may be made for one out of two sub-carriers to carry a pilot symbol (for example the sub-carriers of even indices) and for the other sub-carriers to carry zero symbols. This variant can be declined in a more general way, by providing that a sub-carrier on Q ( Q integer greater than or equal to 2) consecutive sub-carriers will carry a pilot symbol, the other sub-carriers carrying a zero symbol.

Quelle que soit la variante, les symboles pilotes pourront être identiques. Ainsi dans le cas d'une alternance symbole pilote/ symbole nul, le préambule aura la structure suivante : P P P P ... P P 0 0 0 0 ... 0 0 P P P P ... P P 0 0 0 0 ... 0 0 ... P P P P ... P P Whatever the variant, the pilot symbols may be identical. Thus in the case of a pilot symbol/zero symbol alternation, the preamble will have the following structure: P P P P ... P P 0 0 0 0 ... 0 0 P P P P ... P P 0 0 0 0 ... 0 0 ... P P P P ... P P

Dans le premier mode de réalisation, l'estimation de canal est réalisée à partir des symboles pilotes du préambule dans la zone de régime stationnaire, c'est-à-dire après le temps de montée du filtre prototype, la montée du filtre démarrant au début du préambule et avant le temps de descente du filtre prototype, la descente du filtre s'achevant en fin de préambule.In the first embodiment, the channel estimation is performed from the pilot symbols of the preamble in the steady state zone, i.e. after the rise time of the prototype filter, the rise of the filter starting at the beginning of the preamble and before the fall time of the prototype filter, the fall of the filter ending at the end of the preamble.

On suppose que la réponse du canal ne varie pas pendant la durée du préambule.It is assumed that the channel response does not vary during the duration of the preamble.

Dans ce cas, le signal FBMC en sortie du canal, après translation en bande de base et échantillonnage mais avant filtrage par le banc de filtres d'analyse, peut s'écrire, en régime stationnaire : r n = k h k p ; n p I t i ; k i I ƒ P i g n p , k i

Figure imgb0014
dans lequel on a respectivement noté It et If le support temporel et le support fréquentiel de la réponse impulsionnelle du filtre prototype, n est l'indice du bloc temporel et k est l'indice de la sous-porteuse.In this case, the FBMC signal at the channel output, after translation into baseband and sampling but before filtering by the bank of analysis filters, can be written, in steady state: r not = k h k p ; not p I you I ; k I I ƒ P I g not p , k I
Figure imgb0014
in which I t and I f respectively denote the temporal support and the frequency support of the impulse response of the prototype filter, n is the index of the temporal block and k is the index of the sub-carrier.

Il résulte de (4) qu'en régime stationnaire, le symbole rk (n) reçu sur une sous-porteuse k est théoriquement constant et égal à : r k n = h k p I t i ; k i I ƒ P i g q , k i = r k

Figure imgb0015
It follows from (4) that in steady state, the symbol r k ( n ) received on a sub-carrier k is theoretically constant and equal to: r k not = h k p I you I ; k I I ƒ P I g q , k I = r k
Figure imgb0015

Le terme entre parenthèses est connu du récepteur puisque les symboles pilotes sont par définition connus et les coefficients du filtre prototype le sont également.The term in parentheses is known to the receiver since the pilot symbols are by definition known and the coefficients of the prototype filter are also known.

En pratique, les symboles transmis sur les différentes sous-porteuses sont non seulement affectés par un coefficient d'atténuation (coefficient complexe) mais également par un bruit que nous supposerons blanc additif gaussien.In practice, the symbols transmitted on the various sub-carriers are not only affected by an attenuation coefficient (complex coefficient) but also by a noise which we will assume Gaussian additive white.

L'estimation de canal pour la sous-porteuse k est alors fournie par : h k = 1 ν q I t i ; k i I ƒ P i g q , k i n = n 0 n 0 + ν r k n

Figure imgb0016
v est le nombre de symboles pris en considération dans le régime stationnaire.The channel estimate for subcarrier k is then given by: h k = 1 ν q I you I ; k I I ƒ P I g q , k I not = not 0 not 0 + ν r k not
Figure imgb0016
where v is the number of symbols considered in the steady state.

On remarquera que la somme au dénominateur de l'expression (6) peut être calculée une fois pour toutes à partir des symboles pilotes P 0,...,P N-1 et de la réponse du filtre prototype, ce pour chaque sous-porteuse. L'expression (6) peut alors se réécrire : h k = 1 νσ k n = n 0 n 0 + ν r k n

Figure imgb0017
où les σ k = q I t i ; k i I ƒ P i g q , k i
Figure imgb0018
, k = 0,...,N -1 sont les sommes (complexes) ainsi pré-calculées.It will be noted that the sum in the denominator of the expression (6) can be calculated once and for all from the pilot symbols P 0 ,..., P N -1 and the response of the prototype filter, this for each sub- carrier. Expression (6) can then be rewritten: h k = 1 νσ k not = not 0 not 0 + ν r k not
Figure imgb0017
where the σ k = q I you I ; k I I ƒ P I g q , k I
Figure imgb0018
, k = 0,..., N -1 are the (complex) sums thus pre-computed.

Le premier mode de réalisation suppose toutefois que le préambule soit suffisamment long pour qu'un régime stationnaire puisse s'établir. Plus précisément, pour un filtre prototype de durée KN, le préambule doit être de durée au moins égale à (2K-1)N. Cette durée de préambule peut être pénalisante lorsque les trames de données sont courtes (rapport élevé overhead/data). Dans ce cas, on préfèrera mettre en œuvre le second mode de réalisation de l'invention.The first embodiment however assumes that the preamble is long enough for a steady state to be established. More precisely, for a prototype filter of duration KN, the preamble must be of duration at least equal to (2 K -1) N. This preamble duration can be penalizing when the data frames are short (high overhead/data ratio) . In this case, it will be preferred to implement the second embodiment of the invention.

Dans le second mode de réalisation, on suppose que l'on transmet un préambule composé d'un motif prédéterminé de symboles pilotes. Le motif peut être constitué de la répétition temporelle d'un motif élémentaire comme dans le premier mode de réalisation. Toutefois, contrairement au premier mode de réalisation, on peut relaxer la contrainte de constance dans le temps, autrement dit il n'est pas nécessaire que les symboles pilotes portés par une même sous-porteuse soient identiques.In the second embodiment, it is assumed that a preamble composed of a predetermined pattern of pilot symbols is transmitted. The pattern may consist of the temporal repetition of an elementary pattern as in the first embodiment. However, unlike the first embodiment, the constancy constraint over time can be relaxed, in other words it is not necessary for the pilot symbols carried by the same sub-carrier to be identical.

Dans ce cas, le signal en sortie du canal de transmission, après translation en bande de base, peut s'écrire : r n = k h k p ; n p I t i ; k i I ƒ P g , i g n p , k i

Figure imgb0019
P p,i est le symbole pilote porté par la sous-porteuse d'indice p à d'instant de transmission i.In this case, the signal at the output of the transmission channel, after translation into baseband, can be written: r not = k h k p ; not p I you I ; k I I ƒ P g , I g not p , k I
Figure imgb0019
where P p , i is the pilot symbol carried by the subcarrier of index p at instant of transmission i .

Pour chaque symbole pilote P n,k on peut estimer le rapport signal sur interférence au niveau du récepteur par : λ n , k = P n , k 2 p n n p I t i k k i I ƒ P p , i g n p , k i 2

Figure imgb0020
For each pilot symbol P n , k , the signal-to-interference ratio at the receiver can be estimated by: λ not , k = P not , k 2 p not not p I you I k k I I ƒ P p , I g not p , k I 2
Figure imgb0020

L'estimation de canal pour la sous-porteuse k est alors obtenue en effectuant une combinaison MRC (Maximum Ratio Combining) des estimations en différents instants de réception du préambule, soit : h k = 1 n = n 0 n 0 + ν λ n , k n = n 0 n 0 + ν λ n , k r k n p ; n p I t i ; k i I ƒ P g , i g n p , k i

Figure imgb0021
v est le nombre d'instants de réception considérés dans le préambule.The channel estimate for the sub-carrier k is then obtained by performing an MRC ( Maximum Ratio Combining ) combination of the estimates at different times of reception of the preamble, i.e.: h k = 1 not = not 0 not 0 + ν λ not , k not = not 0 not 0 + ν λ not , k r k not p ; not p I you I ; k I I ƒ P g , I g not p , k I
Figure imgb0021
where v is the number of reception instants considered in the preamble.

Les instants de réception considérés peuvent ici être choisis hors du régime stationnaire, en particulier pendant la première zone transitoire 510 ou pendant la seconde zone transitoire 530 de la Fig. 5. Toutefois, si des échantillons sont pris en compte dans la seconde zone transitoire, des symboles de données apparaissent dans la somme au dénominateur de l'expression (9) ainsi que dans celle au dénominateur de l'expression (10), en raison du débordement du support du filtre prototype sur la partie « données » de la trame. On a alors recours à un traitement statistique en faisant la moyenne sur les différents symboles de données possibles. On pourra supposer à cet effet que la densité de probabilité des symboles OQAM est équirépartie.The instants of reception considered can here be chosen outside the steady state, in particular during the first transient zone 510 or during the second transient zone 530 of the Fig. 5 . However, if samples are taken account in the second transitory zone, data symbols appear in the sum in the denominator of the expression (9) as well as in that in the denominator of the expression (10), due to the overflow of the support of the prototype filter on the part "data" of the frame. Statistical processing is then used by averaging over the various possible data symbols. It can be assumed for this purpose that the probability density of the OQAM symbols is evenly distributed.

Lorsque les instants de réception considérés sont pris dans la première zone de régime transitoire ou la zone de régime stationnaire, les coefficients (complexes) de pondération intervenant dans l'expression (10) peuvent être calculés une fois pour toutes et stockés dans une table de récepteur, soit : μ n , k = λ n , k n = n 0 n 0 + ν λ n , k 1 p ; n p I t i ; k i I ƒ P p , i g n p , k i

Figure imgb0022
When the considered reception instants are taken in the first transient state zone or the stationary state zone, the (complex) weighting coefficients involved in the expression (10) can be calculated once and for all and stored in a table of receiver, either: μ not , k = λ not , k not = not 0 not 0 + ν λ not , k 1 p ; not p I you I ; k I I ƒ P p , I g not p , k I
Figure imgb0022

L'expression (10) se réduit alors plus simplement à : h k = n = n 0 n 0 + ν μ n , k r k n

Figure imgb0023
Expression (10) then reduces more simply to: h k = not = not 0 not 0 + ν μ not , k r k not
Figure imgb0023

Lorsque certains instants de réception, pris en compte pour l'estimation de canal, sont situés dans la seconde zone transitoire du préambule, on peut encore pré-calculer les coefficients µ n,k mais, cette fois, en effectuant une moyenne statistique sur les symboles de données intervenant dans la somme au dénominateur de l'expression (9) et dans celle au dénominateur de l'expression (11). Plus précisément lorsqu'un symbole P p,i figurant dans cette somme est en fait un symbole de données, les différents symboles OQAM possibles sont envisagés avec la même probabilité et la valeur moyenne de µ n,k est calculée.When certain instants of reception, taken into account for the channel estimation, are located in the second transitory zone of the preamble, it is still possible to pre-calculate the coefficients µ n , k but, this time, by carrying out a statistical average on the data symbols involved in the sum in the denominator of the expression (9) and in that in the denominator of the expression (11). More precisely when a symbol P p , i appearing in this sum is in fact a data symbol, the various possible OQAM symbols are considered with the same probability and the mean value of μ n , k is calculated.

De manière plus générale, on pourra déterminer, par simulation, les coefficients de pondération µ n,k en tenant compte du type de filtre prototype, du temps de montée (égal au temps de descente) du filtre prototype, de la taille du préambule, du type de données utilisées dans la trame. Les coefficients de pondération sont alors stockés dans une table (look-up table) du récepteur qui est adressée par les paramètres précités.More generally, it will be possible to determine, by simulation, the weighting coefficients µ n , k taking into account the type of prototype filter, the rise time (equal to the fall time) of the prototype filter, the size of the preamble, the type of data used in the frame. The weighting coefficients are then stored in a table ( look-up table ) of the receiver which is addressed by the aforementioned parameters.

Selon une variante du second mode de réalisation, on pourra effectuer une estimation itérative du canal. Lors de la première itération, une première estimation des coefficients est obtenue à partir des coefficients de pondération MRC comme expliqué plus haut. Lors de chacune des itérations successives, ces coefficients de pondération sont ensuite mis à jour en estimant les données suivant le préambule, après que ces données aient été égalisées au moyen des coefficients de canal estimés à l'itération précédente. Ainsi, au fur et à mesure des itérations, l'estimation de canal permet de raffiner l'estimation de ces données et donc les coefficients de pondération. Inversement, l'estimation plus précise des données permet de mettre à jour les coefficients de pondération et de raffiner l'estimation de canal. Les itérations peuvent être stoppées lorsqu'un critère de convergence est satisfait ou bien au bout d'un nombre prédéterminé d'itérations.According to a variant of the second embodiment, it is possible to perform an iterative estimation of the channel. During the first iteration, a first estimate of the coefficients is obtained from the MRC weighting coefficients as explained above. During each of the successive iterations, these weighting coefficients are then updated by estimating the data following the preamble, after these data have been equalized by means of the channel coefficients estimated at the previous iteration. Thus, as the iterations progress, the channel estimation makes it possible to refine the estimation of these data and therefore the weighting coefficients. Conversely, the more precise estimation of the data makes it possible to update the weighting coefficients and to refine the channel estimation. The iterations can be stopped when a convergence criterion is satisfied or after a predetermined number of iterations.

La Fig. 6 illustre un exemple de récepteur FBMC mettant en œuvre une méthode d'estimation de canal selon un mode de réalisation de l'invention.The Fig. 6 illustrates an example of an FBMC receiver implementing a channel estimation method according to one embodiment of the invention.

Le récepteur FBMC représenté utilise une implémentation fréquentielle telle qu'illustrée en Fig. 2.The FBMC receiver shown uses a frequency implementation as shown in Fig. 2 .

Le signal reçu est translaté en bande de base et échantillonné à la cadence Nf et soumis à une FFT de taille KN, dans le module de FFT, 610.The received signal is translated into baseband and sampled at the rate Nf and subjected to an FFT of size KN, in the FFT module, 610.

Pour chaque bloc d'échantillons en sortie de la FFT, le module d'extraction, 620, extrait les symboles pilotes reçus.For each block of samples output from the FFT, the extraction module, 620, extracts the received pilot symbols.

Dans le premier mode de réalisation, l'extraction des symboles pilotes a lieu pendant le régime stationnaire du préambule, dans le second mode de réalisation, elle peut avoir lieu pendant tout ou partie du préambule, indépendamment de la nature stationnaire ou transitoire de la partie considérée.In the first embodiment, the extraction of the pilot symbols takes place during the stationary regime of the preamble, in the second embodiment, it can take place during all or part of the preamble, independently of the stationary or transient nature of the part considered.

Le module d'estimation de canal, 630, effectue une estimation de canal au moyen de l'expression (7) ou (12), selon le mode de réalisation envisagé.The channel estimation module, 630, performs channel estimation using expression (7) or (12), depending on the embodiment considered.

Les coefficients complexes σk ou µ n,k sont stockés dans une mémoire 635. Le cas échéant, cette mémoire peut être adressée par des paramètres (longueur de filtre, taille de préambule, etc.) comme expliqué plus haut.The complex coefficients σ k or μ n , k are stored in a memory 635. If necessary, this memory can be addressed by parameters (filter length, preamble size, etc.) as explained above.

Les estimations de coefficients de canal 〈hk 〉 pour chaque sous-porteuse k portant un symbole pilote sont fournies au module d'interpolation 640. Ce module détermine par interpolation les coefficients de canal manquants. Ainsi, lorsque le coefficient de canal est estimé seulement pour une sous-porteuse sur Q, on pourra procéder par interpolation à une estimation de coefficients de canal pour les sous-porteuses restantes.The channel coefficient estimates 〈 h k 〉 for each subcarrier k carrying a pilot symbol are supplied to the interpolation module 640. This module determines the missing channel coefficients by interpolation. Thus, when the channel coefficient is estimated only for a subcarrier on Q , it will be possible to proceed by interpolation to an estimation of channel coefficients for the remaining subcarriers.

Les coefficients de canal pour l'ensemble des sous-porteuses sont ensuite fournis au module d'égalisation 650. Ce module effectue une égalisation ZF ou MMSE des symboles reçus à partir des coefficients de canal ainsi estimés. On rappelle qu'une égalisation de type ZF consiste à multiplier les symboles sur les différentes sous-porteuses par les coefficients 1 h k

Figure imgb0024
, k = 0,...,N -1, alors qu'une égalisation de type MMSE consister à multiplier ces mêmes symboles par les coefficients h k h k 2 + σ 2
Figure imgb0025
, k = 0,...,N -1 où σ 2 est une estimation de la puissance de bruit sur chaque sous-porteuse (la puissance de bruit est supposée identique sur les différentes sous-porteuse).The channel coefficients for all the sub-carriers are then supplied to the equalization module 650. This module performs a ZF or MMSE equalization of the symbols received from the channel coefficients thus estimated. It is recalled that a ZF type equalization consists in multiplying the symbols on the different sub-carriers by the coefficients 1 h k
Figure imgb0024
, k = 0,..., N -1, whereas an MMSE type equalization consists in multiplying these same symbols by the coefficients h k h k 2 + σ 2
Figure imgb0025
, k = 0,..., N -1 where σ 2 is an estimate of the noise power on each subcarrier (the noise power is assumed to be identical on the different subcarriers).

Après égalisation, les symboles sont filtrés dans le domaine fréquentiel par une banque de filtres d'analyse (copies translatées en fréquence du filtre prototype), 660, puis fournies à un module de démodulation OQAM.After equalization, the symbols are filtered in the frequency domain by an analysis filter bank (frequency-translated copies of the prototype filter), 660, then supplied to an OQAM demodulation module.

La méthode d'estimation de canal selon le premier ou le second mode de réalisation de l'invention peut également s'appliquer dans le cas d'une implémentation temporelle du récepteur FBMC. Dans ce cas, l'égalisation est réalisée dans le domaine temporel en aval du filtrage par la banque de filtres d'analyse.The channel estimation method according to the first or the second embodiment of the invention can also be applied in the case of a time-based implementation of the FBMC receiver. In this case, the equalization is carried out in the time domain downstream of the filtering by the bank of analysis filters.

Claims (7)

  1. Channel estimating method for an FBMC telecommunication system comprising a transmitter and a receiver, the transmitter being provided with a synthesis filter bank and the receiver being provided with an analysis filter bank, the analysis and synthesis filters being frequency shifted versions of a prototype filter, the signal transmitted by the transmitter comprising a preamble followed by data symbols, the preamble comprising pilot symbols distributed in time and in frequency, on a plurality N of sub-carriers, characterised in that the preamble is composed of a repetition in time of the same pilot symbols distributed on said plurality of sub-carriers, the preamble being of duration greater than or equal to (2K -1)N in which K is the overlapping factor of the prototype filters, and in that:
    - an FFT is done on the signal received by the receiver, before the signal is filtered by the analysis filter bank;
    - the pilot symbols received during all or some of the preamble are extracted from the frequency component blocks output from the FFT;
    - channel coefficients are estimated for said plurality of sub-carriers by taking each sub-carrier and combining the components for this sub-carrier and for successive blocks and by weighting the combination obtained by a weighting factor associated with a sub-carrier, said estimate only being made on the stationary part of the preamble, the weighting factor for one sub-carrier and successive blocks, being equal to 1 νσ k
    Figure imgb0032
    , where v is the number of successive blocks considered to estimate the channel coefficient for the sub-carrier, and σ k = q I t i ; k i I ƒ P i g q , k i
    Figure imgb0033
    in which gq,k, qIt are the coefficients of the prototype filter associated with the subcarrier k and Pi are the pilot symbols present in the temporal support It and frequency support If of this filter.
  2. Channel estimating method according to claim 1, characterised in that the pilot symbols are all identical.
  3. Channel estimating method according to claim 2, characterised in that at each transmission instant, one sub-carrier out of Q consecutive sub-carriers carries a pilot symbol, where Q is an integer greater than or equal to 2, the other sub-carriers carrying a null symbol.
  4. Channel estimating method for an FBMC telecommunication system comprising a transmitter and a receiver, the transmitter being provided with a synthesis filter bank and the receiver being provided with an analysis filter bank, the analysis and synthesis filters being frequency shifted versions of a prototype filter, the signal transmitted by the transmitter comprising a preamble followed by data symbols, the preamble comprising pilot symbols distributed in time and in frequency, on a plurality N of sub-carriers, characterised in that:
    - an FFT is done on the signal received by the receiver, before the signal is filtered by the analysis filter bank;
    - the pilot symbols received during all or some of the preamble are extracted from the frequency component blocks output from the FFT;
    - channel coefficients are estimated for said plurality of sub-carriers by taking each sub-carrier and combining the components for this sub-carrier and for successive blocks by means of a plurality of a weighting factors, the weighting factors (µ n,k ) for a same sub-carrier k and for different blocks n = n 0,..,n 0 + v, in which n 0,..,n 0 + v are reception instants in a stationary condition zone of the preamble, and in which said weighting factors are equal to μ n , k = λ n , k n = n 0 n 0 + ν λ n , k 1 p ; n p I t i ; k i I ƒ P p , i g n p , k i
    Figure imgb0034
    in which λ n,k is an estimate of the signal-to-interference ratio at the receiver based on the pilot symbol Pn,k and g q, k, qIt are coefficients of the prototype filter associated with the subcarrier k ; It and If being respectively the temporal support and the frequency support of this filter.
  5. Channel estimating method according to one of claims 4, characterised in that said weighting factors are calculated iteratively, the channel coefficients estimated from weighting factors obtained during one iteration are used to estimate the data following the preamble, during the next iteration, and vice versa, the data thus estimated during one iteration being used to update said weighting factors during the next iteration.
  6. Channel estimating method according to one of the previous claims, characterised in that interpolation is done in the frequency domain between channel coefficients to obtain a channel coefficient for a sub-carrier not carrying a pilot symbol.
  7. Equalisation method within an FBMC receiver, characterised in that a channel estimate is made according to one of the previous claims, using pilot symbols distributed in time and in frequency within the preamble and in that a ZF or MMSE type equalisation is made on the data symbols following the preamble, making use of the channel coefficients estimated for said plurality of sub-carriers.
EP14192852.3A 2013-11-28 2014-11-12 Channel-estimation method for FBMC telecommunication system Active EP2879341B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1361790A FR3013928B1 (en) 2013-11-28 2013-11-28 CHANNEL ESTIMATION METHOD FOR FBMC TELECOMMUNICATION SYSTEM

Publications (2)

Publication Number Publication Date
EP2879341A1 EP2879341A1 (en) 2015-06-03
EP2879341B1 true EP2879341B1 (en) 2022-08-31

Family

ID=50489194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14192852.3A Active EP2879341B1 (en) 2013-11-28 2014-11-12 Channel-estimation method for FBMC telecommunication system

Country Status (3)

Country Link
US (1) US9210000B2 (en)
EP (1) EP2879341B1 (en)
FR (1) FR3013928B1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003420B1 (en) 2013-03-13 2015-04-10 Commissariat Energie Atomique FBMC RECEIVER USING FREQUENCY DOMAIN SYNCHRONIZATION METHOD
KR102275054B1 (en) * 2014-06-18 2021-07-09 삼성전자주식회사 Scheme for transceiving symbol in a filter bank multi carrier system
FR3023440B1 (en) 2014-07-04 2017-12-15 Commissariat Energie Atomique METHOD FOR BLIND PHASE TRACKING FOR FBMC RECEPTOR
KR102213181B1 (en) * 2014-09-12 2021-02-05 삼성전자 주식회사 Method and apparatus for reporting channel status information and allocation resource in a wireless communication system based on a filter bank
KR102299864B1 (en) * 2015-03-13 2021-09-08 삼성전자주식회사 A method and apparatus for transtmitting and receiving signals using variable observation length in multicarrier system using non-orthogonal transmission signal
US9686114B2 (en) * 2015-06-26 2017-06-20 Futurewei Technologies, Inc. Apparatus, method, and computer program for communicating one or more symbols with multiple pilot signals and nulls
CN106341362B (en) * 2015-07-09 2021-04-02 北京三星通信技术研究有限公司 Pilot frequency sending method, pilot frequency receiving method and device thereof
KR102394230B1 (en) * 2015-08-27 2022-05-04 삼성전자 주식회사 Method and apparatus for transmitting signal using space time block code or space frequency block code in multi-carrier system
EP3206353B1 (en) * 2016-02-09 2020-02-05 Technische Universität München Filter banks and methods for operating filter banks
FR3048839B1 (en) 2016-03-14 2018-03-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD OF SYNCHRONIZING AN FBMC SYSTEM USING A RACH CHANNEL
EP3236626B1 (en) * 2016-04-21 2020-09-23 Institut Mines Telecom / Telecom Bretagne Filter for linear modulation based communication systems
FR3056368B1 (en) 2016-09-21 2018-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives OFDM BLOCK FILTER TRANSMITTER AND CORRESPONDING TRANSMITTING / RECEIVING SYSTEM
KR101936654B1 (en) 2016-11-25 2019-01-09 연세대학교 산학협력단 Transmitter and Receiver for Signal Level Channel Estimation in FBMC System
CN106712903B (en) * 2016-12-21 2019-08-27 重庆邮电大学 A kind of low-complexity MIMO FBMC-OQAM system signal detection method
CN107222184B (en) * 2017-05-31 2020-06-12 桂林电子科技大学 Design method of filter in double-prototype FBMC system
KR102049925B1 (en) * 2018-01-03 2020-01-08 연세대학교 산학협력단 Data Transmitting Apparatus and Data Receiving Apparatus for Improving Spectral Efficiency
CN108650007B (en) * 2018-05-03 2020-10-27 西安交通大学 High-reliability channel equalization method based on space-frequency adaptive filtering
FR3099973B1 (en) 2019-08-14 2021-09-17 Commissariat Energie Atomique Apparatus and method for signaling communications across a fragmented spectrum
CN112491756A (en) * 2020-11-23 2021-03-12 西安电子科技大学 RLS channel estimation method for joint channel equalization in FBMC system
CN113556305B (en) * 2021-06-19 2022-12-13 西安电子科技大学 FBMC iterative channel equalization method and system suitable for high-frequency selective fading
CN113452641B (en) * 2021-06-19 2022-12-20 西安电子科技大学 FBMC channel estimation method, system, computer equipment and terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100877750B1 (en) * 2006-12-27 2009-01-12 포스데이타 주식회사 Method and apparatus for generating pilot tone in orthogonal frequency division multiplexing access system, and method and apparatus for estimating channel using it
US8306148B2 (en) * 2008-11-20 2012-11-06 Advanced Micro Devices, Inc. Method to reduce peak to average power ratio in multi-carrier modulation receivers
FR2973187B1 (en) * 2011-03-25 2013-11-15 Commissariat Energie Atomique METHOD FOR PROCESSING A MULTI-CARRIER SIGNAL WITH FILTER BENCHES FOR PREAMBLE SYNCHRONIZATION

Also Published As

Publication number Publication date
FR3013928B1 (en) 2015-12-25
US9210000B2 (en) 2015-12-08
EP2879341A1 (en) 2015-06-03
US20150146770A1 (en) 2015-05-28
FR3013928A1 (en) 2015-05-29

Similar Documents

Publication Publication Date Title
EP2879341B1 (en) Channel-estimation method for FBMC telecommunication system
EP2846506B1 (en) Fbmc receiver with carrier frequency offset compensation
EP2974194B1 (en) Fbmc receiver using a frequency domain synchronization method
EP2253114B1 (en) Methods for transmitting and receiving a multiple carrier signal including a hold interval, and corresponding computer software products, transmission and reception devices, and signal
EP3042480B1 (en) Method and apparatus for transmission of complex data symbol blocks, method and apparatus for reception and corresponding computer programs
EP2947799B1 (en) Method of widely linear turbo-equalisation in a multi-user system and for a multi-antenna receiver
EP1969792B1 (en) Dynamic interleaving method and device
EP2156590B1 (en) Transmission and reception of multicarrier spread-spectrum signals
EP3300325B1 (en) Ofdm transmitter with block filtering and corresponding transceiver system
WO2013104860A1 (en) Method, devices and computer program product for modulation and demodulation delivering ofdm/oqam symbols
EP2039095B1 (en) Methods for transmitting and receiving a multicarrier signal, carrying out a channel estimation, and corresponding devices and computer program products
EP3232626A1 (en) Transmitter for fbmc system with alamouti space-time block coding
WO2015177468A1 (en) Method for transmitting a signal with a preamble and corresponding devices, signal with corresponding preamble for synchronisation of a receiver
EP3202077B1 (en) Method of sending a multicarrier signal, method of reception, devices, and computer programs associated therewith implementing an oqam type modulation
FR2903833A1 (en) Signal receiving method for e.g. wireless telephone, involves estimating real and imaginary parts of transmission channel in neighboring region from complex values corresponding to drivers of group of region
EP2039102B1 (en) Methods for receiving and transmitting a multicarrier signal comprising a preamble containing data elements, corresponding devices and computer program products
EP2963883B1 (en) Method for blind phase tracking for fbmc receiver
EP2039094A2 (en) Methods for the transmission and reception of a multicarrier signal comprising isolated pilots, and corresponding devices and computer program products
Nadal Filtered multicarrier waveforms in the context of 5G: novel algorithms and architecture optimizations
WO2015033052A1 (en) Method and device for the transmission of blocks of real data symbols, receiving method and device, and corresponding computer programs
FR2805690A1 (en) METHOD FOR ESTIMATING RADIO FREQUENCY DIFFERENCE, AND RADIO COMMUNICATION RECEIVER USING THE METHOD
FR2903834A1 (en) METHODS FOR TRANSMITTING AND RECEIVING A MULTI-CARRIER SIGNAL COMPRISING DATA LINERS, DEVICES AND CORRESPONDING COMPUTER PROGRAM PRODUCTS.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151130

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190206

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014084785

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04L0027260000

Ipc: H04L0025020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 27/26 20060101ALI20220308BHEP

Ipc: H04L 25/03 20060101ALI20220308BHEP

Ipc: H04L 25/02 20060101AFI20220308BHEP

INTG Intention to grant announced

Effective date: 20220324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1516124

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014084785

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1516124

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221231

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014084785

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

26N No opposition filed

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 10

Ref country code: DE

Payment date: 20231120

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831