EP2879233A1 - Antenne radio integrée à meandres - Google Patents

Antenne radio integrée à meandres Download PDF

Info

Publication number
EP2879233A1
EP2879233A1 EP14195326.5A EP14195326A EP2879233A1 EP 2879233 A1 EP2879233 A1 EP 2879233A1 EP 14195326 A EP14195326 A EP 14195326A EP 2879233 A1 EP2879233 A1 EP 2879233A1
Authority
EP
European Patent Office
Prior art keywords
antenna
conductive
conductive line
lines
injection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14195326.5A
Other languages
German (de)
English (en)
Inventor
Jean-François PINTOS
Cyril JOUANLANNE
Christophe Delaveaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2879233A1 publication Critical patent/EP2879233A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the invention relates to radio antennas, and more particularly the antennas of portable devices which must be miniaturized even when the operating frequency bands are relatively low, for example around 500 MHz.
  • the miniaturization of an antenna consists of providing antenna dimensions less than about one sixth of the wavelength, and the antenna efficiency is weakened by these small dimensions. Indeed, an optimized dipole antenna from the point of view of efficiency should have dimensions of the order of half the wavelength, for example 15 cm for 500 MHz. A miniaturized antenna would rather have a length of 5 centimeters in its largest dimension, more suitable for a portable communication device that must be able to hold in the hand.
  • an object of the invention is to provide an antenna geometry that minimizes these interactions that would be harmful to the antenna. antenna performance.
  • Meandering antennas have already been proposed, in which the antenna is constituted by a conductive wire folded back on itself in order to keep a sufficient total length of wire (close to a quarter of the wavelength) while limiting the bulk. global.
  • the figure 1 represents the principle of a monopole meander antenna, constituted by a wire F erected above a plane of mass M and folded on itself.
  • the height requirement above the ground plane is about three times lower than the total length of the unfolded wire.
  • the figure 2 represents a different configuration in which the directions of elongation of the antenna wire are parallel and not perpendicular to the ground plane, and wherein the wire is folded multiple times.
  • the height requirement above the ground plane is for example five to ten times lower than the total length of the unfolded wire.
  • Antenna structures formed by etching printed circuit boards have also been proposed.
  • the antenna conductor wires and the ground plane are etched on the surface of the board.
  • Conductor wires can be engraved on one side of the card and the ground plane on another side of the card.
  • the overall height is particularly reduced since it is limited to the thickness of the card and the conductive layers deposited on the card.
  • the figure 3 represents an example of this type of antenna; the left side of the figure represents a face of the map, and the right side represents the opposite face.
  • the ground plane M is engraved on one side.
  • An antenna wire F is etched on another face.
  • the figure 4 represents another form of compact antenna engraved on a printed circuit board, wherein the antenna wire is folded in a spiral.
  • the ground plane, not shown is located on another face of the map.
  • slot antennas in which the electromagnetic radiation is generated at an open elongate slot in a planar conductive structure etched on one face of a printed circuit, the other side of which constitutes a plan of mass.
  • the miniaturized antenna structures proposed up to now have reduced radiation yields, that is to say a bad ratio between the received electrical power (which is the power of the source for a suitable antenna) and the power radiated when the antenna is placed in an unfavorable environment.
  • the antenna according to the invention is a monopole type radio antenna comprising a ground plane and an etched conductive surface, the etched conductive surface comprising a conductive line structure and a signal injection point, characterized in that the structure of conductive lines comprises a first multi-stranded meandering conductor line elongate in a first direction, a second meandering conductive line symmetrical with the first conductive line with respect to a median plane perpendicular to the first direction, the two lines starting from the point d injection, and a surface common connected to the ends of the conductive lines distant from the injection point.
  • the structure according to the invention makes it possible to standardize the distribution of the high electric fields better than is possible with a simple meander antenna of the prior art, especially in the case where the antenna is enclosed in a plastic cover ( ABS), which will often be the case for telecommunication antennas associated with hand-held portable electronic devices.
  • ABS plastic cover
  • the multiple strands of the two meander conducting lines meet along the median plane, that is, for each meander, one elongated strand of one of the lines joins an elongated strand of the other line. .
  • the conductive lines each comprise a plurality of strands (at least two and preferably at least eight) elongate in the direction perpendicular to the median plane.
  • the antenna is completely flat.
  • parts of the antenna are folded, for example to fit in part the shape of a generally parallelepipedal housing containing the antenna.
  • the antenna is formed on a printed circuit, preferably flexible, or it is constituted by a metal plate cut according to the pattern of lines and desired mass plane. This plate can remain flat or be shaped to the desired shape after cutting.
  • FIG. 5 there is shown an example of a radio antenna intended to be incorporated in a communication box that can be held by hand.
  • the approximate dimensions of the housing are for example 7 to 12 cm long by 5 to 8 cm wide, for a thickness of 1 to 3 cm approximately.
  • the antenna structure occupies the entire surface or almost the entire surface of the main (largest) face of the housing. It is preferably formed on a printed circuit board 10 whose thickness may be 1 millimeter. These dimensions are given for information only.
  • the radio communication is intended to use a carrier frequency between 400 and 800 MHz for example and the antenna must therefore radiate sufficient power for this frequency range.
  • the antenna is used both for transmitting radio signals and for receiving.
  • the antenna is formed by a conductive surface etched on one side of the printed circuit board.
  • the card is for example plastic (epoxy resin in general) and the conductive surface may be a layer of copper deposited on the card. But the antenna could also be formed by cutting a metal plate without plastic support.
  • the conductive surface comprises a ground plane M and, in the same plane, an etched conductive structure which comprises a continuous single meander conductive line.
  • the conductive line comprises an elongated first strand 14 extending parallel to an edge of the ground plane, in the direction of the width of the card (in the direction of the arrow 16), with a constant narrow gap, for example 1 millimeter , between the first strand and the ground plane.
  • This first strand starts from a point located in the middle of the width of the card, which point constitutes a signal injection point for the antenna (in transmission) or a signal reception point (in reception).
  • the injection or reception point 18 is connected to a high frequency transmission line (coaxial transmission cable or line microstrip (microstrip in English) also connected to the telecommunication circuitry (not shown) contained in the housing and located for example below the radio antenna card.
  • This circuitry may comprise an integrated circuit for radiofrequency signal processing.
  • the conductive line continues from figure 5 comprises, in addition to the first strand starting from the injection point, a double elbow 180 ° and a second strand 20 which starts in the opposite direction of the first strand, parallel to the first strand and at a short distance (for example 1 millimeter) and which occupies the entire width of the map.
  • the conductive line terminates in a terminal conductive surface 22 located on the other side of the conductive line with respect to the ground plane.
  • This terminal conductive surface is separated from the second strand by a small distance, preferably equal to the distance between the strands, for example 1 millimeter. It occupies a significant proportion of the surface of the map, for example at least 15% of the area, in this embodiment.
  • the continuous conductive line is said to simple meander because it has a single double elbow connecting two elongated parallel strands.
  • the figure 6 represents the improved antenna structure according to the invention, having an overall overall size similar or identical to that of the figure 5 . It is still formed on one side of the printed circuit board 10. It is a symmetrical structure comprising two symmetrical continuous conductor lines with multiple meanders. The symmetry is a mirror symmetry with respect to a vertical center line 24 which passes through the map preferably in the direction of its greatest length. There is a meandering conductive line to the left of the midline and a meandering line to the right of the midline.
  • a ground plane M occupies the lower part of the printed map, on a large surface, in this example about half of the surface of the map.
  • Each of the conductive lines comprises several parallel strands 30 in series oriented perpendicular to the center line 24 and connected to each other by bends at 180 °.
  • the elongate parallel strands are separated by narrow intervals whose width is of the same order of magnitude or equal to the width of the strands themselves. They extend between one of the edges of the surface of the map and the median line.
  • Elbows at 180 ° are located at the ends of each strand, on one side along the center line and on the other side along one of the side edges of the board, left edge for the strands of the left conductive line, board right for the strands of the right conductive line.
  • the bent ends of the strands of the left conductive line can be joined to the bent ends of the right conductive line.
  • each of the elbows located on the right side of the left conductive line is attached to one of the elbows located on the left side of the conductive line on the right.
  • This structure where the bent ends of the left and right lines meet along the median plane 24 provides a mechanical rigidity of the assembly, particularly advantageous when the structure is folded and / or integrated in a housing, for example in the manner described in relation to the figure 8 .
  • the first strand of the meandering line on the left therefore departs substantially from the injection point 18 to which it is connected and goes to the left edge of the card.
  • the last strand of the left line ends on a common conductive surface 22 occupying a significant part of the card (at least 10%).
  • the place where the last strand joins the common conductive surface is preferably the end of the strand on the side opposite the center line, that is to say on the left edge and the right edge of the card respectively.
  • the common conductive surface 22 is separated from the last strand of each line (except where these strands join it) by a narrow gap which is preferably the same as the inter-strand intervals of each line.
  • the gap between strands and the gap between the last strand and the common conductive surface may be about 1 millimeter.
  • the gap between the ground plane M and the first strand of each line may be of the same value or be larger if necessary to place the signal injection point 18 therein as shown in FIG. figure 6 .
  • the antenna could also be formed by cutting a metal plate rather than etching a conductive layer deposited on a plastic card.
  • the figure 7 is a diagram representing the radiation yield of the antennas of the figures 5 and 6 in two different conditions.
  • the radiation efficiency (in English "radiation efficiency") is expressed as a percentage of 0 to 100%, depending on the frequency. In the example shown, the frequency can vary between 400 and 800 MHz.
  • the first curve Aa in dotted lines, represents the variation of the efficiency with the frequency for an antenna of the figure 5 , outdoors.
  • the second curve Ab in solid lines, represents the variation for an antenna of the figure 6 .
  • the third curve Ba in dashed lines represents the variation of yield as a function of the frequency for the antenna of the figure 5 when it is enclosed in a plastic cap such as ABS (acrylonitrile-butadiene-styrene).
  • a plastic cap such as ABS (acrylonitrile-butadiene-styrene).
  • the fourth curve Bb in solid lines, represents the variation of yield as a function of the frequency for the antenna of the figure 6 when it is enclosed in the same ABS hood. It is a curve similar to the curve Ba, with a significant decrease in the frequency of the top of the curve. But the value of the maximum yield is much higher since it now exceeds 75%. The hood disrupts much less the antenna of the figure 6 that the antenna of the figure 5 (for a similar size for both antennas).
  • the antenna structure of the figure 6 represents a progress especially when the antenna is enclosed in a hood, which will most often be the case if it is a communication antenna for a portable electronic box.
  • the figure 8 illustrates what is meant by folding the conductive structure: in this example, the folding is at 90 ° of the ground plane M which occupies part of a main face of a parallelepiped.
  • the strands 30 of the meandering conductive lines are then arranged mainly on a small side of the parallelepiped, and they themselves may be folded on another side perpendicular to both the short side and the main surface.
  • the surface 22, not shown may be located below the main face.
  • the two multiple meander conductive lines are then symmetrical with respect to a median plane perpendicular to the general direction of elongation of the conductive strands 30 (plane which contains the median line 24 of the figure 6 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

L'invention concerne les antennes de télécommunications adaptées à des boîtiers de communication portables. L'antenne est une antenne radio de type monopôle comprenant une surface conductrice gravée comprenant un plan de masse (M), une structure de lignes conductrices (30), et un point d'injection de signal (18) dans cette structure de lignes conductrices. La structure de lignes conductrices comporte une première ligne conductrice à méandres à brins multiples allongés dans une première direction, une deuxième ligne conductrice à méandres symétrique de la première ligne conductrice par rapport à une ligne médiane (24) passant dans le plan par le point d'injection et perpendiculaire à une direction générale d'allongement des brins, les deux lignes partant du point d'injection, et une surface commune (22) reliée aux extrémités des lignes conductrices distantes du point d'injection. Cette antenne est moins sensible aux affaiblissements de rendement de rayonnement dus à la présence d'un capot de matière plastique enfermant l'antenne.

Description

  • L'invention concerne les antennes radio, et plus particulièrement les antennes d'appareils portables qui doivent être miniaturisées même lorsque les bandes de fréquence de fonctionnement sont relativement basses, par exemple autour de 500 MHz.
  • La miniaturisation d'une antenne consiste à prévoir des dimensions d'antenne inférieures au sixième de la longueur d'onde environ, et le rendement de l'antenne est affaibli du fait de ces petites dimensions. En effet, une antenne dipôle optimisée du point de vue du rendement devrait avoir des dimensions de l'ordre de la demi-longueur d'onde, soit par exemple 15 cm pour 500 MHz. Une antenne miniaturisée aurait plutôt une longueur de 5 centimètres dans sa plus grande dimension, plus adaptée à un appareil de communication portable qu'on doit pouvoir tenir dans la main.
  • Parmi les problèmes qu'on rencontre dans la miniaturisation des antennes, il y a les interactions entre l'antenne et son environnement proche et un but de l'invention est de fournir une géométrie d'antenne qui minimise ces interactions qui seraient nuisibles pour le rendement de l'antenne.
  • On a déjà proposé des antennes à méandres, dans lesquelles l'antenne est constituée par un fil conducteur replié sur lui-même pour conserver une longueur totale de fil suffisante (voisine du quart de la longueur d'onde) tout en restreignant l'encombrement global.
  • La figure 1 représente le principe d'une antenne monopôle à méandre, constituée par un fil F dressé au-dessus d'un plan de masse M et replié sur lui-même. L'encombrement en hauteur au-dessus du plan de masse est environ trois fois plus faible que la longueur totale du fil déplié.
  • La figure 2 représente une configuration différente dans laquelle les directions d'allongement du fil d'antenne sont parallèles et non perpendiculaires au plan de masse, et dans laquelle le fil est replié de multiples fois. Dans l'exemple représenté il y a dix coudes de repliement à l'endroit desquels la direction du fil s'inverse. L'encombrement en hauteur au-dessus du plan de masse est par exemple cinq à dix fois plus faible que la longueur totale du fil déplié.
  • On a proposé également des structures d'antennes formées par gravure de cartes de circuit imprimé. Les fils conducteurs de l'antenne et le plan de masse sont gravés sur la surface de la carte. Les fils conducteurs peuvent être gravés sur une face de la carte et le plan de masse sur une autre face de la carte. L'encombrement en hauteur est particulièrement réduit puisqu'il se limite à l'épaisseur de la carte et des couches conductrices déposées sur la carte. La figure 3 représente un exemple de ce type d'antenne ; la partie gauche de la figure représente une face de la carte, et la partie droite représente la face opposée. Le plan de masse M est gravé sur une face. Un fil d'antenne F est gravé sur une autre face.
  • La figure 4 représente une autre forme d'antenne compacte gravée sur une carte de circuit imprimé, dans laquelle le fil d'antenne est replié en spirale. Le plan de masse, non représenté est situé sur une autre face de la carte.
  • On a proposé enfin dans l'art antérieur des antennes dites à fentes, dans laquelle le rayonnement électromagnétique est engendré au niveau d'une fente allongée ouverte dans une structure conductrice plane gravée sur une face d'un circuit imprimé dont l'autre face constitue un plan de masse. Plus la fente est large, plus la fréquence de fonctionnement peut être basse.
  • Mais les structures d'antennes miniaturisées proposées jusqu'à maintenant ont des rendements de rayonnement réduits, c'est-à-dire un mauvais rapport entre la puissance électrique reçue (qui est la puissance de la source pour une antenne adaptée) et la puissance rayonnée, lorsque l'antenne est placée dans un environnement défavorable.
  • L'antenne selon l'invention est une antenne radio de type monopôle comprenant un plan de masse et une surface conductrice gravée, la surface conductrice gravée comprenant une structure de lignes conductrices et un point d'injection de signal, caractérisée en ce que la structure de lignes conductrices comporte une première ligne conductrice à méandres à brins multiples allongés dans une première direction, une deuxième ligne conductrice à méandres symétrique de la première ligne conductrice par rapport à un plan médian perpendiculaire à la première direction, les deux lignes partant du point d'injection, et une surface commune reliée aux extrémités des lignes conductrices distantes du point d'injection.
  • La structure selon l'invention permet d'uniformiser la répartition des champs électriques élevés mieux que ne le permet une antenne à simple méandre de l'art antérieur, tout particulièrement dans le cas où l'antenne est enfermée dans un capot de matière plastique (ABS), ce qui sera souvent le cas pour les antennes de télécommunication associées à des appareils électroniques portables tenus à la main.
  • De préférence, les brins multiples des deux lignes conductrices à méandre se rejoignent le long du plan médian, c'est-à-dire que pour chaque méandre, un brin allongé de l'une des lignes rejoint un brin allongé de l'autre ligne.
  • Les lignes conductrices comprennent chacune une pluralité de brins (au moins deux et de préférence au moins huit) allongés dans la direction perpendiculaire au plan médian.
  • Dans une version simple, l'antenne est entièrement plane. Dans une version plus compacte encore, des parties de l'antenne sont repliées, par exemple pour épouser en partie la forme d'un boîtier généralement parallélépipédique contenant l'antenne.
  • L'antenne est formée sur un circuit imprimé, de préférence flexible, ou bien elle est constituée par une plaque métallique découpée selon le motif de lignes et de plan de masse désiré. Cette plaque peut rester plane ou être conformée à la forme désirée après découpe.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
    • les figures 1 à 4, déjà décrites, représentent des principes d'antennes à méandres de l'art antérieur ;
    • la figure 5 représente une antenne à méandre simple formée sur une face d'un circuit imprimé ;
    • la figure 6 représente une antenne à méandres multiples selon l'invention, formée sur une face d'un circuit imprimé ;
    • la figure 7 représente une courbe de rendement de rayonnement des antennes des figures 5 et 6 dans deux cas différents : antenne à l'air libre, et antenne enfermée dans un capot de matière plastique ;
    • la figure 8 représente une structure d'antenne dans une configuration repliée pour être logée dans un boîtier.
  • Sur la figure 5 on a représenté un exemple d'antenne radio destinée à être incorporée à un boîtier de communication pouvant être tenu à la main. Les dimensions approximatives du boîtier sont par exemple de 7 à 12 cm de long par 5 à 8 cm de large, pour une épaisseur de 1 à 3 cm environ. La structure d'antenne occupe toute la surface ou presque toute la surface de la face principale (la plus grande) du boîtier. Elle est formée de préférence sur une carte de circuit imprimé 10 dont l'épaisseur peut-être de 1 millimètre. Ces dimensions sont données à titre indicatif. La communication radio est destinée à utiliser une fréquence porteuse comprise entre 400 et 800 MHz par exemple et l'antenne doit donc rayonner une puissance suffisante pour cette gamme de fréquences. L'antenne sert à la fois à l'émission de signaux radio et à la réception.
  • L'antenne est formée par une surface conductrice gravée sur une seule face de la carte imprimée. La carte est par exemple en matière plastique (résine époxy en général) et la surface conductrice peut être une couche de cuivre déposée sur la carte. Mais l'antenne pourrait aussi être formée par découpe d'une plaque métallique sans support de matière plastique.
  • La surface conductrice comprend un plan de masse M et, dans le même plan, une structure conductrice gravée qui comprend une ligne conductrice continue à méandre simple. La ligne conductrice comprend un premier brin allongé 14 s'étendant parallèlement à un bord du plan de masse, dans le sens de la largeur de la carte (selon la direction de la flèche 16), avec un intervalle étroit constant, par exemple 1 millimètre, entre le premier brin et le plan de masse. Ce premier brin part d'un point situé au milieu de la largeur de la carte, point qui constitue un point d'injection de signal pour l'antenne (en émission) ou un point de réception de signal (en réception). Le point d'injection ou de réception 18 est relié à une ligne de transmission haute fréquence (câble de transmission coaxial ou ligne microruban (microstrip en anglais) reliée par ailleurs à la circuiterie de télécommunication (non représentée) contenue dans le boîtier et située par exemple au-dessous de la carte d'antenne radio. Cette circuiterie peut comprendre un circuit intégré de traitement de signal radiofréquence.
  • La ligne conductrice continue de la figure 5 comporte, outre le premier brin partant du point d'injection, un double coude à 180° et un deuxième brin 20 qui repart en sens inverse du premier brin, parallèle au premier brin et à une faible distance (par exemple 1 millimètre) et qui occupe toute la largeur de la carte. Enfin, la ligne conductrice se termine par une surface conductrice terminale 22 située de l'autre côté de la ligne conductrice par rapport au plan de masse. Cette surface conductrice terminale est séparée du deuxième brin par une faible distance, de préférence égale à la distance entre les brins, par exemple 1 millimètre. Elle occupe une proportion significative de la surface de la carte, par exemple au moins 15% de la surface, dans cette réalisation. La ligne conductrice continue est dite à méandre simple car elle comporte un seul double coude reliant deux brins allongés parallèles.
  • La figure 6 représente la structure d'antenne perfectionnée selon l'invention, ayant un encombrement global semblable ou identique à celui de la figure 5. Elle est encore formée sur une seule face de la carte de circuit imprimé 10. C'est une structure symétrique comportant deux lignes conductrices continues symétriques à multiples méandres. La symétrie est une symétrie de miroir par rapport à une ligne médiane verticale 24 qui traverse la carte de préférence dans le sens de sa plus grande longueur. Il y a une ligne conductrice à méandres à gauche de la ligne médiane et une ligne à méandres à droite de la ligne médiane.
  • Un plan de masse M occupe la partie basse de la carte imprimée, sur une surface importante, dans cet exemple environ la moitié de la surface de la carte.
  • Chacune des lignes conductrices comporte plusieurs brins parallèles 30 en série orientés perpendiculairement à la ligne médiane 24 et reliés les uns aux autres par des coudes à 180°. Les brins allongés parallèles sont séparés par des intervalles étroits dont la largeur est du même ordre de grandeur ou égale à la largeur des brins eux-mêmes. Ils s'étendent entre l'un des bords de la surface de la carte et la ligne médiane. Les coudes à 180° sont situés aux extrémités de chaque brin, d'un côté le long de la ligne médiane et de l'autre côté le long de l'un des bords latéraux de la carte, bord gauche pour les brins de la ligne conductrice de gauche, bord droit pour les brins de la ligne conductrice de droite. Il y a une pluralité de brins, de préférence au moins huit brins, par ligne. Dans l'exemple représenté, il y en a onze.
  • De préférence, mais ce n'est pas obligatoire, les extrémités coudées des brins de la ligne conductrice de gauche peuvent être réunies aux extrémités coudées de la ligne conductrice de droite. C'est ce qui est représenté sur la figure 6 : chacun des coudes situés du côté droit de la ligne conductrice de gauche est accolé à un des coudes situés du côté gauche de la ligne conductrice de droite. Cette structure où les extrémités coudées des lignes de gauche et de droite se rejoignent le long du plan médian 24 assure une rigidité mécanique de l'ensemble, particulièrement avantageuse lorsque la structure est repliée et/ou intégrée dans un boîtier, par exemple de la façon décrite en relation avec la figure 8.
  • Le premier brin (en bas des lignes à méandres sur la figure 6) de chacune des lignes à méandres part d'un point d'injection de signal 18 (qui est un point de réception de signal si l'antenne fonctionne en antenne de réception). Ce point est situé sur la ligne médiane, entre le plan de masse M et les lignes à méandres. Le premier brin de la ligne à méandres de gauche part donc sensiblement du point d'injection 18 auquel il est relié et va jusqu'au bord gauche de la carte. De même, le premier brin de la ligne à méandres de droite part du point d'injection 18 auquel il est relié et va jusqu'au bord droit de la carte.
  • Enfin, le dernier brin de la ligne de gauche (brin en haut sur la figure) aboutit sur une surface conductrice commune 22 occupant une partie significative de la carte (au moins 10%). L'endroit où le dernier brin rejoint la surface conductrice commune est de préférence l'extrémité du brin du côté opposé à la ligne médiane, c'est-à-dire sur le bord gauche et le bord droit de la carte respectivement.
  • La surface conductrice commune 22 est séparée du dernier brin de chaque ligne (sauf là où ces brins la rejoignent) par un intervalle étroit qui est de préférence le même que les intervalles entres brins de chaque ligne.
  • L'intervalle entre brins et l'intervalle entre le dernier brin et la surface conductrice commune peut être de 1 millimètre environ. L'intervalle entre le plan de masse M et le premier brin de chaque ligne peut être de même valeur ou être plus grand si c'est nécessaire pour y placer le point d'injection de signal 18 comme c'est représenté sur la figure 6.
  • L'antenne pourrait aussi être formée par découpe d'une plaque métallique plutôt que par gravure d'une couche conductrice déposée sur une carte de matière plastique.
  • La figure 7 est un diagramme représentant le rendement de rayonnement des antennes des figures 5 et 6 dans deux conditions différentes. Le rendement de rayonnement (en anglais "radiation efficiency") est exprimé en pourcentage de 0 à 100%, en fonction de la fréquence. Dans l'exemple représenté, la fréquence peut varier entre 400 et 800 MHz.
  • La première courbe Aa, en traits pointillés, représente la variation du rendement avec la fréquence pour une antenne de la figure 5, à l'air libre.
  • La deuxième courbe Ab, en traits pleins, représente la variation pour une antenne de la figure 6.
  • Ces courbes montrent qu'il y a une fréquence ou une plage de fréquences pour laquelle le rendement est maximum. Le rendement atteint environ 90%. Il est légèrement supérieur pour l'antenne de la figure 6, mais la différence avec la figure 5 n'est pas très importante. La fréquence au sommet de la courbe, c'est-à-dire la fréquence pour laquelle le rendement est maximum, est légèrement plus basse pour l'antenne de la figure 6. Mais cette valeur pourrait être ajustée en agissant sur les dimensions précises de la structure conductrice gravée, et notamment (pour une largeur donnée de la carte) sur les longueurs et largeurs des fentes entre brins conducteurs, et les largeurs des brins conducteurs.
  • La troisième courbe Ba, en traits pointillés représente la variation de rendement en fonction de la fréquence pour l'antenne de la figure 5 lorsqu'elle est enfermée dans un capot de matière plastique tel que de l'ABS (acrylonitrile-butadiène-styrène). On voit d'une part que la fréquence pour laquelle le rendement est maximal a beaucoup baissé par rapport à ce qu'elle était lorsque l'antenne est à l'air libre (courbe Aa). Mais on voit surtout que le rendement à l'endroit du maximum baisse très significativement puisqu'il ne dépasse plus 65%. L'influence du capot résulte de ce que les lignes de champ électrique autour de l'antenne sont perturbées par la présence du capot.
  • La quatrième courbe Bb, en traits pleins, représente la variation de rendement en fonction de la fréquence pour l'antenne de la figure 6 lorsqu'elle est enfermée dans le même capot ABS. C'est une courbe analogue à la courbe Ba, avec une baisse significative de la fréquence du sommet de la courbe. Mais la valeur du maximum de rendement est beaucoup plus élevée puisqu'elle dépasse maintenant 75%. Le capot perturbe donc beaucoup moins l'antenne de la figure 6 que l'antenne de la figure 5 (pour un encombrement similaire pour les deux antennes).
  • On peut expliquer cela par le fait que les zones de champ électrique élevé restent mieux distribuées à proximité immédiate de l'antenne et sont moins influencées par la présence du capot qui recouvre l'antenne. De ce point de vue, la structure d'antenne de la figure 6 représente un progrès tout particulièrement lorsque l'antenne est enfermée dans un capot, ce qui sera le plus souvent le cas s'il s'agit d'une antenne de communication pour un boîtier électronique portable.
  • Dans tout ce qui précède, on a considéré que l'antenne était complètement plane. Cependant, la structure formée par le plan de masse M, les lignes conductrices 30 et la surface commune 22 peut aussi être repliée pour être logée dans un espace de longueur et/ou de largeur plus petites que la longueur et la largeur de l'antenne plane. Par exemple, on peut prévoir que le repliement se fait en conservant :
    • le plan de masse principalement sur une face principale avant d'un parallélépipède,
    • la surface commune 22 principalement sur une face arrière opposée
    • et les lignes conductrices 30 principalement sur un petit côté du parallélépipède, entre les deux faces opposées.
  • La figure 8 illustre ce qu'on entend par repliement de la structure conductrice : dans cet exemple, le repliement se fait à 90° du plan de masse M qui occupe une partie d'une face principale d'un parallélépipède. Les brins 30 des lignes conductrices à méandres sont alors disposées principalement sur un petit côté du parallélépipède, et elles peuvent elles-mêmes être repliées sur un autre côté perpendiculaire à la fois au petit côté et à la surface principale. La surface 22, non représentée peut être située au-dessous de la face principale. Les deux lignes conductrices à méandres multiples sont alors symétriques par rapport à un plan médian perpendiculaire à la direction générale d'allongement des brins conducteurs 30 (plan qui contient la ligne médiane 24 de la figure 6).
  • Lorsque l'antenne est ainsi repliée en partie, on considérera que les orientations des brins et de la symétrie telles qu'on les a exposées à propos d'une antenne plane restent valables mais en considérant alors que l'antenne est fictivement dépliée pour considérer ces orientations.

Claims (4)

  1. Antenne radio de type monopôle comprenant un plan de masse (M) et une surface conductrice gravée, la surface conductrice gravée comprenant une structure de lignes conductrices et un point d'injection de signal (18), dans laquelle la structure de lignes conductrices comporte une première ligne conductrice à méandres à brins multiples allongés dans une première direction, une deuxième ligne conductrice à méandres symétrique de la première ligne conductrice par rapport à un plan médian perpendiculaire à la première direction, les deux lignes partant du point d'injection, et une surface commune (22) reliée aux extrémités des lignes conductrices distantes du point d'injection, caractérisée en ce que les brins multiples des deux lignes conductrices à méandre se rejoignent le long du plan médian.
  2. Antenne selon la revendication 1, caractérisée en ce que les lignes conductrices comprennent chacune une pluralité de brins allongés dans la direction perpendiculaire au plan médian.
  3. Antenne selon la revendication 1 ou 2, caractérisée en ce qu'elle est entièrement plane.
  4. Antenne selon la revendication 1 ou 2, caractérisé en ce que l'antenne est non plane et comporte des parties repliées pour épouser en partie la forme d'un boîtier généralement parallélépipédique.
EP14195326.5A 2013-11-28 2014-11-28 Antenne radio integrée à meandres Withdrawn EP2879233A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1361794A FR3013906B1 (fr) 2013-11-28 2013-11-28 Antenne radio integree a meandres

Publications (1)

Publication Number Publication Date
EP2879233A1 true EP2879233A1 (fr) 2015-06-03

Family

ID=50780539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14195326.5A Withdrawn EP2879233A1 (fr) 2013-11-28 2014-11-28 Antenne radio integrée à meandres

Country Status (3)

Country Link
US (1) US9337541B2 (fr)
EP (1) EP2879233A1 (fr)
FR (1) FR3013906B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151425B1 (ko) * 2014-08-05 2020-09-03 삼성전자주식회사 안테나 장치
CN105932396B (zh) * 2016-06-28 2018-09-04 广东欧珀移动通信有限公司 壳体、天线装置及终端设备
EP3516630A4 (fr) 2016-09-22 2020-06-03 Magic Leap, Inc. Spectroscopie de réalité augmentée
US11480467B2 (en) 2018-03-21 2022-10-25 Magic Leap, Inc. Augmented reality system and method for spectroscopic analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142931A (ja) * 2001-11-07 2003-05-16 Alps Electric Co Ltd モノポールアンテナ
EP1441415A1 (fr) * 2003-01-23 2004-07-28 Alps Electric Co., Ltd. Antenne compacte avec charge capacitive en sommet
US20090108996A1 (en) * 2007-10-31 2009-04-30 Sensormatic Electronics Corporation Rfid antenna system and method
CN102354804A (zh) * 2011-06-22 2012-02-15 高宝强 一种高增益的微带辐射天线
WO2012108071A1 (fr) * 2011-02-08 2012-08-16 シンフォニアテクノロジー株式会社 Antenne pour marqueur à ci de type dipôle, rouleau d'antenne et procédé d'usage pour marqueur à ci

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184836B1 (en) * 2000-02-08 2001-02-06 Ericsson Inc. Dual band antenna having mirror image meandering segments and wireless communicators incorporating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142931A (ja) * 2001-11-07 2003-05-16 Alps Electric Co Ltd モノポールアンテナ
EP1441415A1 (fr) * 2003-01-23 2004-07-28 Alps Electric Co., Ltd. Antenne compacte avec charge capacitive en sommet
US20090108996A1 (en) * 2007-10-31 2009-04-30 Sensormatic Electronics Corporation Rfid antenna system and method
WO2012108071A1 (fr) * 2011-02-08 2012-08-16 シンフォニアテクノロジー株式会社 Antenne pour marqueur à ci de type dipôle, rouleau d'antenne et procédé d'usage pour marqueur à ci
CN102354804A (zh) * 2011-06-22 2012-02-15 高宝强 一种高增益的微带辐射天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KHALEGHI A ET AL: "A Dual Band Back Coupled Meanderline Antenna For Wireless LAN Applications", 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE. VTC2005- SPRING - 30 MAY-1 JUNE 2005 - STOCKHOLM, SWEDEN, IEEE, PISCATAWAY, NJ, USA, vol. 1, 30 May 2005 (2005-05-30), pages 226 - 229, XP010855386, ISBN: 978-0-7803-8887-1, DOI: 10.1109/VETECS.2005.1543283 *

Also Published As

Publication number Publication date
FR3013906B1 (fr) 2017-04-07
US20150145729A1 (en) 2015-05-28
FR3013906A1 (fr) 2015-05-29
US9337541B2 (en) 2016-05-10

Similar Documents

Publication Publication Date Title
FR2860927A1 (fr) Antenne interne de faible volume
EP1075043A1 (fr) Antenne à empilement de structures résonantes et dispositif de radiocommunication multifréquence incluant cette antenne
EP3146593B1 (fr) Système d'antennes pour réduire le couplage électromagnétique entre antennes
EP2879233A1 (fr) Antenne radio integrée à meandres
EP3235058B1 (fr) Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit
EP2095465A1 (fr) Antenne mono ou multi-frequences
EP2143168A1 (fr) Antenne mixte
EP3417507A1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
EP1922783B1 (fr) Antenne multibande compact
FR2535532A1 (fr) Antenne interieure pour un recepteur de television
EP1872436B1 (fr) Antenne large bande de type dipole
FR2709604A1 (fr) Antenne pour appareil radio portatif.
EP2879234B1 (fr) Appareil électronique avec antenne radio repliée dans un boîtier
EP2018680A1 (fr) Antenne compacte portable pour la television numerique terrestre avec rejection de frequences
EP3815184A1 (fr) Dispositif de transmission radiofrequence comportant un element de fixation formant une portion rayonnante d'une antenne
EP1523062A1 (fr) Antenne omnidirectionnelle pour la transmission et/ou la réception de signaux audio et/ou vidéo
EP3005476B1 (fr) Antenne compacte multi-niveaux
EP2022141B1 (fr) Antenne compacte portable pour la television numerique terrestre
FR3018660A1 (fr) Systeme d'interconnexion de cartes de circuit electronique
EP1903636A1 (fr) Antenne à large bande d'adaptation
FR2916308A1 (fr) Dispositif de structure a bande interdite electromagnetique et dispositif d'emission et reception d'ondes electromagnetiques
CN101179154B (zh) 天线
FR2980291A1 (fr) Identification electronique radiofrequence uhf en environnement metallique avec couche mediane a meandres d'adaptation d'impedance
FR2878680A1 (fr) Terminal de communication mobile
FR2958805A1 (fr) Antenne planaire compacte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150909

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180719

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190130