EP2878887B1 - Verfahren zum Betrieb einer Gasoxidationsanlage - Google Patents

Verfahren zum Betrieb einer Gasoxidationsanlage Download PDF

Info

Publication number
EP2878887B1
EP2878887B1 EP14192777.2A EP14192777A EP2878887B1 EP 2878887 B1 EP2878887 B1 EP 2878887B1 EP 14192777 A EP14192777 A EP 14192777A EP 2878887 B1 EP2878887 B1 EP 2878887B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
volumetric flow
heat storage
channel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP14192777.2A
Other languages
English (en)
French (fr)
Other versions
EP2878887A1 (de
Inventor
Stefan Gores
Christoph Dötsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krantz GmbH
Original Assignee
Krantz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51900741&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2878887(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krantz GmbH filed Critical Krantz GmbH
Publication of EP2878887A1 publication Critical patent/EP2878887A1/de
Application granted granted Critical
Publication of EP2878887B1 publication Critical patent/EP2878887B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2203/00Flame cooling methods otherwise than by staging or recirculation
    • F23C2203/30Injection of tempering fluids

Definitions

  • the heat storage masses are usually arranged in separate containers or in a common container divided by partitions, and a raw gas volume flow and a clean gas volume flow flow through them alternately.
  • the heat storage masses can be divided into an upper area facing the combustion chamber and a lower area facing away from the combustion chamber.
  • the heat storage masses arranged in a container can also be understood as a single heat storage mass, which is divided into two sections, if necessary by means of a partition wall, with each section being flowed through alternately by the raw gas volume flow and the clean gas volume flow.
  • a raw gas duct and a clean gas duct lead to the individual heat storage masses, with the raw gas volume flow or the clean gas volume flow being alternately passed through the corresponding heat storage mass depending on the process cycle.
  • the first heat storage mass preheats the raw gas volume flow before the latter is directed into the combustion chamber and there through the Oxidation of the oxidizable components is converted into the clean gas volume flow.
  • the clean gas volume flow transfers its thermal energy to the second downstream heat storage mass.
  • the raw gas volume flow first flows through the second heat storage mass, previously preheated by the clean gas volume flow, and heats the latter.
  • the clean gas volume flow is now passed through the first heat storage mass through which the raw gas volume flow previously flowed, the latter now heating up the first, now “downstream” heat storage mass.
  • a bypass such as this one in the DE 10 2010 012 005 A1 is described, connected to the combustion chamber.
  • the clean gas volume flow is derived directly from the combustion chamber and consequently a certain amount of thermal energy is withdrawn from the gas oxidation system.
  • a total failure of the gas oxidation plant can already have occurred within this period. This means that the bypass is only an influencing factor on the system temperature that has a very sluggish effect.
  • bypass Another disadvantage of the bypass is that it is difficult to estimate how much thermal energy has to be diverted via the bypass. It may well be possible that so much thermal energy is unintentionally dissipated that the raw gas volume flow is not sufficiently preheated by the upstream heat storage mass. In this case, the heat source does not manage to heat up the insufficiently preheated raw gas volume flow in such a way that sufficient oxidation of the oxidizable components in the raw gas volume flow occurs. This can result in the required clean gas limit values no longer being met.
  • the object of the present invention is to further develop a device and a method such that the gas oxidation system can be cooled down with as little delay as possible in order to prevent a total failure of the system.
  • the energy generated in the gas oxidation plant should be used as efficiently as possible without exceeding the clean gas limit values.
  • the underlying object is achieved by at least one channel which is preferably connected directly to the combustion chamber and by means of which a fluid can be introduced into the combustion chamber, with the introduction of the fluid leading to a temperature reduction in the combustion chamber .
  • the combustion chamber temperature can be lowered immediately after detecting an excessive temperature rise in the combustion chamber by introducing the fluid into the combustion chamber and mixing it with the gas mixture therein. It can even be compensated for suddenly occurring temperature increases within the heat storage mass. It is therefore a manipulated variable that acts very quickly on the combustion chamber temperature.
  • the temperature increases are due to changes in the energy content or increases in the concentration of the oxidizable components in the raw gas volume flow, since these lead to an increased exothermic reaction and thus to an increased release of thermal energy.
  • the supplied fluid has the lowest possible temperature, at least well below the combustion chamber temperature, with a fluid at ambient or room temperature usually being used.
  • the heat loss within the gas oxidation system can be kept as low as possible, since the thermal energy, in contrast to the devices and operating methods known from the prior art, is at least not dissipated via a thermally unused bypass flow, but within the Gas oxidation system, and although primarily remains in the heat storage masses.
  • the fact that a total failure of the gas oxidation system can nevertheless be avoided can be explained as follows:
  • the introduction of a sufficiently cool fluid into the combustion chamber has a very immediate and timely effect, i.e. a reduction in the combustion chamber temperature, which in particular avoids a system shutdown due to overheating if the temperature sensors that could trigger a possible shutdown are located in the combustion chamber, which according to the technology is common.
  • the method according to the invention can be assessed as very positive from the point of view of energy efficiency, since, despite the cooling effect, no energy is released unused from the system (as is the case with a bypass without heat recovery), but rather the energy in the heat storage mass downstream of the combustion chamber is (temporarily) stored. This is particularly useful if the overheating problem is only caused for a short period of time due to a temporary peak in the content of oxidizable components in the raw gas and this peak would soon be replaced by phases in which (just) autothermal operation would be possible or there is even a sub-autothermal operating state again.
  • the introduction of fluid into the combustion chamber according to the invention also offers a very elegant possibility for regulating the temperature level of the heat storage masses. Even without a concrete reason for a temperature reduction in the combustion chamber, it can make sense to introduce fluid there, if the temperature within the heat storage masses drops so much as a result of prolonged use of a hot bypass that insufficient preheating of the raw gas volume flow leads to the clean gas limit values being exceeded .
  • a higher volume flow is passed through the second heat storage mass to be heated, so that the temperature within this mass and through the cyclic switching of the flow direction is raised by the temperature of the entire heat storage mass.
  • the fluid is formed by outside air.
  • a gaseous state of the fluid enables particularly good mixing of the fluid with the gas mixture in the combustion chamber.
  • the fluid is formed from the outside air, no additional fluid arranged in containers, for example, has to be kept ready.
  • the fluid from a liquid, in particular water or an aqueous liquid is formed. In this case, the cooling effect is intensified by the vaporization enthalpy of the water.
  • this embodiment is not part of the invention.
  • a particularly advantageous embodiment of the invention provides that the at least one channel opens into at least one, preferably two, feed points, with the feed points preferably being located in an upper area of the combustion chamber.
  • the mixing of the fluid and the gas mixture takes place at different locations due to the plurality of feed points, as a result of which the most rapid and uniform possible mixing is achieved.
  • the arrangement of the feed points in the upper part of the combustion chamber i.e. the area of the combustion chamber that is not located directly on the at least one heat storage mass, promotes good mixing of the fluid with the gas mixture, in that the fluid flows through the warm, in the combustion chamber gas mixture that has risen above cools immediately.
  • the "cooler" gas mixture is in the area of the combustion chamber that borders on the heat storage masses. This means that the gas mixture, which has a lower temperature, comes into contact with the heat storage mass and heats it up. Since the temperature of the gas mixture is within a tolerable range, the heat storage mass is heated to a lesser extent because of the dependency.
  • the fluid is at least partially formed by the clean gas volume flow.
  • the clean gas volume flow that is already available only needs to be conducted directly or indirectly into the combustion chamber by means of the channel. As a result, no further fluid needs to be kept ready. Furthermore, any oxidizable components still present in the clean gas volume flow are heated again and cleaned by oxidation. This makes it possible to improve the clean gas values with regard to the residual pollutant content.
  • this embodiment is not part of the invention.
  • the at least one channel is connected directly to the clean gas channel.
  • the channel preferably leads to the at least one feed point in the combustion chamber. A conversion of existing gas oxidation plants is easily possible.
  • a burner is arranged in the combustion chamber, with a combustion air duct of the burner preferably forming the at least one duct.
  • the type of arrangement does not require any additional conversion work, since the combustion air duct, which directs air for combustion into the combustion chamber, already exists is available.
  • the burner also has a fuel duct for introducing a fuel into the combustion chamber.
  • the at least one duct can optionally also be arranged between the clean gas duct and the combustion air duct. Any complications arising from the dual use of a section of the combustion channel do not exist since the fluid is only fed into the combustion chamber when the temperature is too high. When the burner is used, on the other hand, there is just not enough thermal energy in the combustion chamber due to the exothermic reaction. Consequently, no fluid needs to be introduced into the combustion chamber in order to cool the gas mixture.
  • an advantageous embodiment of the invention provides at least one additional duct which is directly connected to the combustion chamber is connected, by means of this channel, the fluid, preferably outside air, can be introduced into the combustion chamber.
  • the fluid preferably outside air
  • the proportion of the volume flow of the fluid introduced into the combustion chamber in relation to the raw gas volume flow should be between 1% and 25%, preferably between 5% and 15%.
  • the at least one further channel can be connected directly to the clean gas channel or is formed by the combustion air channel. This constructive conversion work can be managed without any problems. It can also be provided that the first duct is connected to the clean gas duct and the further duct is formed by the combustion air duct. A reverse arrangement is also conceivable.
  • a bypass duct is fluidically connected to the combustion chamber, preferably directly, with the bypass duct preferably having a heat exchanger device.
  • Thermal energy can be removed from the gas oxidation plant by means of the bypass in order to use it for other purposes, e.g. B. to generate steam, to use thermal oil, hot water or hot air.
  • the bypass results in additional cooling of the gas oxidation system or the heat storage masses.
  • At least one additional channel is connected to the gas oxidation system in such a way that the fluid introduced into the gas oxidation system by means of the additional channel can be mixed with the raw gas volume flow before a mixed volume flow formed by the raw gas volume flow and the fluid in one of the heat storage masses occurs.
  • Mixing the fluid with the raw gas volume flow before the latter is introduced into the upstream heat storage mass reduces the concentration of oxidizable components in the raw gas volume flow. This can prevent an over-autothermal reaction from occurring and the temperature in the combustion chamber and the heat storage masses from rising uncontrollably. If the temperature should nevertheless rise, this can be compensated for again by means of the channels that introduce fluid into the combustion chamber.
  • the further channel is connected directly to the at least one raw gas channel.
  • a fluid is introduced directly into the combustion chamber by means of at least one channel.
  • the fluid mixes with the gas mixture, which consists partly of the raw gas volume flow and partly of the clean gas volume flow.
  • the outside air is fed into the combustion chamber as a fluid at at least two feed points. This results in the advantage that if one of the feed points fails, another feed point is still available. If there are at least two feed points on the combustion chamber, this leads to particularly good mixing of the gas mixture and the fluid.
  • the aforementioned configuration is particularly advantageous if the fluid is introduced into the combustion chamber starting from the clean gas duct and/or the fluid is conducted into the combustion chamber through a combustion air duct of a burner. Structurally, this arrangement can be easily achieved since the combustion air duct and an associated feed point are already present and only the fluid has to be routed through the duct. If the fluid is formed, preferably additionally, by the clean gas, the channel leads from the clean gas channel to the feed point.
  • At least part of the clean gas volume flow is discharged via a bypass.
  • the thermal energy that is produced in the gas oxidation system can be diverted via the bypass and, for example, by means of a heat exchanger for use by others place (heating, process heat, etc.) are decoupled.
  • the raw gas volume flow is mixed with the fluid, so that a mixed volume flow is formed before the mixed volume flow in one of the
  • Heat storage masses is conducted. In this way, the concentration of oxidizable components in the raw gas volume flow can be reduced before it is passed through the upstream heat storage mass, so that less thermal energy is released in the system.
  • the figure 1 shows a circuit diagram of a gas oxidation system 101 with a first heat storage mass 2 and a second heat storage mass 3.
  • the heat storage masses 2 , 3 are each arranged in a container 4 , 5 , with heat storage masses 2 , 3 each having a raw gas channel 6 and a clean gas channel 7 are connected. It is provided that both the raw gas channel 6 and the clean gas channel 7 can be fluidically separated from the containers 4 , 5 by means of valves 8 , 9 , 10 , 11 .
  • the two heat storage masses 2 , 3 are connected to one another via a combustion chamber 12 .
  • a burner 13 is located in the combustion chamber 12 as an external heat source. Even if it is quite common to use a burner 13 in gas oxidation systems 101 , gas oxidation systems without burners 13 are also conceivable in certain constellations.
  • the first valve 8 is opened and the second valve 9 is closed so that a raw gas volume flow can be introduced via the raw gas channel 6 into a lower region 14 of the first heat storage mass 2 .
  • the lower region 14 of the heat storage masses 2 , 3 is a part of the heat storage masses 2 , 3 which faces away from the combustion chamber 12 and is therefore the first to come into contact with the raw gas volume flow.
  • An upper area 15 of the heat storage masses 2 , 3 faces the combustion chamber 12 .
  • the second valve 9 which is closed in this process cycle, prevents the raw gas volume flow from entering the clean gas channel 7 . That means for this one Process cycle that the first heat storage mass 2 is connected in front of the combustion chamber 12 .
  • the raw gas volume flow is heated by the first upstream heat storage mass 2 before it is conducted further into the combustion chamber 12 . Subsequently, the crude gas volume flow within the combustion chamber 12 is further heated by the burner 13 , as a result of which the oxidizable components present in the crude gas volume flow oxidize and thermal energy is released. This process converts the raw gas volume flow into a clean gas volume flow. Thermal energy is required to initiate and possibly also maintain the oxidation (endothermic), but thermal energy is also released by the oxidation (exothermic).
  • the oxidation of the oxidizable components takes place both in the combustion chamber 12 and in the second heat storage mass 3 , which is connected downstream of the combustion chamber 12 .
  • the combustion chamber 12 there is a gas mixture which consists partly of the raw gas volume flow and partly of the clean gas volume.
  • the thermal energy produced during the oxidation is released to the second heat storage mass 3 .
  • the clean gas volume flow leaves the second heat storage mass 3 via the clean gas channel 7.
  • the third closed valve 10 in this process cycle prevents the crude gas volume flow from flowing through the second downstream heat storage mass 3 .
  • the fourth valve 11 is open and connects the second downstream heat storage mass 3 to the clean gas channel 7.
  • the fourth valve 11 is closed and the third valve 10 is opened.
  • the raw gas volume flow is heated with the thermal energy stored in the second heat storage mass 3 before it is conducted into the combustion chamber 12 .
  • the raw gas volume flow is further heated so that the oxidation can take place.
  • the resulting clean gas volume flow is conducted into the first heat storage mass 2 and releases its thermal energy there.
  • the exothermic reaction releases more thermal energy than would be acceptable in the stationary state for compliance with certain maximum temperatures.
  • the temperature inside the combustion chamber 12 and also in the respective downstream heat storage mass 2 , 3 rises sharply.
  • the gas mixture is mixed with a fluid.
  • the fluid is introduced via a channel 16 which is connected to the combustion chamber 12 at a feed point.
  • the supply of the fluid is controlled via a fifth valve 17 .
  • the feed point is preferably located in an upper part of the combustion chamber 12 facing away from the heat storage masses 2 , 3.
  • the fluid is formed from outside air.
  • an air conveying device that may be required in the channel 16 is not shown in the drawing.
  • FIG. 1 Another possible embodiment is dashed in the figure 1 shown. This shows that there can also be several feed points on the combustion chamber 12 , it being conceivable that further channels 18 lead to the respective feed points or that the channel 16 has branches to the various feed points.
  • the figure 2 shows an alternative embodiment of the gas oxidation system 201 according to the invention.
  • the channel 16 is arranged between the clean gas channel 7 and the feed point in the combustion chamber 12 . This means that the fluid is formed by the clean gas volume flow.
  • FIG 3 a further gas oxidation system 301 according to the invention is shown, with the gas oxidation system 301 being different from the gas oxidation system 101 in figure 1 differs in that the channel 16 is not arranged between the clean gas channel 7 and the combustion chamber 12 , but is formed by a combustion air channel 19 of the burner 13 .
  • the duct 16 can connect the clean gas duct 7 to the combustion air duct 19 of the burner 13 and thus introduce the clean gas volume flow into the combustion chamber 12 as a fluid.
  • the figure 4 shows an example of how figure 1 , with a bypass channel 20 and/or another channel 21 also being connected to the gas oxidation system 401 .
  • the bypass channel 20 directs part of the clean gas volume flow directly out of the combustion chamber 12 .
  • the thermal energy is extracted via a heat exchanger device 22 , which the bypass channel 20 has, and used in some other way.
  • the further channel 21 directs the fluid into the raw gas channel 6 in order to mix the raw gas volume flow with the fluid before this mixed volume flow thus formed is passed into the upstream heat storage mass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Gasoxidationsanlage zur thermischen Behandlung eines mit oxidierbaren Bestandteilen belasteten Rohgasvolumenstroms, umfassend
    • mindestens eine erste und eine zweite Wärmespeichermasse, wobei die Wärmespeichermassen jeweils an mindestens einen Rohgaskanal und mindestens einen Reingaskanal angeschlossen sind und
    • mindestens eine strömungstechnisch zwischen den Wärmespeichermassen angeordnete Brennkammer, in der die in dem Rohgasvolumenstrom befindlichen Bestandteile oxidierbar sind und der Rohgasvolumenstrom so in einen Reingasvolumenstrom umwandelbar ist.
  • Die Wärmespeichermassen sind meist in getrennten Behältern oder in einem durch Trennwände geteilten gemeinsamen Behälter angeordnet und werden abwechselnd von einem Rohgasvolumenstrom und einem Reingasvolumenstrom durchströmt. Im Sinne dieser vorliegenden Anmeldung lassen sich die Wärmespeichermassen in einen oberen, der Brennkammer zugewandten Bereich und einen unteren der Brennkammer abgewandten Bereich unterteilen.
  • Weiterhin kann im Sinne der vorliegenden Anmeldung unter den in einem Behälter angeordneten Wärmespeichermassen auch eine einzelne Wärmespeichermasse verstanden werden, die, bedarfsweise mittels einer Trennwand, in zwei Abschnitte aufgeteilt ist, wobei jeder Abschnitt abwechselnd von dem Rohgasvolumenstrom und dem Reingasvolumenstrom durchströmt wird.
  • Es führen jeweils ein Rohgaskanal und ein Reingaskanal zu den einzelnen Wärmespeichermassen, wobei je nach Prozesszyklus abwechselnd der Rohgasvolumenstrom oder der Reingasvolumenstrom durch die entsprechende Wärmespeichermasse geleitet wird. Die erste Wärmespeichermasse wärmt den Rohgasvolumenstrom vor, bevor letzterer in die Brennkammer geleitet und dort durch die Oxidation der oxidierbaren Bestandteile in den Reingasvolumenstrom umgewandelt wird. Der Reingasvolumenstrom überträgt seine thermische Energie an die zweite nachgeschaltete Wärmespeichermasse. Bei einem darauf folgenden Prozesszyklus wird zunächst die zweite, zuvor von dem Reingasvolumenstrom vorgewärmte Wärmespeichermasse mit dem Rohgasvolumenstrom durchströmt und heizt letzteren auf. Durch die erste, zuvor von dem Rohgasvolumenstrom durchströmte Wärmespeichermasse wird nun der Reingasvolumenstrom geleitet, wobei letzterer nun die erste, jetzt "nachgeschaltete" Wärmespeichermasse aufheizt.
  • Stand der Technik
  • Es sind bereits zahlreiche Gasoxidationsanlagen und Verfahren zu deren Betrieb in verschiedenen Ausführungsformen aus dem Stand der Technik bekannt.
  • Während des Betriebs der Gasoxidationsanlage wird thermische Energie durch die Oxidation von oxidierbaren Bestandteilen, beispielsweise kohlenstoffhaltiger Verbindungen freigesetzt (=exotherme Reaktion). Plötzliche Konzentrationserhöhungen der oxidierbaren Bestandteile in dem Rohgasvolumenstrom führen zu einem überautothermen Zustand. Infolgedessen tritt ein Temperaturanstieg innerhalb der Gasoxidationsanlage auf. Ein überautothermer Zustand, in dem der Gehalt des Rohgases an oxidierbaren Bestandteilen größer ist, als für die dauerhafte Aufrechterhaltung einer minimalen Oxidationstemperatur in der Anlage auch ohne weitere externe Energiezufuhr erforderlich wäre, sollte allerdings über langen Zeitraum vermieden werden, da dies zu einem Ausfall der Gasoxidationsanlage wegen Überhitzung führen kann. Zur Vermeidung eines Totalausfalls wird in solchen Fällen bereits zuvor eine Abschaltung der Anlage eingeleitet, um einen unkontrollierten überautothermen Prozess der Gasoxidationsanlage entgegen zu wirken und dabei einen Verschleiß oder Beschädigungen der Bauteile zu minimieren.
  • Eine derartige Anlage zur thermischen Nachverbrennung von Prozessgasen wird beispielsweise in der DE 26 24 874 beschrieben. Sowohl Rohgas als auch Reingas werden durch dieselbe Wärmespeichermasse geleitet, wobei das Reingas seine Wärme an die Speichermasse abgibt und das Rohgas mittels dieser Wärme aufgeheizt wird. Bei dieser Anlage kann die Temperatur in der Wärmespeichermasse lediglich durch Abschaltung erfolgen, weshalb die vorgenannten Nachteile bei dieser Anlage auftreten können.
  • Heutzutage wird häufig ein Bypass, wie dieser beispielsweise in der DE 10 2010 012 005 A1 beschrieben wird, an die Brennkammer angeschlossen. Mittels des Bypasses wird der Reingasvolumenstrom direkt aus der Brennkammer abgeleitet und folglich wird der Gasoxidationsanlage eine gewisse thermische Energie entzogen. Dadurch wird verhindert, dass die nachgeschaltete Wärmespeichermasse zu stark aufgeheizt wird. Dennoch findet keine unmittelbare Abkühlung der Wärmespeichermasse statt. Vielmehr erfolgt die Abkühlung der Wärmespeichermasse, also die Abgabe der ,überschüssigen' thermischen Energie an den Reingasvolumenstrom, erst bei einem anschließenden Prozesszyklus durch das kalte Rohgas, welches diese Wärmespeichermasse dann durchströmt, wobei eine ausreichende Abkühlung häufig sogar erst nach zwei bis drei Prozesszyklen stattfindet. Innerhalb dieses Zeitraumes kann allerdings schon ein Totalausfall der Gasoxidationsanlage eingetreten sein. Das heißt, bei dem Bypass handelt es sich um eine lediglich recht Träge wirkende Einflussgröße auf die Anlagentemperatur.
  • Ein weiterer Nachteil des Bypasses besteht darin, dass es schwer einschätzbar ist, wie viel thermische Energie über den Bypass abgeleitet werden muss. Dabei kann es durchaus möglich sein, dass ungewollter Weise so viel thermische Energie abgeleitet wird, dass der Rohgasvolumenstrom nicht ausreichend von der vorgeschalteten Wärmespeichermasse vorgeheizt wird. Die Wärmequelle schafft es in diesem Fall nicht, den ungenügend vorgewärmten Rohgasvolumenstrom derart aufzuheizen, dass eine ausreichende Oxidation der oxidierbaren Bestandteile in dem Rohgasvolumenstrom auftritt. Dies kann zur Folge haben, dass die geforderten Reingasgrenzwerte nicht mehr eingehalten werden.
  • Hinzu kommt, dass mittels des Bypasses thermische Energie aus der Gasoxidationsanlage entnommen wird und dieser nicht mehr für die Oxidation zur Verfügung steht. Folglich führt dieses zu einem Energieverlust innerhalb der Gasoxidationsanlage.
  • Eine weitere heutzutage angewandte Methode zur Regelung einer Gasoxidationsanlage besteht darin, dass dem Rohgasvolumenstrom Zuluft beigemischt wird, bevor dieser in die vorgeschaltete Wärmespeichermasse geleitet wird. Dies führt zu einer Senkung der Konzentration der oxidierbaren Bestandteile in dem Rohgasvolumenstrom und verringert beziehungsweise verhindert somit eine überautotherme Reaktion in der von dem Rohgasvolumenstrom durchströmten Wärmespeichermasse. Da keine zeitlich und/oder räumlich hoch aufgelösten Betrachtungen der Temperatur- und Reaktionsverläufe in den Wärmespeichermassen möglich sind, kann die benötigte Menge an Zuluft nur geschätzt beziehungsweise erahnt werden. Ein Zuviel an Zuluft verursacht einen vermehrten Einsatz des Brenners, und ein Zuwenig an Zuluft führt schlimmstenfalls zu einem Totalausfall der Gasoxidationsanlage, da auch in diesem Fall eine Abkühlung der Wärmespeichermassen frühestens nach ein bis drei Prozesszyklen auftritt. Schließlich offenbart US 6488076 B1 ein Verfahren mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Aufgabe
  • Die Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung und ein Verfahren dahingehend weiterzuentwickeln, dass eine Abkühlung der Gasoxidationsanlage mit möglichst geringer Verzögerung möglich ist, um einen Totalausfall der Anlage zu verhindern. Die in der Gasoxidationsanlage gewonnene Energie sollte dabei möglichst effizient weiter genutzt werden, ohne dass die Reingasgrenzwerte überschritten werden.
  • Lösung
  • Die zugrunde liegende Aufgabe wird ausgehend von einer Vorrichtung der eingangs beschriebenen Art durch mindestens einen Kanal gelöst, der vorzugsweise unmittelbar an die Brennkammer angeschlossen ist und mittels dessen ein Fluid in die Brennkammer einleitbar ist, wobei eine Einleitung des Fluids zu einer Temperaturreduzierung in der Brennkammer führt.
  • Mittels dieser Anordnung kann die Brennkammertemperatur unmittelbar nach Feststellung eines zu starken Temperaturanstiegs in der Brennkammer gesenkt werden, indem das Fluid in die Brennkammer eingeleitet und mit dem darin befindlichen Gasgemisch vermengt wird. Es können sogar plötzlich auftretende Temperaturanstiege innerhalb der Wärmespeichermasse ausgeglichen werden. Es handelt sich somit um eine sehr rasch auf die Brennkammertemperatur wirkende Stellgröße. Die Temperaturanstiege sind auf Änderungen im Energiegehalt beziehungsweise Konzentrationsanstiege der oxidierbaren Bestandteile in dem Rohgasvolumenstrom zurückzuführen, da diese zu einer verstärkten exothermen Reaktion und somit zu einer vermehrten Freisetzung an thermischer Energie führen. Es versteht sich, dass das zugeführte Fluid eine möglichst geringe Temperatur jedenfalls deutlich unterhalb der Brennkammertemperatur aufweist, wobei meist ein Fluid mit Umgebungs- beziehungsweise Raumtemperatur verwendet werden wird.
  • Durch das Einleiten des Fluids in die Brennkammer kann der Wärmeverlust innerhalb der Gasoxidationsanlage möglichst gering gehalten werden, da die thermische Energie im Gegensatz zu dem aus dem Stand der Technik bekannten Vorrichtungen und Betriebsverfahren, zumindest nicht über einen thermisch ungenutzten Bypassstrom abgeleitet wird, sondern innerhalb der Gasoxidationsanlage, und der zwar vornehmlich in den Wärmespeichermassen verbleibt. Dass dennoch ein Totalausfall der Gasoxidationsanlage vermieden werden kann, lässt sich folgendermaßen erklären:
    Zum einen entfaltet die Einleitung eines hinreichend kühlen Fluids in die Brennkammer eine sehr unmittelbare und zeitnahe Wirkung, d. h. Reduzierung der Brennkammertemperatur was insbesondere dann eine Anlagenabschaltung wegen Überhitzung vermeidet, wenn die eine mögliche Abschaltung auslösenden Temperatursensoren sich in der Brennkammer befinden, was nach dem Stand der Technik üblich ist. Dabei ist das erfindungsgemäße Verfahren unter Aspekten der Energieeffizienz als sehr positiv zu beurteilen, da trotz des Abkühleffekts keine Energie ungenutzt aus dem System abgegeben wird (wie das bei einem Bypass ohne Wärmerückgewinnung der Fall ist), sondern die Energie in der jeweils der Brennkammer nachgeschalteten Wärmespeichermasse (zwischen-) gespeichert wird. Dies ist insbesondere dann besonders sinnvoll, wenn die Überhitzungsproblematik lediglich für einen kurzen Zeitraum aufgrund einer temporären Spitze in dem Gehalt des Rohgases an oxidierbaren Bestandteilen hervorgerufen wird und diese Spitze bald durch Phasen abgelöst würde, in denen (gerade) ein autothermer Betrieb möglich wäre bzw. sogar wieder ein unterautothermer Betriebszustand vorliegt.
  • Ferner bietet die erfindungsgemäße Fluideinleitung in die Brennkammer aber auch eine sehr elegante Möglichkeit zur Regelung des Temperaturniveaus der Wärmespeichermassen. Auch ohne einen konkreten Anlass für eine Temperatursenkung in der Brennkammer kann eine Fluideinleitung dort sinnvoll sein, wenn nämlich durch eine länger andauernde Nutzung eines heißen Bypasses die Temperatur innerhalb der Wärmespeichermassen so weit absinkt, dass eine zu geringe Vorwärmung des Rohgasvolumenstroms zu einer Überschreitung der Reingasgrenzwerte führt. Hier wird durch die gezielte Fluideinleitung in die Brennkammer ein höherer Volumenstrom durch die zweite aufzuwärmende Wärmespeichermasse geleitet, so dass die Temperatur innerhalb dieser Masse und durch die zyklische Umschaltung der Strömungsrichtung durch die Temperatur der gesamten Wärmespeichermasse angehoben wird.
  • Die Abkühlung der Gasoxidationsanlage und vor allem der Wärmespeichermassen findet noch im gleichen Prozesszyklus statt, ohne dass dabei thermische Energie verloren geht. Vielmehr ist es so, dass die gesamte thermische Energie der Gasoxidationsanlage weiterhin zur Verfügung steht und zum Aufheizen des Rohgasvolumenstroms nach einem Zykluswechsel eingesetzt werden kann.
  • Erfindungsgemäß ist vorgesehen, dass das Fluid von Außenluft gebildet wird. Ein gasförmiger Zustand des Fluides ermöglicht eine besonders gute Durchmischung des Fluides mit dem Gasgemisch in der Brennkammer. Wird das Fluid von der Außenluft gebildet, muss kein zusätzliches beispielsweise in Behältern angeordnetes Fluid bereitgehalten werden. Grundsätzlich ist es aber auch denkbar, dass das Fluid von einer Flüssigkeit, insbesondere Wasser oder einer wasserhaltigen Flüssigkeit gebildet ist. In diesem Fall wird der Abkühleffekt durch die Verdampfungsenthalpie des Wassers noch verstärkt. Diese Ausführungsform ist aber nicht Teil der Erfindung.
  • Um eine möglichst gute Verteilung des Fluids innerhalb der Brennkammer zu ermöglichen, sieht eine besonders vorteilhafte Ausgestaltung der Erfindung vor, dass der mindestens eine Kanal in mindestens einer, vorzugsweise zwei Einspeisestellen mündet, wobei sich die Einspeisestellen vorzugsweise in einem oberen Bereich der Brennkammer befinden. Die Vermischung des Fluides und des Gasgemisches findet durch die Mehrzahl an Einspeisestellen an verschiedenen Orten statt, wodurch eine möglichst schnelle und gleichmäßige Durchmischung erreicht wird. Die Anordnung der Einspeisestellen in dem oberen Teil der Brennkammer, also dem Bereich der Brennkammer, der sich nicht unmittelbar an der mindestens einen Wärmespeichermasse befindet, begünstigt eine gute Durchmischung des Fluids mit dem Gasgemisch, dadurch, dass das Fluid das warme, in der Brennkammer nach oben gestiegene Gasgemisch unmittelbar kühlt. Das "kühlere" Gasgemisch befindet sich in dem Bereich der Brennkammer, der an die Wärmespeichermassen grenzt. Das führt dazu, dass das eine geringere Temperatur aufweisende Gasgemisch mit der Wärmespeichermasse in Kontakt kommt und diese aufheizt. Da die Temperatur des Gasgemisches sich innerhalb eines tolerierbaren Bereichs befindet, wird die Wärmespeichermasse wegen der Abhängigkeit weniger stark aufgeheizt.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass das Fluid zumindest teilweise von dem Reingasvolumenstrom gebildet wird. Der bereits zur Verfügung stehende Reingasvolumenstrom braucht lediglich mittels des Kanals direkt oder indirekt in die Brennkammer geleitet werden. Infolgedessen braucht kein weiteres Fluid bereitgehalten werden. Weiterhin werden mögliche noch vorhandene oxidierbare Bestandteile in dem Reingasvolumenstrom ein weiteres Mal erhitzt und durch Oxidation gereinigt. Dadurch ist eine Verbesserung der Reingaswerte in Hinblick auf den Rest-Schadstoffgehalt möglich. Diese Ausführungsform ist aber nicht Teil der Erfindung.
  • In konstruktiver Hinsicht ist es von Vorteil, wenn der mindestens eine Kanal unmittelbar mit dem Reingaskanal verbunden ist. Vorzugsweise führt der Kanal zu der mindestens einen Einspeisestelle in der Brennkammer. Ein Umbau von bereits bestehenden Gasoxidationsanlagen ist ohne Weiteres möglich.
  • Alternativ ist vorgesehen, dass in der Brennkammer ein Brenner angeordnet ist, wobei vorzugsweise ein Verbrennungsluftkanal des Brenners den mindestens einen Kanal bildet. Die Art der Anordnung erfordert keine zusätzlichen Umbaumaßnahmen, da der Verbrennungsluftkanal, welcher Luft für die Verbrennung in die Brennkammer leitet, bereits vorhanden ist. Neben dem Verbrennungsluftkanal weist der Brenner noch einen Brennstoffkanal auf zur Einleitung eines Brennstoffes in die Brennkammer.
  • Der mindestens eine Kanal kann optional auch zwischen dem Reingaskanal und dem Verbrennungsluftkanal angeordnet sein. Eventuelle Komplikationen durch die Doppelnutzung eines Abschnittes des Verbrennungskanals sind nicht gegeben, da das Fluid nur in die Brennkammer geleitet wird, wenn die Temperatur zu hoch ist. Wenn der Brenner zum Einsatz kommt, ist hingegen gerade nicht genügend thermische Energie in der Brennkammer durch die exotherme Reaktion vorhanden. Folglich braucht auch kein Fluid in die Brennkammer eingeleitet zu werden, um das Gasgemisch abzukühlen.
  • Obgleich in der Mehrzahl der Fälle ein Brenner in der Gasoxidationsanlage vorhanden ist, kann es im Sinne der vorliegenden Anmeldung durchaus möglich sein, dass anstatt des Brenners eine andere Wärmequelle verwendet wird.
  • Für den Fall, dass ein Kanal beispielsweise wegen eines Defektes ausfällt oder ein Kanal die Brennkammer nicht mit genügend Fluid versorgen kann, um die Temperatur in der Brennkammer zu senken, sieht eine vorteilhafte Ausgestaltung der Erfindung mindestens einen weiteren Kanal vor, der unmittelbar an die Brennkammer angeschlossen ist, wobei mittels dieses Kanals das Fluid, vorzugsweise Außenluft, in die Brennkammer einleitbar ist. Beim Betrieb zweier Kanäle kann eine größere Menge des Fluides in die Brennkammer eingeleitet werden und somit eine schnellere Abkühlung der Gasoxidationsanlage bewirken.
  • Der Anteil des in die Brennkammer eingeführten Volumenstroms des Fluids den Rohgasvolumenstrom sollte zwischen 1 % und 25 %, vorzugsweise zwischen 5 % und 15 % betragen.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass der mindestens eine weitere Kanal unmittelbar mit dem Reingaskanal verbindbar ist oder von dem Verbrennungsluftkanal gebildet wird. Diese konstruktiven Umbauarbeiten lassen sich ohne Probleme bewältigen. Es kann dabei auch vorgesehen sein, dass der erste Kanal mit dem Reingaskanal verbunden ist und der weitere Kanal von dem Verbrennungsluftkanal gebildet wird. Eine umgekehrte Anordnung ist durchaus auch denkbar.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass ein Bypasskanal strömungstechnisch an die Brennkammer, vorzugsweise unmittelbar, angeschlossen ist, wobei der Bypasskanal vorzugsweise eine Wärmetauschereinrichtung aufweist. Mittels des Bypasses kann thermische Energie aus der Gasoxidationsanlage entnommen werden, um diese für andere Zwecke, z. B. zur Erzeugung von Dampf, Thermalöl, Heißwasser oder Heißluft zu nutzen. Durch den Bypass findet eine zusätzliche Abkühlung der Gasoxidationsanlage beziehungsweise der Wärmespeichermassen statt.
  • Es besteht auch die Möglichkeit, bereits bestehende Gasoxidationsanlagen, welche einen Bypass aufweisen können, mittels des mindestens einen Kanals nachzurüsten. Der Bypass führt die überschüssige thermische Energie aus der Brennkammer heraus und setzt diese für weitere Zwecke ein. Eine direkte Abkühlung wird mittels des Fluids erreicht. Dadurch kann ein Totalausfall der Gasoxidationsanlage verhindert werden.
  • In einer Weiterentwicklung der Erfindung ist vorgesehen, dass mindestens ein weiterer Kanal, derart an die Gasoxidationsanlage angeschlossen ist, dass das mittels des weiteren Kanals in die Gasoxidationsanlage eingeleitete Fluid, mit dem Rohgasvolumenstrom vermischbar ist, bevor ein von dem Rohgasvolumenstrom und dem Fluid gebildeter Mischvolumenstrom in eine der Wärmespeichermassen eintritt. Eine Vermischung des Fluids mit dem Rohgasvolumenstroms, bevor letzteres in die vorgeschaltete Wärmespeichermasse eingeleitet wird, senkt die Konzentration an oxidierbaren Bestandteilen in dem Rohgasvolumenstrom. Dadurch kann verhindert werden, dass eine überautotherme Reaktion auftritt und die Temperatur in der Brennkammer und den Wärmespeichermassen unkontrolliert ansteigt. Falls es dennoch zu einem Temperaturanstieg kommen sollte, lässt sich dieser mittels der Kanäle, welche Fluid in die Brennkammer einleiten, wieder ausgleichen.
  • Um zu ermöglichen, dass das Fluid mit dem Rohgasvolumenstrom gemischt wird, bevor beides in die vorgeschaltete Wärmespeichermasse eingeleitet wird, ist vorgesehen, dass der weitere Kanal unmittelbar mit dem mindestens einen Rohgaskanal verbunden ist.
  • Die Erfindung betrifft ein Verfahren zum Betrieb einer Gasoxidationsanlage zur thermischen Behandlung eines mit oxidierbaren Bestandteilen belasteten Rohgasvolumenstroms, umfassend die folgenden Verfahrensschritte:
    • Der Rohgasvolumenstrom wird ausgehend von einem Rohgaskanal in einen ersten Behälter der Rohgasreinigungsanlage eingeleitet, der mindestes eine Wärmespeichermasse aufweist.
    • Der Rohgasvolumenstrom wird durch die mindestens eine erste Wärmespeichermasse in eine Brennkammer geleitet, wobei in der Wärmespeichermasse gespeicherte thermische Energie auf den Rohgasvolumenstrom übergeht und diesen erwärmt.
    • In der Brennkammer werden die Bestandteile des Rohgasvolumenstroms oxidiert und der Rohgasvolumenstrom so in einen Reingasvolumenstrom umgewandelt.
    • Ausgehend von der Brennkammer wird der Reingasvolumenstrom zumindest teilweise und/oder zeitweise in mindestens eine zweite Wärmespeichermasse geleitet, wobei in dem Reingasvolumenstrom enthaltene Wärmeenergie auf die zweite Wärmespeichermasse übergeht und diese erwärmt.
    • Der Reingasvolumenstrom wird in einen Reingaskanal eingeleitet.- Im Betrieb der Gasoxidationsanlage wird bei einem Anteil oxidierbarer Bestandteile in dem Rohgasvolumenstrom, durch welchen Anteil infolge einer exothermen Reaktion mehr thermische Energie freigesetzt würde, als im stationären Betrieb der Gasoxidationsanlage für die Einhaltung bestimmter Maximaltemperaturen akzeptabel wäre, mittels eines Kanals Außenluft direkt in die Brennkammer eingeleitet, wodurch die Brennkammertemperatur gesenkt und eine Anlagenabschaltung wegen Übertemperatur verhindert wird.
  • Erfindungsgemäß ist vorgesehen, dass im Betrieb der Gasoxidationsanlage mittels mindestens eines Kanals ein Fluid direkt in die Brennkammer eingeleitet wird. In der Brennkammer vermischt sich das Fluid mit dem Gasgemisch, welches zu einem Anteil aus dem Rohgasvolumenstrom und zu einem anderen Anteil aus dem Reingasvolumenstrom besteht. Das Verfahren zeichnet daher gleichermaßen durch die oben beschriebenen Vorteile der erfindungsgemäßen Gasoxidationsanlage aus.
  • In einer vorteilhaften Weiterentwicklung der Erfindung ist vorgesehen, dass die Außenluft als Fluid an mindestens zwei Einspeisestellen in die Brennkammer eingeleitet wird. Daraus ergibt sich der Vorteil, dass bei Ausfall einer der Einspeisestellen eine andere Einspeisestelle noch zur Verfügung steht. Befinden sich mindestens zwei Einspeisetellen an der Brennkammer führt dieses zu einer besonders guten Durchmischung des Gasgemisches und des Fluides.
  • Besonders vorteilhaft ergibt sich vorgenannte Ausgestaltung, wenn das Fluid ausgehend von dem Reingaskanal in die Brennkammer eingeleitet wird und/oder das Fluid durch einen Verbrennungsluftkanal eines Brenners in die Brennkammer geleitet wird. Konstruktiv lässt sich diese Anordnung einfach erreichen, da der Verbrennungsluftkanal und eine dazugehörige Einspeisestelle bereits vorhanden sind und lediglich das Fluid durch den Kanal geleitet werden muss. Wird das Fluid, vorzugsweise zusätzlich, von dem Reingas gebildet, führt der Kanal von dem Reingaskanal zu der Einspeisestelle.
  • In einer erfindungsgemäßen Weiterentwicklung der Erfindung ist vorgesehen, dass zumindest ein Teil des Reingasvolumenstroms über einen Bypass abgeführt wird. Die thermische Energie, welche in der Gasoxidationsanlage entsteht, kann über den Bypass abgeleitet werden und beispielsweise mittels eines Wärmetauschers zur Nutzung an anderer Stelle (Heizung, Prozesswärme, o. ä.) ausgekoppelt werden.
  • Schließlich ist noch vorgesehen, dass der Rohgasvolumenstrom mit dem Fluid gemischt wird, sodass ein Mischvolumenstrom gebildet wird, bevor der Mischvolumenstrom in eine der
  • Wärmespeichermassen geleitet wird. Auf diese Weise kann die Konzentration an oxidierbaren Bestandteilen in dem Rohgasvolumenstrom verringert werden, bevor dieser durch die vorgeschaltete Wärmespeichermasse geleitet wird, wodurch weniger thermische Energie in dem System freigesetzt wird.
  • Ausführungsbeispiele
  • Die Anlage sowie das erfindungsgemäße Verfahren werden nachfolgend anhand vier Ausführungsbeispiele, die in den Figuren dargestellt sind, näher erläutert.
  • Es zeigt:
  • Fig. 1:
    ein Schaltbild einer Gasoxidationsanlage in einer ersten Ausführungsform,
    Fig. 2:
    ein Schaltbild einer Gasoxidationsanlage in einer zweiten Ausführungsform,
    Fig. 3:
    ein Schaltbild einer Gasoxidationsanlage in einer dritten Ausführungsform,
    Fig. 4:
    ein Schaltbild einer Gasoxidationsanlage in einer vierten Ausführungsform.
  • Die Figur 1 zeigt ein Schaltbild einer Gasoxidationsanlage 101 mit einer ersten Wärmespeichermasse 2 und einer zweiten Wärmespeichermasse 3. Die Wärmespeichermassen 2, 3 sind jeweils in einem Behälter 4, 5 angeordnet, wobei Wärmespeichermassen 2, 3 jeweils mit einem Rohgaskanal 6 und mit einem Reingaskanal 7 verbunden sind. Dabei ist vorgesehen, dass mittels Ventilen 8, 9, 10, 11 sowohl der Rohgaskanal 6 als auch der Reingaskanal 7 strömungstechnisch von den Behältern 4, 5 getrennt werden kann. Weiterhin sind die beiden Wärmespeichermassen 2, 3 über eine Brennkammer 12 miteinander verbunden. In dem hier dargestellten Ausführungsbeispiel befindet sich in der Brennkammer 12 ein Brenner 13 als externe Wärmequelle. Auch wenn es durchaus üblich ist, einen Brenner 13 in Gasoxidationsanlagen 101 einzusetzen, sind in bestimmten Konstellationen auch Gasoxidationsanlagen ohne Brenner 13 denkbar.
  • In einem ersten Prozesszyklus wird das erste Ventil 8 geöffnet und das zweite Ventil 9 geschlossen, damit ein Rohgasvolumenstrom über den Rohgaskanal 6 in einen unteren Bereich 14 der ersten Wärmespeichermasse 2 eingeleitet werden kann. Der untere Bereich 14 der Wärmespeichermassen 2, 3 ist ein Teil der Wärmespeichermassen 2, 3, der von der Brennkammer 12 abgewandt ist und somit als erstes mit dem Rohgasvolumenstrom in Kontakt kommt. Ein oberer Bereich 15 der Wärmespeichermassen 2, 3 ist der Brennkammer 12 zugewandt. Das in diesem Prozesszyklus geschlossene zweite Ventil 9 verhindert, dass der Rohgasvolumenstrom in den Reingaskanal 7 gelangt. Das heißt für diesen Prozesszyklus, dass die erste Wärmespeichermasse 2 vor die Brennkammer 12 geschaltet ist.
  • Der Rohgasvolumenstrom wird von der ersten vorgeschalteten Wärmespeichermasse 2 aufgeheizt, bevor dieser weiter in die Brennkammer 12 geleitet wird. Anschließend wird der Rohgasvolumenstrom innerhalb der Brennkammer 12 von dem Brenner 13 weiter aufgeheizt, wodurch die in dem Rohgasvolumenstrom vorhandenen oxidierbaren Bestandteile oxidieren und thermische Energie freigesetzt wird. Durch diesen Prozess wird der Rohgasvolumenstrom in ein Reingasvolumenstrom umgewandelt. Für die Einleitung und gegebenenfalls auch Aufrechterhaltung der Oxidation wird thermische Energie benötigt (endotherm), es wird allerdings durch die Oxidation auch thermische Energie freigesetzt (exotherm).
  • Die Oxidation der oxidierbaren Bestandteile findet sowohl in der Brennkammer 12 als auch in der zweiten Wärmespeichermasse 3, welche der Brennkammer 12 nachgeschaltet ist, statt. In der Brennkammer 12 befindet sich ein Gasgemisch, welches anteilig aus dem Rohgasvolumenstrom und anteilig aus dem Reingasvolumen besteht. Die während der Oxidation entstandene thermische Energie wird an die zweite Wärmespeichermasse 3 abgegeben. Der Reingasvolumenstrom verlässt die zweite Wärmespeichermasse 3 über den Reingaskanal 7. Das dritte in diesem Prozesszyklus verschlossene Ventil 10 verhindert, dass der Rohgasvolumenstrom durch die zweite nachgeschaltete Wärmespeichermasse 3 strömt. Das vierte Ventil 11 ist geöffnet und verbindet die zweite nachgeschaltete Wärmespeichermasse 3 mit dem Reingaskanal 7.
  • In einem zweiten Prozesszyklus wird das vierte Ventil 11 geschlossen und das dritte Ventil 10 geöffnet. Dies ermöglicht, dass der Rohgasvolumenstrom in die zweite Wärmespeichermasse 3, welche in diesem Prozesszyklus die vorgeschaltete Wärmespeichermasse bildet, geleitet wird. Mit der in der zweiten Wärmespeichermasse 3 gespeicherten thermischen Energie wird der Rohgasvolumenstrom aufgeheizt, bevor dieser in die Brennkammer 12 geleitet wird. Dort wird der Rohgasvolumenstrom weiter aufgeheizt, damit die Oxidation stattfinden kann. Der dabei entstehende Reingasvolumenstrom wird in die erste Wärmespeichermasse 2 geleitet und gibt dort seine thermische Energie ab.
  • Befindet sich ein hoher Anteil oxidierbarer Bestandteile in dem Gasgemisch, wird durch die exotherme Reaktion mehr thermische Energie freigesetzt als im stationären Zustand für eine Einhaltung bestimmter Maximaltemperaturen akzeptabel wäre. Infolgedessen steigt die Temperatur innerhalb der Brennkammer 12 und auch in der jeweils nachgeschalteten Wärmespeichermasse 2, 3 stark an. Um diesem Temperaturanstieg entgegen zu wirken, wird das Gasgemisch mit einem Fluid durchmischt. Das Fluid wird über einen Kanal 16 eingeleitet, welcher an einer Einspeisestelle mit der Brennkammer 12 verbunden ist. Die Zufuhr des Fluids wird über ein fünftes Ventil 17 geregelt. Vorzugsweise befindet sich die Einspeisestelle in einem oberen der Wärmespeichermassen 2, 3 abgewandten Teil der Brennkammer 12. Gemäß der Erfindung wird das Fluid von Außenluft gebildet. Eine eventuell in dem Kanal 16 erforderliche Luftfördereinrichtung ist der Einfachkeit halber in der Zeichnung nicht dargestellt.
  • Eine weitere mögliche Ausführungsform ist gestrichelt in der Figur 1 dargestellt. Diese zeigt, dass auch mehrere Einspeisestellen an der Brennkammer 12 vorhanden sein können, wobei es denkbar ist, dass weitere Kanäle 18 zu den jeweiligen Einspeisestellen hinführen oder der Kanal 16 Abzweigungen zu den verschiedenen Einspeisestellen aufweist.
  • Die Figur 2 zeigt eine alternative Ausführungsform der erfindungsgemäßen Gasoxidationsanlage 201. Der Kanal 16 ist zwischen dem Reingaskanal 7 und der Einspeisestelle in der Brennkammer 12 angeordnet. Das führt dazu, dass das Fluid von dem Reingasvolumenstrom gebildet wird.
  • In der Figur 3 wird ein weitere erfindungsgemäße Gasoxidationsanlage 301 dargestellt, wobei sich die Gasoxidationsanlage 301 in der Hinsicht von der Gasoxidationsanlage 101 in Figur 1 unterscheidet, dass der Kanal 16 nicht zwischen dem Reingaskanal 7 und der Brennkammer 12 angeordnet ist, sondern von einem Verbrennungsluftkanal 19 des Brenners 13 gebildet wird. In einer hier nicht dargestellten Ausführungsform kann der Kanal 16 den Reingaskanal 7 mit dem Verbrennungsluftkanal 19 des Brenners 13 verbinden und somit den Reingasvolumenstrom als Fluid in die Brennkammer 12 einleiten.
  • In weiteren hier nicht dargstellten Ausführungsbeispielen sind auch Kombinationen der oben genannten Ausführungsbeispiele möglich.
  • Die Figur 4 zeigt ein Ausführungsbeispiel wie Figur 1, wobei ergänzend noch ein Bypasskanal 20 und/ oder ein weiterer Kanal 21 an die Gasoxidationsanlage 401 angeschlossen sind. Der Bypasskanal 20 führt bedarfsweise einen Teil des Reingasvolumenstroms unmittelbar aus der Brennkammer 12 heraus. Die thermische Energie wird über eine Wärmetauschereinrichtung 22, die der Bypasskanal 20 aufweist, ausgekoppelt und anderweitig verwendet. Der weitere Kanal 21 leitet das Fluid in den Rohgaskanal 6 ein, um den Rohgasvolumenstrom mit dem Fluid zu mischen, bevor dieser dadurch gebildete Mischvolumenstrom in die vorgeschaltete Wärmespeichermasse geleitet wird.
  • Bezugszeichenliste
  • 101, 201, 301, 401
    Gasoxidationsanlage
    2
    Wärmespeichermasse
    3
    Wärmespeichermasse
    4
    Behälter
    5
    Behälter
    6
    Rohgaskanal
    7
    Reingaskanal
    8
    Ventil
    9
    Ventil
    10
    Ventil
    11
    Ventil
    12
    Brennkammer
    13
    Brenner
    14
    unterer Bereich
    15
    oberer Bereich
    16
    Kanal
    17
    Ventil
    18
    weiterer Kanal
    19
    Verbrennungsluftkanal

Claims (9)

  1. Verfahren zur Reduzierung der Brennkammertemperatur beim Betrieb einer Gasoxidationsanlage (101, 201, 301, 401) zur thermischen Behandlung eines mit oxidierbaren Bestandteilen belasteten Rohgasvolumenstroms, umfassend die folgenden Verfahrensschritte:
    a) Der Rohgasvolumenstrom wird durch mindestens eine vorgeschaltete Wärmespeichermasse (2, 3) in eine Brennkammer (12) geleitet, wobei in dieser Wärmespeichermasse (2, 3) gespeicherte thermische Energie auf den Rohgasvolumenstrom übergeht und diesen erwärmt.
    b) In der Brennkammer (12) werden die Bestandteile des Rohgasvolumenstroms oxidiert und der Rohgasvolumenstrom so in einen Reingasvolumenstrom umgewandelt.
    c) Ausgehend von der Brennkammer (12) wird der Reingasvolumenstrom zumindest teilweise und/oder zeitweise in mindestens eine nachgeschaltete Wärmespeichermasse (2, 3) geleitet, wobei in dem Reingasvolumenstrom enthaltene Wärmeenergie auf diese nachgeschaltete Wärmespeichermasse (2, 3) übergeht und diese erwärmt.
    d) Der Reingasvolumenstrom wird in einen Reingaskanal (7) eingeleitet,
    gekennzeichnet durch den folgenden Verfahrensschritt:
    e) Im Betrieb der Gasoxidationsanlage (101, 201, 301, 401) wird bei einem Anteil oxidierbarer Bestandteile in dem Rohgasvolumenstrom, durch welchen Anteil infolge einer exothermen Reaktion mehr thermische Energie freigesetzt würde, als im stationären Betrieb der Gasoxidationsanlage für die Einhaltung bestimmter Maximaltemperaturen akzeptabel wäre, mittels eines Kanals (16) Außenluft direkt in die Brennkammer (12) eingeleitet, wodurch die Brennkammertemperatur gesenkt und eine Anlagenabschaltung wegen Übertemperatur verhindert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Außenluft, an mindestens zwei sich vorzugsweise in einem oberen Teil der Brennkammer befindenden Einspeisestellen in die Brennkammer (12) eingeleitet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Außenluft durch einen Verbrennungsluftkanal (19) eines Brenners (13) in die Brennkammer (12) geleitet wird.
  4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest ein Teil des Reingasvolumenstroms über einen Bypasskanal (20) abgeführt wird.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Rohgasvolumenstrom mit Außenluft gemischt wird, sodass ein Mischvolumenstrom gebildet wird, bevor der Mischvolumenstrom in eine der Wärmespeichermassen (2, 3) geleitet wird.
  6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, gekennzeichnet durch, mindestens einen weiteren Kanal (18), der unmittelbar an die Brennkammer (12) angeschlossen ist, wobei mittels dieses Kanals Außenluft, in die Brennkammer (12) einleitbar ist.
  7. Verfahren nach mindestens einem der Ansprüche 1 bis 3 gekennzeichnet durch, einen Bypasskanal (20) der strömungstechnisch an die Brennkammer (12), vorzugsweise unmittelbar, angeschlossen ist, wobei der Bypasskanal (20) vorzugsweise eine Wärmetauschereinrichtung (22) aufweist.
  8. Verfahren nach mindestens einem der Ansprüche 1 bis 7 , gekennzeichnet durch, mindestens einen weiteren Kanal (21), der derart an die Gasoxidationsanlage (101, 201, 301, 401) angeschlossen ist, dass die mittels des weiteren Kanals (21) in die Gasoxidationsanlage (101, 201, 301, 401) eingeleitete Außenluft mit dem Rohgasvolumenstrom vermischbar ist, bevor ein von dem Rohgasvolumenstrom und dem Fluid gebildeter Mischvolumenstrom in eine der Wärmespeichermassen (2,3) eintritt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der weitere Kanal (21) unmittelbar mit dem mindestens einen Rohgaskanal (6) verbunden ist.
EP14192777.2A 2013-11-27 2014-11-12 Verfahren zum Betrieb einer Gasoxidationsanlage Revoked EP2878887B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013224297.2A DE102013224297A1 (de) 2013-11-27 2013-11-27 Gasoxidationsanlage sowie Verfahren zu deren Betrieb

Publications (2)

Publication Number Publication Date
EP2878887A1 EP2878887A1 (de) 2015-06-03
EP2878887B1 true EP2878887B1 (de) 2022-07-13

Family

ID=51900741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14192777.2A Revoked EP2878887B1 (de) 2013-11-27 2014-11-12 Verfahren zum Betrieb einer Gasoxidationsanlage

Country Status (3)

Country Link
EP (1) EP2878887B1 (de)
DE (1) DE102013224297A1 (de)
PL (1) PL2878887T3 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470806A (en) * 1982-09-24 1984-09-11 Richard Greco Regenerative incinerators
JP2000088229A (ja) 1998-09-10 2000-03-31 Ishikawajima Harima Heavy Ind Co Ltd アーク炉用排ガス清浄装置
JP2001304531A (ja) 2000-04-26 2001-10-31 Taikisha Ltd 蓄熱型の燃焼式ガス処理装置
JP2007198682A (ja) 2006-01-27 2007-08-09 Takuma Co Ltd 蓄熱脱臭システム
JP2013231552A (ja) 2012-04-27 2013-11-14 Taikisha Ltd 蓄熱式ガス処理装置の運転方法、蓄熱式ガス処理装置、及び、それら運転方法又は蓄熱式ガス処理装置に用いる切換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2624874C2 (de) * 1976-03-30 1984-06-14 Kraftanlagen Ag, 6900 Heidelberg Vorrichtung zur thermischen Nachverbrennung von Prozeßabgasen
US4917027A (en) * 1988-07-15 1990-04-17 Albertson Orris E Sludge incineration in single stage combustor with gas scrubbing followed by afterburning and heat recovery
TW359743B (en) * 1997-01-06 1999-06-01 Nippon Furnace Kogyo Kk Apparatus and method for heating a gaseous fluid flow, method for preheating a gaseous fluid flow
DE102010012005A1 (de) 2010-03-15 2011-09-15 Dürr Systems GmbH Thermische Abluftreinigungsanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470806A (en) * 1982-09-24 1984-09-11 Richard Greco Regenerative incinerators
JP2000088229A (ja) 1998-09-10 2000-03-31 Ishikawajima Harima Heavy Ind Co Ltd アーク炉用排ガス清浄装置
JP2001304531A (ja) 2000-04-26 2001-10-31 Taikisha Ltd 蓄熱型の燃焼式ガス処理装置
JP2007198682A (ja) 2006-01-27 2007-08-09 Takuma Co Ltd 蓄熱脱臭システム
JP2013231552A (ja) 2012-04-27 2013-11-14 Taikisha Ltd 蓄熱式ガス処理装置の運転方法、蓄熱式ガス処理装置、及び、それら運転方法又は蓄熱式ガス処理装置に用いる切換装置

Also Published As

Publication number Publication date
EP2878887A1 (de) 2015-06-03
PL2878887T3 (pl) 2022-11-21
DE102013224297A1 (de) 2015-05-28

Similar Documents

Publication Publication Date Title
DE102014215074B4 (de) Temperieranordnung für Getriebeöl eines Kraftfahrzeugs sowie Verfahren zum Temperieren von Getriebeöl eines Kraftfahrzeugs
DE2853919A1 (de) Kraftanlage mit wenigstens einer dampfturbine, einer gasturbine und einem waermerueckgewinnungsdampferzeuger
DE102009036603B4 (de) Kühlsystem für eine Brennkraftmaschine
WO2014177513A1 (de) Kühlkreislauf
EP3615713A1 (de) Verfahren zum betreiben einer wasserelektrolysevorrichtung
EP2213939A2 (de) Verfahren zum Betreiben einer Oxidationsanlage sowie Oxidationsanlage
WO2002075119A1 (de) Verfahren zum betrieb einer dampfkraftanlage sowie dampfkraftanlage
DE102011015196B4 (de) Heizung zur Erwärmung von Betriebsstoffen für Fahrzeuge sowie entsprechendes Schienenfahrzeug
EP2841869B1 (de) Verfahren zur bereitstellung eines kühlmediums in einem sekundärkreis
DE102008004161A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1953489B1 (de) Dynamischer Wärmespeicher sowie Verfahren zum Speichern von Wärme
DE102015003856A1 (de) Vorrichtung zur Temperierung von Gegenständen
DE102014220491A1 (de) Temperieranordnung für Getriebeöl und Verfahren zum Temperieren von Getriebeöl
DE102010042674A1 (de) Wärmeübertragungsvorrichtung, thermoelektrische Generatorvorrichtung und Verfahren zur Steuerung und/oder Regelung einer Wärmeübertragungsvorrichtung
EP2878887B1 (de) Verfahren zum Betrieb einer Gasoxidationsanlage
EP2275748B1 (de) Verfahren zum Betrieb einer Heizungsanlage sowie Heizungsanlage
EP2655995B1 (de) Verfahren zum betreiben eines ofens in einer anlage zur metallverarbeitung
DE19802362A1 (de) Verfahren und Einrichtung zur Reduzierung der Wartezeit für das Zapfen von warmem Brauchwasser
AT524819B1 (de) Wärmekopplungsvorrichtung für ein Brennstoffzellensystem
DE102019211888A1 (de) Vorrichtung zum Wärmetausch
EP2878886B1 (de) Verfahren zum Betrieb einer Gasoxidationsanlage
DE102014216659B4 (de) Verfahren und Managementsystem zum Betrieb eines Kühlsystems einer Verbrennungskraftmaschine
EP2339247A2 (de) Verfahren zur Erwärmung von Brauchwasser
EP4053460B1 (de) Warmwasserbereitungsanlage
DE102013114265B4 (de) ORC-Anlage mit Rezirkulationskreislauf und Verfahren zum Betreiben einer derartigen ORC-Anlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150916

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KRANTZ GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190509

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016314

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1504463

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221124

Year of fee payment: 9

Ref country code: FR

Payment date: 20221122

Year of fee payment: 9

Ref country code: DE

Payment date: 20221130

Year of fee payment: 9

Ref country code: AT

Payment date: 20221118

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221020

Year of fee payment: 9

Ref country code: BE

Payment date: 20221124

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014016314

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

26 Opposition filed

Opponent name: DUERR SYSTEMS AG

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502014016314

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502014016314

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221112

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221112

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221112

27W Patent revoked

Effective date: 20230625

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1504463

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713