EP2877376B1 - Method for detecting and processing measurement values of a capacitive proximity sensor for initiating an operating function of a tailgate of a motor vehicle comprising an energy-saving evaluation mode - Google Patents

Method for detecting and processing measurement values of a capacitive proximity sensor for initiating an operating function of a tailgate of a motor vehicle comprising an energy-saving evaluation mode Download PDF

Info

Publication number
EP2877376B1
EP2877376B1 EP13736851.0A EP13736851A EP2877376B1 EP 2877376 B1 EP2877376 B1 EP 2877376B1 EP 13736851 A EP13736851 A EP 13736851A EP 2877376 B1 EP2877376 B1 EP 2877376B1
Authority
EP
European Patent Office
Prior art keywords
measurement values
detecting
preset
value
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13736851.0A
Other languages
German (de)
French (fr)
Other versions
EP2877376A1 (en
Inventor
Berthold Sieg
Mirko Schindler
Markus FILZHUTH
Peter Clemens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huf Huelsbeck and Fuerst GmbH and Co KG
Original Assignee
Huf Huelsbeck and Fuerst GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huf Huelsbeck and Fuerst GmbH and Co KG filed Critical Huf Huelsbeck and Fuerst GmbH and Co KG
Publication of EP2877376A1 publication Critical patent/EP2877376A1/en
Application granted granted Critical
Publication of EP2877376B1 publication Critical patent/EP2877376B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/73Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/30Electronic control of motors
    • E05Y2400/40Control units therefore
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • E05Y2400/85User input means
    • E05Y2400/852Sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • E05Y2400/85User input means
    • E05Y2400/852Sensors
    • E05Y2400/856Actuation thereof
    • E05Y2400/858Actuation thereof by body parts
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Application of doors, windows, wings or fittings thereof for vehicles characterised by the type of wing
    • E05Y2900/546Tailgates
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Application of doors, windows, wings or fittings thereof for vehicles characterised by the type of wing
    • E05Y2900/548Trunk lids

Definitions

  • the invention relates to a method for acquiring and processing measured values of at least one capacitive proximity sensor arranged in the ground-level rear area of a motor vehicle for triggering an actuating function of a tailgate by a predetermined foot movement of an operator, a measured value of the capacitive proximity sensor periodically being recorded after each sampling interval and a measured value being recorded corresponding digital measured value is stored in a FIFO memory and the stored digital measured values are fed to an algorithm for detecting a signal course corresponding to the predetermined foot movement of an operator,
  • Electrodes of capacitive sensors in the ground-level rear area of a motor vehicle, for example behind a plastic panel, in such a way that their capacitance changes relative to a reference potential (for example ground) when an operator standing behind the motor vehicle steps a foot in the direction of the rear area and momentarily swings under the rear area.
  • An evaluation circuit is coupled to the electrode of the capacitive sensor, which outputs an analog output signal corresponding to the capacitance to an A / D converter of a microcontroller.
  • the microcontroller is programmed to cause the A / D converter to periodically output digital values corresponding to the analog sensor output signal, which shall be referred to hereinafter as digital measurements.
  • the digital measured values corresponding to the capacitance of the capacitive sensor are generated periodically, for example at intervals of 20 ms.
  • the changes in the digital readings are evaluated, the microcontroller being programmed to recognize, based on the changes in the digital readings, whether a particular event, for example, the approach of a foot of the operator, has taken place. If the microcontroller determines that a specific event has taken place, it triggers an actuation function of a tailgate of the motor vehicle.
  • the tailgate is opened when the operator standing behind the vehicle pivots his foot in a certain way under the rear of the vehicle.
  • two sensor electrodes are preferably arranged horizontally and vertically offset in a certain way.
  • FIG. 1 it is elongated, formed by an outer conductor of a coaxial cable sensor electrodes, which are arranged offset transversely to the vehicle longitudinal direction and each other vertically and horizontally in the rear area. Such an arrangement is schematically shown in FIG FIG. 1 shown.
  • the digital measured values recorded at short time intervals are stored in a memory area of a RAM of the microcontroller.
  • a predetermined number of digital readings are buffered before the microcontroller of the microcontroller accesses these digital readings for further processing.
  • the further processing initially comprises a digital filtering of a predetermined number of stored digital measured values in order to obtain digital filter values for further processing.
  • the filter values are calculated at the same time intervals that the digital readings are taken. Whenever a new digital reading is stored, the microprocessor calculates a new filter value from that and previously stored digital readings.
  • the further evaluation of the filter values for recognizing a signal which characterizes the predetermined movement of the body part of the operator should not be carried out with each new filter value, but only if a criterion is met, with little computational effort and thus with lower energy consumption can be determined.
  • a digital measured value is determined at longer intervals (lower sampling rate) in an energy-saving mode. From this digital reading and a few previously obtained with the lower sampling rate digital readings a filter value is determined in each case.
  • the filter value is merely compared with a threshold value, the exceeding of which thus represents the criterion which can be determined with little computational effort.
  • the threshold value of the filter value As long as the threshold value of the filter value is not exceeded, this extraction of the digital measurements, the calculation of the filter values and the comparison with the threshold value are repeatedly performed, resulting in a relatively low energy consumption. However, once a filter value exceeds the threshold, it is considered a criterion that a predetermined movement of the operator body part might have occurred. The device then switches to a higher sampling rate, that is, the digital readings are taken at shorter intervals and subsequently filtered again. However, the filtering can only begin when a predetermined minimum number of digital measured values having the higher sampling rate has been recovered and stored in the buffer memory. The digital measurements previously obtained with the lower sampling rate can not be included in the further processing. This leads to a certain dead time after the threshold value has been detected, within which no first filter value can be calculated for further evaluation and analysis as to whether the predetermined foot movement of an operator has taken place.
  • a method for acquiring and processing measured values of at least one capacitive proximity sensor arranged in the ground-level rear region of a motor vehicle for triggering an actuating function of a tailgate by a predetermined foot movement of an operator in which a measured value of the capacitive proximity sensor is periodically detected after each sampling interval and a measured value corresponding discrete sensor reading is stored in a FIFO memory.
  • a coarse evaluation an increase in the sensor measured values is detected in each case after the storage of a predefined first number of sensor measured values, the increase is compared with a threshold value and then when the Threshold is exceeded, a fine evaluation activated.
  • the course of the sensor measured values is checked in each case after the storage of a predetermined number of sensor measured values, the sensor measured values being fed to a pattern recognition for detecting a signal course corresponding to the predetermined foot movement.
  • the object of the invention is to provide a method for acquiring and processing measured values, which allows a faster detection of the predetermined foot movement of an operator and at the same time is less prone to interference.
  • a measured value of the capacitive proximity sensor is periodically acquired after each sampling interval and a digital measured value corresponding to the measured value is acquired stored in a FIFO memory.
  • the FIFO memory may, for example, be a separate component or part of a memory of a microcontroller.
  • a filter value is calculated in each case after the storage of a predefined first number of digital measured values, that is to say after each time interval corresponding to the product of sampling period and first number, from the currently stored digital measured value and a predetermined second number of previously stored digital measured values each of these stored digital readings is multiplied by an associated first factor and the results are added together. Then the filter value is compared to a threshold. If the filter value exceeds the threshold value, a second evaluation mode is activated.
  • the second, normal evaluation mode in each case after the storage of a predetermined third number of digital measured values which is less than the first number, that is to say at shorter time intervals, from the currently stored digital measured value and a predetermined fourth number previously stored digital readings calculates a filter value by multiplying each of these stored digital readings by an associated second factor and adding the results, and applying the filter value to an algorithm for detecting a waveform corresponding to the operator's foot movement.
  • sampling frequency sampling rate
  • sampling period duration remain constant during the first and the second evaluation mode, so that it is not necessary to refill the FIFO memory with samples of a changed sampling rate after the second evaluation mode has been started when the threshold value is exceeded .
  • the higher sampling rate initially entails that somewhat more energy is consumed for the A / D conversion and the intermediate storage in the FIFO memory;
  • this is compensated by the improved possibility of filtering.
  • the filter values in the first, energy-saving evaluation mode are obtained at greater intervals than in the second, normal evaluation mode. The filter calculations therefore need slightly less energy in the energy-saving mode.
  • the possibility of being able to use the already buffered (buffered) digital measured values immediately in the second mode allows the immediate beginning of the algorithm for detecting a signal course corresponding to the predetermined foot movement of an operator and thus a faster detection of this event.
  • the predefined first number of digital measured values preferably corresponds to at least twice the predetermined third number of digital measured values.
  • the larger the first number the greater the energy saving because the filter calculation and comparison with the threshold occur less frequently. However, the distance must not be so great that there is a risk of "overlooking" a triggered by the foot movement of an operator predetermined signal change.
  • the predetermined first number of digital measurements is between 4 and 16; preferably it is equal to 8.
  • the second number is equal to the fourth number and corresponds to the memory depth of the FIFO memory. For example, this is equal to 32.
  • the full memory depth is always utilized in both the first, energy-saving mode of operation and in the second, normal mode of operation in order to obtain the best possible filtering.
  • the sampling interval is in the range between 1 ms and 10 ms, preferably in the range between 2 ms and 6 ms, for example about 4 ms.
  • This sampling interval allows-with a corresponding number of the measured values included-a good filtering of the signal curve (smoothing and noise suppression) for a subsequent recognition of a signal sequence corresponding to the predetermined foot movement of an operator.
  • the second factors determining the type of filtering in the second evaluation mode are different from the first factors determining the type of filtering in the first evaluation mode, so that the measured values are differently filtered in the first and second evaluation modes.
  • the first filtering may be adapted to the lower rate of generating a filter value and to the task of detecting a threshold overshoot.
  • the second filtering may be adapted to the higher rate of generation of a filter value and to the task of detecting a waveform corresponding to the predetermined foot movement of an operator.
  • the fourth number (number of previously stored measured values included in the filtering) and the second factors (filter coefficients) are preferably selected so that signals are filtered out in a frequency range that corresponds to the frequency range of the capacitance change occurring during the foot movement of the operator. This is preferably a frequency range up to 5 Hz.
  • a preferred embodiment of the method is characterized in that measured values of two in the vehicle longitudinal direction offset arranged capacitive proximity sensors detected and the measured values corresponding digital readings are stored in two sensors associated FIFO memory areas.
  • the filter values for one of the two sensors are calculated and compared with the threshold value and in the second evaluation mode the filter values for both sensors are calculated and fed to the algorithm for detecting the signal course corresponding to the predetermined foot movement of an operator.
  • the method according to the invention detects and processes measured values of capacitive proximity sensors arranged in the ground-level rear region of a motor vehicle.
  • FIG. 1 the rear region 1 of a motor vehicle is shown, which has the electrodes 2A and 2B of two capacitive proximity sensors near the ground (behind a diaphragm).
  • it is elongated sensor cable, which is transverse to the vehicle longitudinal direction, that is transverse to the plane of the plane FIG. 1 extend.
  • the others in FIG. 1 shown devices are drawn only for the purpose of illustration outside the motor vehicle, but are actually arranged in the motor vehicle.
  • a supply cable 3 extends from the sensor electrodes 2A, 2B to an evaluation circuit 4A and 4B of the capacitive sensor which generates at its output an analog output signal corresponding to the capacitance of the sensor, in particular a voltage corresponding to the capacitance.
  • the voltages corresponding to the capacitances of the two sensor electrodes are each an input port of a microcontroller 5, wherein an analog-to-digital converter 7A and 7B is connected to each of the input ports.
  • the microcontroller 5 includes a microprocessor 6, a ROM 10 for storing operating programs, a RAM 8 as a working memory and other interface circuits, one of which is exemplified as a port 11.
  • the analog-to-digital converters 7A, 7B and the other circuits mentioned are connected to the microprocessor 6 via a bus 9.
  • the microprocessor 6 causes the reading of the digital measured values from the analog-to-digital converters 7A, 7B and their storage in the RAM 8.
  • a specific memory area 12 is provided in the RAM 8, in which the digital measured values after the FIFO Principle are filed.
  • the time control of the measured value acquisition and the further processing is determined by the processed in the microprocessor 6 programs.
  • FIG. 2 illustrates the timing of the acquisition of the digital measurements and the calculation of filter values according to a preferred embodiment of the method according to the invention.
  • the microcontroller causes a digital reading to be taken every 4 ms for each sensor by causing the A / D converter to output a corresponding digital value, which is then stored in the FIFO area 12 of the RAM 8.
  • the FIFO area 12 may receive 32 digital readings per sensor in the preferred embodiment shown here.
  • the 32 values stored in the FIFO area are in FIG. 2 represented as 32 small squares and correspond to one line of this representation.
  • a column corresponds to a measured value. Physically different embodiments of such a FIFO memory are conceivable.
  • a measured value preferably remains stored in its memory area until it is overwritten by a new measured value after 32 measured value acquisitions.
  • a pointer circulating in the FIFO memory area determines in which memory location a new measured value can be written in each case.
  • FIG. 2 illustrates the further procedure in the first, energy-saving evaluation mode.
  • the microcontroller causes the calculation of a filter value.
  • the last 32 ms are included in the filter calculation which takes place every 32 ms.
  • Each stored measurement thus participates in a total of four filter calculations.
  • the fact that the filter calculation is performed only every 8 ms reduces the power consumption.
  • the inclusion of the complete 32 digital measurements stored in the FIFO area allows more accurate filtering, especially noise suppression.
  • the filter value obtained in this way is then compared with a threshold value. If an exceeding of the threshold value is detected, a second evaluation mode is activated.
  • the distances of the filter value calculation are reduced. For example, a filter value is calculated every 2 or 4 measured values.
  • the filter values now obtained at shorter intervals are fed to an algorithm for detecting a signal course corresponding to the predetermined foot movement of an operator.
  • the filter calculation takes place, for example, with an FIR algorithm.
  • all 32 digital measured values are multiplied by a factor and from these products a sum is formed, which corresponds to the filter value.
  • the type of filtering differs in the first, energy-saving mode from the type of filtering in the second, normal mode for detecting foot movement. This is also expressed in different filter coefficients.
  • the filter coefficients are selected, for example, in the second, normal evaluation mode so that, in particular, signal characteristics in the frequency range up to about 10 Hz, preferably up to 5 Hz, are filtered out. It has been found that, in particular, signals in these low-frequency areas reproduce the movement of the operator's body part (foot) to be detected.
  • the filter coefficients in the first and second modes adapted to the respective rate of extraction of the filter values.
  • the filter values are obtained every 32 ms (every 8 samples), while in the normal evaluation mode, for example, they are obtained every 8 ms (after every two samples).
  • the sampling period may differ from 4 ms and may be in the range of 1 to 10 ms, for example.
  • the spacing of the filter calculations in the first and in the second evaluation mode can vary, of course with the proviso that it is lower in the second evaluation mode.
  • the depth of the FIFO memory may differ from 32.

Description

Die Erfindung betrifft ein Verfahren zum Erfassen und Verarbeiten von Messwerten wenigstens eines im bodennahen Heckbereich eines Kraftfahrzeug angeordneten kapazitiven Annäherungssensors zum Auslösen einer Betätigungsfunktion einer Heckklappe durch eine vorgegebene Fußbewegung eines Bedieners, wobei periodisch nach jeweils einem Abtastintervall ein Messwert des kapazitiven Annäherungssensors erfasst und ein dem Messwert entsprechender Digitalmesswert in einem FIFO-Speicher gespeichert wird und die gespeicherten Digitalmesswerte einem Algorithmus zum Erkennen eines der vorgegebenen Fußbewegung eines Bedieners entsprechenden Signalverlaufs zugeführt werden,The invention relates to a method for acquiring and processing measured values of at least one capacitive proximity sensor arranged in the ground-level rear area of a motor vehicle for triggering an actuating function of a tailgate by a predetermined foot movement of an operator, a measured value of the capacitive proximity sensor periodically being recorded after each sampling interval and a measured value being recorded corresponding digital measured value is stored in a FIFO memory and the stored digital measured values are fed to an algorithm for detecting a signal course corresponding to the predetermined foot movement of an operator,

Es ist bekannt, im bodennahen Heckbereich eines Kraftfahrzeugs, beispielsweise hinter einer Kunststoffblende, Elektroden kapazitiver Sensoren derart anzuordnen, dass deren Kapazität gegenüber einem Bezugspotenzial (beispielsweise Masse) sich ändert, wenn ein Bediener, der hinter dem Kraftfahrzeug steht, einen Fuß in Richtung des Heckbereichs und unter den Heckbereich kurzzeitig schwenkt. Mit der Elektrode des kapazitiven Sensors ist eine Auswerteschaltung gekoppelt, die ein der Kapazität entsprechendes analoges Ausgangssignal an einen A/D-Umsetzer eines Mikrocontrollers ausgibt. Der Mikrocontroller ist so programmiert, dass er den A/D-Umsetzer veranlasst, periodisch dem analogen Sensorausgangssignal entsprechende Digitalwerte auszugeben, welche nachfolgend als Digitalmesswerte bezeichnet werden sollen. Die der Kapazität des kapazitiven Sensors entsprechenden Digitalmesswerte werden periodisch, beispielsweise in Abständen von 20 ms, erzeugt. Die Änderungen der Digitalmesswerte werden ausgewertet, wobei der Mikrocontroller so programmiert ist, dass er anhand der Änderungen der Digitalmesswerte erkennen kann, ob ein bestimmtes Ereignis, beispielsweise die Annäherung eines Fußes des Bedieners, stattgefunden hat. Stellt der Mikrocontroller dabei fest, dass ein bestimmtes Ereignis stattgefunden hat, so löst er eine Betätigungsfunktion einer Heckklappe des Kraftfahrzeugs aus. Somit wird die Heckklappe geöffnet, wenn der hinter dem Kraftfahrzeug stehende Bediener seinen Fuß in einer bestimmten Weise unter das Heck des Fahrzeugs schwenkt. Zur Verbesserung der Erkennung der vorgegebenen Bewegung sind vorzugsweise zwei Sensorelektroden in einer bestimmten Weise horizontal und vertikal versetzt angeordnet. Beispielsweise handelt es sich um langgestreckte, von einem Außenleiter eines Koaxialkabels gebildete Sensorelektroden, die im Heckbereich im Wesentlichen quer zur Fahrzeuglängsrichtung und zueinander vertikal und horizontal versetzt angeordnet sind. Eine solche Anordnung ist schematisch in Figur 1 gezeigt.It is known to arrange electrodes of capacitive sensors in the ground-level rear area of a motor vehicle, for example behind a plastic panel, in such a way that their capacitance changes relative to a reference potential (for example ground) when an operator standing behind the motor vehicle steps a foot in the direction of the rear area and momentarily swings under the rear area. An evaluation circuit is coupled to the electrode of the capacitive sensor, which outputs an analog output signal corresponding to the capacitance to an A / D converter of a microcontroller. The microcontroller is programmed to cause the A / D converter to periodically output digital values corresponding to the analog sensor output signal, which shall be referred to hereinafter as digital measurements. The digital measured values corresponding to the capacitance of the capacitive sensor are generated periodically, for example at intervals of 20 ms. The changes in the digital readings are evaluated, the microcontroller being programmed to recognize, based on the changes in the digital readings, whether a particular event, for example, the approach of a foot of the operator, has taken place. If the microcontroller determines that a specific event has taken place, it triggers an actuation function of a tailgate of the motor vehicle. Thus, the tailgate is opened when the operator standing behind the vehicle pivots his foot in a certain way under the rear of the vehicle. To improve the detection of the predetermined movement, two sensor electrodes are preferably arranged horizontally and vertically offset in a certain way. For example, it is elongated, formed by an outer conductor of a coaxial cable sensor electrodes, which are arranged offset transversely to the vehicle longitudinal direction and each other vertically and horizontally in the rear area. Such an arrangement is schematically shown in FIG FIG. 1 shown.

Üblicherweise werden die in kurzen Zeitabständen erfassten Digitalmesswerte in einem Speicherbereich eines RAM des Mikrocontrollers abgelegt. In diesem Speicherbereich wird eine vorgegebene Anzahl von Digitalmesswerten gepuffert, bevor der Mikroprozessor des Mikrocontrollers auf diese Digitalmesswerte zur weiteren Verarbeitung zugreift. Die weitere Verarbeitung umfasst zunächst eine digitale Filterung einer vorgegebenen Anzahl gespeicherter Digitalmesswerte, um somit digitale Filterwerte zur Weiterverarbeitung zu gewinnen. Die Filterwerte werden in den gleichen Zeitabständen berechnet, in denen auch die Digitalmesswerte gewonnen werden. Immer dann, wenn ein neuer Digitalmesswert gespeichert ist, berechnet der Mikroprozessor aus diesem und zuvor gespeicherten Digitalmesswerten einen neuen Filterwert.Usually, the digital measured values recorded at short time intervals are stored in a memory area of a RAM of the microcontroller. In this memory area, a predetermined number of digital readings are buffered before the microcontroller of the microcontroller accesses these digital readings for further processing. The further processing initially comprises a digital filtering of a predetermined number of stored digital measured values in order to obtain digital filter values for further processing. The filter values are calculated at the same time intervals that the digital readings are taken. Whenever a new digital reading is stored, the microprocessor calculates a new filter value from that and previously stored digital readings.

Aus Gründen der Energieeinsparung soll die weitere Auswertung der Filterwerte zum Erkennen eines Signals, das die vorgegebene Bewegung des Körperteils des Bedieners kennzeichnet, nicht bei jedem neuen Filterwert, sondern nur dann ausgeführt werden, wenn ein Kriterium erfüllt ist, das mit wenig Rechenaufwand und somit mit geringerem Energieverbrauch bestimmt werden kann. Zur Senkung des Energieverbrauchs wird beispielsweise in einem energiesparenden Modus in größeren Abständen (geringere Abtastrate) ein Digitalmesswert bestimmt. Aus diesem Digitalmesswert und einigen zuvor mit der geringeren Abtastrate gewonnenen Digitalmesswerten wird jeweils ein Filterwert bestimmt. Der Filterwert wird zur Vereinfachung der Berechnungen lediglich mit einem Schwellwert verglichen, dessen Überschreiten somit das mit geringem Rechenaufwand bestimmbare Kriterium darstellt. Solange der Schwellwert von dem Filterwert nicht überschritten ist, wird diese Gewinnung der Digitalmesswerte, die Berechnung der Filterwerte und der Vergleich mit dem Schwellwert wiederholt durchgeführt, was einen relativ geringen Energieverbrauch zur Folge hat. Sobald jedoch ein Filterwert den Schwellwert überschreitet, wird dies als ein Kriterium angesehen, dass eine vorgegebene Bewegung des Bedienerkörperteils stattgefunden haben könnte. Dann schaltet die Vorrichtung in eine höhere Abtastrate um, das heißt, die Digitalmesswerte werden in kürzeren Abständen gewonnen und nachfolgend wiederum einer Filterung unterzogen. Die Filterung kann jedoch erst dann beginnen, wenn wieder eine vorgegebene Mindestanzahl der Digitalmesswerte mit der höheren Abtastrate gewonnen und im Pufferspeicher gespeichert worden ist. Die zuvor mit der geringeren Abtastrate gewonnenen Digitalmesswerte können nicht in die Weiterverarbeitung einbezogen werden. Dies führt zu einer gewissen Totzeit nach der erfassten Schwellwertüberschreitung, innerhalb der noch kein erster Filterwert zur weiteren Auswertung und zur Analyse, ob die vorgegebene Fußbewegung eines Bedieners stattgefunden hat, berechnet werden können.For reasons of energy saving, the further evaluation of the filter values for recognizing a signal which characterizes the predetermined movement of the body part of the operator should not be carried out with each new filter value, but only if a criterion is met, with little computational effort and thus with lower energy consumption can be determined. To reduce energy consumption, for example, a digital measured value is determined at longer intervals (lower sampling rate) in an energy-saving mode. From this digital reading and a few previously obtained with the lower sampling rate digital readings a filter value is determined in each case. To simplify the calculations, the filter value is merely compared with a threshold value, the exceeding of which thus represents the criterion which can be determined with little computational effort. As long as the threshold value of the filter value is not exceeded, this extraction of the digital measurements, the calculation of the filter values and the comparison with the threshold value are repeatedly performed, resulting in a relatively low energy consumption. However, once a filter value exceeds the threshold, it is considered a criterion that a predetermined movement of the operator body part might have occurred. The device then switches to a higher sampling rate, that is, the digital readings are taken at shorter intervals and subsequently filtered again. However, the filtering can only begin when a predetermined minimum number of digital measured values having the higher sampling rate has been recovered and stored in the buffer memory. The digital measurements previously obtained with the lower sampling rate can not be included in the further processing. This leads to a certain dead time after the threshold value has been detected, within which no first filter value can be calculated for further evaluation and analysis as to whether the predetermined foot movement of an operator has taken place.

Aus der DE 10 2010 011767 A1 ist ein Verfahren zum Erfassen und Verarbeiten von Messwerten wenigstens eines im bodennahen Heckbereich eines Kraftfahrzeugs angeordneten kapazitiven Annäherungssensors zum Auslösen einer Betätigungsfunktion einer Heckklappe durch eine vorgegebene Fußbewegung eines Bedieners bekannt, bei dem periodisch nach jeweils einem Abtastintervall ein Messwert des kapazitiven Näherungssensors erfasst und ein dem Messwert entsprechender diskreter Sensormesswert in einem FIFO-Speicher gespeichert wird. Bei einer Grobauswertung wird jeweils nach dem Speichern einer vorgegebenen ersten Anzahl von Sensormesswerten ein Anstieg der Sensormesswerte erfasst, der Anstieg mit einem Schwellwert verglichen und dann, wenn der Schwellwert überschritten wird, eine Feinauswertung aktiviert. Bei der Feinauswertung wird jeweils nach dem Speichern einer vorgegebenen Anzahl von Sensormesswerten der Verlauf der Sensormesswerte überprüft, wobei die Sensormesswerte einer Mustererkennung zum Erkennen eines der vorgegebenen Fußbewegung entsprechenden Signalverlaufs zugeführt werden.From the DE 10 2010 011767 A1 A method for acquiring and processing measured values of at least one capacitive proximity sensor arranged in the ground-level rear region of a motor vehicle for triggering an actuating function of a tailgate by a predetermined foot movement of an operator is known, in which a measured value of the capacitive proximity sensor is periodically detected after each sampling interval and a measured value corresponding discrete sensor reading is stored in a FIFO memory. In a coarse evaluation, an increase in the sensor measured values is detected in each case after the storage of a predefined first number of sensor measured values, the increase is compared with a threshold value and then when the Threshold is exceeded, a fine evaluation activated. In the fine evaluation, the course of the sensor measured values is checked in each case after the storage of a predetermined number of sensor measured values, the sensor measured values being fed to a pattern recognition for detecting a signal course corresponding to the predetermined foot movement.

Aufgabe der Erfindung ist es, ein Verfahren zum Erfassen und Verarbeiten von Messwerten zu schaffen, das eine schnellere Erkennung der vorgegebenen Fußbewegung eines Bedieners gestattet und zugleich weniger anfällig gegenüber Störeinflüssen ist.The object of the invention is to provide a method for acquiring and processing measured values, which allows a faster detection of the predetermined foot movement of an operator and at the same time is less prone to interference.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.

Bei diesem Verfahren zum Erfassen und Verarbeiten von Messwerten wenigstens eines im bodennahen Heckbereich eines Kraftfahrzeugs angeordneten kapazitiven Annäherungssensors zum Auslösen einer Betätigungsfunktion einer Heckklappe durch eine vorgegebene Fußbewegung eines Bedieners wird periodisch nach jeweils einem Abtastintervall ein Messwert des kapazitiven Annäherungssensors erfasst und ein dem Messwert entsprechender Digitalmesswert in einem FIFO-Speicher gespeichert. Der FIFO-Speicher kann z.B. ein separates Bauteil oder Teil eines Speichers eines Mikrocontrollers sein. In einem ersten, energiesparenden Auswertemodus wird jeweils nach dem Speichern einer vorgegebenen ersten Anzahl von Digitalmesswerten, also nach jeweils einem dem Produkt aus Abtastperiodendauer und erster Anzahl entsprechenden Zeitintervall, aus dem aktuell gespeicherten Digitalmesswert und einer vorgegebenen zweiten Anzahl zuvor gespeicherter Digitalmesswerte ein Filterwert berechnet, indem jeder dieser gespeicherten Digitalmesswerte mit jeweils einem zugehörigen ersten Faktor multipliziert wird und die Ergebnisse addiert werden. Dann wird der Filterwert mit einem Schwellwert verglichen. Wenn der Filterwert den Schwellwert überschreitet, wird ein zweiter Auswertemodus aktiviert. In dem zweiten, normalen Auswertemodus wird jeweils nach dem Speichern einer vorgegebenen dritten Anzahl von Digitalmesswerten, die geringer ist als die erste Anzahl, also in kürzeren Zeitabständen, aus dem aktuell gespeicherten Digitalmesswert und einer vorgegebenen vierten Anzahl zuvor gespeicherter Digitalmesswerte ein Filterwert berechnet, indem jeder dieser gespeicherten Digitalmesswerte mit jeweils einem zugehörigen zweiten Faktor multipliziert wird und die Ergebnisse addiert werden, und der Filterwert einem Algorithmus zum Erkennen eines der vorgegebenen Fußbewegung eines Bedieners entsprechenden Signalverlaufs zugeführt.In this method for acquiring and processing measured values of at least one capacitive proximity sensor arranged in the ground-level rear region of a motor vehicle for triggering an actuating function of a tailgate by a predetermined foot movement of an operator, a measured value of the capacitive proximity sensor is periodically acquired after each sampling interval and a digital measured value corresponding to the measured value is acquired stored in a FIFO memory. The FIFO memory may, for example, be a separate component or part of a memory of a microcontroller. In a first, energy-saving evaluation mode, a filter value is calculated in each case after the storage of a predefined first number of digital measured values, that is to say after each time interval corresponding to the product of sampling period and first number, from the currently stored digital measured value and a predetermined second number of previously stored digital measured values each of these stored digital readings is multiplied by an associated first factor and the results are added together. Then the filter value is compared to a threshold. If the filter value exceeds the threshold value, a second evaluation mode is activated. In the second, normal evaluation mode, in each case after the storage of a predetermined third number of digital measured values which is less than the first number, that is to say at shorter time intervals, from the currently stored digital measured value and a predetermined fourth number previously stored digital readings calculates a filter value by multiplying each of these stored digital readings by an associated second factor and adding the results, and applying the filter value to an algorithm for detecting a waveform corresponding to the operator's foot movement.

Diese Vorgehensweise hat den Vorteil, dass die Abtastfrequenz (Abtastrate) oder Abtastperiodendauer während des ersten und des zweiten Auswertemodus konstant bleiben, so dass es nicht erforderlich ist, nach Starten des zweiten Auswertemodus bei Schwellwertüberschreitung den FIFO-Speicher mit Abtastwerten einer geänderten Abtastrate neu zu füllen. Die höhere Abtastrate bringt es zwar zunächst mit sich, dass für die A/D-Umsetzung und die Zwischenspeicherung in dem FIFO-Speicher etwas mehr Energie verbraucht wird; dies wird jedoch durch die verbesserte Möglichkeit der Filterung ausgeglichen. Außerdem werden die Filterwerte in dem ersten, energiesparenden Auswertemodus in größeren Abständen gewonnen als in dem zweiten, normalen Auswertemodus. Die Filterberechnungen benötigen also im energiesparenden Modus etwas weniger Energie. Die Möglichkeit, die bereits zwischengespeicherten (gepufferten) Digitalmesswerte auch im zweiten Modus sofort weiterverwenden zu können, gestattet den sofortigen Beginn des Algorithmus zum Erkennen eines der vorgegebenen Fußbewegung eines Bedieners entsprechenden Signalverlaufs und somit eine schnellere Erfassung dieses Ereignisses.This procedure has the advantage that the sampling frequency (sampling rate) or sampling period duration remain constant during the first and the second evaluation mode, so that it is not necessary to refill the FIFO memory with samples of a changed sampling rate after the second evaluation mode has been started when the threshold value is exceeded , Although the higher sampling rate initially entails that somewhat more energy is consumed for the A / D conversion and the intermediate storage in the FIFO memory; However, this is compensated by the improved possibility of filtering. In addition, the filter values in the first, energy-saving evaluation mode are obtained at greater intervals than in the second, normal evaluation mode. The filter calculations therefore need slightly less energy in the energy-saving mode. The possibility of being able to use the already buffered (buffered) digital measured values immediately in the second mode allows the immediate beginning of the algorithm for detecting a signal course corresponding to the predetermined foot movement of an operator and thus a faster detection of this event.

Vorzugsweise entspricht die vorgegebene erste Anzahl von Digitalmesswerten mindestens dem Doppelten der vorgegebenen dritten Anzahl von Digitalmesswerten. Je größer die erste Anzahl ist, desto größer ist die Energieeinsparung, weil die Filterberechnung und der Vergleich mit dem Schwellwert seltener stattfinden. Allerdings darf der Abstand nicht so groß werden, dass die Gefahr eines "Übersehens" einer von der vorgegebenen Fußbewegung eines Bedieners ausgelösten Signaländerung besteht. Bei einem Ausführungsbeispiel liegt die vorgegebene erste Anzahl von Digitalmesswerten zwischen 4 und 16; vorzugsweise ist sie gleich 8.The predefined first number of digital measured values preferably corresponds to at least twice the predetermined third number of digital measured values. The larger the first number, the greater the energy saving because the filter calculation and comparison with the threshold occur less frequently. However, the distance must not be so great that there is a risk of "overlooking" a triggered by the foot movement of an operator predetermined signal change. In one embodiment, the predetermined first number of digital measurements is between 4 and 16; preferably it is equal to 8.

Bei einer Ausführungsform des Verfahrens zum Erfassen und Verarbeiten von Messwerten ist die zweite Anzahl gleich der vierten Anzahl und entspricht sie der Speichertiefe des FIFO-Speichers. Beispielsweise ist diese gleich 32. Bei dieser Ausführungsform wird sowohl in dem ersten, energiesparenden Betriebsmodus als auch in dem zweiten, normalen Betriebsmodus stets die volle Speichertiefe ausgenutzt, um eine möglichst gute Filterung zu erhalten.In one embodiment of the method for acquiring and processing measured values, the second number is equal to the fourth number and corresponds to the memory depth of the FIFO memory. For example, this is equal to 32. In this embodiment, the full memory depth is always utilized in both the first, energy-saving mode of operation and in the second, normal mode of operation in order to obtain the best possible filtering.

Bei einer bevorzugten Ausführungsform liegt das Abtastintervall im Bereich zwischen 1 ms und 10 ms, vorzugsweise im Bereich zwischen 2 ms und 6 ms, beispielsweise bei etwa 4ms. Dieses Abtastintervall erlaubt - bei einer entsprechenden Anzahl der einbezogenen Messwerte - eine gute Filterung des Signalverlaufs (Glättung und Rauschunterdrückung) für ein nachfolgendes Erkennen eines der vorgegebenen Fußbewegung eines Bedieners entsprechenden Signalverlaufs.In a preferred embodiment, the sampling interval is in the range between 1 ms and 10 ms, preferably in the range between 2 ms and 6 ms, for example about 4 ms. This sampling interval allows-with a corresponding number of the measured values included-a good filtering of the signal curve (smoothing and noise suppression) for a subsequent recognition of a signal sequence corresponding to the predetermined foot movement of an operator.

Bei einer Weiterbildung der Erfindung sind die die Art der Filterung in dem zweiten Auswertemodus bestimmenden zweiten Faktoren verschieden von den die Art der Filterung in dem ersten Auswertemodus bestimmenden ersten Faktoren, so dass die Messwerte in dem ersten und dem zweiten Auswertemodus unterschiedlich gefiltert werden. So kann die erste Filterung an die niedrigere Rate der Erzeugung eines Filterwerts und an die Aufgabe des Erfassens einer Schwellwertüberschreitung angepasst werden. Die zweite Filterung kann an die höhere Rate der Erzeugung eines Filterwerts und an die Aufgabe des Erkennens eines der vorgegebenen Fußbewegung eines Bedieners entsprechenden Signalverlaufs angepasst werden.In a development of the invention, the second factors determining the type of filtering in the second evaluation mode are different from the first factors determining the type of filtering in the first evaluation mode, so that the measured values are differently filtered in the first and second evaluation modes. Thus, the first filtering may be adapted to the lower rate of generating a filter value and to the task of detecting a threshold overshoot. The second filtering may be adapted to the higher rate of generation of a filter value and to the task of detecting a waveform corresponding to the predetermined foot movement of an operator.

Vorzugsweise sind die vierte Anzahl (Anzahl der in die Filterung einbezogenen zuvor gespeicherten Messwerte) und die zweiten Faktoren (Filterkoeffizienten) so gewählt, dass verstärkt Signale in einem Frequenzbereich herausgefiltert werden, der dem bei der Fußbewegung des Bedieners auftretenden Frequenzbereich der Kapazitätsänderung entspricht. Dies ist vorzugsweise ein Frequenzbereich bis 5 Hz.The fourth number (number of previously stored measured values included in the filtering) and the second factors (filter coefficients) are preferably selected so that signals are filtered out in a frequency range that corresponds to the frequency range of the capacitance change occurring during the foot movement of the operator. This is preferably a frequency range up to 5 Hz.

Eine bevorzugte Weiterbildung des Verfahrens ist dadurch gekennzeichnet, dass Messwerte zweier in Fahrzeuglängsrichtung versetzt angeordneter kapazitiver Annäherungssensoren erfasst und den Messwerten entsprechende Digitalmesswerte in zwei den Sensoren zugeordnete FIFO-Speicherbereiche gespeichert werden.A preferred embodiment of the method is characterized in that measured values of two in the vehicle longitudinal direction offset arranged capacitive proximity sensors detected and the measured values corresponding digital readings are stored in two sensors associated FIFO memory areas.

Vorzugsweise werden in dem ersten, energiesparenden Auswertemodus nur die Filterwerte für einen der beiden Sensoren berechnet und mit dem Schwellwert verglichen und in dem zweiten Auswertemodus die Filterwerte für beide Sensoren berechnet und dem Algorithmus zum Erkennen des der vorgegebenen Fußbewegung eines Bedieners entsprechenden Signalverlaufs zugeführt.Preferably, in the first, energy-saving evaluation mode, only the filter values for one of the two sensors are calculated and compared with the threshold value and in the second evaluation mode the filter values for both sensors are calculated and fed to the algorithm for detecting the signal course corresponding to the predetermined foot movement of an operator.

Vorteilhafte und/oder bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous and / or preferred developments of the invention are characterized in the subclaims.

Nachfolgend wird die Erfindung anhand eines in den Zeichnungen veranschaulichten bevorzugten Ausführungsbeispiels näher beschrieben. In den Zeichnungen zeigen:

  • Figur 1 eine schematische Darstellung der das erfindungsgemäße Verfahren ausführenden Einrichtungen; und
  • Figur 2 eine schematische Darstellung der zeitlichen Abläufe der Digitalmesswertgewinnung und Filterberechnungen.
The invention will be described in more detail below with reference to a preferred embodiment illustrated in the drawings. In the drawings show:
  • FIG. 1 a schematic representation of the method according to the invention exporting devices; and
  • FIG. 2 a schematic representation of the timing of digital data acquisition and filter calculations.

Das erfindungsgemäße Verfahren erfasst und verarbeitet Messwerte von im bodennahen Heckbereich eines Kraftfahrzeugs angeordneten kapazitiven Annäherungssensoren. In Figur 1 ist der Heckbereich 1 eines Kraftfahrzeugs gezeigt, der im bodennahen Bereich (hinter einer Blende) die Elektroden 2A und 2B zweier kapazitiver Annäherungssensoren aufweist. Vorzugsweise handelt es sich um langgestreckte Sensorkabel, die sich quer zur Fahrzeuglängsrichtung, das heißt quer zur Zeichnungsebene der Figur 1 erstrecken. Die weiteren in Figur 1 dargestellten Vorrichtungen sind lediglich zur Veranschaulichung außerhalb des Kraftfahrzeugs gezeichnet, sind aber tatsächlich in dem Kraftfahrzeug angeordnet. Jeweils ein Zuleitungskabel 3 erstreckt sich von den Sensorelektroden 2A, 2B zu jeweils einer Auswerteschaltung 4A und 4B des kapazitiven Sensors, die an ihrem Ausgang ein der Kapazität des Sensors entsprechendes analoges Ausgangssignal, insbesondere eine der Kapazität entsprechende Spannung, erzeugt. Die den Kapazitäten der beiden Sensorelektroden entsprechenden Spannungen werden jeweils einem Eingangsport eines Mikrocontrollers 5 zugeführt, wobei mit jedem der Eingangsports ein Analog-Digital-Umsetzer 7A und 7B verbunden ist. Der Mikrocontroller 5 enthält einen Mikroprozessor 6, einen ROM 10 zur Speicherung von Betriebsprogrammen, einen RAM 8 als Arbeitsspeicher und weitere Schnittstellenschaltungen, von denen eine beispielhaft als Port 11 dargestellt ist. Die Analog-Digital-Umsetzer 7A, 7B und die anderen genannten Schaltungen sind über einen Bus 9 mit dem Mikroprozessor 6 verbunden. Programmgesteuert veranlasst der Mikroprozessor 6 das Auslesen der digitalen Messwerte aus den Analog-Digital-Umsetzern 7A, 7B und deren Speicherung im RAM 8. Zur Speicherung der Digitalmesswerte ist in dem RAM 8 ein bestimmter Speicherbereich 12 vorgesehen, in dem die Digitalmesswerte nach dem FIFO-Prinzip abgelegt werden. Die zeitliche Steuerung der Messwertgewinnung und der Weiterverarbeitung wird von dem in dem Mikroprozessor 6 abgearbeiteten Programmen bestimmt.The method according to the invention detects and processes measured values of capacitive proximity sensors arranged in the ground-level rear region of a motor vehicle. In FIG. 1 the rear region 1 of a motor vehicle is shown, which has the electrodes 2A and 2B of two capacitive proximity sensors near the ground (behind a diaphragm). Preferably, it is elongated sensor cable, which is transverse to the vehicle longitudinal direction, that is transverse to the plane of the plane FIG. 1 extend. The others in FIG. 1 shown devices are drawn only for the purpose of illustration outside the motor vehicle, but are actually arranged in the motor vehicle. In each case, a supply cable 3 extends from the sensor electrodes 2A, 2B to an evaluation circuit 4A and 4B of the capacitive sensor which generates at its output an analog output signal corresponding to the capacitance of the sensor, in particular a voltage corresponding to the capacitance. The voltages corresponding to the capacitances of the two sensor electrodes are each an input port of a microcontroller 5, wherein an analog-to-digital converter 7A and 7B is connected to each of the input ports. The microcontroller 5 includes a microprocessor 6, a ROM 10 for storing operating programs, a RAM 8 as a working memory and other interface circuits, one of which is exemplified as a port 11. The analog-to-digital converters 7A, 7B and the other circuits mentioned are connected to the microprocessor 6 via a bus 9. Programmatically, the microprocessor 6 causes the reading of the digital measured values from the analog-to-digital converters 7A, 7B and their storage in the RAM 8. For storing the digital measured values, a specific memory area 12 is provided in the RAM 8, in which the digital measured values after the FIFO Principle are filed. The time control of the measured value acquisition and the further processing is determined by the processed in the microprocessor 6 programs.

Figur 2 veranschaulicht den zeitlichen Ablauf der Gewinnung der Digitalmesswerte und der Berechnung von Filterwerten nach einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens. Zunächst veranlasst der Mikrocontroller, dass beispielsweise alle 4 ms für jeden Sensor ein Digitalmesswert gewonnen wird, indem der A/D-Umsetzer zur Ausgabe eines entsprechenden Digitalwerts veranlasst wird, der dann in dem FIFO-Bereich 12 des RAM 8 gespeichert wird. Der FIFO-Bereich 12 kann bei dem hier dargestellten bevorzugten Ausführungsbeispiel 32 Digitalmesswerte pro Sensor aufnehmen. Die jeweils in dem FIFO-Bereich gespeicherten 32 Werte sind in Figur 2 als 32 kleine Quadrate dargestellt und entsprechen einer Zeile dieser Darstellung. Eine Spalte entspricht einem Messwert. Es sind physisch verschiedene Ausführungsformen eines solchen FIFO-Speichers denkbar. Vorzugsweise bleibt ein Messwert jeweils solange in seinem Speicherbereich gespeichert, bis er nach 32 Messwerterfassungen durch einen neuen Messwert überschrieben wird. Ein in dem FIFO-Speicherbereich umlaufender Zeiger bestimmt, in welchen Speicherplatz jeweils ein neuer Messwert eingeschrieben werden kann. FIG. 2 illustrates the timing of the acquisition of the digital measurements and the calculation of filter values according to a preferred embodiment of the method according to the invention. First, for example, the microcontroller causes a digital reading to be taken every 4 ms for each sensor by causing the A / D converter to output a corresponding digital value, which is then stored in the FIFO area 12 of the RAM 8. The FIFO area 12 may receive 32 digital readings per sensor in the preferred embodiment shown here. The 32 values stored in the FIFO area are in FIG. 2 represented as 32 small squares and correspond to one line of this representation. A column corresponds to a measured value. Physically different embodiments of such a FIFO memory are conceivable. A measured value preferably remains stored in its memory area until it is overwritten by a new measured value after 32 measured value acquisitions. A pointer circulating in the FIFO memory area determines in which memory location a new measured value can be written in each case.

Figur 2 veranschaulicht die weitere Vorgehensweise in dem ersten, energiesparenden Auswertemodus. Nachdem jeweils 8 neue Digitalmesswerte in dem FIFO-Speicherbereich 12 eingeschrieben worden sind, veranlasst der Mikrocontroller die Berechnung eines Filterwerts. Die Berechnung des Filterwerts (Filterberechnung) wird somit alle 8*4 ms = 32 ms durchgeführt. In die alle 32 ms stattfindende Filterberechnung werden aber nicht nur die neuen zuletzt gewonnenen 8 Messwerte, sondern die letzten 32 ms einbezogen. Jeder gespeicherte Messwert nimmt somit insgesamt vier Mal an einer Filterberechnung teil. Einerseits verringert der Umstand, dass die Filterberechnung nur alle 8 ms ausgeführt wird, den Energieverbrauch. Andererseits gestattet die Einbeziehung der vollständigen 32 in dem FIFO-Bereich gespeicherten Digitalmesswerte eine exaktere Filterung, insbesondere Rauschunterdrückung. FIG. 2 illustrates the further procedure in the first, energy-saving evaluation mode. After each 8 new digital readings are written in the FIFO memory area 12 have been made, the microcontroller causes the calculation of a filter value. The calculation of the filter value (filter calculation) is thus performed every 8 * 4 ms = 32 ms. However, not only the new last 8 measured values, but the last 32 ms are included in the filter calculation which takes place every 32 ms. Each stored measurement thus participates in a total of four filter calculations. On the one hand, the fact that the filter calculation is performed only every 8 ms reduces the power consumption. On the other hand, the inclusion of the complete 32 digital measurements stored in the FIFO area allows more accurate filtering, especially noise suppression.

In dem energiesparenden Modus wird der auf diese Weise gewonnene Filterwert dann mit einem Schwellwert verglichen. Sofern eine Überschreitung des Schwellwerts festgestellt wird, wird ein zweiter Auswertemodus aktiviert.In the energy-saving mode, the filter value obtained in this way is then compared with a threshold value. If an exceeding of the threshold value is detected, a second evaluation mode is activated.

In dem zweiten Auswertemodus werden die Abstände der Filterwertberechnung verringert. Beispielsweise wird alle 2 oder 4 Messwerte ein Filterwert berechnet. Die nun in kürzeren Abständen gewonnenen Filterwerte werden einem Algorithmus zum Erkennen eines der vorgegebenen Fußbewegung eines Bedieners entsprechenden Signalverlaufs zugeführt.In the second evaluation mode, the distances of the filter value calculation are reduced. For example, a filter value is calculated every 2 or 4 measured values. The filter values now obtained at shorter intervals are fed to an algorithm for detecting a signal course corresponding to the predetermined foot movement of an operator.

Die Filterberechnung erfolgt beispielsweise mit einem FIR-Algorithmus. Dabei werden sämtliche 32 Digitalmesswerte jeweils mit einem Faktor multipliziert und aus diesen Produkten eine Summe gebildet, die dem Filterwert entspricht. Bei der bevorzugten Ausführungsform unterscheidet sich die Art der Filterung in dem ersten, energiesparenden Modus von der Art der Filterung in dem zweiten, normalen Modus zum Erkennen der Fußbewegung. Dies kommt auch in unterschiedlichen Filterkoeffizienten zum Ausdruck. Die Filterkoeffizienten sind beispielsweise in dem zweiten, normalen Auswertemodus so gewählt, dass insbesondere Signalverläufe im Frequenzbereich bis etwa 10 Hz, vorzugsweise bis 5 Hz, herausgefiltert werden. Es hat sich nämlich herausgestellt, dass insbesondere Signale in diesen tieffrequenten Bereichen die zu erfassende Bewegung des Bedienerkörperteils (Fußes) wiedergeben. Darüber hinaus können die Filterkoeffizienten in dem ersten und dem zweiten Modus an die jeweilige Rate der Gewinnung der Filterwerte angepasst sein. So werden im energiesparenden, ersten Auswertemodus die Filterwerte beispielsweise alle 32 ms (nach jeweils 8 Abtastwerten) gewonnen, während sie im normalen Auswertemodus beispielsweise alle 8 ms (nach jeweils zwei Abtastwerten) gewonnen werden.The filter calculation takes place, for example, with an FIR algorithm. In this case, all 32 digital measured values are multiplied by a factor and from these products a sum is formed, which corresponds to the filter value. In the preferred embodiment, the type of filtering differs in the first, energy-saving mode from the type of filtering in the second, normal mode for detecting foot movement. This is also expressed in different filter coefficients. The filter coefficients are selected, for example, in the second, normal evaluation mode so that, in particular, signal characteristics in the frequency range up to about 10 Hz, preferably up to 5 Hz, are filtered out. It has been found that, in particular, signals in these low-frequency areas reproduce the movement of the operator's body part (foot) to be detected. In addition, the filter coefficients in the first and second modes adapted to the respective rate of extraction of the filter values. For example, in the energy-saving, first evaluation mode, the filter values are obtained every 32 ms (every 8 samples), while in the normal evaluation mode, for example, they are obtained every 8 ms (after every two samples).

Im Rahmen der in den Ansprüchen definierten Erfindung sind zahlreiche alternative Ausführungsformen denkbar. So kann beispielsweise die Abtastperiode von 4 ms abweichen und beispielsweise im Bereich von 1 bis 10 ms liegen. Der Abstand der Filterberechnungen im ersten und im zweiten Auswertemodus kann variieren, selbstverständlich mit der Maßgabe, dass er im zweiten Auswertemodus geringer ist. Ebenso kann die Tiefe des FIFO-Speichers von 32 abweichen.Within the scope of the invention defined in the claims numerous alternative embodiments are conceivable. For example, the sampling period may differ from 4 ms and may be in the range of 1 to 10 ms, for example. The spacing of the filter calculations in the first and in the second evaluation mode can vary, of course with the proviso that it is lower in the second evaluation mode. Similarly, the depth of the FIFO memory may differ from 32.

Claims (11)

  1. A method for detecting and processing measurement values of at least one capacitive proximity sensor arranged in the rear area of a motor vehicle near the floor for triggering an actuating function of a tailgate by a preset foot movement of an operator,
    wherein periodically after a scanning interval in each case a measurement value of the capacitive proximity sensor is captured and a digital measurement value corresponding to the measurement value is stored in a FIFO memory,
    wherein in a first energy-saving evaluation mode after every storing of a preset first number of digital measurement values
    a filter value is calculated from the currently stored digital measurement value and a preset second number of previously stored digital measurement values in that each of these stored digital measurement values is multiplied in each case with an associated first factor and the results are added,
    the filter value is compared with a threshold value and in particular when the filter value exceeds the threshold value, a second evaluation mode is activated,
    wherein in the second, normal evaluation mode in each case following the storing of a preset third number of digital measurement values, which are lower than the first number,
    a filter value is calculated from the currently stored digital measurement value and a preset fourth number of previously stored digital measurement values in that each of these stored digital measurement values is multiplied in each case with an associated second factor and the results are added, and
    the filter value is supplied to an algorithm for detecting a signal path corresponding to the preset foot movement of an operator.
  2. The method for detecting and processing measurement values according to Claim 1, characterized in that the preset first number of digital measurement values corresponds at least to double the preset third number of digital measurement values.
  3. The method for detecting and processing measurement values according to Claim 2, characterized in that the preset first number of digital measurement values is between 4 and 16.
  4. The method for detecting and processing measurement values according to Claim 3, characterized in that the preset first number of digital measurement values is equal to 8.
  5. The method for detecting and processing measurement values according to any one of the Claims 1 to 4, characterized in that the second number is equal to the fourth number and corresponds to the memory depth of the FIFO memory.
  6. The method for detecting and processing measurement values according to any one of the Claims 1 to 5, characterized in that the scanning interval is in the range between 1 ms and 10 ms.
  7. The method for detecting and processing measurement values according to any one of the Claim 6, characterized in that the scanning interval is in the range between 2 ms and 6 ms.
  8. The method for detecting and processing measurement values according to any one of the Claims 1 - 7, characterized in that the second factors are distinct from the first factors so that the measurement values in the first and the second evaluation mode are filtered differently.
  9. The method for detecting and processing measurement values according to any one of the Claims 1 - 8, characterized in that the fourth number and the second factors are selected so that signals are increasingly filtered out in a frequency range which corresponds to the frequency range of the capacity change that occurs during the foot movement of the operator.
  10. The method for detecting and processing measurement values according to any one of the Claims 1 - 9, characterized in that measurement values of two capacitive proximity sensors which are arranged offset in vehicle longitudinal direction are detected and digital measurement values corresponding to the measurement values are stored in two FIFO memory regions allocated to the sensors.
  11. The method for detecting and processing measurement values according to Claim 10, characterized in that in the first energy-saving evaluation mode only the filter value for one of the two sensors is calculated and compared with the threshold value and in that in the second evaluation mode the filter values for both sensors are calculated and supplied to the algorithm for detecting the signal path corresponding to the preset foot movement of an operator.
EP13736851.0A 2012-07-27 2013-07-04 Method for detecting and processing measurement values of a capacitive proximity sensor for initiating an operating function of a tailgate of a motor vehicle comprising an energy-saving evaluation mode Active EP2877376B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210106851 DE102012106851A1 (en) 2012-07-27 2012-07-27 Method for detecting and processing measured values of a capacitive proximity sensor for triggering an actuation function of a tailgate of a motor vehicle with an energy-saving evaluation mode
PCT/EP2013/064124 WO2014016097A1 (en) 2012-07-27 2013-07-04 Method for detecting and processing measurement values of a capacitive proximity sensor for initiating an operating function of a tailgate of a motor vehicle comprising an energy-saving evaluation mode

Publications (2)

Publication Number Publication Date
EP2877376A1 EP2877376A1 (en) 2015-06-03
EP2877376B1 true EP2877376B1 (en) 2016-04-27

Family

ID=48790406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13736851.0A Active EP2877376B1 (en) 2012-07-27 2013-07-04 Method for detecting and processing measurement values of a capacitive proximity sensor for initiating an operating function of a tailgate of a motor vehicle comprising an energy-saving evaluation mode

Country Status (4)

Country Link
EP (1) EP2877376B1 (en)
CN (1) CN104411548B (en)
DE (1) DE102012106851A1 (en)
WO (1) WO2014016097A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050876B2 (en) * 2005-07-18 2011-11-01 Analog Devices, Inc. Automatic environmental compensation of capacitance based proximity sensors
DE102008063366B4 (en) * 2008-12-30 2022-04-28 Huf Hülsbeck & Fürst Gmbh & Co. Kg Device for contactless actuation of a tailgate of a motor vehicle and method for actuating a tailgate of a motor vehicle and motor vehicle
DE102010011767A1 (en) * 2010-03-17 2011-09-22 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Method for sensory detection of an operator event
CN201689305U (en) * 2010-05-14 2010-12-29 长沙泰辉网络科技有限公司 Electric vehicle controller with code keyboard
CN201882043U (en) * 2010-11-25 2011-06-29 泉州市明佳电子科技有限公司 Power control circuit of vehicle ultrasonic detector

Also Published As

Publication number Publication date
WO2014016097A1 (en) 2014-01-30
CN104411548A (en) 2015-03-11
DE102012106851A1 (en) 2014-02-20
CN104411548B (en) 2016-09-07
EP2877376A1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
EP2795798B1 (en) Device and method for evaluating the capacitance of a sensor electrode of a proximity sensor
DE102011010620B4 (en) Method for measuring a capacitance
EP2812996B1 (en) Method for the operation of a capacitive sensor array on a motor vehicle and associated device
DE102011112274A1 (en) control system
WO2013010643A1 (en) Error avoidance in the gesture-controlled opening of a motor vehicle door and boot
WO1996022548A1 (en) Process of non-contact distance sensing
DE102010037577A1 (en) Detection method for actuation gestures and associated calibration method
EP2519808A2 (en) Method and device for detecting phase boundaries and correspondingly equipped laboratory device
EP2828973A1 (en) Capacitive sensor arrangement for switching a door opening in a motor vehicle and associated method
EP3317968B1 (en) Method for measuring a capacitance value
EP2915254B1 (en) Evaluation method for sensor signals
CH702180B1 (en) Method for testing a laboratory device and corresponding laboratory device.
EP2877376B1 (en) Method for detecting and processing measurement values of a capacitive proximity sensor for initiating an operating function of a tailgate of a motor vehicle comprising an energy-saving evaluation mode
DE102017109040A1 (en) Method for classifying an object in an environment of a motor vehicle, a classification device and motor vehicle
DE102008041632A1 (en) Measurement electrode arrangement for use in distance measurement device, has measurement capacitors whose capacitance depends on distance of object from electrodes, which correspond to dimension of object
EP2943630B1 (en) Capacitive proximity sensor arrangement on a door of a motor vehicle for detecting an approximately horizontal approaching movement of an operator's hand
EP2429078B1 (en) Capacitative operating device for a domestic appliance, domestic appliance and method for operating a capacitative operating device in a domestic appliance
EP3457569B1 (en) Evaluation arrangement for a capacitive sensor device
DE102008041647A1 (en) Device for measuring distance between vehicle and object e.g. opponent vehicle, in surrounding of vehicle, has adjusting unit i.e. switching unit, for adjusting capacitance of measuring capacitor and/or size of input signals
DE102008041629A1 (en) Method for determining speed of vehicle relative to another vehicle, involves determining speed of object from ratio of sum of distances between precision capacitors and time period of time points of impact of capacitors
DE102015005381A1 (en) Method for adjusting a protective device and protective device for a motor vehicle
DE10339753A1 (en) Capacitance or inductance measurement procedure for proximity sensors has successive measurements at different frequencies to eliminate mobile phone interference
DE102019135746A1 (en) Method for operating a proximity sensor arrangement
DE102013222759B4 (en) Charge amplifier for a capacitive sensor
DE102008041633A1 (en) Method for determining speed of vehicle relative to another vehicle, involves determining speed of object from ratio of sum of distances between precision capacitors and time period between time points

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 794386

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002828

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002828

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 794386

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 11

Ref country code: DE

Payment date: 20230731

Year of fee payment: 11