EP2871368B1 - Gas turbine compressor - Google Patents

Gas turbine compressor Download PDF

Info

Publication number
EP2871368B1
EP2871368B1 EP13192464.9A EP13192464A EP2871368B1 EP 2871368 B1 EP2871368 B1 EP 2871368B1 EP 13192464 A EP13192464 A EP 13192464A EP 2871368 B1 EP2871368 B1 EP 2871368B1
Authority
EP
European Patent Office
Prior art keywords
channel wall
gas turbine
upstream
bleed
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13192464.9A
Other languages
German (de)
French (fr)
Other versions
EP2871368A1 (en
Inventor
Roland Wunderer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP13192464.9A priority Critical patent/EP2871368B1/en
Priority to US14/533,832 priority patent/US10066633B2/en
Publication of EP2871368A1 publication Critical patent/EP2871368A1/en
Application granted granted Critical
Publication of EP2871368B1 publication Critical patent/EP2871368B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • F04D29/547Ducts having a special shape in order to influence fluid flow

Definitions

  • the present invention relates to a gas turbine compressor with a Abblaskanal and a gas turbine, in particular aircraft engine gas turbine with such a gas turbine compressor.
  • the DE 10 2008 014 957 A1 indicates an entrance angle of a flow into a take-off geometry in response to a bleed air amount relative to an amount of air entering a compressor and a hub ratio.
  • the GB 2 388 875 A suggests a curved upstream channel wall.
  • An axially opposed downstream channel wall has two planar sections connected by a radius. Parameter values for a geometry do not take them into focus.
  • the EP 2 110 559 A2 In one embodiment, there is shown a downstream channel wall having two planar sections. It does not take parameter values for a channel geometry into account.
  • the GB 2 192 229 A refers to a ratio of a withdrawal air quantity relative to an amount of air flowing through a compressor in the range between 7 and 10%.
  • An object of an embodiment of the present invention is to provide an improved gas turbine compressor.
  • Claim 8 provides a gas turbine, in particular an aircraft engine gas turbine, with a corresponding gas turbine compressor under protection.
  • Advantageous embodiments of the invention are the subject of the dependent claims.
  • a gas turbine compressor in particular an aircraft engine gas turbine, a guide grid having a plurality of circumferentially distributed vanes and a playpens with a plurality of circumferentially distributed blades on.
  • the guide grid is arranged upstream of at least one further outlet guide grid, in particular in the flow direction last, or in front of a downstream walkway.
  • one or more further running and guide gratings can be arranged between the guide grid and the outlet guide grid.
  • Guiding and playpens are arranged in an annular space, which is intended to be flowed through during operation of a working gas, in particular air.
  • a cross section of the annular space can, at least in sections, converge or, at least substantially, be constant.
  • a radially outer wall of the annular space merges into an upstream channel wall of a blow-off channel.
  • the upstream channel wall continuously merges into the radially outer wall.
  • the radially inner leading edge is offset radially inwardly from the transition of the upstream channel wall into the radially outer wall.
  • the blow-off channel has a blow-off channel outlet.
  • upstream and downstream or upstream and downstream refer to the normal flow direction in the operation of the compressor, in particular an axial direction from the guide grid to the playpen or from a compressor inlet to a compressor outlet.
  • the exhaust duct may be an annular channel in one embodiment, the leading edge extends in the circumferential direction by 360 °. In one embodiment, the leading edge is rounded or has a, in particular constant, radius. In another embodiment, the Abblaskanal on several circumferentially spaced chimneys or separate passages.
  • the Abblaskanal can communicate at its Abblaskanalaustritt with a, in particular annular, plenum, in particular, continue to continue in operation from the compressor tapped gas, for example for component cooling or the like.
  • the blow-off channel communicates with an inflow channel, which in turn can communicate with the plenum.
  • the downstream channel wall in the meridian section with an axis of rotation of the compressor includes an angle which increases in the direction of flow, in particular continuously or continuously, which is referred to below as the first angle.
  • the bleed flow can be performed loss in one embodiment. Additionally or alternatively, losses of the main flow in the annular space downstream of the leading edge can thereby also be reduced.
  • the first angle increases from the leading edge, in particular to a radius of a rounded leading edge, in the direction of flow.
  • the bleeding of the flow at the Abblaskanaleintritt be improved.
  • the first angle in one embodiment in the flow direction increases monotonously, in particular strictly monotonously.
  • the downstream channel wall is curved in sections or over its entire length.
  • the downstream channel wall can have an at least substantially constant radius of curvature or an at least substantially constant curvature in sections or over its entire length.
  • a curvature of the downstream channel wall in sections or over its entire length increase or decrease or decrease or increase their radius of curvature.
  • the first angle at the Abblaskanalaustritt greater than 30 °, in particular greater than 40 °.
  • the bleed flow can be carried out loss in one embodiment.
  • the upstream channel wall also includes in the meridian section with the axis of rotation an angle which increases in the direction of flow, which is referred to below as the second angle.
  • the second angle increases from the transition of the upstream channel wall in the radially outer wall of the annular space in the direction of flow, in a development, the upstream channel wall is tangentially into the radially outer wall.
  • the second angle in one embodiment in the flow direction increases monotonously, in particular strictly monotonously.
  • the upstream channel wall is curved in sections or over its entire length.
  • the upstream channel wall may in one embodiment in sections or over its entire Have length one, at least substantially, constant radius of curvature or at least substantially constant curvature.
  • a curvature of the upstream channel wall in sections or over its entire length increase or decrease or decrease or increase their radius of curvature.
  • p (x) denotes a radial coordinate of a channel wall, in particular its radially innermost extent or its radially innermost point, at an axial position x
  • the angle of a channel wall with the axis of rotation in one embodiment is understood to mean the angle of a tangent to the channel wall with the axis of rotation.
  • the upstream channel wall sections or over its entire length be more curved than the downstream channel wall, so that the Abblaskanal diverges in one embodiment in sections or over its entire length.
  • the exhaust duct runs in sections or over its entire length from the radially outer wall of the annular space radially outward or away from the axis of rotation. Accordingly, in one embodiment, the first and / or second angle increasing in the flow direction from the axis of rotation to the downstream or upstream channel wall is always greater than zero. If, in one embodiment, the radially outer wall of the annular space converges in the direction of flow, the first and / or second angle may be negative in a development on the radially outer wall of the annular space and positive in the direction of flow.
  • the upstream channel wall transitions downstream from a trailing edge of the guide grid into the annulus. In another embodiment, the upstream channel wall transitions upstream from a trailing edge of the guide grid into the annulus. In other words, the blow-off channel is in this other one
  • the trailing edge is monotonically, in particular strictly monotone, increasingly inclined to the suction side.
  • the trailing edge is bent at least in the radially outer 20%, in particular 15%, the Leitgitter- or Leitschaufelblattt assume in the circumferential direction to the suction side.
  • This bending can be done in one embodiment by rotating the entire stator blade profile or by changing the blade curvature in the trailing edge region.
  • the vane (s), at least in a radially outer region or the vicinity of the Abblaskanals be shortened.
  • the trailing edge may include an angle with the upstream channel wall that is between 60 ° and 120 °, in particular between 75 ° and 105 °, measured in the axial direction or with respect to the projection in the meridian plane.
  • the tapped flow can be performed with even less loss. Additionally or alternatively, losses of the main flow in the annular space downstream of the leading edge can thereby be further reduced.
  • b 1 is first determined according to at least one of the equations (1) - (2 '), and in a further development, further variables, in particular r K , H, L, b 2 and / or s, according to one of the equations (3 ) - (7 ') derived.
  • Fig. 1 shows a portion of a gas turbine compressor of an aircraft engine gas turbine according to an embodiment of the present invention in a meridian section. This has a guide grid with a plurality of circumferentially distributed guide vanes 1 and a playpen with a plurality of circumferentially distributed blades 2.
  • the guide grid is arranged upstream of the downstream walkway and a further, in particular in the flow direction x last exit guide grille (not shown).
  • One or more further running and guide gratings may be arranged between the illustrated guide grid and the outlet guide grid (not shown).
  • Guiding and playpens are arranged in an annular space 5, which is intended to be flowed through during operation of compressed air.
  • a radially outer wall (top in Fig. 1 ) of the annular space is at a transition 4 continuously or without offset in an upstream channel wall 3.1 of a Abblaskanals 3 via.
  • Axially opposite the Abblaskanal a downstream channel wall 3.2 with a radially inner, rounded leading edge 3.3, which is offset from the transition 4 radially inward.
  • At an end remote from the annular space (at the top in FIG Fig. 1 ) has the Abblaskanal 3 a Abblaskanalaustritt.
  • the Abblaskanal communicates at its Abblaskanalaustritt with a plenum (not shown). Likewise, it can also communicate with an inflow channel, which in turn can communicate with the plenum.
  • the downstream channel wall 3.2 closes with a rotational axis of the compressor (horizontal in Fig. 1 ) a strictly monotonically increasing in the flow direction x from the leading edge 3.3 first angle ⁇ , in other words is curved over its entire length (d ⁇ / dx> 0).
  • the upstream channel wall 3.1 includes with the axis of rotation in the flow direction from the transition 4 strictly monotonically increasing second angle ⁇ , is with In other words, also curved over its entire length (d ⁇ / dx> 0), wherein the upstream channel wall merges tangentially into the radially outer wall of the annular space 5.
  • the upstream channel wall is in the execution of Fig. 1 downstream (right) of the trailing edges 1.1 of the guide vanes of the guide grid 1 in the radially outer wall of the annular space 5 via.
  • Fig. 4 shows a view of a trailing edge 1.1 of a guide vane of the guide grid 1 against the flow direction (ie from the right in Fig. 1 ).
  • the trailing edges 1.1 are at least in the radially outer 20%, in particular 15% of Leitgitter- or Leitschaufelblatt Exercise (Rr) (see. Fig. 1 ) in the circumferential direction from a pressure side PS away to a suction side SS of the guide blade toward strictly monotonically increasingly inclined, in other words bent to the suction side SS.
  • Rr Leitgitter- or Leitschaufelblatt Exercise
  • Fig. 3 shows in an enlarged section of the Fig. 1 in particular the blow-off duct with several sizes.
  • b 1 denotes the channel height at the leading edge 3.3, in particular the distance or the shortest distance between the leading edge 3.3 and upstream channel wall 3.1, R or r the outer or inner radius of the annular space at the transition 4 of the upstream channel wall 3.1 in the radially outer Wall of the annular space 5 (see. Fig.
  • R K denotes the radius of curvature of the upstream channel wall 3.1
  • H is the radial distance between the leading edge 3.3 and the junction 4 of the annular space 5 in the upstream channel wall 3.1
  • L is the axial distance between the leading edge 3.3 and the junction 4 of the annular space 5 in the upstream Channel wall 3.1
  • b 2 the outlet channel height at the Abblaskanalaustritt and s the length of the downstream channel wall 3.2 between the leading edge 3.3 and the Abblaskanalaustritt.
  • Fig. 2 shows in Fig. 1 Similarly, a portion of a gas turbine compressor of an aircraft engine gas turbine according to an embodiment of the present invention. Corresponding features are denoted by identical reference numerals, so that the description of the embodiment of Fig. 1 Referred to below and will be discussed only for differences to this.
  • the upstream channel wall 3.1 goes upstream (left) from the trailing edge 1.1 of the guide grid in the radially outer wall of the annular space 5, the axially upstream upstream of the leading edge 3.3 is arranged.
  • the exhaust duct 3 in the embodiment of Fig. 2 partially arranged in the guide grid.

Description

Die vorliegende Erfindung betrifft einen Gasturbinenverdichter mit einem Abblaskanal sowie eine Gasturbine, insbesondere Flugtriebwerk-Gasturbine mit einem solchen Gasturbinenverdichter.The present invention relates to a gas turbine compressor with a Abblaskanal and a gas turbine, in particular aircraft engine gas turbine with such a gas turbine compressor.

Beispielsweise aus der DE 40 38 353 A1 , DE 199 40 020 C2 und US 2004/0033133 A1 sind Abblaskanäle mit geraden, gegen die Rotationsachse des Verdichters konstant geneigten stromabwärtigen Kanalwänden bekannt.For example, from the DE 40 38 353 A1 . DE 199 40 020 C2 and US 2004/0033133 A1 Abblaskanäle are known with straight, against the rotational axis of the compressor constantly inclined downstream channel walls.

Die DE 10 2008 014 957 A1 gibt einen Eintrittswinkel einer Strömung in eine Entnahmegeometrie in Abhängigkeit von einer Entnahmeluftmenge bezogen auf eine Luftmenge, die in einen Verdichter eintritt, und von einem Nabenverhältnis an.The DE 10 2008 014 957 A1 indicates an entrance angle of a flow into a take-off geometry in response to a bleed air amount relative to an amount of air entering a compressor and a hub ratio.

Die GB 2 388 875 A schlägt eine gekrümmte stromaufwärtige Kanalwand vor. Eine axial gegenüberliegende stromabwärtige Kanalwand weist zwei über einen Radius verbundene ebene Abschnitte auf. Parameterwerte für eine Geometrie nimmt sie nicht in den Blick.The GB 2 388 875 A suggests a curved upstream channel wall. An axially opposed downstream channel wall has two planar sections connected by a radius. Parameter values for a geometry do not take them into focus.

Die EP 2 110 559 A2 zeigt in einem Ausführungsbeispiel eine stromabwärtige Kanalwand, die zwei ebene Abschnitte aufweist. Parameterwerte für eine Geometrie des Kanals nimmt auch sie nicht in den Blick.The EP 2 110 559 A2 In one embodiment, there is shown a downstream channel wall having two planar sections. It does not take parameter values for a channel geometry into account.

Die GB 2 192 229 A nennt ein Verhältnis einer Entnahmeluftmenge bezogen auf eine Luftmenge, die einen Verdichter durchströmt, im Bereich zwischen 7 und 10%.The GB 2 192 229 A refers to a ratio of a withdrawal air quantity relative to an amount of air flowing through a compressor in the range between 7 and 10%.

Eine Aufgabe einer Ausführung der vorliegenden Erfindung ist es, einen verbesserten Gasturbinenverdichter zur Verfügung zu stellen.An object of an embodiment of the present invention is to provide an improved gas turbine compressor.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Anspruch 8 stellt eine Gasturbine, insbesondere eine Flugtriebwerk-Gasturbine, mit einem entsprechenden Gasturbinenverdichter unter Schutz. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.This object is solved by the features of claim 1. Claim 8 provides a gas turbine, in particular an aircraft engine gas turbine, with a corresponding gas turbine compressor under protection. Advantageous embodiments of the invention are the subject of the dependent claims.

Nach einem Aspekt der vorliegenden Erfindung weist ein Gasturbinenverdichter, insbesondere einer Flugtriebwerk-Gasturbine, ein Leitgitter mit einer Mehrzahl in Umfangsrichtung verteilter Leitschaufeln und ein Laufgitter mit einer Mehrzahl in Umfangsrichtung verteilter Laufschaufeln auf.According to one aspect of the present invention, a gas turbine compressor, in particular an aircraft engine gas turbine, a guide grid having a plurality of circumferentially distributed vanes and a playpens with a plurality of circumferentially distributed blades on.

Das Leitgitter ist in einer Ausführung stromaufwärts vor wenigstens einem weiteren, insbesondere in Durchströmungsrichtung letzten, Austrittsleitgitter bzw. vor einem stromabwärtigen Laufgitter angeordnet. Zwischen dem Leitgitter und dem Austrittsleitgitter können in einer Ausführung ein oder mehrere weitere Lauf- und Leitgitter angeordnet sein.In one embodiment, the guide grid is arranged upstream of at least one further outlet guide grid, in particular in the flow direction last, or in front of a downstream walkway. In one embodiment, one or more further running and guide gratings can be arranged between the guide grid and the outlet guide grid.

Leit- und Laufgitter sind in einem Ringraum angeordnet, der dazu vorgesehen ist, im Betrieb von einem Arbeitsgas, insbesondere Luft, durchströmt zu werden. Ein Querschnitt des Ringraums kann, wenigstens abschnittsweise, konvergieren oder, wenigstens im Wesentlichen, konstant sein.Guiding and playpens are arranged in an annular space, which is intended to be flowed through during operation of a working gas, in particular air. A cross section of the annular space can, at least in sections, converge or, at least substantially, be constant.

Eine radial äußere Wand des Ringraums geht in eine stromaufwärtige Kanalwand eines Abblaskanals über. In einer Ausführung geht die stromaufwärtige Kanalwand stetig in die radial äußere Wand über. Axial gegenüberliegend weist der Abblaskanal eine stromabwärtige Kanalwand mit einer radial inneren Eintrittskante auf. In einer Ausführung ist die radial innere Eintrittskante gegenüber dem Übergang der stromaufwärtigen Kanalwand in die radial äußere Wand radial nach innen versetzt. An einem ringraumabgewandten Ende weist der Abblaskanal einen Abblaskanalaustritt auf.A radially outer wall of the annular space merges into an upstream channel wall of a blow-off channel. In one embodiment, the upstream channel wall continuously merges into the radially outer wall. Axially opposite the Abblaskanal on a downstream channel wall with a radially inner leading edge. In one embodiment, the radially inner leading edge is offset radially inwardly from the transition of the upstream channel wall into the radially outer wall. At an end facing away from the annular space, the blow-off channel has a blow-off channel outlet.

Die Bezeichnungen stromauf- und -abwärtig bzw. stromauf- und -abwärts beziehen sich auf die normale Durchströmungsrichtung im Betrieb des Verdichters, insbesondere auf eine Axialrichtung vom Leitgitter zum Laufgitter bzw. von einem Verdichtereintritt zu einem Verdichteraustritt.The terms upstream and downstream or upstream and downstream refer to the normal flow direction in the operation of the compressor, in particular an axial direction from the guide grid to the playpen or from a compressor inlet to a compressor outlet.

Der Abblaskanal kann in einer Ausführung ein Ringkanal sein, dessen Eintrittskante sich in Umfangsrichtung um 360° erstreckt. In einer Ausführung ist die Eintrittskante abgerundet bzw. weist einen, insbesondere konstanten, Radius auf. In einer anderen Ausführung weist der Abblaskanal mehrere in Umfangsrichtung voneinander beabstandete Kamine bzw. voneinander getrennte Passagen auf.The exhaust duct may be an annular channel in one embodiment, the leading edge extends in the circumferential direction by 360 °. In one embodiment, the leading edge is rounded or has a, in particular constant, radius. In another embodiment, the Abblaskanal on several circumferentially spaced chimneys or separate passages.

Der Abblaskanal kann an seinem Abblaskanalaustritt mit einem, insbesondere ringförmigen, Plenum kommunizieren, insbesondere, um im Betrieb aus dem Verdichter abgezapftes Gas weiterzuführen, beispielsweise zur Bauteilkühlung oder dergleichen. In einer Ausführung kommuniziert der Abblaskanal mit einem Zuströmkanal, der seinerseits mit dem Plenum kommunizieren kann.The Abblaskanal can communicate at its Abblaskanalaustritt with a, in particular annular, plenum, in particular, continue to continue in operation from the compressor tapped gas, for example for component cooling or the like. In one embodiment, the blow-off channel communicates with an inflow channel, which in turn can communicate with the plenum.

Nach einem Aspekt der vorliegenden Erfindung schließt die stromabwärtige Kanalwand im Meridianschnitt mit einer Rotationsachse des Verdichters einen in Durchströmungsrichtung, insbesondere kontinuierlich bzw. stetig, zunehmenden Winkel ein, der nachfolgend als erster Winkel bezeichnet wird. Hierdurch kann die abgezapfte Strömung in einer Ausführung verlustärmer geführt werden. Zusätzlich oder alternativ können hierdurch auch Verluste der Hauptströmung im Ringraum stromabwärts nach der Eintrittskante reduziert werden.According to one aspect of the present invention, the downstream channel wall in the meridian section with an axis of rotation of the compressor includes an angle which increases in the direction of flow, in particular continuously or continuously, which is referred to below as the first angle. As a result, the bleed flow can be performed loss in one embodiment. Additionally or alternatively, losses of the main flow in the annular space downstream of the leading edge can thereby also be reduced.

In einer Ausführung nimmt der erste Winkel ab der Eintrittskante, insbesondere nach einem Radius einer abgerundeten Eintrittskante, in Durchströmungsrichtung zu. Hierdurch kann in einer Ausführung das Abzapfen der Strömung am Abblaskanaleintritt verbessert werden.In one embodiment, the first angle increases from the leading edge, in particular to a radius of a rounded leading edge, in the direction of flow. As a result, in one embodiment, the bleeding of the flow at the Abblaskanaleintritt be improved.

Zusätzlich oder alternativ nimmt der erste Winkel in einer Ausführung in Durchströmungsrichtung monoton, insbesondere streng monoton, zu. Hierunter wird vorliegend insbesondere verstanden, dass der erste Winkel an jeder beliebigen axialen Position wenigstens so groß ist wie an jeder axialen Position, die stromaufwärts hiervon liegt (monoton), bzw. dass der erste Winkel an jeder beliebigen axialen Position größer ist als an jeder axialen Position, die stromaufwärts hiervon liegt (streng monoton). Mit anderen Worten ist in einer Ausführung die stromabwärtige Kanalwand abschnittsweise oder über ihre gesamte Länge gekrümmt. Die stromabwärtige Kanalwand kann in einer Ausführung abschnittsweise oder über ihre gesamte Länge einen, wenigstens im Wesentlichen, konstanten Krümmungsradius bzw. eine, wenigstens im Wesentlichen, konstante Krümmung aufweisen. In einer anderen Ausführung kann eine Krümmung der stromabwärtigen Kanalwand abschnittsweise oder über ihre gesamte Länge zu- oder abnehmen bzw. ihr Krümmungsradius ab- oder zunehmen. Hierdurch kann die abgezapfte Strömung in einer Ausführung besonders verlustarm geführt werden.Additionally or alternatively, the first angle in one embodiment in the flow direction increases monotonously, in particular strictly monotonously. By this is meant in the present case in particular that the first angle at any axial position is at least as large as at any axial position upstream of it (monotone), or that the first angle at any axial position is greater than at each axial Position that is upstream of this (strictly monotone). In other words, in one embodiment, the downstream channel wall is curved in sections or over its entire length. In one embodiment, the downstream channel wall can have an at least substantially constant radius of curvature or an at least substantially constant curvature in sections or over its entire length. In another embodiment, a curvature of the downstream channel wall in sections or over its entire length increase or decrease or decrease or increase their radius of curvature. As a result, the bleed flow can be performed particularly low loss in one embodiment.

In einer Ausführung ist der erste Winkel an dem Abblaskanalaustritt größer als 30°, insbesondere größer als 40°. Hierdurch kann die abgezapfte Strömung in einer Ausführung verlustarm ausgeführt werden.In one embodiment, the first angle at the Abblaskanalaustritt greater than 30 °, in particular greater than 40 °. As a result, the bleed flow can be carried out loss in one embodiment.

Erfindungsgemäß schließt auch die stromaufwärtige Kanalwand im Meridianschnitt mit der Rotationsachse einen in Durchströmungsrichtung zunehmenden Winkel ein, der nachfolgend als zweiter Winkel bezeichnet wird.According to the invention, the upstream channel wall also includes in the meridian section with the axis of rotation an angle which increases in the direction of flow, which is referred to below as the second angle.

In einer Ausführung nimmt der zweite Winkel ab dem Übergang der stromaufwärtigen Kanalwand in die radial äußere Wand des Ringraums in Durchströmungsrichtung zu, in einer Weiterbildung geht die stromaufwärtige Kanalwand tangential in die radial äußere Wand über.In one embodiment, the second angle increases from the transition of the upstream channel wall in the radially outer wall of the annular space in the direction of flow, in a development, the upstream channel wall is tangentially into the radially outer wall.

Zusätzlich oder alternativ nimmt der zweite Winkel in einer Ausführung in Durchströmungsrichtung monoton, insbesondere streng monoton, zu. Mit anderen Worten ist in einer Ausführung auch die stromaufwärtige Kanalwand abschnittsweise oder über ihre gesamte Länge gekrümmt. Die stromaufwärtige Kanalwand kann in einer Ausführung abschnittsweise oder über ihre gesamte Länge einen, wenigstens im Wesentlichen, konstanten Krümmungsradius bzw. eine, wenigstens im Wesentlichen, konstante Krümmung aufweisen. In einer anderen Ausführung kann eine Krümmung der stromaufwärtigen Kanalwand abschnittsweise oder über ihre gesamte Länge zu- oder abnehmen bzw. ihr Krümmungsradius ab- oder zunehmen.Additionally or alternatively, the second angle in one embodiment in the flow direction increases monotonously, in particular strictly monotonously. In other words, in one embodiment, the upstream channel wall is curved in sections or over its entire length. The upstream channel wall may in one embodiment in sections or over its entire Have length one, at least substantially, constant radius of curvature or at least substantially constant curvature. In another embodiment, a curvature of the upstream channel wall in sections or over its entire length increase or decrease or decrease or increase their radius of curvature.

Wenn p(x) eine Radialkoordinate einer Kanalwand, insbesondere deren radial innerste Erstreckung bzw. deren radial innerster Punkt, an einer axialen Position x bezeichnet, so schließt in einer Ausführung die Kanalwand an dieser axialen Position x mit der Rotationsachse den Winkel ϕ = arctan(dp/dx) ein. Mit anderen Worten wird als Winkel einer Kanalwand mit der Rotationsachse in einer Ausführung der Winkel einer Tangente an die Kanalwand mit der Rotationsachse verstanden.If p (x) denotes a radial coordinate of a channel wall, in particular its radially innermost extent or its radially innermost point, at an axial position x, then in one embodiment the channel wall closes at this axial position x with the axis of rotation the angle φ = arctan ( dp / dx). In other words, the angle of a channel wall with the axis of rotation in one embodiment is understood to mean the angle of a tangent to the channel wall with the axis of rotation.

Erfindungsgemäß nimmt der zweite Winkel in Durchströmungsrichtung stärker zu als der erste Winkel. Insbesondere kann also die stromaufwärtige Kanalwand abschnittsweise oder über ihre gesamte Länge stärker gekrümmt sein als die stromabwärtige Kanalwand, so dass der Abblaskanal in einer Ausführung abschnittsweise oder über seine gesamte Länge divergiert.According to the second angle in the direction of flow increases more than the first angle. In particular, therefore, the upstream channel wall sections or over its entire length be more curved than the downstream channel wall, so that the Abblaskanal diverges in one embodiment in sections or over its entire length.

Der Abblaskanal verläuft in einer Ausführung abschnittsweise oder über seine gesamte Länge von der radial äußeren Wand des Ringraums radial nach außen bzw. von der Rotationsachse weg. Entsprechend ist der in Durchströmungsrichtung zunehmende erste und/oder zweite Winkel von der Rotationsachse zu der stromabwärtigen bzw. stromaufwärtigen Kanalwand hin gemessen in einer Ausführung stets größer als Null. Wenn in einer Ausführung die radial äußere Wand des Ringraums in Durchströmungsrichtung konvergiert, kann der erste und/oder zweite Winkel in einer Weiterbildung an der radial äußeren Wand des Ringraums negativ sein und in Durchströmungsrichtung positiv werden.In one embodiment, the exhaust duct runs in sections or over its entire length from the radially outer wall of the annular space radially outward or away from the axis of rotation. Accordingly, in one embodiment, the first and / or second angle increasing in the flow direction from the axis of rotation to the downstream or upstream channel wall is always greater than zero. If, in one embodiment, the radially outer wall of the annular space converges in the direction of flow, the first and / or second angle may be negative in a development on the radially outer wall of the annular space and positive in the direction of flow.

Die stromaufwärtige Kanalwand geht in einer Ausführung stromabwärts von einer Hinterkante des Leitgitters in den Ringraum über. In einer anderen Ausführung geht die stromaufwärtige Kanalwand stromaufwärts von einer Hinterkante des Leitgitters in den Ringraum über. Mit anderen Worten ist der Abblaskanal in dieser anderenThe upstream channel wall, in one embodiment, transitions downstream from a trailing edge of the guide grid into the annulus. In another embodiment, the upstream channel wall transitions upstream from a trailing edge of the guide grid into the annulus. In other words, the blow-off channel is in this other one

Ausführung teilweise im Leitgitter angeordnet bzw. die Hinterkante des Leitgitters axial innerhalb des Abblaskanals.Execution partially arranged in the guide grid or the trailing edge of the guide grid axially within the Abblaskanals.

Nach einem Aspekt der vorliegenden Erfindung ist eine Hinterkante einer oder mehrerer, vorzugsweise aller, Leitschaufeln des Leitgitters über die gesamte Schaufelblatt- bzw. Ringraumhöhe oder wenigstens in einem radial äußeren bzw. abblaskanalnäheren Drittel, vorzugsweise einem radial äußeren Fünftel bzw. den radial äußeren 20% einer Leitgitter- bzw. Leitschaufelblatthöhe, insbesondere den radial äußeren 15% der Leitgitterhöhe in Umfangsrichtung zu einer Saugseite der Leitschaufel geneigt. In einer Ausführung ist die Hinterkante monoton, insbesondere streng monoton, zunehmend zur Saugseite geneigt. Mit anderen Worten ist in einer Ausführung ist die Hinterkante wenigstens in den radial äußeren 20%, insbesondere 15%, der Leitgitter- bzw. Leitschaufelblatthöhe in Umfangsrichtung zur Saugseite gebogen. Diese Biegung kann in einer Ausführung durch ein Verdrehen des kompletten Leitschaufelprofils oder durch eine Änderung der Schaufelkrümmung im Hinterkantenbereich erfolgen.According to one aspect of the present invention, a trailing edge of one or more, preferably all, vanes of the guide grid over the entire Schaufelblatt- or annulus height or at least in a radially outer or Abblaskanalnäheren third, preferably a radially outer fifth or the radially outer 20% a Leitgitter- or Leitschaufelblatthöhe, in particular the radially outer 15% of the Leitgitterhöhe inclined in the circumferential direction to a suction side of the guide vane. In one embodiment, the trailing edge is monotonically, in particular strictly monotone, increasingly inclined to the suction side. In other words, in one embodiment, the trailing edge is bent at least in the radially outer 20%, in particular 15%, the Leitgitter- or Leitschaufelblattthöhe in the circumferential direction to the suction side. This bending can be done in one embodiment by rotating the entire stator blade profile or by changing the blade curvature in the trailing edge region.

Zusätzlich oder alternativ kann in einer Ausführung die Hinterkante über die gesamte Schaufelblatthöhe oder wenigstens in dem radial äußeren Drittel, vorzugsweise in den radial äußeren 20%, insbesondere 15% der Leitgitter- bzw. Leitschaufelblatthöhe relativ zu einem radial innersten Hinterkantennabenpunkt dieses äußeren Bereichs axial stromaufwärts bzw. zur Vorderkante hin versetzt sein. Mit anderen Worten können die Leitschaufel(n), wenigstens in einem radial äußeren Bereich bzw. der Nähe des Abblaskanals, gekürzt sein.Additionally or alternatively, in one embodiment, the trailing edge over the entire blade height or at least in the radially outer third, preferably in the radially outer 20%, in particular 15% of Leitgitterelblattthegel relative to a radially innermost Hinterkantennabenpunkt this outer region axially upstream or be offset towards the front edge. In other words, the vane (s), at least in a radially outer region or the vicinity of the Abblaskanals be shortened.

Zusätzlich oder alternativ kann in einer Ausführung die Hinterkante mit der stromaufwärtigen Kanalwand einen Winkel einschließen, der zwischen 60° und 120°, insbesondere zwischen 75° und 105° beträgt, gemessen in axialer Richtung oder bezüglich der Projektion in der Meridianebene.Additionally or alternatively, in one embodiment, the trailing edge may include an angle with the upstream channel wall that is between 60 ° and 120 °, in particular between 75 ° and 105 °, measured in the axial direction or with respect to the projection in the meridian plane.

Durch eine oder mehrere, vorzugsweise alle vorgenannten Merkmale der Hinterkante(n) des Leitgitters kann in einer Ausführung die abgezapfte Strömung noch verlustärmer geführt werden. Zusätzlich oder alternativ können hierdurch auch Verluste der Hauptströmung im Ringraum stromabwärts nach der Eintrittskante noch weiter reduziert werden.By one or more, preferably all the above-mentioned features of the trailing edge (s) of the guide grid, in one embodiment, the tapped flow can be performed with even less loss. Additionally or alternatively, losses of the main flow in the annular space downstream of the leading edge can thereby be further reduced.

In einer Ausführung gilt: 0,3 m Bleed / m in R 2 r 2 / R b 1 ,

Figure imgb0001
insbesondere 0,4 m Bleed / m in R 2 r 2 / R b 1 ,
Figure imgb0002
und/oder b 1 0,7 m Bleed / m in R 2 r 2 / R ,
Figure imgb0003
insbesondere b 1 0,6 m Bleed / m in R 2 r 2 / R
Figure imgb0004
mit:

b1:
Kanalhöhe an der Eintrittskante, insbesondere Abstand bzw. kürzeste Strecke zwischen Eintrittskante und stromaufwärtiger Kanalwand;
mBleed:
Massenstrom im Abblaskanal;
min:
Massenstrom im Leitgitterzulauf;
R:
Außenradius des Ringraums, insbesondere am Übergang der stromaufwärtigen Kanalwand in die radial äußere Wand des Ringraums; und
r:
Innenradius des Ringraums, insbesondere am Übergang der stromaufwärtigen Kanalwand in die radial äußere Wand des Ringraums.
In one embodiment: 0.3 m Bleed / m in R 2 - r 2 / R b 1 .
Figure imgb0001
especially 0.4 m Bleed / m in R 2 - r 2 / R b 1 .
Figure imgb0002
and or b 1 0.7 m Bleed / m in R 2 - r 2 / R .
Figure imgb0003
especially b 1 0.6 m Bleed / m in R 2 - r 2 / R
Figure imgb0004
With:
b 1 :
Channel height at the leading edge, in particular distance or shortest distance between the leading edge and the upstream channel wall;
m bleed :
Mass flow in the exhaust duct;
m in :
Mass flow in the Leitgitterzulauf;
R:
Outer radius of the annular space, in particular at the transition of the upstream channel wall in the radially outer wall of the annular space; and
r:
Inner radius of the annular space, in particular at the transition of the upstream channel wall in the radially outer wall of the annular space.

Zusätzlich oder alternativ gilt in einer Ausführung: b 1 r K / 5,

Figure imgb0005
insbesondere b 1 r K / 4,
Figure imgb0006
mit:

rK:
Krümmungsradius der stromaufwärtigen Kanalwand, insbesondere am Übergang der stromaufwärtigen Kanalwand in die radial äußere Wand des Ringraums oder an der Eintrittskante.
Additionally or alternatively, in one embodiment: b 1 r K / 5,
Figure imgb0005
especially b 1 r K / 4,
Figure imgb0006
With:
r K :
Radius of curvature of the upstream channel wall, in particular at the transition of the upstream channel wall in the radially outer wall of the annular space or at the leading edge.

Zusätzlich oder alternativ gilt in einer Ausführung: 0,5 r K + b 1 2 r K + H 2 1 / 2 L ,

Figure imgb0007
insbesondere 0,9 r K + b 1 2 r K + H 2 1 / 2 L ,
Figure imgb0008
und/oder L 1,5 r K + b 1 2 r K + H 2 1 / 2 ,
Figure imgb0009
insbesondere L 1,1 r K + b 1 2 r K + H 2 1 / 2
Figure imgb0010
mit:

H:
radialer Abstand zwischen der Eintrittskante und dem Übergang des Ringraums in die stromaufwärtige Kanalwand; und
L:
axialer Abstand zwischen der Eintrittskante und dem Übergang des Ringraums in die stromaufwärtige Kanalwand; und
rK:
lokaler Krümmungsradius, insbesondere bei b1.
Additionally or alternatively, in one embodiment: 0.5 r K + b 1 2 - r K + H 2 1 / 2 L .
Figure imgb0007
especially 0.9 r K + b 1 2 - r K + H 2 1 / 2 L .
Figure imgb0008
and or L 1.5 r K + b 1 2 - r K + H 2 1 / 2 .
Figure imgb0009
especially L 1.1 r K + b 1 2 - r K + H 2 1 / 2
Figure imgb0010
With:
H:
radial distance between the leading edge and the transition of the annulus into the upstream channel wall; and
L:
axial distance between the leading edge and the transition of the annulus into the upstream channel wall; and
r K :
local radius of curvature, especially at b 1 .

Zusätzlich oder alternativ gilt in einer Ausführung: b 1 0,5 b 2 ,

Figure imgb0011
insbesondere b 1 0,7 b 2 ,
Figure imgb0012
mit:

b2:
Austrittskanalhöhe an dem Abblaskanalaustritt, insbesondere Abstand bzw. kürzeste Strecke zwischen ringraumabgewandtem Ende der stromaufwärtigen Kanalwand und stromabwärtigen Kanalwand.
Additionally or alternatively, in one embodiment: b 1 0.5 b 2 .
Figure imgb0011
especially b 1 0.7 b 2 .
Figure imgb0012
With:
b 2 :
Outlet channel height at the Abblaskanalaustritt, in particular distance or shortest distance between annularraumabgewandtem end of the upstream channel wall and the downstream channel wall.

Zusätzlich oder alternativ gilt in einer Ausführung: b 2 b 1 / s 0,2,

Figure imgb0013
insbesondere b 2 b 1 / s 0,14,
Figure imgb0014
mit:

s:
Länge der stromabwärtigen Kanalwand zwischen der Eintrittskante und dem Abblaskanalaustritt.
Additionally or alternatively, in one embodiment: b 2 - b 1 / s 0.2
Figure imgb0013
especially b 2 - b 1 / s 0.14
Figure imgb0014
With:
s:
Length of the downstream channel wall between the leading edge and the exhaust channel exit.

Jeder der vorstehenden Vorschriften (1) - (7') ergibt bereits je für sich, insbesondere in Kombination mit einer oder mehreren, insbesondere allen der anderen Vorschriften einen besonders vorteilhaften Abblaskanal. In einer Ausführung wird zunächst b1 nach wenigstens einer der Gleichungen (1)-(2') bestimmt und in einer Weiterbildung daraus weitere Größen, insbesondere rK, H, L, b2 und/oder s, gemäß einer der Gleichungen (3)-(7') abgeleitet.Each of the above provisions (1) - (7 ') already yields per se, in particular in combination with one or more, in particular all the other regulations a particularly advantageous Abblaskanal. In one embodiment, b 1 is first determined according to at least one of the equations (1) - (2 '), and in a further development, further variables, in particular r K , H, L, b 2 and / or s, according to one of the equations (3 ) - (7 ') derived.

Weitere vorteilhafte Weiterbildungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungen. Hierzu zeigt, teilweise schematisiert:

Fig. 1:
einen Teil eines Gasturbinenverdichters einer Flugtriebwerk-Gasturbine nach einer Ausführung der vorliegenden Erfindung in einem Meridianschnitt;
Fig. 2:
einen Teil eines Gasturbinenverdichters einer Flugtriebwerk-Gasturbine nach einer weiteren Ausführung der vorliegenden Erfindung in einem Meridianschnitt;
Fig. 3:
einen vergrößerten Ausschnitt der Fig. 1; und
Fig. 4:
eine Sicht auf eine Hinterkante des Leitgitters des Gasturbinenverdichters der Fig. 1 entgegen der Durchströmungsrichtung.
Further advantageous developments of the present invention will become apparent from the dependent claims and the following description of preferred embodiments. This shows, partially schematized:
Fig. 1:
a portion of a gas turbine compressor of an aircraft engine gas turbine according to an embodiment of the present invention in a meridian section;
Fig. 2:
a portion of a gas turbine compressor of an aircraft engine gas turbine according to a further embodiment of the present invention in a meridian section;
3:
an enlarged section of the Fig. 1 ; and
4:
a view of a trailing edge of the guide grid of the gas turbine compressor of Fig. 1 against the direction of flow.

Fig. 1 zeigt einen Teil eines Gasturbinenverdichters einer Flugtriebwerk-Gasturbine nach einer Ausführung der vorliegenden Erfindung in einem Meridianschnitt. Dieser weist ein Leitgitter mit einer Mehrzahl in Umfangsrichtung verteilter Leitschaufeln 1 und ein Laufgitter mit einer Mehrzahl in Umfangsrichtung verteilter Laufschaufeln 2 auf. Fig. 1 shows a portion of a gas turbine compressor of an aircraft engine gas turbine according to an embodiment of the present invention in a meridian section. This has a guide grid with a plurality of circumferentially distributed guide vanes 1 and a playpen with a plurality of circumferentially distributed blades 2.

Das Leitgitter ist stromaufwärts vor dem stromabwärtigen Laufgitter und einem weiteren, insbesondere in Durchströmungsrichtung x letzten Austrittsleitgitter (nicht dargestellt) angeordnet. Zwischen dem dargestellten Leitgitter und dem Austrittsleitgitter können ein oder mehrere weitere Lauf- und Leitgitter angeordnet sein (nicht dargestellt).The guide grid is arranged upstream of the downstream walkway and a further, in particular in the flow direction x last exit guide grille (not shown). One or more further running and guide gratings may be arranged between the illustrated guide grid and the outlet guide grid (not shown).

Leit- und Laufgitter sind in einem Ringraum 5 angeordnet, der dazu vorgesehen ist, im Betrieb von zu verdichtender Luft durchströmt zu werden.Guiding and playpens are arranged in an annular space 5, which is intended to be flowed through during operation of compressed air.

Eine radial äußere Wand (oben in Fig. 1) des Ringraums geht an einem Übergang 4 stetig bzw. absatzlos in eine stromaufwärtige Kanalwand 3.1 eines Abblaskanals 3 über. Axial gegenüberliegend weist der Abblaskanal eine stromabwärtige Kanalwand 3.2 mit einer radial inneren, abgerundeten Eintrittskante 3.3 auf, die gegenüber dem Übergang 4 radial nach innen versetzt ist. An einem ringraumabgewandten Ende (oben in Fig. 1) weist der Abblaskanal 3 einen Abblaskanalaustritt auf.A radially outer wall (top in Fig. 1 ) of the annular space is at a transition 4 continuously or without offset in an upstream channel wall 3.1 of a Abblaskanals 3 via. Axially opposite the Abblaskanal a downstream channel wall 3.2 with a radially inner, rounded leading edge 3.3, which is offset from the transition 4 radially inward. At an end remote from the annular space (at the top in FIG Fig. 1 ) has the Abblaskanal 3 a Abblaskanalaustritt.

Der Abblaskanal kommuniziert an seinem Abblaskanalaustritt mit einem Plenum (nicht dargestellt). Gleichermaßen kann er auch mit einem Zuströmkanal kommunizieren, der seinerseits mit dem Plenum kommunizieren kann.The Abblaskanal communicates at its Abblaskanalaustritt with a plenum (not shown). Likewise, it can also communicate with an inflow channel, which in turn can communicate with the plenum.

Die stromabwärtige Kanalwand 3.2 schließt mit einer Rotationsachse des Verdichters (Horizontale in Fig. 1) einen in Durchströmungsrichtung x ab der Eintrittskante 3.3 streng monoton zunehmenden ersten Winkel α ein, ist mit anderen Worten über ihre gesamte Länge gekrümmt (dα/dx > 0).The downstream channel wall 3.2 closes with a rotational axis of the compressor (horizontal in Fig. 1 ) a strictly monotonically increasing in the flow direction x from the leading edge 3.3 first angle α, in other words is curved over its entire length (dα / dx> 0).

Auch die stromaufwärtige Kanalwand 3.1 schließt mit der Rotationsachse einen in Durchströmungsrichtung ab dem Übergang 4 streng monoton zunehmenden zweiten Winkel β ein, ist mit anderen Worten ebenfalls über ihre gesamte Länge gekrümmt (dβ/dx > 0), wobei die stromaufwärtige Kanalwand tangential in die radial äußere Wand des Ringraums 5 übergeht.The upstream channel wall 3.1 includes with the axis of rotation in the flow direction from the transition 4 strictly monotonically increasing second angle β, is with In other words, also curved over its entire length (dβ / dx> 0), wherein the upstream channel wall merges tangentially into the radially outer wall of the annular space 5.

Die stromaufwärtige Kanalwand geht in der Ausführung der Fig. 1 stromabwärts (rechts) von den Hinterkanten 1.1 der Leitschaufeln des Leitgitters 1 in die radial äußere Wand des Ringraums 5 über.The upstream channel wall is in the execution of Fig. 1 downstream (right) of the trailing edges 1.1 of the guide vanes of the guide grid 1 in the radially outer wall of the annular space 5 via.

Fig. 4 zeigt eine Sicht auf eine Hinterkante 1.1 einer Leitschaufel des Leitgitters 1 entgegen der Durchströmungsrichtung (d.h. von rechts in Fig. 1). Fig. 4 shows a view of a trailing edge 1.1 of a guide vane of the guide grid 1 against the flow direction (ie from the right in Fig. 1 ).

Wie insbesondere hieraus ersichtlich, sind die Hinterkanten 1.1 wenigstens in den radial äußeren 20%, insbesondere 15% der Leitgitter- bzw. Leitschaufelblatthöhe (R-r) (vgl. Fig. 1) in Umfangsrichtung von einer Druckseite PS weg zu einer Saugseite SS der Leitschaufel hin streng monoton zunehmend geneigt, mit anderen Worten zur Saugseite SS gebogen.As can be seen in particular from this, the trailing edges 1.1 are at least in the radially outer 20%, in particular 15% of Leitgitter- or Leitschaufelblatthöhe (Rr) (see. Fig. 1 ) in the circumferential direction from a pressure side PS away to a suction side SS of the guide blade toward strictly monotonically increasingly inclined, in other words bent to the suction side SS.

Fig. 3 zeigt in einem vergrößerten Ausschnitt der Fig. 1 insbesondere den Abblaskanal mit einigen Größen. Dabei bezeichnet b1 die Kanalhöhe an der Eintrittskante 3.3, insbesondere den Abstand bzw. die kürzeste Strecke zwischen Eintrittskante 3.3 und stromaufwärtiger Kanalwand 3.1, R bzw. r den Außen- bzw. Innenradius des Ringraums am Übergang 4 der stromaufwärtigen Kanalwand 3.1 in die radial äußere Wand des Ringraums 5 (vgl. Fig. 1), rK den Krümmungsradius der stromaufwärtigen Kanalwand 3.1, H den radialen Abstand zwischen der Eintrittskante 3.3 und dem Übergang 4 des Ringraums 5 in die stromaufwärtige Kanalwand 3.1, L den axialen Abstand zwischen der Eintrittskante 3.3 und dem Übergang 4 des Ringraums 5 in die stromaufwärtige Kanalwand 3.1, b2 die Austrittskanalhöhe an dem Abblaskanalaustritt und s die Länge der stromabwärtigen Kanalwand 3.2 zwischen der Eintrittskante 3.3 und dem Abblaskanalaustritt. Fig. 3 shows in an enlarged section of the Fig. 1 in particular the blow-off duct with several sizes. In this case, b 1 denotes the channel height at the leading edge 3.3, in particular the distance or the shortest distance between the leading edge 3.3 and upstream channel wall 3.1, R or r the outer or inner radius of the annular space at the transition 4 of the upstream channel wall 3.1 in the radially outer Wall of the annular space 5 (see. Fig. 1 ), R K denotes the radius of curvature of the upstream channel wall 3.1, H is the radial distance between the leading edge 3.3 and the junction 4 of the annular space 5 in the upstream channel wall 3.1, L is the axial distance between the leading edge 3.3 and the junction 4 of the annular space 5 in the upstream Channel wall 3.1, b 2, the outlet channel height at the Abblaskanalaustritt and s the length of the downstream channel wall 3.2 between the leading edge 3.3 and the Abblaskanalaustritt.

Fig. 2 zeigt in Fig. 1 entsprechender Weise einen Teil eines Gasturbinenverdichters einer Flugtriebwerk-Gasturbine nach einer Ausführung der vorliegenden Erfindung. Einander entsprechende Merkmale sind durch identische Bezugszeichen bezeichnet, so dass auf die Beschreibung der Ausführung der Fig. 1 Bezug genommen und nachfolgend nur auf Unterschiede zu dieser eingegangen wird. Fig. 2 shows in Fig. 1 Similarly, a portion of a gas turbine compressor of an aircraft engine gas turbine according to an embodiment of the present invention. Corresponding features are denoted by identical reference numerals, so that the description of the embodiment of Fig. 1 Referred to below and will be discussed only for differences to this.

In der Ausführung der Fig. 2 geht die stromaufwärtige Kanalwand 3.1 stromaufwärts (links) von der Hinterkante 1.1 des Leitgitters in die radial äußere Wand des Ringraums 5 über, die axial stromaufwärts vor der Eintrittskante 3.3 angeordnet ist. Mit anderen Worten ist der Abblaskanal 3 in der Ausführung der Fig. 2 teilweise im Leitgitter angeordnet.In the execution of Fig. 2 the upstream channel wall 3.1 goes upstream (left) from the trailing edge 1.1 of the guide grid in the radially outer wall of the annular space 5, the axially upstream upstream of the leading edge 3.3 is arranged. In other words, the exhaust duct 3 in the embodiment of Fig. 2 partially arranged in the guide grid.

Obwohl in der vorhergehenden Beschreibung exemplarische Ausführungen erläutert wurden, sei darauf hingewiesen, dass eine Vielzahl von Abwandlungen möglich ist. Außerdem sei darauf hingewiesen, dass es sich bei den exemplarischen Ausführungen lediglich um Beispiele handelt, die den Schutzbereich, die Anwendungen und den Aufbau in keiner Weise einschränken sollen. Vielmehr wird dem Fachmann durch die vorausgehende Beschreibung ein Leitfaden für die Umsetzung von mindestens einer exemplarischen Ausführung gegeben, wobei diverse Änderungen, insbesondere in Hinblick auf die Funktion und Anordnung der beschriebenen Bestandteile, vorgenommen werden können, ohne den Schutzbereich zu verlassen, wie er sich aus den Ansprüchen ergibt.Although exemplary embodiments have been explained in the foregoing description, it should be understood that a variety of modifications are possible. It should also be noted that the exemplary embodiments are merely examples that are not intended to limit the scope, applications and construction in any way. Rather, the expert is given by the preceding description, a guide for the implementation of at least one exemplary embodiment, with various changes, in particular with regard to the function and arrangement of the components described, can be made without departing from the scope, as it turns out the claims.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Leitschaufel/-gitterVane / grids
1.11.1
Hinterkantetrailing edge
22
Laufschaufel/-gitterBlade / grids
33
Abblaskanalexhaust duct
3.13.1
stromaufwärtige Kanalwandupstream channel wall
3.23.2
stromabwärtige Kanalwanddownstream channel wall
3.33.3
Eintrittskanteleading edge
44
Übergang in die stromaufwärtige KanalwandTransition to the upstream channel wall
55
Ringraumannulus

Claims (8)

  1. Gas turbine compressor comprising a guide vane (1), an in particular downstream moving vane (2) and a bleed channel (3), which comprises an upstream channel wall (3.1) that transitions into an annular chamber (5), an axially opposite downstream channel wall (3.2) comprising an in particular rounded inlet edge (3.3), and a bleed channel outlet,
    the upstream channel wall and a rotational axis of the compressor forming, in the meridian section, a first angle (α) that increases in the direction of flow (x); and
    the upstream channel wall and the rotational axis forming, in the meridian section, a second angle (β) that increases in the direction of flow
    characterized in that
    the upstream channel wall is arranged upstream of a trailing edge (1.1) of the guide vane; and
    the second angle increases more in the direction of flow than the first angle.
  2. Gas turbine compressor according to the preceding claim, characterized in that the first angle increases from the inlet edge and/or monotonically, in particular strictly monotonically.
  3. Gas turbine compressor according to either of the preceding claims, characterized in that the first angle at the bleed channel outlet is larger than 30°.
  4. Gas turbine compressor according to any of the preceding claims, characterized in that the second angle increases monotonically in the direction of flow.
  5. Gas turbine compressor according to any of the preceding claims, characterized in that the upstream channel wall transitions into the annular space upstream or downstream of the trailing edge (1.1) of the guide vane.
  6. Gas turbine compressor according to any of the preceding claims, characterized in that a trailing edge (1.1) of at least one guide blade of the guide vane is inclined, at least at a radially outer third of a guide vane height, in particular monotonically increasing, to a suction side of the guide blade in the peripheral direction and/or is offset axially upstream and/or forms, together with the upstream channel wall, an angle that is between 60 ° and 120 °.
  7. Gas turbine compressor according to any of the preceding claims, characterized in that 0.3 · (mBleed/min) · (R2 - r2)/R ≤ b1 ≤ 0.7 · (mBleed/min) · (R2 - r2)/R; and/or
    b1 ≤ rK/5; and/or 0.8 r K + b 1 2 r K + H 2 1 / 2 L 1.2 r K + b 1 2 r K + H 2 1 / 2 ;
    Figure imgb0020
    and/or b 1 0.5 b 2 ;
    Figure imgb0021
    and/or b 2 b 1 / s 0.2
    Figure imgb0022
    applies, in which b1 is the inlet channel height on the inlet edge, min is the mass flow rate in the guide vane intake, mBleed is the mass flow rate in the bleed channel, R is the outer radius of the annular space, r is the inner radius of the annular space, rK is the radius of curvature of the upstream channel wall, H is the radial spacing between the inlet edge and the transition of the annular space into the upstream channel wall, L is the axial spacing between the inlet edge and the transition of the annular space into the upstream channel wall, b2 is the outlet channel height at the bleed channel outlet and s is the length of the downstream channel wall between the inlet edge and the bleed channel outlet.
  8. Gas turbine, in particular an aircraft engine gas turbine, characterized by a gas turbine compressor according to any of the preceding claims.
EP13192464.9A 2013-11-12 2013-11-12 Gas turbine compressor Active EP2871368B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13192464.9A EP2871368B1 (en) 2013-11-12 2013-11-12 Gas turbine compressor
US14/533,832 US10066633B2 (en) 2013-11-12 2014-11-05 Gas turbine compressor bleed channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13192464.9A EP2871368B1 (en) 2013-11-12 2013-11-12 Gas turbine compressor

Publications (2)

Publication Number Publication Date
EP2871368A1 EP2871368A1 (en) 2015-05-13
EP2871368B1 true EP2871368B1 (en) 2018-09-12

Family

ID=49554138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13192464.9A Active EP2871368B1 (en) 2013-11-12 2013-11-12 Gas turbine compressor

Country Status (2)

Country Link
US (1) US10066633B2 (en)
EP (1) EP2871368B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10125781B2 (en) * 2015-12-30 2018-11-13 General Electric Company Systems and methods for a compressor diffusion slot
US10227930B2 (en) * 2016-03-28 2019-03-12 General Electric Company Compressor bleed systems in turbomachines and methods of extracting compressor airflow
US20180313364A1 (en) * 2017-04-27 2018-11-01 General Electric Company Compressor apparatus with bleed slot including turning vanes
US10934943B2 (en) * 2017-04-27 2021-03-02 General Electric Company Compressor apparatus with bleed slot and supplemental flange

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2192229B (en) * 1986-07-04 1990-05-02 Rolls Royce Plc A compressor and air bleed system
US5155993A (en) 1990-04-09 1992-10-20 General Electric Company Apparatus for compressor air extraction
US6109868A (en) 1998-12-07 2000-08-29 General Electric Company Reduced-length high flow interstage air extraction
JP2002349498A (en) * 2001-05-24 2002-12-04 Ishikawajima Harima Heavy Ind Co Ltd Low noise fan stationary blade
GB0206880D0 (en) * 2002-03-23 2002-05-01 Rolls Royce Plc A vane for a rotor arrangement for a gas turbine engine
US6783324B2 (en) 2002-08-15 2004-08-31 General Electric Company Compressor bleed case
US7249929B2 (en) * 2003-11-13 2007-07-31 United Technologies Corporation Bleed housing
DE102008014957A1 (en) 2008-03-19 2009-09-24 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine compressor with bleed air extraction
DE102008019603A1 (en) * 2008-04-18 2009-10-22 Rolls-Royce Deutschland Ltd & Co Kg Turbomachine with scoop internal fluid recirculation
FR2970302B1 (en) * 2011-01-11 2015-07-17 Snecma DOUBLE FLOW TURBOREACTOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20150132115A1 (en) 2015-05-14
US10066633B2 (en) 2018-09-04
EP2871368A1 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
EP2647795B1 (en) Seal system for a turbo engine
EP2696029B1 (en) Blade row with side wall contours and fluid flow engine
CH701954B1 (en) Body of an exhaust diffuser for a gas turbine system.
EP2871368B1 (en) Gas turbine compressor
CH697806A2 (en) Turbine blade shroud edge profile.
EP3051142B1 (en) Gas turbine axial compressor
EP2617949B1 (en) Flow engine seal assembly
EP2918778B1 (en) Method for laying out a turbine
CH701927B1 (en) Stator, compressor and gas turbine engine.
EP3179036A1 (en) Ring area contouring of a gas turbine
EP2647796A1 (en) Seal system for a turbo engine
EP2607625A1 (en) Turbomachine and stage of turbomachine
EP2597257A1 (en) Blades
EP2827003B1 (en) Gas turbine compressor guide vane assembly
EP3401504A1 (en) Blade grid
EP2410131A2 (en) Rotor of a turbomachine
EP2607626B1 (en) Turbomachine and stage of a turbomachine
EP3388626A1 (en) Contouring of a blade row platform
DE102020201830B4 (en) VANE DIFFUSER AND CENTRIFUGAL COMPRESSOR
EP3358135A1 (en) Contouring of a blade row platform
DE102015014900A1 (en) Radial turbine housing
DE112015006776T5 (en) rotary engine
EP3375977A1 (en) Contouring of a platform in an airfoil cascade
EP2631429B1 (en) Blades
EP3536974A1 (en) Gas turbine compressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20151204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20180710

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011056

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1040931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180912

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011056

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181112

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

26N No opposition filed

Effective date: 20190613

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1040931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181112

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131112

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180912

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 11

Ref country code: DE

Payment date: 20231120

Year of fee payment: 11