EP2867087A1 - Method for energy management in a hybrid vehicle - Google Patents

Method for energy management in a hybrid vehicle

Info

Publication number
EP2867087A1
EP2867087A1 EP13744623.3A EP13744623A EP2867087A1 EP 2867087 A1 EP2867087 A1 EP 2867087A1 EP 13744623 A EP13744623 A EP 13744623A EP 2867087 A1 EP2867087 A1 EP 2867087A1
Authority
EP
European Patent Office
Prior art keywords
energy
battery
factor
vehicle
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13744623.3A
Other languages
German (de)
French (fr)
Other versions
EP2867087B1 (en
Inventor
Maxime DEBERT
Franck Breuille-Martin
Loïc LE-ROY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2867087A1 publication Critical patent/EP2867087A1/en
Application granted granted Critical
Publication of EP2867087B1 publication Critical patent/EP2867087B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/001Proportional integral [PI] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0012Feedforward or open loop systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/40Altitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to the management of the distribution of energy flows in a hybrid powertrain of a motor vehicle in response to the torque demand of the driver.
  • a hybrid vehicle powertrain comprising a heat engine and at least one electric motor powered by a battery capable of recovering energy in deceleration according to a management law distributing in real time the energy input of thermal origin and electrical origin.
  • a powertrain of a motor vehicle with a propulsion or a hybrid traction comprises a heat engine and one or more electrical machines, powered by at least one battery on board the vehicle.
  • Hybrid powertrain control systems are designed to manage the operation and timing of different engines depending on driving conditions, to limit fuel consumption and minimize particulate pollutant emissions.
  • the principle implemented to choose the best operating point is to minimize the sum of the thermal consumption and the power consumption according to a management law distributing in real time the energy input of thermal origin and electrical origin.
  • Hybrid vehicle energy management laws naturally tend to use the energy contained in the battery, especially at high speed. Moreover, batteries are able to recover energy in deceleration. In some important and / or prolonged descents, for example neck downs, it happens however that the energy level of the battery exceeds the level of recoverable energy. In deceleration and / or braking, it is not possible to recover in the battery all the kinetic and potential energy of the vehicle. In addition to energy considerations, this situation changes the behavior of the vehicle during the deceleration phase, and decreases its driving pleasure.
  • Publication FR 2 926 048 discloses a method for controlling the accelerations of a hybrid vehicle, with a view to improving its driving comfort by ensuring the driver a strong acceleration in all circumstances, by a supply of electrical energy taking into account not only the state of charge of the battery, but also the amount of electrical energy recoverable deceleration.
  • the method therefore has the merit of taking advantage of the potential electrical energy of braking, to improve the brio of the vehicle in acceleration. However, it has no impact on the behavior and energy management of the vehicle in a real braking or deceleration situation.
  • the present invention aims to optimize the braking energy recovery potential in deceleration of a hybrid vehicle, by promoting the reduction of fuel consumption, as well as a homogeneous behavior of the vehicle during the deceleration phases.
  • the discharge factor is taken into account in the energy management law, as soon as the recoverable energy potential in deceleration is greater than the absorption capacity of the battery.
  • the equivalence factor is determined in a control loop, able to minimize the operating point of the powertrain, the overall energy consumption of the vehicle.
  • the energy management law of a hybrid vehicle distributes torque demand from the driver in real time between the electric machine (s) to minimize overall fuel consumption. It is based on the minimization of a function of the type below, to weight by the factor s, the energy of electrical origin in the law of energy management:
  • H eq Thermal conso + s * Electric conso, where the thermal consumption depends on the torque and the engine speed
  • the electrical consumption is a function of the torque and the speed of the electric machine
  • s is an equivalence factor reflecting the energy equivalence between the thermal power and the electric power
  • a first comparator C1 receives in input values the energy state soe k of the battery at the instant k, and a target value target soe energy state. The difference (soe target - soe k ) is multiplied by a correction gain K p .
  • a second comparator C2 is the sum of the result [K p (soe target - soe k )] and an integral type correction term which ensures a correction of the equivalence factor as a function of the driving conditions encountered. This sum is saturated by the saturator S which ensures the equivalence factor to remain between the controlled terminals. The saturation limits minimum, (sat m i n - 1 / 17c) and maximum (sat max - 1 / 17c), ensure the control of forced charging and discharging modes.
  • the maximum saturation sat max is the maximum equivalence value assuring a control to the powertrain which recharges the energy of the battery as much as possible.
  • Saturation sat m i n is the minimum equivalence value ensuring a powertrain control which discharges the maximum battery.
  • the integrator I integrates the difference between the output of the saturator S and its own integration multiplied by a correction gain K ⁇ using the comparator C3. By integrating this difference, the integrator will not be able to race when the system is in saturation. This method is known by the English name of "anti-indup" or anti-packaging, or "desaturator" in French.
  • the output of the saturator is added with a term 2 / 17c of type "feedfor ard” in English, or term of prepositioning in French, using the comparator C4.
  • This term "feedforward”, or pre-positioning allows to directly adjust the equivalence factor based on a recognized and / or predicted taxi situation.
  • This loop comprises a loop integrator of a term representative of the difference between the instantaneous state of the battery energy and the target energy state of the battery associated with an anti-runaway device ("anti - windup "). It also includes a proportional compensation term.
  • the loop also has a pre-compensation term ("feedforward").
  • feedforward a pre-compensation term
  • soe target is the target energy state that one wishes to achieve
  • soe k is the energy state of the battery at time k.
  • K p and ⁇ ⁇ are respectively the proportional and integral correction gains; it is the average efficiency of conversion of electric energy into thermal energy.
  • the average conversion efficiency 17c can thus be calculated to adapt constantly to the circumstances, from the prior knowledge of predictable driving conditions, or from analysis of the previous driving conditions.
  • the integral correction brings a correction a posteriori, hypotheses of energetic equivalence.
  • the equivalence factor s when the equivalence is saturated, that is to say that the equivalence factor s reaches the limit values, imposing a recharge or a discharge at any price of the battery, the equivalence factor s does not exceed acceptable limits (lower and upper), because the "anti-indup" avoids any unwanted runaway of the integral term.
  • the equivalence factor is corrected in the comparator C4, by adding a pre-positioning term or "feedfor ard" in English which forces the discharge, when the energy recovery potential p is greater than the total energy that can be absorbed by the battery E minus the energy minus the energy level soe k measured in the battery at the instant considered.
  • the recoverable energy potential p is empirically defined preferably by measuring the amount of energy recovered in the battery according to different decelerations on different slopes until stop. It is also based on an estimate of the vehicle speed V, an estimate of the road slope P and an estimate of the mass m of the vehicle. Mappings can be made, which give the recoverable energy p as a function of the speed V and the slope P of the road for different masses m of the vehicle.
  • the recoverable energy potential p is compared in the comparator C5 with the difference E-soe k , between the maximum energy level of the battery and its instantaneous energy state soe k .
  • the term of pre-positioning is set to a value which forces the discharge which is taken into account in the law. of energy management by addition to the equivalence factor s in the comparator C4 which delivers the final equivalence factor e end determining the energy management law.
  • the discharge factor is canceled when the state of charge of the battery (soe k ) is sufficiently low compared to the energy recovery potential (p).
  • the introduction of the discharge precompensation factor into the energy management law makes it possible to optimize the braking energy recovery potential on a hybrid vehicle. It avoids that the energy recovered during deceleration is greater than the absorption capacity of the battery, by using more electrical energy in these circumstances.
  • the invention thus guarantees a reduction in the fuel consumption of the vehicle, and minimizes the energy dissipation in the mechanical brakes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The invention relates to a method for managing energy in response to the request of the driver for torque on a power train of a hybrid vehicle including a heat engine and at least one electric motor powered by a battery, capable of recovering energy during deceleration in accordance with a management rule distributing the energy supply from the heat engine and from the electric motor(s) in real time, characterised in that the energy-management law depends on: an equivalence factor (s) that is based on the instantaneous energy state of the battery (soek), an energy target (soecible), and the travel conditions of the vehicle; and a discharge precompensation factor that is based on the energy potential that can be recovered during deceleration (p).

Description

PROCEDE DE GESTION DE L' ENERGIE SUR UN VEHICULE HYBRIDE  METHOD FOR MANAGING ENERGY ON A HYBRID VEHICLE
La présente invention concerne la gestion de répartition des flux énergétiques dans un groupe motopropulseur hybride de véhicule automobile en réponse à la demande de couple du conducteur. The present invention relates to the management of the distribution of energy flows in a hybrid powertrain of a motor vehicle in response to the torque demand of the driver.
Plus précisément, elle a pour objet un procédé de gestion de l'énergie sur un groupe motopropulseur de véhicule hybride comprenant un moteur thermique et au moins un moteur électrique alimenté par une batterie capable de récupérer de l'énergie en décélération selon une loi de gestion répartissant en temps réel les apports d'énergie d'origine thermique et d'origine électrique.  More specifically, it relates to a method for managing energy on a hybrid vehicle powertrain comprising a heat engine and at least one electric motor powered by a battery capable of recovering energy in deceleration according to a management law distributing in real time the energy input of thermal origin and electrical origin.
Un groupe motopropulseur de véhicule automobile à propulsion ou à traction hybride comprend un moteur thermique et une ou plusieurs machines électriques, alimentées par au moins une batterie embarquée à bord du véhicule.  A powertrain of a motor vehicle with a propulsion or a hybrid traction comprises a heat engine and one or more electrical machines, powered by at least one battery on board the vehicle.
Les systèmes de commande des groupes motopropulseurs hybrides sont conçus pour gérer le fonctionnement et la synchronisation des différents moteurs en fonction de conditions de roulage, afin de limiter la consommation de carburant et de minimiser les émissions de particules polluantes. On parle de gestion des flux d'énergies thermique et électriques, pour désigner notamment la stratégie de pilotage mise en œuvre dans le système de commande en vue d'optimiser la répartition de puissance entre les flux d'énergie thermique et les flux d'énergie électrique. Le principe mis en œuvre pour choisir le meilleur point de fonctionnement consiste à minimiser la somme de la consommation thermique et de la consommation électrique selon une loi de gestion répartissant en temps réel les apports d'énergie d'origine thermique et d'origine électrique.  Hybrid powertrain control systems are designed to manage the operation and timing of different engines depending on driving conditions, to limit fuel consumption and minimize particulate pollutant emissions. We talk about management of thermal and electrical energy flows, in particular to designate the control strategy implemented in the control system in order to optimize the power distribution between thermal energy flows and energy flows. electric. The principle implemented to choose the best operating point is to minimize the sum of the thermal consumption and the power consumption according to a management law distributing in real time the energy input of thermal origin and electrical origin.
Les lois de gestion d'énergie de véhicule hybride ont naturellement tendance à utiliser l'énergie contenue dans la batterie notamment à vitesse élevée. Par ailleurs, les batteries sont capables de récupérer de l'énergie en décélération. Dans certaines descentes importantes et/ou prolongées, par exemple des descentes de col, il arrive cependant que le niveau d'énergie de la batterie dépasse le niveau d'énergie récupérable. En décélération et/ou en freinage, il n'est alors pas possible de récupérer dans la batterie toute l'énergie cinétique et potentielle du véhicule. En plus des considérations énergétiques, cette situation modifie le comportement du véhicule pendant la phase de décélération, et diminue son agrément de conduite. Hybrid vehicle energy management laws naturally tend to use the energy contained in the battery, especially at high speed. Moreover, batteries are able to recover energy in deceleration. In some important and / or prolonged descents, for example neck downs, it happens however that the energy level of the battery exceeds the level of recoverable energy. In deceleration and / or braking, it is not possible to recover in the battery all the kinetic and potential energy of the vehicle. In addition to energy considerations, this situation changes the behavior of the vehicle during the deceleration phase, and decreases its driving pleasure.
Par la publication FR 2 926 048, on connaît une méthode de contrôle des accélérations d'un véhicule hybride, visant à améliorer son agrément de conduite en assurant au conducteur une forte accélération en toutes circonstances, par un apport d'énergie électrique prenant en compte non seulement l'état de charge de la batterie, mais également la quantité d'énergie électrique récupérable en décélération.  Publication FR 2 926 048 discloses a method for controlling the accelerations of a hybrid vehicle, with a view to improving its driving comfort by ensuring the driver a strong acceleration in all circumstances, by a supply of electrical energy taking into account not only the state of charge of the battery, but also the amount of electrical energy recoverable deceleration.
La méthode a donc le mérite de tirer profit de l'énergie électrique potentielle du freinage, pour améliorer le brio du véhicule en accélération. Toutefois, elle n'a aucun impact sur le comportement et la gestion énergétique du véhicule en situation réelle de freinage ou de décélération.  The method therefore has the merit of taking advantage of the potential electrical energy of braking, to improve the brio of the vehicle in acceleration. However, it has no impact on the behavior and energy management of the vehicle in a real braking or deceleration situation.
La présente invention vise à optimiser le potentiel de récupération d'énergie au freinage en en décélération d'un véhicule hybride, en favorisant la réduction de consommation de carburant, ainsi qu'un comportement homogène du véhicule pendant les phases de décélérations.  The present invention aims to optimize the braking energy recovery potential in deceleration of a hybrid vehicle, by promoting the reduction of fuel consumption, as well as a homogeneous behavior of the vehicle during the deceleration phases.
Dans ce but, elle propose que la loi de gestion de l'énergie dépende :  For this purpose, it proposes that the energy management law depends on:
d'un facteur d'équivalence fonction de l'état d'énergie instantané de la batterie, d'une cible d'énergie et des conditions de roulage du véhicule, et  an equivalence factor according to the instantaneous energy state of the battery, an energy target and the vehicle running conditions, and
d'un facteur de décharge fonction du potentiel d'énergie récupérable en décélération.  a discharge factor depending on the recoverable energy potential during deceleration.
De préférence, le facteur de décharge est pris en compte dans la loi de gestion de l'énergie, dès que le potentiel d'énergie récupérable en décélération est supérieur à la capacité d'absorption de la batterie. Preferably, the discharge factor is taken into account in the energy management law, as soon as the recoverable energy potential in deceleration is greater than the absorption capacity of the battery.
Selon un mode de réalisation non limitatif de l'invention, le facteur d'équivalence est déterminé dans une boucle de régulation, apte à minimiser sur un point de fonctionnement du groupe motopropulseur , la consommation énergétique globale du véhicule.  According to a non-limiting embodiment of the invention, the equivalence factor is determined in a control loop, able to minimize the operating point of the powertrain, the overall energy consumption of the vehicle.
D'autres caractéristiques et avantages de la présente invention ressortiront clairement à la lecture de la description suivante d'un mode de réalisation non limitatif de celle-ci, en se reportant au dessin annexé, dont la figure unique expose le principe.  Other features and advantages of the present invention will become apparent from the following description of a non-limiting embodiment thereof, with reference to the accompanying drawing, the single figure outlines the principle.
La loi de gestion d'énergie d'un véhicule hybride répartit en temps réel la demande de couple issue du conducteur entre la (es) machine (s) électriques pour minimiser la consommation globale de carburant. Elle s'appuie sur la minimisation d'une fonction du type ci-dessous, pour pondérer par le facteur s, l'énergie d'origine électrique dans la loi de gestion de l'énergie :  The energy management law of a hybrid vehicle distributes torque demand from the driver in real time between the electric machine (s) to minimize overall fuel consumption. It is based on the minimization of a function of the type below, to weight by the factor s, the energy of electrical origin in the law of energy management:
H eq = Conso thermique + s * Conso électrique, où la consommation thermique est fonction du couple et du régime du moteur thermique H eq = Thermal conso + s * Electric conso, where the thermal consumption depends on the torque and the engine speed
la consommation électrique est fonction du couple et du régime de la machine électrique, et  the electrical consumption is a function of the torque and the speed of the electric machine, and
s est un facteur d'équivalence traduisant l'équivalence énergétique entre la puissance thermique et la puissance électrique ,  s is an equivalence factor reflecting the energy equivalence between the thermal power and the electric power,
Dans l'exemple non limitatif de boucle de calcul du facteur d'équivalence s illustrée par la figure, un premier comparateur Cl reçoit en valeurs d'entrée l'état d'énergie soek de la batterie à l'instant k, et une valeur de cible d'état d'énergie soecible. La différence (soecible - soek) est multipliée par un gain de correction Kp. Un deuxième comparateur C2 fait la somme du résultat [Kp (soecible - soek) ] et d'un terme de correction de type intégral qui assure une correction du facteur d'équivalence en fonction des conditions de roulage rencontrées. Cette somme est saturée par le saturateur S qui assure au facteur d'équivalence de rester entre les bornes maîtrisées. Les bornes de saturation minimum, (satmin - 1/ 17c ) et maximum (satmax - 1/ 17c ), assurent la maîtrise des modes de recharge et de décharge forcés. In the nonlimiting example of the calculation loop of the equivalence factor s illustrated in the figure, a first comparator C1 receives in input values the energy state soe k of the battery at the instant k, and a target value target soe energy state. The difference (soe target - soe k ) is multiplied by a correction gain K p . A second comparator C2 is the sum of the result [K p (soe target - soe k )] and an integral type correction term which ensures a correction of the equivalence factor as a function of the driving conditions encountered. This sum is saturated by the saturator S which ensures the equivalence factor to remain between the controlled terminals. The saturation limits minimum, (sat m i n - 1 / 17c) and maximum (sat max - 1 / 17c), ensure the control of forced charging and discharging modes.
La saturation maximum satmax est la valeur d'équivalence maximum assurant une commande au groupe motopropulseur qui recharge au maximum l'énergie de la batterie. La saturation satmin est la valeur d'équivalence minimum assurant une commande au groupe motopropulseur qui décharge au maximum la batterie. L'intégrateur I intègre la différence entre la sortie du saturateur S et sa propre intégration multipliée par un gain de correction K± à l'aide du comparateur C3. En intégrant cette différence, l'intégrateur ne pourra pas s'emballer lorsque le système est en saturation. Cette méthode est connue sous le nom anglais d' « anti- indup » ou d' antiemballement, ou « désaturateur » en français. La sortie du saturateur est additionnée avec un terme 2/ 17c de type « feedfor ard » en anglais, ou terme de pré positionnement en français, à l'aide du comparateur C4. Ce terme « feedforward », ou de pré-positionnement, permet d'adapter directement le facteur d'équivalence en fonction d'une situation de roulage reconnue et/ou prédite. The maximum saturation sat max is the maximum equivalence value assuring a control to the powertrain which recharges the energy of the battery as much as possible. Saturation sat m i n is the minimum equivalence value ensuring a powertrain control which discharges the maximum battery. The integrator I integrates the difference between the output of the saturator S and its own integration multiplied by a correction gain K ± using the comparator C3. By integrating this difference, the integrator will not be able to race when the system is in saturation. This method is known by the English name of "anti-indup" or anti-packaging, or "desaturator" in French. The output of the saturator is added with a term 2 / 17c of type "feedfor ard" in English, or term of prepositioning in French, using the comparator C4. This term "feedforward", or pre-positioning, allows to directly adjust the equivalence factor based on a recognized and / or predicted taxi situation.
Cette boucle comprend un intégrateur en boucle d'un terme représentatif de la différence entre l'état instantané de l'énergie de la batterie et l'état d'énergie cible de la batterie associé à un dispositif d' anti-emballement (« anti- windup ») . Il comprend également un terme de compensation proportionnel .  This loop comprises a loop integrator of a term representative of the difference between the instantaneous state of the battery energy and the target energy state of the battery associated with an anti-runaway device ("anti - windup "). It also includes a proportional compensation term.
La boucle dispose aussi d'un terme de pré-compensation (« feedforward ») . Le facteur d'équivalence est piloté de manière discrète d'après l'équation suivante : Sk+i = 1 / ηα + Kp( soeabie - soek+1) + Kp Ki( soecibÎe - soet) The loop also has a pre-compensation term ("feedforward"). The equivalence factor is controlled discretely according to the following equation: Sk + i = 1 / η α + Kp (soeabie - soe k + 1 ) + Kp Ki (soe cibe - soet)
Dans cette équation, soecible est l'état d'énergie cible que l'on souhaite atteindre, et soek est l'état d'énergie de la batterie à l'instant k. Kp et Κτ sont respectivement les gains de correction proportionnel et intégral ; c est le rendement moyen de conversion de l'énergie électrique en énergie thermique. Le rendement moyen de conversion 17c peut être ainsi calculé pour s'adapter en permanence aux circonstances, à partir de la connaissance à-priori de conditions de roulage prévisibles, ou à partir d'analyse des précédentes conditions de roulage. La correction intégrale apporte une correction a postériori, des hypothèses d'équivalence énergétique. In this equation, soe target is the target energy state that one wishes to achieve, and soe k is the energy state of the battery at time k. K p and Κ τ are respectively the proportional and integral correction gains; it is the average efficiency of conversion of electric energy into thermal energy. The average conversion efficiency 17c can thus be calculated to adapt constantly to the circumstances, from the prior knowledge of predictable driving conditions, or from analysis of the previous driving conditions. The integral correction brings a correction a posteriori, hypotheses of energetic equivalence.
Si, par exemple, un type de roulage « en embouteillage » est identifié, il est possible de donner au rendement de conversion ηα une valeur adaptée aux embouteillages, et d'obtenir un facteur d'équivalence sensiblement différent du facteur d'équivalence sur autoroute. If, for example, a "bottling" type of haulage is identified, it is possible to give the conversion efficiency η α a value adapted to traffic jams, and to obtain an equivalence factor substantially different from the equivalence factor on highway.
Enfin, lorsque l'équivalence est saturée, c'est-à-dire que le facteur d'équivalence s atteint des valeurs limite, imposant une recharge ou une décharge à tout prix de la batterie, le facteur d'équivalence s ne dépasse pas des limites (inférieure et supérieure) acceptables, car l' « anti indup » évite tout emballement intempestif du terme intégral .  Finally, when the equivalence is saturated, that is to say that the equivalence factor s reaches the limit values, imposing a recharge or a discharge at any price of the battery, the equivalence factor s does not exceed acceptable limits (lower and upper), because the "anti-indup" avoids any unwanted runaway of the integral term.
En sortie de cette boucle, le facteur d'équivalence s est corrigé dans le comparateur C4, par addition d'un terme de pré-positionnement ou « feedfor ard » en anglais qui force la décharge, lorsque le potentiel de récupération d'énergie p est supérieur à l'énergie totale que peut absorber la batterie E moins l'énergie moins le niveau d'énergie soek mesuré dans la batterie à l'instant considéré. At the end of this loop, the equivalence factor is corrected in the comparator C4, by adding a pre-positioning term or "feedfor ard" in English which forces the discharge, when the energy recovery potential p is greater than the total energy that can be absorbed by the battery E minus the energy minus the energy level soe k measured in the battery at the instant considered.
Le potentiel d'énergie récupérable p est défini empiriquement de préférence en mesurant la quantité d'énergie récupérée dans la batterie suivant différentes décélérations sur différentes pentes jusqu'à l'arrêt. Il est également fonction d'une estimation de la vitesse V du véhicule, d'une estimation de la pente P de la route et d'une estimation de la masse m du véhicule. On peut établir des cartographies , qui donnent l'énergie récupérable p en fonction de la vitesse V et de la pente P de la route pour différentes masses m du véhicule. The recoverable energy potential p is empirically defined preferably by measuring the amount of energy recovered in the battery according to different decelerations on different slopes until stop. It is also based on an estimate of the vehicle speed V, an estimate of the road slope P and an estimate of the mass m of the vehicle. Mappings can be made, which give the recoverable energy p as a function of the speed V and the slope P of the road for different masses m of the vehicle.
Le potentiel d'énergie récupérable p est comparé dans le comparateur C5 à la différence E- soek, entre le niveau d'énergie maximum de la batterie et son état d'énergie instantané soek. The recoverable energy potential p is compared in the comparator C5 with the difference E-soe k , between the maximum energy level of the battery and its instantaneous energy state soe k .
Dès que le potentiel d'énergie récupérable en décélération p est supérieur à la capacité d'absorption E - soek de la batterie, le terme de pré-positionnement est mis à une valeur qui force la décharge qui est pris en compte dans la loi de gestion de l'énergie par addition au facteur d'équivalence s dans le comparateur C4 qui délivre le facteur d'équivalence final efin déterminant la loi de gestion de l'énergie. Le facteur de décharge est annulé lorsque l'état de charge de la batterie (soek) est suffisamment faible par rapport au potentiel de récupération d'énergie (p) . As soon as the recoverable energy potential in deceleration p is greater than the absorption capacity E-soe k of the battery, the term of pre-positioning is set to a value which forces the discharge which is taken into account in the law. of energy management by addition to the equivalence factor s in the comparator C4 which delivers the final equivalence factor e end determining the energy management law. The discharge factor is canceled when the state of charge of the battery (soe k ) is sufficiently low compared to the energy recovery potential (p).
En conclusion, l'introduction du facteur de précompensation de décharge dans la loi de gestion de l'énergie permet d'optimiser le potentiel de récupération d'énergie au freinage sur un véhicule hybride. Elle évite que l'énergie récupérée en décélération soit supérieure à la capacité d'absorption de la batterie, en utilisant davantage d'énergie électrique dans ces circonstances. L'invention garantit de ce fait une diminution de la consommation de carburant du véhicule, et minimise la dissipation d'énergie dans les freins mécaniques. Ces dispositions sont particulièrement avantageuses sur les véhicules équipés de transmissions sans variation de rapport, et/ou avec répartition de freinage entre les freins mécaniques et la machine électrique.  In conclusion, the introduction of the discharge precompensation factor into the energy management law makes it possible to optimize the braking energy recovery potential on a hybrid vehicle. It avoids that the energy recovered during deceleration is greater than the absorption capacity of the battery, by using more electrical energy in these circumstances. The invention thus guarantees a reduction in the fuel consumption of the vehicle, and minimizes the energy dissipation in the mechanical brakes. These provisions are particularly advantageous on vehicles equipped with transmissions without gearshift, and / or with distribution of braking between the mechanical brakes and the electric machine.

Claims

REVENDICATIONS
1. Procédé de gestion de l'énergie en réponse à la demande de couple du conducteur sur un groupe motopropulseur de véhicule hybride comprenant un moteur thermique et au moins un moteur électrique alimenté par une batterie capable de récupérer de l'énergie en décélération selon une loi de gestion répartissant en temps réel les apports d'énergie d'origine thermique et d'origine électrique, caractérisé en ce que la loi de gestion de l'énergie dépend : A method of managing energy in response to the driver's torque demand on a hybrid vehicle power train comprising a heat engine and at least one battery-powered electric motor capable of recovering energy in deceleration in accordance with a management law distributing in real time the contributions of energy of thermal origin and of electrical origin, characterized in that the law of energy management depends on:
d'un facteur d'équivalence (s) fonction de l'état d'énergie instantané de la batterie (soek) , d'une cible d'énergie {soecible) et des conditions de roulage du véhicule, déterminé dans une boucle de régulation apte à minimiser sur un point de fonctionnement du groupe motopropulseur la consommation énergétique globale du véhicule, et an equivalence factor (s) according to the instantaneous state of energy of the battery (soe k ), a target of energy { target soe) and the driving conditions of the vehicle, determined in a loop control system capable of minimizing, on a point of operation of the powertrain, the overall energy consumption of the vehicle, and
- d'un facteur de pré-compensation de décharge fonction du potentiel d'énergie récupérable en décélération (p) .  a discharge pre-compensation factor that is a function of the recoverable energy potential during deceleration (p).
2. Procédé selon la revendication 1, caractérisé en ce que le facteur de décharge est pris en compte dans la loi de gestion de l'énergie, dès que le potentiel d'énergie récupérable en décélération (p) est supérieur à la capacité d'absorption de la batterie.  2. Method according to claim 1, characterized in that the discharge factor is taken into account in the energy management law, as soon as the recoverable energy potential in deceleration (p) is greater than the capacity of battery absorption.
3. Procédé de pilotage selon la revendication 1 ou 2, caractérisé en ce que le facteur de décharge est additionné au facteur d'équivalence (s) dans un comparateur (C4) .  3. Control method according to claim 1 or 2, characterized in that the discharge factor is added to the equivalence factor (s) in a comparator (C4).
4. Procédé de pilotage selon la revendication 3, caractérisé en ce que le facteur de décharge est additionné au facteur d'équivalence (s) en sortie de sa boucle de régulation .  4. Control method according to claim 3, characterized in that the discharge factor is added to the equivalence factor (s) at the output of its control loop.
5. Procédé de pilotage selon l'une des revendications précédentes, caractérisé en ce que le potentiel d'énergie récupérable (p) est défini empiriquement en mesurant la quantité d'énergie récupérée dans la batterie sur des décélérations sur différentes pentes jusqu'à l'arrêt. 5. Control method according to one of the preceding claims, characterized in that the recoverable energy potential (p) is defined empirically by measuring the amount of energy recovered in the battery on decelerations on different slopes to the 'stop.
6. Procédé de pilotage selon la revendication 5, caractérisée en ce que le potentiel d'énergie récupérable (p) est défini en fonction d'une estimation de la pente de la route (P) . 6. Driving method according to claim 5, characterized in that the recoverable energy potential (p) is defined according to an estimate of the slope of the road (P).
7. Procédé de pilotage selon la revendication 5 ou 6, caractérisé en ce que le potentiel d'énergie récupérable (p) est fonction la masse (m) du véhicule.  7. A driving method according to claim 5 or 6, characterized in that the recoverable energy potential (p) is a function of the mass (m) of the vehicle.
8. Procédé de pilotage selon la revendication 5, 6 ou 7, caractérisé en ce que le potentiel d'énergie récupérable (p) est fonction de la vitesse (V) du véhicule.  8. Driving method according to claim 5, 6 or 7, characterized in that the recoverable energy potential (p) is a function of the speed (V) of the vehicle.
9. Procédé de pilotage selon l'une des revendications précédentes, caractérisé en ce que le facteur de décharge est annulé lorsque l'état de charge de la batterie (soek) est suffisamment faible par rapport au potentiel de récupération d' énergie (p) . 9. Control method according to one of the preceding claims, characterized in that the discharge factor is canceled when the state of charge of the battery (soe k ) is sufficiently low compared to the energy recovery potential (p ).
EP13744623.3A 2012-06-27 2013-06-25 Method for energy management in a hybrid vehicle Active EP2867087B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256087A FR2992618B1 (en) 2012-06-27 2012-06-27 METHOD FOR MANAGING ENERGY ON A HYBRID VEHICLE
PCT/FR2013/051478 WO2014001707A1 (en) 2012-06-27 2013-06-25 Method for energy management in a hybrid vehicle

Publications (2)

Publication Number Publication Date
EP2867087A1 true EP2867087A1 (en) 2015-05-06
EP2867087B1 EP2867087B1 (en) 2020-01-01

Family

ID=47351781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13744623.3A Active EP2867087B1 (en) 2012-06-27 2013-06-25 Method for energy management in a hybrid vehicle

Country Status (7)

Country Link
US (1) US9174636B2 (en)
EP (1) EP2867087B1 (en)
JP (1) JP6359530B2 (en)
KR (1) KR102032214B1 (en)
CN (1) CN104379424B (en)
FR (1) FR2992618B1 (en)
WO (1) WO2014001707A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6505077B2 (en) * 2013-03-29 2019-04-24 ルノー エス.ア.エス.Renault S.A.S. Method and apparatus for determining energy equivalent factor (s)
FR3038081B1 (en) * 2015-06-25 2018-05-18 Renault S.A.S METHOD FOR CONTROLLING AN ENERGY EQUIVALENCE FACTOR FOR A HYBRID AUTOMOBILE VEHICLE
FR3038277B1 (en) 2015-07-02 2017-07-21 Renault Sas METHOD FOR CALCULATING A FUEL CONSUMPTION AND ELECTRIC POWER MANAGEMENT INSTRUCTION OF A HYBRID MOTOR VEHICLE
US10076970B2 (en) * 2015-11-30 2018-09-18 Ford Global Technologies, Llc Method and system for an energy storage system
FR3061471B1 (en) 2017-01-05 2020-10-16 Renault Sas PROCESS FOR OPTIMIZING THE ENERGY CONSUMPTION OF A HYBRID VEHICLE
FR3061470B1 (en) 2017-01-05 2019-05-17 Renault S.A.S. METHOD FOR CALCULATING A FUEL CONSUMPTION AND ELECTRIC POWER MANAGEMENT INSTRUCTION OF A HYBRID MOTOR VEHICLE
FR3063472B1 (en) * 2017-03-01 2019-05-03 Renault S.A.S. METHOD FOR CALCULATING A STEERING DIRECTION OF A MOTOR VEHICLE HYBRID POWER PACKAGE
CN106926841B (en) * 2017-03-10 2018-04-24 江苏大学 A kind of double planet row-type hybrid vehicle energy management control method
KR102506758B1 (en) * 2017-12-08 2023-03-07 현대자동차주식회사 System for Controlling Braking Energy Regeneration Step Variably and Method Thereof
CA3112406A1 (en) * 2018-09-21 2020-03-26 ePower Engine Systems Inc Ai-controlled multi-channel power divider / combiner for a power-split series electric hybrid heavy vehicle
FR3086247B1 (en) 2018-09-25 2023-03-03 Renault Sas METHOD FOR CALCULATING A SETPOINT FOR MANAGING THE FUEL AND ELECTRIC CURRENT CONSUMPTION OF A HYBRID MOTOR VEHICLE
FR3140814A1 (en) * 2022-10-12 2024-04-19 Psa Automobiles Sa MOTOR VEHICLE COMPRISING A CONTROL SYSTEM FOR CORRECTING POWER PEAKS DURING CHARGING BY DECELERATION OR BRAKING, SYSTEM AND METHOD ON THE BASIS OF SUCH A VEHICLE
CN117246302B (en) * 2023-03-09 2024-03-12 长安大学 Instantaneous feedback control method for hybrid electric vehicle based on gradient information

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211699B2 (en) * 1996-09-17 2001-09-25 トヨタ自動車株式会社 Power output device
JP4009416B2 (en) * 1999-10-25 2007-11-14 松下電器産業株式会社 Battery pack control device
JP4089325B2 (en) * 2002-07-17 2008-05-28 アイシン・エィ・ダブリュ株式会社 Hybrid vehicle control system
US20050228553A1 (en) * 2004-03-30 2005-10-13 Williams International Co., L.L.C. Hybrid Electric Vehicle Energy Management System
JP5050325B2 (en) * 2005-07-12 2012-10-17 日産自動車株式会社 Battery control device
JP4271682B2 (en) * 2005-11-24 2009-06-03 本田技研工業株式会社 Control device for motor-driven vehicle
JP2007239511A (en) * 2006-03-06 2007-09-20 Denso Corp Drive control device for vehicle
ATE441561T1 (en) 2006-04-03 2009-09-15 Harman Becker Automotive Sys ROUTE DETERMINATION FOR A HYBRID VEHICLE AND ASSOCIATED SYSTEM
FR2907745B1 (en) * 2006-10-27 2009-07-24 Peugeot Citroen Automobiles Sa METHOD FOR ENERGY MANAGEMENT OF A TRACTION CHAIN OF A HYBRID VEHICLE AND A HYBRID VEHICLE
EP2125413B1 (en) * 2007-02-22 2012-06-13 Mack Trucks, Inc. Hybrid vehicle energy management methods and apparatus
JP2008253129A (en) * 2007-03-07 2008-10-16 Matsushita Electric Ind Co Ltd Method for quick charging lithium-based secondary battery and electronic equipment using same
JP4771176B2 (en) * 2007-08-27 2011-09-14 株式会社デンソー Battery charge / discharge control device
FR2926048B1 (en) * 2008-01-09 2010-04-30 Peugeot Citroen Automobiles Sa METHOD OF CHECKING THE ACCELERATIONS OF A HYBRID VEHICLE.
US8214122B2 (en) * 2008-04-10 2012-07-03 GM Global Technology Operations LLC Energy economy mode using preview information
JP2010058579A (en) * 2008-09-02 2010-03-18 Toyota Motor Corp Hybrid car
JP4692646B2 (en) * 2009-02-04 2011-06-01 株式会社デンソー Power source control device
US8825243B2 (en) * 2009-09-16 2014-09-02 GM Global Technology Operations LLC Predictive energy management control scheme for a vehicle including a hybrid powertrain system
US9539996B2 (en) * 2010-01-06 2017-01-10 Ford Global Technologies, Llc Energy management control of a plug-in hybrid electric vehicle
JP5418785B2 (en) * 2010-06-03 2014-02-19 三菱自動車工業株式会社 Storage control device for hybrid vehicle
SE535514C2 (en) * 2010-07-08 2012-09-04 Scania Cv Ab Energy control system and method for a hybrid vehicle
JP5079864B2 (en) * 2010-12-06 2012-11-21 日野自動車株式会社 Regenerative control device, hybrid vehicle, regenerative control method, and program
US9043060B2 (en) * 2010-12-31 2015-05-26 Cummins Inc. Methods, systems, and apparatuses for driveline load management
CN102126496B (en) * 2011-01-24 2013-01-16 浙江大学 Parallel hybrid management control system and management control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014001707A1 *

Also Published As

Publication number Publication date
JP2015524363A (en) 2015-08-24
WO2014001707A1 (en) 2014-01-03
KR102032214B1 (en) 2019-10-15
FR2992618B1 (en) 2015-10-30
EP2867087B1 (en) 2020-01-01
FR2992618A1 (en) 2014-01-03
JP6359530B2 (en) 2018-07-18
CN104379424A (en) 2015-02-25
US9174636B2 (en) 2015-11-03
KR20150024855A (en) 2015-03-09
US20150149011A1 (en) 2015-05-28
CN104379424B (en) 2017-10-10

Similar Documents

Publication Publication Date Title
EP2867087B1 (en) Method for energy management in a hybrid vehicle
FR2988674A1 (en) Method for determining energy equivalence factor for hybrid power train for car, involves controlling energy equivalence factor according to instantaneous state of battery power and target energy and depending on driving conditions of car
EP2727211B1 (en) Method and system for managing the power of a hybrid vehicle
EP2978647B1 (en) Method and device for controlling an energy equivalence factor in a hybrid motor propulsion plant
FR3001427A1 (en) METHOD FOR ENERGETIC LIMITATION OF THE ACCELERATION ASSISTANCE TORQUE OF A HYBRID VEHICLE
WO2017134373A1 (en) Method and device for controlling the braking energy recovery function of a hybrid vehicle on a downward slope
FR3015411A1 (en) TORQUE SETTING CALCULATION METHOD FOR AN ELECTRIC MACHINE COUPLED TO A THERMAL MOTOR OF A HYBRID VEHICLE
WO2019073136A1 (en) Control system with restriction of the torque distribution ratio
FR3071797A1 (en) SYSTEM AND METHOD FOR CONTROLLING THE COUPLING / DECOUPLING OF A VEHICLE DRIVE DEVICE, AND MOTOR VEHICLE INCORPORATING THE SAME
FR2954257A1 (en) HYBRID POWERTRAIN GROUP.
FR3001684A1 (en) Method for managing recuperation of energy for hybrid car, involves calculating final set point torques, which give decreasing and increasing accelerations when forward movement and downward movement of vehicle are high
EP3350049A1 (en) Method and device for controlling the electric torque of a hybrid motor vehicle
FR2994152A1 (en) Method for managing driving mode output of e.g. petrol engine, of hybrid vehicle, involves degrading exit conditions for driving mode of electric engine to hybrid mode to apply specific starting strategies to thermal engine
FR2982802A1 (en) Method for optimizing consumption of electrical energy in rechargeable batteries for hybrid vehicle, involves determining estimated distance for total course between charging of batteries using statistics on types of driving
FR3077258A1 (en) SYSTEM AND METHOD FOR CONTROLLING A HYBRID VEHICLE ENERGY STORER AND AUTOMOTIVE VEHICLE INCORPORATING THE SAME
EP3452324A1 (en) Method for controlling an electrical machine of a hybrid powertrain on the basis of the set value selected by the driver
EP3740391B1 (en) Management of electrical output after start-up for hybrid vehicle
FR3064575A1 (en) DEVICE FOR MONITORING THE COUPLINGS / DECOUPLAGES OF A NON-THERMAL MOTOR MACHINE OF A VEHICLE BASED ON A PARAMETER OF STATE OF ASSOCIATED STORAGE MEANS
FR3074224A1 (en) SYSTEM AND METHOD FOR STARTING A CATALYST OF A CATALYST OF A VEHICLE EXHAUST LINE, AND A MOTOR VEHICLE INCORPORATING THEM
EP3077262B1 (en) Method for controlling the transmission of torque in a vehicle depending on the slope
FR3096638A1 (en) PROCESS FOR LIMITING THE RETURN ON A SLOPE OF A HYBRID MOTOR VEHICLE, WITH A CONTROL LAW
FR3077256A1 (en) SYSTEM AND METHOD FOR CONTROLLING A HYBRID VEHICLE ENERGY STORER AND AUTOMOTIVE VEHICLE INCORPORATING THE SAME
FR3106550A1 (en) ENERGY MANAGEMENT PROCESS ON A KNOWN ROUTE OF A THERMAL / ELECTRIC DRIVE CHAIN IN A HYBRID VEHICLE ESPECIALLY OF THE RECHARGEABLE TYPE
FR3043047A1 (en) METHOD FOR OPERATING THE THERMAL MOTOR OF A HYBRID VEHICLE EQUIPPED WITH AIR CONDITIONING
FR3053300A1 (en) CONTROLLING THE CHARGE STATE OF AN ELECTRIC MOTOR MACHINE BATTERY OF A PARALLEL VEHICLE HYBRID TRANSMISSION CHAIN

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013064606

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B60W0020000000

Ipc: B60W0020140000

RIC1 Information provided on ipc code assigned before grant

Ipc: B60W 20/00 20160101ALI20180704BHEP

Ipc: B60W 10/06 20060101ALI20180704BHEP

Ipc: B60W 20/15 20160101ALI20180704BHEP

Ipc: B60W 20/14 20160101AFI20180704BHEP

Ipc: B60W 10/08 20060101ALI20180704BHEP

Ipc: B60W 10/26 20060101ALI20180704BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180816

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1219429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013064606

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013064606

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1219429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200101

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220627

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230628

Year of fee payment: 11

Ref country code: DE

Payment date: 20230620

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230625