EP2861928B1 - Temperature control device - Google Patents
Temperature control device Download PDFInfo
- Publication number
- EP2861928B1 EP2861928B1 EP13739684.2A EP13739684A EP2861928B1 EP 2861928 B1 EP2861928 B1 EP 2861928B1 EP 13739684 A EP13739684 A EP 13739684A EP 2861928 B1 EP2861928 B1 EP 2861928B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- tube
- flat
- heat pipe
- enclosure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 16
- 239000012071 phase Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- 239000007791 liquid phase Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000012808 vapor phase Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001374 Invar Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007792 gaseous phase Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010017 direct printing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0241—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the tubes being flexible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
Definitions
- the present invention relates to a satellite according to the preamble of claim 1.
- a satellite is known from the document US 2008/0289801 .
- thermal control is meant maintaining a given equipment at a temperature within a predetermined range.
- the heat produced by one or more heat sources must be collected and transported to areas where it can escape into heat sinks (radiators).
- Such a requirement is particularly critical for electronic equipment embedded on satellite. Indeed, said equipment is highly dissipative and must be maintained in a given temperature range despite significant variations in the thermal environment of the satellite and an inability to evacuate heat by natural or forced convection.
- radiator panels which dissipate heat by radiation to the cold space, and walls carrying the dissipative electronic equipment, said equipment panels.
- the heat dissipated by the equipment is collected at the equipment door panels and must be evacuated to the radiator panels.
- thermal coupling between equipment panels and radiator panels is critical to ensure the proper evacuation of the heat dissipated by the electronic equipment.
- This thermal coupling is also complex to achieve because of the limited space available within the satellite, related to the size of the equipment and their geometry.
- the thermal control system must meet conflicting needs, because it must both ensure efficient collection of the heat produced by the dissipative equipment, and allow efficient thermal transport over a potentially large distance between the door panels. equipment and panels radiators.
- Heat pipes are conventionally used to provide the thermal transport function.
- a heat pipe uses the phase change of a fluid to ensure the collection of heat in a hot place, and its transfer as a vapor to a cold place.
- a tubular heat pipe is conventionally composed of a closed tube in which the liquid and gaseous phases of the same fluid maintained under pressure coexist. The heat pipe makes it possible to store the heat by evaporation and to restore it by condensation of the fluid.
- a first part of the heat pipe is, for this purpose, disposed in the vicinity of a heat source, such as for example a dissipative element of thermal energy.
- a heat source such as for example a dissipative element of thermal energy.
- the liquid contained in the heat pipe vaporizes by absorbing heat.
- the steam thus created propagates inside the heat pipe to another part of the heat pipe, called cold zone (condenser), disposed in the vicinity of a heat sink.
- the gas then condenses by returning the previously absorbed heat.
- the necessary circulation of the liquid between the cold zone and the hot zone is commonly done by capillarity, which is facilitated by the use of grooves, lattices, arteries or metal foam disposed on the inner surface of the heat pipe.
- a heat source is typically an equipment or equipment panel.
- a typical heat sink is a radiator panel.
- a heat pipe can be in thermal contact with several heat sources and several heat sinks.
- the duct of a tubular heat pipe is a cylindrical tube whose inner wall is grooved, for example by extrusion, thereby creating the capillary structure through which the liquid passes.
- the typical length of a tubular heat pipe embedded on a satellite for cooling panels is from a meter to a few meters and its diameter from one to a few centimeters.
- the heat produced by the equipment mounted on a satellite panel must be transported to another panel of the satellite, or to another part of the same panel (it is also possible to have a heat pipe which spreads over the radiator heat by doing at the same time interface with one or more dissipative equipment), where it will be dissipated.
- the tubular heat pipes can be extended so that they carry the heat from one panel to the other (they are bent at the intersection). The heat is effectively removed when at least one of the two panels is in the shade (or at low solar incidence).
- the main limitation observed is the heat collection capacity by the heat pipes for a given heat flow density.
- the number of heat pipes to be positioned is sized by the heat collection and in this case, the heat pipe network is oversized for the heat transport from one panel to another and / or the diffusion of heat. heat on a panel, resulting in a large surplus of mass.
- the performance of the heat exchange at the heat pipe is proportional to the heat exchange surface internal to the heat pipe (grooves for example) and therefore to minimize the thermal gradients it is sometimes necessary to multiply the number of heat pipes.
- the capillary dimension of the grooves, pores, cells, lattices, etc. which ensure the flow of the fluid in liquid form through the node is of substantially the same size (in a ratio of 0.5 to 2) as the capillary dimension of the tubular heat pipe.
- said tubes have steam ducts whose sum of the passage sections is substantially equal to the vapor passage section of said flat enclosure, in order to facilitate the flow of steam between the flat enclosure and the tubes.
- the device in the satellite of the invention makes it possible to independently solve the dimensioning adapted to the heat transport, and the dimensioning adapted to the heat exchange, with a single system.
- the device uses on the one hand a tubular heat pipe (tube) without heat exchange function for the heat transport function, this tubular heat pipe being of small dimensions, and capable of accepting a geometry dictated by the arrangement and the geometry spaces left free between equipment panels and radiators.
- the device uses an extended cavity heat pipe, here called flat enclosure, disposed under the electronic equipment, for the heat exchange function.
- the device comprises a capillary connection between the at least one tube and the flat enclosure to ensure the continuity of fluid circulation by capillarity between its hot end and its cold end.
- the invention thus reduces the mass of the heat collection and transport system compared to a conventional heat pipe system. It also has the advantage of enabling better thermal coupling between equipment panels and radiators.
- a secondary problem that is solved by the invention is to be more efficient for non-planar dissipative wall equipment.
- the heat transport zone comprises an area of increased deformability in at least one predetermined direction.
- deformable zone is meant a zone of low rigidity under the environmental conditions in which the device is supposed to operate.
- this deformability of the transport zone makes it possible to accommodate the deformations, for example thermal, without risking breaking the control device. thermal shearing.
- the tube comprises several bends arranged in different planes.
- the device then comprises two substantially flat flat speakers located in different planes, connected by a tube having two torsion zones, said torsion zones being disposed in at least two different planes, said planes being respectively the planes in which are arranged the flat speakers
- the rigidity of the tube is significantly reduced in two planes, allowing accommodation of a small displacement or angular deformation occurring between these two planes.
- the flat enclosure has a shape comprising at least two substantially flat areas extending in two distinct planes and connected by an edge.
- the thickness of the flat enclosure prefferably be substantially equal to the diameter of the tube.
- part of the outer surface of the flat enclosure has a locally cylindrical shape.
- the flat enclosure and at least one tube are made of the same material, for example invar.
- the invention described here in an exemplary implementation that is in no way limiting, finds its place in a satellite.
- This thermal control system is designed and sized according to the equipment onboard the satellite. Its geometry therefore depends on the geometry of the onboard equipment, and their arrangement within said satellite.
- the heat transfer device consists of a thermal chamber containing a two-phase fluid, this chamber having an internal cavity where the fluid can flow freely in the vapor state. and a capillary structure adapted to retain the fluid in the liquid state.
- the device comprises in the first place at least one flat enclosure 1 containing a fluid in the two-phase state and forming a heat exchange zone with a heat source or with a heat sink.
- An enclosure is considered to be flat, of which in each point one of the dimensions is substantially smaller than the other two dimensions, for example ten times smaller.
- the enclosure is rectangular and flat.
- This flat chamber 1 has a capillary structure on all or part of its inner surface at the place where the heat exchange takes place with the heat source or the heat sink.
- this capillary structure has a wetted surface extended in at least two directions and capable of exchanging a dense heat flow.
- flat enclosure containing an internal capillary structure facing the heat exchange zone.
- a flat shape of the flat enclosure 1 is adapted to be in contact with the flat surface of equipment or a radiative panel.
- the surface of the flat enclosure 1 is, in this example, from a few tens to a few hundred square centimeters of surface, for a thickness of a few tenths of a millimeter to a few millimeters.
- the advantage provided by this type of flat enclosure 1 is to be able to have a very wide heat exchange surface with a heat source or a heat sink.
- Several heat sources or heat sinks can advantageously be mounted in thermal contact with the surface of the enclosure.
- the device comprises secondly at least one element of substantially tubular shape, called tube 2, more specifically called “transport tube", its length being significantly larger than the largest dimension of its section.
- the tube 2 is secured to the flat chamber 1 at a connection point 3.
- the tube 2 according to the invention has a capillary structure on its inner wall, such as that of a tubular heat pipe as described above. high and considered known in itself.
- the function of such a tube is essentially to transport as efficiently as possible the heat collected by the flat enclosure 1.
- tube or "transport tube” will be referred to as such a heat transport tube having a structure internal capillary, this capillary structure for combining the transport of the two-phase fluid both in the form of vapor and in the form of liquid in both directions.
- the typical length of such a tube 2 may be from a few tens of centimeters to a few meters, and its diameter from one to a few centimeters.
- Each transport tube 2 has a significantly smaller section (from 1.5 to several tens of times less) than the largest section of the flat enclosure (the sections being considered in section along the same plane).
- the section of the transport tubes 2 is optimized to transport the heat flux exchanged at the level of the flat enclosure 1.
- the tube 2 necessarily extends to at least one other heat exchange zone to which it is connected, this other zone being connected either to a heat sink if the chamber 1 is in heat exchange with a heat source, or to a source of heat if the chamber 1 is in heat exchange with a heat sink.
- Other figures will show a complete system using the device.
- the vapor duct 6 of the tube 2 and the steam duct 5a, 5b, 5c of the flat chamber 1 communicate with each other, so that there is continuity of the flow by inertia of the fluid in vapor form in the two directions between the flat chamber 1 and the tube 2 at their point of connection 3. It is not necessary to have a perfect continuity of the geometry of the steam ducts at the point of connection 3, but it must at least ensure that there is no significant loss of load at this level.
- the device is such that there is continuity of capillarity between the capillary structure 7 of the tube 2 and the capillary structure 8 of the flat enclosure 1 at the connection point 3.
- This capillary continuity must allow the liquid of flow by capillarity in both directions between the flat chamber 1 and the tube 2.
- a capillary zone is a geometrically small area where the surface tension effects are predominant over the effects of gravity or inertia.
- a basic zone of capillarity consists for example of a pore within a porous material, or of a groove in the mass of an inner wall of a tube.
- any discontinuity between the capillary structure of the flat enclosure 1 and that of the tube 2 must not exceed in size the typical dimension of a capillary elementary area, such as a pore and / or a groove, of said capillary structures.
- the capillary continuity provided to the connection nodes thus allows the fluid in the liquid phase to flow by capillarity, in an area where the surface tension effects are predominant over gravity or inertia effects.
- the capillary structure 7 of the tubes 2 consists of grooves ( figure 3d ) and the capillary structure 8 of the flat enclosure 1 consists of a porous structure or a porous material ( figure 3c ), which has a high permeability.
- the pore diameter of the porous structure or of the porous material is then chosen such that it is not greater than twice the opening of the grooves of the capillary structure of the tube 2, in order to facilitate the flow of the liquid by capillarity in both directions. This value may change depending on the wettability characteristics of the fluid in the case where different materials are used.
- the capillary structure of the tube 2 is disposed in capillary continuity with the capillary structure of the flat enclosure 1, also consisting of a porous structure or a porous material, which has a high permeability with a pore diameter that is not greater than the pore diameter of the porous structure or the porous material of the heat pipes. This value can also change depending on the wettability characteristics of the fluid on the different materials used.
- the two-phase capillary exchanger 1 and the transport heat pipe 2 are made in invar, instead of aluminum as used in the prior art.
- Invar provides the device with greater dimensional stability than aluminum which is advantageous in some applications.
- the device which has just been described is able to efficiently collect a dense heat flux emitted by a heat source, and to transport it efficiently towards a remote dissipation zone.
- the flat enclosure 1 sees its shape adapted to a non-planar contact surface or in several planes with dissipative equipment.
- the wet surface of the flat enclosure 1 matches the shape of the heat source or heat sink with which it is in contact. If this source or well has a parallelepipedal shape (such as electronic equipment in the case of a heat source), the flat enclosure 1 may have a flat surface conforming to the footprint of the equipment when it is attached to its body. installation plan.
- the flat enclosure 1 consists of two parts 11, 12 planes and perpendicular (see figure 4 ) connected so that there is continuity of their steam ducts and their capillary structures.
- the connection between the two parts 11, 12 of the planar enclosure and the tube 2 takes place at the intersection angle of the two parts 11, 12 with continuity of steam conduits and capillary structures as previously described.
- only a portion of the tube 2 is shown, which necessarily extends in a complete thermal control system to another heat exchanger to which it is connected.
- the heat source has a substantially cylindrical shape, such as an electric motor, for example, the flat enclosure 1 has a locally toroidal shape surrounding said source ( Figures 5a to 5c ).
- This diversity of form of flat speakers 1 can be advantageously manufactured thanks to rapid manufacturing means, in particular based on powders, for example by additive fusion (three-dimensional direct printing).
- the transport tube 2 may be a "standard” heat pipe tube welded to the part thus manufactured. It can also be manufactured at the same time as the flat speaker thanks to the rapid manufacturing means.
- the filling of the device is done according to the state of the art of heat pipe using for example a filling tube (sometimes called "queusot") which can be connected to either a flat speaker or a transport tube, the device .
- the transport tube 2 of the device can be optimized for carrying out the heat transport function and only this. Such heat pipes are made cheaply.
- a flat heat exchange chamber 1 may be connected to a plurality of transport tubes 2, 2 ', 2 "(two tubes, as in FIGS. figures 7 , 8, 11, 12 , three tubes as on the figures 6 and 10 ) connected to it according to the embodiment previously described.
- the device comprises several flat speakers 1, 1 'interconnected by at least one transport tube 2, the shape of each flat chamber 1 being adapted each to the heat source or heat sink with which it is in contact.
- each flat chamber 1 of the device is in contact with either a heat source 3 or a heat sink 4 ( FIG. figure 8 ).
- the transport tube 2 connecting the flat speakers 1 to each other is sized to allow efficient heat transport from the heat source 3 to the well In the case where the tube 2 does not itself participate in the heat exchange, it is advantageously dimensioned only for this heat transport function.
- the figures 7 and 8 thus present a thermal control system consisting of two flat speakers 1, 1 'connected to a tube 2 according to the embodiment described above.
- the assembly consisting of two enclosures and the tube forms a sealed cavity in which circulates a two-phase fluid for simultaneously performing heat exchange and efficient heat transport.
- the collection and evacuation of heat can be carried out with the means of the state of the art, for example by means of a sole 13 placed around the transport tube 2 so this soleplate is in thermal contact with a heat source or heat sink ( figure 9 ).
- the tube 2 serves both as a transport tube and as a heat exchanger, which can be advantageous when the heat source (or heat sink) in contact with the sole of the tube 2 is of large size.
- FIGS 11 and 12 illustrate other embodiments of the device, wherein the transport tube 2 is curved and connects two heat exchange zones (here two flat speakers 1, 1 ') whose surfaces are located in different planes.
- the transport tube 2 has several bends 14, 15, located in different planes, which gives it a significantly increased deformability in at least one direction, in a predetermined area, to accommodate small displacement or angular deformation between the support planes the two-phase capillary exchangers 1, 1 '.
- heat pipe in English, to distinguish from “loop heat pipe”, which designates a fluid loop, with completely different behavior
- a tubular heat pipe is conventionally composed of a closed tube in which the liquid and gaseous phases of the same fluid coexist kept under pressure. The heat pipe makes it possible to store the heat by evaporation and to restore it by condensation of the fluid.
- heat pipe in English
- fluid loop in English
- a "loop heat pipe” is in the form of a closed-loop circuit in which the fluid circulates in one direction, whereas a heat pipe is not configured in a closed loop. . Indeed, inside its cavity, the liquid and vapor phases coexist and flow in different directions between the two ends of said cavity.
- liquid and gaseous phases are separated by at least one porous wall.
- this prior art WO 2012/049752 the field of fluid loops does not describe a "capillary" structure, according to the meaning generally known to those skilled in the art.
- the device of this prior document comprises a first pipe 150 carrying only liquid without capillary effect, and a second pipe 155 carrying only a vapor phase.
- a document US 2006/0283577 (December 2006 also discloses a fluid loop ( "A loop-type heat exchanger device (10) is disclosed, which includes and evaporator (20), to condense (40), to vapor leads (30) and a liquid conduit (50). . ").
- This document does not relate to a device comprising a cavity in which the liquid and vapor phases of the same fluid coexist. On the contrary, it is clear in view of the figure 6 (also described in the text in paragraphs [0028] to [0029]) that the tube 30 is adapted to transport only a vapor phase fluid, not a liquid and a vapor phase.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
La présente invention concerne un satellite selon le préambule de la revendication 1. Un tel satellite est connu du document
On entend par contrôle thermique le maintien d'un équipement donné à une température comprise dans une plage prédéterminée. La chaleur produite par une ou plusieurs sources de chaleur doit être collectée et transportée vers des zones où elle peut s'évacuer dans des puits de chaleur (radiateurs).By thermal control is meant maintaining a given equipment at a temperature within a predetermined range. The heat produced by one or more heat sources must be collected and transported to areas where it can escape into heat sinks (radiators).
Une telle exigence est notamment critique pour des équipements électroniques embarqués sur satellite. En effet, lesdits équipements sont fortement dissipatifs et doivent être maintenus dans une plage de température donnée malgré des variations importantes de l'environnement thermique du satellite et une impossibilité d'évacuer la chaleur par convection naturelle ou forcée.Such a requirement is particularly critical for electronic equipment embedded on satellite. Indeed, said equipment is highly dissipative and must be maintained in a given temperature range despite significant variations in the thermal environment of the satellite and an inability to evacuate heat by natural or forced convection.
A titre d'exemple, au sein d'un satellite coexistent des parois radiatives dites panneaux radiateurs, ou radiateurs, qui dissipent la chaleur par rayonnement vers l'espace froid, et des parois portant les équipements électroniques dissipatifs, dites panneaux porte équipements. La chaleur dissipée par les équipements est collectée au niveau des panneaux porte équipements et doit être évacuée vers les panneaux radiateurs.For example, within a satellite coexist radiative walls said radiator panels, or radiators, which dissipate heat by radiation to the cold space, and walls carrying the dissipative electronic equipment, said equipment panels. The heat dissipated by the equipment is collected at the equipment door panels and must be evacuated to the radiator panels.
On comprend que le couplage thermique entre panneaux porte équipement et panneaux radiateurs est critique pour assurer la bonne évacuation de la chaleur dissipée par les équipements électroniques. Ce couplage thermique est par ailleurs complexe à réaliser du fait de la place restreinte disponible au sein du satellite, liée à l'encombrement des équipements et à leur géométrie. Par ailleurs, le système de contrôle thermique doit répondre à des besoins contradictoires, car il doit à la fois assurer une collecte efficace de la chaleur produite par les équipements dissipatifs, et permettre un transport thermique efficace sur une distance éventuellement assez grande entre les panneaux porte équipements et les panneaux radiateurs.It is understood that the thermal coupling between equipment panels and radiator panels is critical to ensure the proper evacuation of the heat dissipated by the electronic equipment. This thermal coupling is also complex to achieve because of the limited space available within the satellite, related to the size of the equipment and their geometry. Furthermore, the thermal control system must meet conflicting needs, because it must both ensure efficient collection of the heat produced by the dissipative equipment, and allow efficient thermal transport over a potentially large distance between the door panels. equipment and panels radiators.
On utilise classiquement des caloducs pour assurer la fonction de transport thermique.Heat pipes are conventionally used to provide the thermal transport function.
On rappelle qu'un caloduc utilise le changement de phase d'un fluide pour assurer la collecte de la chaleur à un endroit chaud, et son transfert sous forme de vapeur vers un endroit froid. Un caloduc tubulaire est classiquement composé d'un tube fermé dans laquelle cohabitent les phases liquides et gazeuses d'un même fluide maintenu sous pression. Le caloduc permet de stocker la chaleur par évaporation et de la restituer par condensation du fluide.It is recalled that a heat pipe uses the phase change of a fluid to ensure the collection of heat in a hot place, and its transfer as a vapor to a cold place. A tubular heat pipe is conventionally composed of a closed tube in which the liquid and gaseous phases of the same fluid maintained under pressure coexist. The heat pipe makes it possible to store the heat by evaporation and to restore it by condensation of the fluid.
Une première partie du caloduc, dite zone chaude (évaporateur), est, à cette fin, disposée à proximité d'une source de chaleur, comme par exemple un élément dissipatif d'énergie thermique. A cet endroit, le liquide contenu dans le caloduc se vaporise en absorbant de la chaleur. La vapeur ainsi créée se propage à l'intérieur du caloduc jusqu'à une autre partie du caloduc, dite zone froide (condenseur), disposée au voisinage d'un puits de chaleur. Le gaz se condense alors en restituant la chaleur précédemment absorbée. La nécessaire circulation du liquide entre la zone froide et la zone chaude se fait couramment par capillarité, celle-ci étant facilitée par utilisation de rainures, de treillis, d'artères ou de mousse métallique disposées sur la surface interne du tube du caloduc.A first part of the heat pipe, called hot zone (evaporator), is, for this purpose, disposed in the vicinity of a heat source, such as for example a dissipative element of thermal energy. At this point, the liquid contained in the heat pipe vaporizes by absorbing heat. The steam thus created propagates inside the heat pipe to another part of the heat pipe, called cold zone (condenser), disposed in the vicinity of a heat sink. The gas then condenses by returning the previously absorbed heat. The necessary circulation of the liquid between the cold zone and the hot zone is commonly done by capillarity, which is facilitated by the use of grooves, lattices, arteries or metal foam disposed on the inner surface of the heat pipe.
Une source de chaleur est ici typiquement un équipement ou un panneau porte équipement. Un puits à chaleur typique est un panneau radiateur.A heat source is typically an equipment or equipment panel. A typical heat sink is a radiator panel.
Un caloduc peut être en contact thermique avec plusieurs sources de chaleur et plusieurs puits de chaleur.A heat pipe can be in thermal contact with several heat sources and several heat sinks.
Le conduit d'un caloduc tubulaire (voir
Dans le cas d'application considéré ici, la chaleur produite par les équipements montés sur un panneau du satellite doit être transportée vers un autre panneau du satellite, ou à un autre endroit du même panneau (on peut aussi avoir un caloduc qui étale sur le radiateur la chaleur en faisant en même temps interface avec un ou plusieurs équipements dissipatifs), là où elle sera dissipée.In the case of an application considered here, the heat produced by the equipment mounted on a satellite panel must be transported to another panel of the satellite, or to another part of the same panel (it is also possible to have a heat pipe which spreads over the radiator heat by doing at the same time interface with one or more dissipative equipment), where it will be dissipated.
C'est le cas par exemple lorsque le panneau porte-équipements est au soleil (il rayonne moins donc évacue moins bien la chaleur) et qu'un autre panneau est à l'ombre (cas favorable pour rayonner la chaleur). Dans ce cas, on peut prolonger les caloducs tubulaires de sorte qu'ils transportent la chaleur d'un panneau à l'autre (ils sont courbés à l'intersection). La chaleur est évacuée efficacement lorsqu'au moins l'un des deux panneaux est à l'ombre (ou à faible incidence solaire).This is the case for example when the equipment carrier panel is in the sun (it radiates less and therefore evacuates heat less well) and another panel is in the shade (favorable case for radiating heat). In this case, the tubular heat pipes can be extended so that they carry the heat from one panel to the other (they are bent at the intersection). The heat is effectively removed when at least one of the two panels is in the shade (or at low solar incidence).
Dans le cas du contrôle thermique de panneaux porte-équipements à bord de satellites, la collecte de la chaleur au niveau d'un équipement se fait par échange thermique entre un certain nombre de caloducs tubulaires et les équipements.In the case of the thermal control of equipment panels on board satellites, the collection of heat at the level of equipment is done by heat exchange between a number of tubular heat pipes and the equipment.
Dans ce cas, la limitation principale observée est la capacité de collecte de la chaleur par les caloducs pour une densité de flux de chaleur donnée. A profil de caloduc donné, le nombre de caloducs à positionner est dimensionné par la collecte de chaleur et dans ce cas, le réseau de caloducs est surdimensionné pour le transport de chaleur d'un panneau à l'autre et/ou la diffusion de la chaleur sur un panneau, ce qui entraîne un surplus important de masse.In this case, the main limitation observed is the heat collection capacity by the heat pipes for a given heat flow density. With a given heat pipe profile, the number of heat pipes to be positioned is sized by the heat collection and in this case, the heat pipe network is oversized for the heat transport from one panel to another and / or the diffusion of heat. heat on a panel, resulting in a large surplus of mass.
D'autre part, la performance de l'échange thermique au niveau du caloduc est proportionnelle à la surface d'échange interne au caloduc (rainures par exemple) et donc pour minimiser les gradients thermiques il est parfois nécessaire de multiplier le nombre de caloducs.On the other hand, the performance of the heat exchange at the heat pipe is proportional to the heat exchange surface internal to the heat pipe (grooves for example) and therefore to minimize the thermal gradients it is sometimes necessary to multiply the number of heat pipes.
L'invention vise un satellite selon la revendication 1. En d'autres termes, il s'agit d'un satellite avec un dispositif de régulation thermique mettant en oeuvre une enceinte thermique contenant un fluide diphasique, ledit dispositif comprenant :
- au moins une zone d'échange de chaleur comportant un caloduc configuré sous la forme d'une enveloppe mince (c'est à dire une surface d'échange importante avec une épaisseur très faible, typiquement au moins dix fois plus faible, que les autres dimensions), ladite zone d'échange étant dite "enceinte plate" (qui peut se présenter sous forme de plaque en une, deux ou trois dimensions),
- au moins une zone de transport de chaleur configurée sous la forme d'au moins un caloduc tubulaire, ledit caloduc tubulaire étant dit "tube", et
- au moins un noeud de connexion entre l'enceinte plate et le tube, ledit noeud de connexion présentant une continuité de capillarité entre l'enceinte plate et le tube.
- at least one heat exchange zone comprising a heat pipe configured in the form of a thin envelope (that is to say a large exchange surface with a very small thickness, typically at least ten times lower, than the other dimensions), said exchange zone being said "flat enclosure" (which can be in the form of a plate in one, two or three dimensions),
- at least one heat transport zone configured in the form of at least one tubular heat pipe, said tubular heat pipe being said to be "tube", and
- at least one connection node between the flat enclosure and the tube, said connection node having a continuity of capillarity between the flat enclosure and the tube.
La dimension capillaire des rainures, pores, cellules, treillis,... qui assurent l'écoulement du fluide sous forme liquide au travers du noeud est sensiblement de même dimension (dans un rapport 0.5 à 2) que la dimension capillaire du caloduc tubulaire.The capillary dimension of the grooves, pores, cells, lattices, etc. which ensure the flow of the fluid in liquid form through the node is of substantially the same size (in a ratio of 0.5 to 2) as the capillary dimension of the tubular heat pipe.
Avantageusement, dans le cas de plusieurs tubes reliés à une même enceinte plate, lesdits tubes présentent des conduits de vapeur dont la somme des sections de passage est sensiblement égale à la section de passage de vapeur de ladite enceinte plate, dans le but de faciliter l'écoulement de la vapeur entre l'enceinte plate et les tubes.Advantageously, in the case of several tubes connected to the same flat enclosure, said tubes have steam ducts whose sum of the passage sections is substantially equal to the vapor passage section of said flat enclosure, in order to facilitate the flow of steam between the flat enclosure and the tubes.
On comprend que le dispositif dans le satellite de l'invention permet de résoudre indépendamment le dimensionnement adapté au transport de chaleur, et le dimensionnement adapté à l'échange thermique, avec un seul système. Le dispositif utilise d'une part un caloduc tubulaire (tube) sans fonction d'échange thermique pour la fonction de transport de chaleur, ce caloduc tubulaire étant d'encombrement réduit, et capable d'accepter une géométrie dictée par la disposition et la géométrie des espaces laissés libres entre les panneaux porte équipements et les radiateurs.It will be understood that the device in the satellite of the invention makes it possible to independently solve the dimensioning adapted to the heat transport, and the dimensioning adapted to the heat exchange, with a single system. The device uses on the one hand a tubular heat pipe (tube) without heat exchange function for the heat transport function, this tubular heat pipe being of small dimensions, and capable of accepting a geometry dictated by the arrangement and the geometry spaces left free between equipment panels and radiators.
D'autre part, le dispositif utilise un caloduc à cavité étendue, ici nommé enceinte plate, disposé sous les équipements électroniques, pour la fonction d'échange thermique.On the other hand, the device uses an extended cavity heat pipe, here called flat enclosure, disposed under the electronic equipment, for the heat exchange function.
Le dispositif comprend une connexion capillaire entre le au moins un tube et l'enceinte plate pour assurer la continuité de circulation de fluide par capillarité entre son extrémité chaude et son extrémité froide.The device comprises a capillary connection between the at least one tube and the flat enclosure to ensure the continuity of fluid circulation by capillarity between its hot end and its cold end.
L'invention permet ainsi de réduire la masse du système de collecte et de transport de chaleur par rapport à un système classique à caloduc. Elle a également pour avantage de permettre de mieux réaliser le couplage thermique entre les panneaux porte équipements et les radiateurs.The invention thus reduces the mass of the heat collection and transport system compared to a conventional heat pipe system. It also has the advantage of enabling better thermal coupling between equipment panels and radiators.
Un problème secondaire qui est résolu par l'invention est d'être plus efficace pour les équipements à paroi dissipative non plane.A secondary problem that is solved by the invention is to be more efficient for non-planar dissipative wall equipment.
Selon un mode de réalisation particulier, la zone de transport de chaleur comporte une zone de déformabilité accrue selon au moins une direction prédéterminée. On entend par zone déformable une zone de rigidité faible dans les conditions environnementales dans lesquelles est supposé opérer le dispositif.According to a particular embodiment, the heat transport zone comprises an area of increased deformability in at least one predetermined direction. By deformable zone is meant a zone of low rigidity under the environmental conditions in which the device is supposed to operate.
De cette manière, il est possible d'accommoder des déformations survenant entre les supports des extrémités du dispositif sans pratiquement exercer d'efforts sur ces supports. Dans le cas particulier d'extrémités disposées l'une sur un panneau porte équipements et l'autre sur un radiateur, cette déformabilité de la zone de transport permet d'accommoder les déformations, par exemple thermiques, sans risquer de rupture du dispositif de contrôle thermique par cisaillement.In this way, it is possible to accommodate deformations occurring between the supports of the ends of the device without practically exerting efforts on these supports. In the particular case of ends arranged one on an equipment panel and the other on a radiator, this deformability of the transport zone makes it possible to accommodate the deformations, for example thermal, without risking breaking the control device. thermal shearing.
Dans un mode de réalisation particulier adapté au cas de deux supports des extrémités du dispositif disposés dans des plans différents, le tube comporte plusieurs coudes disposés dans des plans différents.In a particular embodiment adapted to the case of two supports of the ends of the device arranged in different planes, the tube comprises several bends arranged in different planes.
Le dispositif comporte alors deux enceintes plates sensiblement planes situées dans des plans différents, reliés par un tube possédant deux zones de torsion, les dites zones de torsion étant disposées dans au moins deux plans différents, les dits plans étant respectivement les plans selon lesquels sont disposées les enceintes platesThe device then comprises two substantially flat flat speakers located in different planes, connected by a tube having two torsion zones, said torsion zones being disposed in at least two different planes, said planes being respectively the planes in which are arranged the flat speakers
De cette manière, la rigidité du tube se trouve nettement réduite dans deux plans, permettant une accommodation d'un petit déplacement ou d'une déformation angulaire survenant entre ces deux plans.In this way, the rigidity of the tube is significantly reduced in two planes, allowing accommodation of a small displacement or angular deformation occurring between these two planes.
Dans un cas particulier de mise en oeuvre, correspondant au cas d'une source ou puits de chaleur de forme comportant plusieurs plans, par exemple au moins deux parois planes d'un équipement dissipatif, l'enceinte plate présente une forme comportant au moins deux zones sensiblement planes s'étendant dans deux plans distincts et reliées par une arête.In a particular case of implementation, corresponding to the case of a form heat source or well having a plurality of planes, for example at least two planar walls of dissipative equipment, the flat enclosure has a shape comprising at least two substantially flat areas extending in two distinct planes and connected by an edge.
Indépendamment de ces modes particuliers de réalisation, il est avantageux que l'épaisseur de l'enceinte plate soit sensiblement égale au diamètre du tube.Regardless of these particular embodiments, it is advantageous for the thickness of the flat enclosure to be substantially equal to the diameter of the tube.
Dans un autre cas de mise en oeuvre, correspondant au cas d'une source de forme cylindrique, une partie de la surface externe de l'enceinte plate présente une forme localement cylindrique.In another case of implementation, corresponding to the case of a cylindrical source, part of the outer surface of the flat enclosure has a locally cylindrical shape.
Dans un mode de réalisation particulier, l'enceinte plate et au moins un tube sont réalisés dans le même matériau, par exemple de l'invar.In a particular embodiment, the flat enclosure and at least one tube are made of the same material, for example invar.
Les caractéristiques de l'invention seront mieux appréciés grâce à la description qui suit, description qui expose les caractéristiques de l'invention au travers d'un exemple non limitatif d'application.The characteristics of the invention will be better appreciated thanks to the description which follows, description which sets out the characteristics of the invention through a non-limiting example of application.
La description s'appuie sur les figures annexées qui représentent :
-
Figures 1a et 1b (déjà citées) : des vues en coupe longitudinale et transversale d'un caloduc selon l'art antérieur, -
Figure 2 : une vue schématique en perspective d'un dispositif de transfert de chaleur selon un mode de réalisation d'un satellite selon l'invention, -
Figures 3b à 3f : des vues de détail du dispositif de lafigure 2 , -
Figure 4 : une vue d'une variante dispositif de transfert de chaleur, adapté au cas d'équipements dissipatifs disposé sur deux plan perpendiculaires, -
Figures 5a à 5c : des vues d'une variante de dispositif de transfert de chaleur, adapté au cas d'un équipement dissipatif de forme sensiblement cylindrique, -
Figure 6 : une vue en perspective d'une autre variante du dispositif, -
Figure 7 : une vue d'une autre variante du dispositif, dans le cas de plusieurs zones d'échange planes, -
Figure 8 : une vue du dispositif de lafigure 7 , adapté au cas de deux équipements dissipatifs, -
Figure 9 : une vue d'une autre variante du dispositif, utilisant une zone de transport dotée localement d'une semelle de refroidissement, -
Figure 10 : une vue d'une variante du dispositif, comportant une zone d'échange, et plusieurs zones de transport de chaleur, -
Figure 11 : une vue en perspective d'une variante adaptée au cas d'équipements disposés sur deux plans différents, -
Figure 12 : une vue d'une autre variante de dispositif, dans ce même cas.
-
Figures 1a and 1b (already mentioned): views in longitudinal and transverse section of a heat pipe according to the prior art, -
Figure 2 : a schematic perspective view of a heat transfer device according to an embodiment of a satellite according to the invention, -
Figures 3b to 3f : detailed views of the device of thefigure 2 , -
Figure 4 : a view of a variant heat transfer device, adapted to the case of dissipative equipment disposed on two perpendicular planes, -
Figures 5a to 5c views of a variant of heat transfer device, adapted to the case of dissipative equipment of substantially cylindrical shape, -
Figure 6 : a perspective view of another variant of the device, -
Figure 7 : a view of another variant of the device, in the case of several planar exchange zones, -
Figure 8 : a view of the device of thefigure 7 , adapted to the case of two dissipative equipments, -
Figure 9 : a view of another variant of the device, using a transport zone provided locally with a cooling soleplate, -
Figure 10 : a view of a variant of the device, comprising an exchange zone, and several heat transfer zones, -
Figure 11 : a perspective view of a variant adapted to the case of equipment arranged on two different planes, -
Figure 12 : a view of another variant of device, in this case.
On note tout d'abord que les figures ne sont pas à l'échelle.It is noted first of all that the figures are not to scale.
L'invention décrite ici, dans un exemple de mise en oeuvre nullement limitatif, trouve sa place dans un satellite. Ce système de contrôle thermique est conçu et dimensionné selon les équipements embarqués à bord du satellite. Sa géométrie dépend donc de la géométrie des équipements embarqués, et de leur disposition au sein dudit satellite.The invention described here, in an exemplary implementation that is in no way limiting, finds its place in a satellite. This thermal control system is designed and sized according to the equipment onboard the satellite. Its geometry therefore depends on the geometry of the onboard equipment, and their arrangement within said satellite.
Dans un mode de réalisation donné ici à titre illustratif et nullement limitatif, le dispositif de transfert de chaleur est constitué d'une enceinte thermique contenant un fluide diphasique, cette enceinte présentant une cavité interne où peut circuler librement le fluide à l'état de vapeur et une structure capillaire apte à retenir le fluide à l'état liquide.In one embodiment given here by way of illustration and in no way limiting, the heat transfer device consists of a thermal chamber containing a two-phase fluid, this chamber having an internal cavity where the fluid can flow freely in the vapor state. and a capillary structure adapted to retain the fluid in the liquid state.
Plus précisément (voir
Cette enceinte plate 1 présente une structure capillaire sur tout ou partie de sa surface interne à l'endroit où s'effectue l'échange thermique avec la source de chaleur ou le puits de chaleur. Dans l'exemple suivant l'invention, cette structure capillaire possède une surface mouillée étendue dans au moins deux directions et apte à échanger un flux thermique dense.This
Dans toute la suite de la description, on appellera « enceinte plate » une telle enceinte d'échange thermique diphasique contenant une structure capillaire interne en regard de la zone d'échange thermique.Throughout the rest of the description, the so-called "flat enclosure" will be called such a two-phase heat exchange enclosure containing an internal capillary structure facing the heat exchange zone.
Dans un exemple nullement limitatif illustré sur la
L'avantage procuré par ce type d'enceinte plate 1 est de pouvoir présenter une surface d'échange thermique très étendue avec une source de chaleur ou un puits de chaleur. Plusieurs sources de chaleur ou puits de chaleur peuvent avantageusement être montées en contact thermique avec la surface de l'enceinte.The advantage provided by this type of
Le dispositif comporte en second lieu au moins un élément de forme sensiblement tubulaire, dit tube 2, appelé plus précisément « tube de transport », sa longueur étant nettement plus importante que la plus grande dimension de sa section.The device comprises secondly at least one element of substantially tubular shape, called
Le tube 2 est solidarisé à l'enceinte plate 1 au niveau d'un point de liaison 3. Le tube 2 présente selon l'invention une structure capillaire sur sa paroi interne, comme par exemple celle d'un caloduc tubulaire tel que décrit plus haut et considéré connu en soi. Dans le dispositif suivant l'invention, la fonction d'un tel tube est essentiellement de transporter le plus efficacement possible la chaleur collectée par l'enceinte plate 1.The
Dans toute la suite de la description, on appellera « tube », ou « tube de transport » un tel tube de transport de chaleur possédant une structure capillaire interne, cette structure capillaire permettant de combiner le transport du fluide diphasique à la fois sous forme de vapeur et sous forme de liquide dans les deux directions.Throughout the remainder of the description, the term "tube" or "transport tube" will be referred to as such a heat transport tube having a structure internal capillary, this capillary structure for combining the transport of the two-phase fluid both in the form of vapor and in the form of liquid in both directions.
Dans le cas d'une application au refroidissement d'équipements dissipatifs à bord du satellite, la longueur typique d'un tel tube 2 peut être de quelques dizaines de centimètres à quelques mètres, et son diamètre de un à quelques centimètres.In the case of an application to the cooling of dissipative equipment on board the satellite, the typical length of such a
Chaque tube de transport 2 présente une section significativement moins importante (de 1,5 à plusieurs dizaines de fois moins importante) que la plus grande section de l'enceinte plate (les sections étant considérées en coupe suivant le même plan).Each
La section des tubes de transport 2 est optimisée pour transporter le flux thermique échangé au niveau de l'enceinte plate 1.The section of the
Il est important de noter que sur la
Des vues de dessus et en coupes de ce dispositif (voir
Tel qu'illustré par la
D'autre part, le dispositif est tel qu'il y a une continuité de capillarité entre la structure capillaire 7 du tube 2 et la structure capillaire 8 de l'enceinte plate 1 au point de liaison 3. Cette continuité capillaire doit permettre au liquide de s'écouler par capillarité dans les deux directions entre l'enceinte plate 1 et le tube 2.On the other hand, the device is such that there is continuity of capillarity between the
On rappelle qu'une zone de capillarité est une zone à faible dimension géométrique où les effets de tension de surface sont prédominants sur les effets de gravité ou d'inertie. Une zone élémentaire de capillarité est constituée par exemple d'un pore au sein d'un matériau poreux, ou bien d'une rainure dans la masse d'une paroi interne d'un tube.It is recalled that a capillary zone is a geometrically small area where the surface tension effects are predominant over the effects of gravity or inertia. A basic zone of capillarity consists for example of a pore within a porous material, or of a groove in the mass of an inner wall of a tube.
Il n'est pas nécessaire d'avoir une continuité capillaire parfaite entre les structures capillaires de l'enceinte plate 1 et du tube 2, mais au moins faut-il assurer qu'il n'y ait pas une discontinuité de l'effet de capillarité à ce niveau. Typiquement, une discontinuité éventuelle entre la structure capillaire de l'enceinte plate 1 et celle du tube 2 ne doit pas dépasser en dimension la dimension typique d'une zone élémentaire de capillarité, tel un pore et/ou une rainure, desdites structures capillaires.It is not necessary to have a perfect capillary continuity between the capillary structures of the
La continuité capillaire assurée aux noeuds de liaison permet ainsi au fluide en phase liquide de s'écouler par capillarité, dans une zone où les effets de tension de surface sont prédominants sur les effets de gravité ou d'inertie. La structure capillaire 7 des tubes 2 est constituée de rainures (
Dans une variante de réalisation, l'échangeur diphasique capillaire 1 et le caloduc de transport 2 sont réalisés en invar, au lieu d'aluminium tel qu'usuellement utilisé dans l'art antérieur. L'invar procure au dispositif une plus grande stabilité dimensionnelle que l'aluminium ce qui est avantageux dans certaines applications.In an alternative embodiment, the two-
Le dispositif qui vient d'être décrit est apte à collecter efficacement un flux de chaleur dense émis par une source de chaleur, et à le transporter efficacement vers une zone de dissipation déportée.The device which has just been described is able to efficiently collect a dense heat flux emitted by a heat source, and to transport it efficiently towards a remote dissipation zone.
Dans des variantes de réalisation, l'enceinte plate 1 voit sa forme adaptée à une surface de contact non plane ou en plusieurs plans avec les équipements dissipatifs.In alternative embodiments, the
Dans ce cas, la surface mouillée de l'enceinte plate 1 épouse la forme de la source de chaleur ou du puits de chaleur avec laquelle elle est en contact. Si cette source ou ce puits a une forme parallélépipédique (comme un équipement électronique dans le cas d'une source de chaleur), l'enceinte plate 1 peut avoir une surface plane épousant l'empreinte de l'équipement quand il est fixé sur son plan de pose.In this case, the wet surface of the
Dans un autre cas, correspondant à une enceinte plate 1 en contact avec plusieurs plans de l'équipement, l'enceinte plate 1 est constituée de deux parties 11, 12 planes et perpendiculaires (voir
Si la source de chaleur a une forme sensiblement cylindrique, comme un moteur électrique par exemple, l'enceinte plate 1 présente une forme localement torique entourant ladite source (
Cette diversité de forme d'enceintes plates 1 (plan, multi-plan, torique, etc.) peut être fabriquée avantageusement grâce à des moyens de fabrication rapide, notamment à base de poudres, par exemple par fusion additive (impression directe tridimensionnelle). On peut alors fabriquer en une seule étape l'ensemble de l'enceinte plate 1, à savoir les parois de l'enceinte et la structure capillaire. Le tube de transport 2 peut être un tube de caloduc « standard » soudé à la pièce ainsi fabriquée. Il peut être également fabriqué en même temps que l'enceinte plate grâce aux moyens de fabrication rapide. Le remplissage du dispositif se fait suivant l'état de l'art des caloducs en utilisant par exemple un tube de remplissage (appelé parfois « queusot ») qui peut être connecté soit à une enceinte plate, soit à un tube de transport, du dispositif.This diversity of form of flat speakers 1 (plane, multi-plane, toric, etc.) can be advantageously manufactured thanks to rapid manufacturing means, in particular based on powders, for example by additive fusion (three-dimensional direct printing). One can then manufacture in a single step all of the
Le tube de transport 2 du dispositif peut être optimisé pour réaliser la fonction de transport de chaleur et seulement celle-ci. De tels caloducs sont réalisés à moindre coût.The
Dans une variante de réalisation du dispositif, une enceinte plate 1 d'échange thermique peut être reliée à plusieurs tubes de transport 2, 2', 2" (deux tubes comme sur les
Dans une autre variante (
Dans ce même exemple de réalisation, à au moins deux enceintes plates 1, 1', chaque enceinte plate 1 du dispositif est en contact avec soit une source de chaleur 3, soit un puits de chaleur 4 (
Les
Dans certaines parties du dispositif, la collecte et l'évacuation de la chaleur peut être réalisée avec les moyens de l'état de l'art, par exemple par l'intermédiaire d'une semelle 13 placée autour du tube de transport 2 de sorte que cette semelle soit en contact thermique avec une source de chaleur ou un puits de chaleur (
Les
Les caloducs répondent à trois types de besoins :
- Un premier besoin est le transport d'énergie d'un point a à un point b à l'intérieur du satellite. On comprend que ce besoin conditionne la capacité de transport d'énergie nécessaire pour le caloduc.
- Un second besoin est l'étalement ou la répartition de chaleur sur une surface faisant office de radiateur. Ce besoin conditionne la distance minimale entre deux caloducs sur la surface de radiateur.
- Un troisième besoin est l'échange de chaleur. Dans ce cas, le caloduc est typiquement installé directement sous un équipement pour assurer un bon échange thermique avec celui-ci. Le problème est alors d'assurer le meilleur couplage thermique possible entre le caloduc et l'équipement auquel il est attaché. Ce couplage thermique est alors lui-même fonction de la surface mouillée du caloduc (surface du caloduc en contact avec le liquide).
- A first need is the transport of energy from a point a to a point b inside the satellite. It is understood that this requirement conditions the energy transport capacity required for the heat pipe.
- A second need is the spreading or the distribution of heat on a surface acting as a radiator. This requirement conditions the minimum distance between two heat pipes on the radiator surface.
- A third need is the exchange of heat. In this case, the heat pipe is typically installed directly under equipment to ensure a good heat exchange with it. The problem is then to ensure the best possible thermal coupling between the heat pipe and the equipment to which it is attached. This thermal coupling is itself a function of the wet surface of the heat pipe (surface of the heat pipe in contact with the liquid).
On rappelle qu'un caloduc ("heat pipe" en anglais, à distinguer de "loop heat pipe", qui désigne une boucle fluide, au comportement totalement différent) utilise le changement de phase d'un fluide pour assurer la collecte de la chaleur à un endroit chaud, et son transfert sous forme de vapeur vers un endroit froid. Un caloduc tubulaire est classiquement composé d'un tube fermé dans laquelle cohabitent les phases liquides et gazeuses d'un même fluide maintenu sous pression. Le caloduc permet de stocker la chaleur par évaporation et de la restituer par condensation du fluide.It is recalled that a heat pipe ("heat pipe" in English, to distinguish from "loop heat pipe", which designates a fluid loop, with completely different behavior) uses the phase change of a fluid to ensure the collection of heat in a warm place, and its transfer as a vapor to a cold place. A tubular heat pipe is conventionally composed of a closed tube in which the liquid and gaseous phases of the same fluid coexist kept under pressure. The heat pipe makes it possible to store the heat by evaporation and to restore it by condensation of the fluid.
A titre de clarification, il semble nécessaire de distinguer un caloduc ("heat pipe" en anglais) tel qu'utilisé dans le présent dispositif, d'une boucle fluide ("loop heat pipe" en anglais), au comportement totalement différent, telle que citée dans divers documents d'art antérieur.As a clarification, it seems necessary to distinguish a heat pipe ("heat pipe" in English) as used in the present device, a fluid loop ("loop heat pipe" in English), with completely different behavior, such as cited in various prior art documents.
Une boucle fluide ("loop heat pipe") se présente sous forme d'un circuit en boucle fermée dans lequel le fluide circule dans un seul sens, alors qu'un caloduc ("heat pipe") n'est pas configuré en boucle fermée. En effet, à l'intérieur de sa cavité, les phases liquides et vapeur cohabitent et circulent dans des sens différents entre les deux extrémités de ladite cavité.A "loop heat pipe" is in the form of a closed-loop circuit in which the fluid circulates in one direction, whereas a heat pipe is not configured in a closed loop. . Indeed, inside its cavity, the liquid and vapor phases coexist and flow in different directions between the two ends of said cavity.
Dans un exemple de tel dispositif à boucle fluide, décrit dans le document
Cette différence est majeure car elle conduit à un comportement totalement diffèrent du système avec une pression de pompage accrue par la paroi poreuse séparative dans le cas des boucles fluides, et des limites de fonctionnement induites par la séparation physique des phases qui n'existent pas dans le système à caloduc du fait de la coexistence des phases liquide et vapeur.This difference is major because it leads to a behavior totally different from the system with an increased pumping pressure by the separative porous wall in the case of fluid loops, and operating limits induced by the physical separation of phases that do not exist in the heat pipe system due to the coexistence of the liquid and vapor phases.
De même, cet art antérieur
Un document
Un autre document antérieur relatif aux boucles fluides,
Claims (7)
- Satellite comprising a heat pipe for the thermal control of electronic equipments, said heat pipe being formed by a closed cavity containing a two-phase fluid, characterized in that the heat pipe comprises:- at least one heat exchange zone comprising a flat enclosure (1) configured in the form of a volume of which one dimension is significantly smaller than the other two, typically at least ten times smaller, said flat enclosure (1) having a first capillary structure (8), formed by a porous structure, over all or part of its inner surface, enabling the fluid in its liquid form to wet said first capillary structure (8),- at least one heat transport zone configured in the form of at least one tube (2), of circular cross section, having a second capillary structure (7) over all or part of its inner face,- the second capillary structure (7) is formed by grooves,- said flat enclosure (1) and said at least one tube (2) are connected such that vapour can circulate freely in all of the cavity, and such that a continuity of capillarity is ensured between the porous structure and the grooves such that the liquid can wet the entire capillary structure thus formed.
- Satellite according to Claim 1, characterized in that, in the case of a plurality of tubes (2) connected to one and the same flat enclosure (1), said tubes (2) have vapour ducts of which the sum of the passage cross sections is substantially equal to the vapour passage cross section of said flat enclosure (1).
- Satellite according to either of Claims 1 and 2, characterized in that the heat transport zone comprises a zone of increased deformability in at least one predetermined direction.
- Satellite according to any one of Claims 1 to 3, characterized in that the heat pipe comprises two substantially planar flat enclosures (1, 1') situated in different planes and connected by a tube (2) having two twisting zones (14, 15), said twisting zones (14, 15) being arranged in at least two different planes.
- Satellite according to any one of Claims 1 to 4, characterized in that the flat enclosure (1) has a shape comprising at least two substantially planar zones (11, 12) extending in two separate planes and connected by an edge.
- Satellite according to any one of Claims 1 to 5, characterized in that the thickness of the flat enclosure (1) is substantially equal to the diameter of the tube (2).
- Satellite according to any one of Claims 1 to 6, characterized in that a part of the outer surface of the flat enclosure (1) has a locally cylindrical shape.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1202035A FR2993649B1 (en) | 2012-07-18 | 2012-07-18 | THERMAL CONTROL DEVICE |
PCT/EP2013/065236 WO2014013035A1 (en) | 2012-07-18 | 2013-07-18 | Temperature control device |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2861928A1 EP2861928A1 (en) | 2015-04-22 |
EP2861928B1 true EP2861928B1 (en) | 2017-12-06 |
EP2861928B8 EP2861928B8 (en) | 2018-01-17 |
Family
ID=46889131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13739684.2A Active EP2861928B8 (en) | 2012-07-18 | 2013-07-18 | Temperature control device |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2861928B8 (en) |
ES (1) | ES2659748T3 (en) |
FR (1) | FR2993649B1 (en) |
WO (1) | WO2014013035A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109780903A (en) * | 2017-11-10 | 2019-05-21 | 双鸿电子科技工业(昆山)有限公司 | Radiator |
FR3122252B1 (en) | 2021-04-26 | 2023-04-28 | Airbus Defence & Space Sas | Thermomechanical structure for focal plane of space observation instrument |
WO2023020682A1 (en) * | 2021-08-17 | 2023-02-23 | Huawei Technologies Co., Ltd. | Heat pipe for electronic components and electronic device comprising heat pipe |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110232874A1 (en) * | 2010-03-26 | 2011-09-29 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Heat dissipation apparatus with heat pipe |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100491888C (en) * | 2005-06-17 | 2009-05-27 | 富准精密工业(深圳)有限公司 | Loop type heat-exchange device |
US20090114374A1 (en) * | 2006-02-22 | 2009-05-07 | Kyushu University, National University Corporation | Heat removal method and heat removal apparatus |
US20080289801A1 (en) * | 2007-05-02 | 2008-11-27 | Batty J Clair | Modular Thermal Management System for Spacecraft |
CN103080689B (en) * | 2010-10-14 | 2016-08-10 | 富士通株式会社 | Annular heat pipe and electronic equipment |
-
2012
- 2012-07-18 FR FR1202035A patent/FR2993649B1/en not_active Expired - Fee Related
-
2013
- 2013-07-18 ES ES13739684.2T patent/ES2659748T3/en active Active
- 2013-07-18 EP EP13739684.2A patent/EP2861928B8/en active Active
- 2013-07-18 WO PCT/EP2013/065236 patent/WO2014013035A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110232874A1 (en) * | 2010-03-26 | 2011-09-29 | Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. | Heat dissipation apparatus with heat pipe |
Also Published As
Publication number | Publication date |
---|---|
ES2659748T3 (en) | 2018-03-19 |
EP2861928B8 (en) | 2018-01-17 |
WO2014013035A1 (en) | 2014-01-23 |
FR2993649A1 (en) | 2014-01-24 |
FR2993649B1 (en) | 2014-08-08 |
EP2861928A1 (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2069201B1 (en) | Device for controlling thermal flux in a spacecraft and spacecraft equipped with such a device | |
EP2344827B1 (en) | Thermal control device with network of interconnected capillary heat pipes | |
EP2795226B1 (en) | Cooling device | |
EP3207324B1 (en) | Flat heat pipe with reservoir function | |
EP3212503B1 (en) | Artificial satellite and method for filling a tank of propellent gas of said artificial satellite | |
EP3011249B1 (en) | Cooling of electronic and/or electrical components by pulsed heat pipe and heat conduction element | |
EP2861928B1 (en) | Temperature control device | |
WO2016193618A1 (en) | Artificial satellite | |
EP2673586B1 (en) | Heat-absorbing device with phase-change material | |
EP3347667B1 (en) | Heat exchange device for artificial satellite, wall and assembly of walls comprising such a heat exchange device | |
WO2011120995A1 (en) | Device for thermally controlling an electron tube having a radiating collector, comprising a screen, a fluid loop and a high-temperature radiator | |
FR2945857A1 (en) | Device for transmitting heat energy to gaseous or liquid fluid in e.g. solar thermal station, has frame supporting mobile structure for aligning structure so as to maintain solar light in common optical plane of mirrors | |
EP0116503B1 (en) | Procedure for constructing a thermal-energy storage device and device so constructed | |
FR2459556A1 (en) | METHOD AND DEVICE FOR TRANSFERRING HEAT BETWEEN AT LEAST TWO HEAT SOURCES TO KEEP THEM AT DIFFERENT THERMAL LEVELS | |
EP4323711B1 (en) | Two-phase heat-transfer device with liquid overflow tank | |
WO2024027962A1 (en) | Heat exchanger | |
FR2750481A1 (en) | Dual element cryogenic pulsed gas cooler used for cooling miniature elements | |
WO2024104573A1 (en) | Two-phase unidirectional heat transfer structure | |
FR3082297A1 (en) | THERMAL REGULATION DEVICE FOR AT LEAST ONE ELECTRIC ENERGY STORAGE ELEMENT OF A MOTOR VEHICLE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20160622 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170825 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AIRBUS DEFENCE AND SPACE SAS |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 952764 Country of ref document: AT Kind code of ref document: T Effective date: 20171215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: LA PRIORITE A ETE DECLAREE RETROACTIVEMENT PAR L'OEB |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013030425 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2659748 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180319 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171206 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180306 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 952764 Country of ref document: AT Kind code of ref document: T Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180306 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013030425 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230724 Year of fee payment: 11 Ref country code: ES Payment date: 20230808 Year of fee payment: 11 Ref country code: CH Payment date: 20230801 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240729 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240729 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240730 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240729 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 12 |