EP2856620A1 - Elektronisch kommutierter gleichstrommotor mit abschirmung - Google Patents

Elektronisch kommutierter gleichstrommotor mit abschirmung

Info

Publication number
EP2856620A1
EP2856620A1 EP13719115.1A EP13719115A EP2856620A1 EP 2856620 A1 EP2856620 A1 EP 2856620A1 EP 13719115 A EP13719115 A EP 13719115A EP 2856620 A1 EP2856620 A1 EP 2856620A1
Authority
EP
European Patent Office
Prior art keywords
rotor unit
motor
motor according
sintered bearing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13719115.1A
Other languages
English (en)
French (fr)
Inventor
Andreas Schiel
Zsolt DUDAS
Joerg Brandes
Siegmar Schoser
Tamas Banky
Tobias ROTHFUSS
Michael Maelzer
Detlef Prahl
Michael Hermann
Juergen Munz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2856620A1 publication Critical patent/EP2856620A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the invention relates to a DC motor, with a stator and a rotor unit which is rotatably connected to an electrically conductive shaft which is rotatably mounted in at least one fixed sintered bearing, and with a shield against high-frequency electromagnetic fields.
  • a generic DC motor is known for example from DE 1 638 216 A1. It is also known, on the rotor unit opposite end face of the stator, ie in the region of a bottom or base plate of the stator, an electrically connected to ground metal plate for
  • EC Electronically Commutated
  • BLDC Brushless Direct Current
  • EC Electronically Commutated
  • BLDC Brushless Direct Current
  • the opposite further shielding can be realized by a metallic rotor mounted close to the stator.
  • a metallic rotor mounted close to the stator.
  • it is not sufficient to surround the components to be shielded with conductors, but they must be contacted at ground potential. Otherwise, in the worst case, it may happen that the shield, even in the function of an antenna, inputs or decouples high-frequency energy and thus aggravates the interference problem.
  • the required electrical connection to the rotating rotor shielding is not readily possible. Although it can be done in a known manner via a sliding contact, but this requires additional components and is considered problematic in terms of life.
  • Device in particular a circuit which is surrounded by a conductive cap, known to arrange flat areas of the cap electrically isolated at a small distance parallel to a flat region of a conductor of a reference potential, so that a capacitive coupling of the cap to the reference potential arises.
  • the object of the invention is achieved by the DC motor according to claim 1. Further advantageous embodiments of the invention will become apparent from the dependent claims and the description.
  • the shielding of the rotor unit is conductively connected to the shaft for connecting a conductive shield formed on the rotor unit to a defined electrical potential.
  • the sintered bearing is conductively connected to the potential, so that a capacitive coupling of the shielding of the rotor unit to the potential is produced via the electrically at least partially insulating oil-filled bearing gap arranged between the shaft and the sintered bearing.
  • the invention is based on the idea to use by means of the sintered bearing, especially in the high-frequency range electrically conductive connection, namely a capacitive electrical coupling to electrically connect the rotating shaft to a fixed bearing bush and thus ultimately the rotor shield electrically to the Contact reference potential.
  • electrically conductive connection namely a capacitive electrical coupling to electrically connect the rotating shaft to a fixed bearing bush and thus ultimately the rotor shield electrically to the Contact reference potential.
  • the rotor unit comprises a cup-shaped metallic pole housing forming the shield, so that the rotor unit essentially forms itself the shield in this area of the motor.
  • the shaft is rotatably mounted in a first and second, axially spaced sintered bearing, which are each conductively connected to the defined potential, so that two parallel capacitive couplings of the wave arise to the potential.
  • the higher capacitance allows the high-frequency noise generated by the motor, which couple into the rotor shield, to be better dissipated via the capacitive coupling to the ground potential.
  • a metal plate connected to the defined potential is provided for further shielding of the motor in the axial direction opposite the shielding of the rotor unit, which is arranged on the end face of the stator unit facing away from the rotor unit and which has at least one connection device a terlager is conductively connected to produce the capacitive coupling. This allows the complete shielding of the motor.
  • connection means comprise a pin, preferably integrally connected to the metal plate, extending in the axial direction from the metal plate through the stator unit into the region of de - Ren the rotor unit facing end side extends.
  • This pin opens up the possibility of easy contacting of the upper sintered bearing.
  • the pin is enveloped near its free end with a dome-shaped plastic extrusion, so that moisture can not penetrate into the motor from its free end.
  • a fan is rotatably attached to the shaft outside of the rotor unit, so that the DC motor is designed or used as a blower motor with integrated commutation.
  • the DC motor is designed or used as a blower motor with integrated commutation.
  • FIG. 1 shows a perspective, partially cut-away view of a DC motor according to the invention with a fan wheel
  • FIG. 2 shows the DC motor according to FIG. 1, without a fan wheel, but with a cut stator and rotor unit, FIG.
  • FIG. 3 shows a perspective view of a housing flange made of plastic with dome-shaped pins
  • FIG. 4 shows a view of a metal plate with a pin connected to the shield in the axial direction for the electrical connection of the metal plate to a sintered bearing
  • FIG. 5 shows a perspective view of components of the shielding of the DC motor according to the invention
  • FIG. 6 shows an enlarged partial view of the components of FIG. 5.
  • FIG. 1 shows a section through the air duct 4 of an embodiment of the DC motor according to the invention.
  • a preferred use of the flat-type DC motor is in use as a fan for the air conditioning of a motor vehicle.
  • a corresponding fan 2 is attached to the rotating shaft 3, which sucks in air from the exterior of the vehicle via the air duct 4.
  • the rotatably mounted on the shaft 3 arranged rotor unit 1 consists of a metallic cup-shaped pole housing, on the inside of which magnets are attached, which in operation of the electric motor in a conventional manner interact with the coils of the stator 5, which, in the pot of Rotor unit 1 and arranged on the
  • Housing flange 6 is attached.
  • the formed as a dome-shaped bush bearing sintered bearings 8 and 9 sit in the so-called insulating mask of the stator 5, wherein in each case a clamping glasses 10 and 11 is provided which presses the respective sintered bearing in the respective seat.
  • the known sintered bearings are plain bearings, which consist for example of sintered iron, a very porous material that can accommodate a large amount of lubricant (oil) during operation.
  • FIG. 1 a circuit board with the commutation electronics for the BLDC motor is arranged below the housing flange 6, a circuit board with the commutation electronics for the BLDC motor is arranged below the housing flange 6, a circuit board with the commutation electronics for the BLDC motor is arranged. Recognizable in Figure 1 are also connection pins 7, which forward the commutation signals from the electronics to the coils of the stator 5. In Figure 3, the housing flange 6 is shown alone, with four (two for each terminal pin 7 of the two coils) with the
  • Plastic of the flange 6 overmolded dome 12 are provided. Recesses for the dome-like plastic encapsulations 12 are provided in the stator unit 5, so that the stator unit 5 can be placed (elastically) on the domes 12, the area around the connection pins 7 being sealed in a moisture-tight manner by the domes 12. Without the dome 12, an undesirable Tes penetration of moisture from the sucked outside air in the DC motor practically unavoidable.
  • Shaft 3 is possible because there is an oil-filled bearing gap between the two conductive parts, which indeed contains more or less metallic abrasion, but does not permit sufficient ohmic connection, in particular not in all operating states.
  • a capacitive coupling, in particular via the first, upper sintered bearing 8, is realized instead.
  • a pin 14 which is integrally connected to the metal plate 13, is provided, which extends axially into the region of the end face of the stator unit 5 facing the rotor unit 1. Also, this pin 14 is, as seen in Figure 3, provided with a dome-shaped plastic extrusion 12.
  • the electrical contacting is advantageously carried out on the clamping goggles 10 of the sintered bearing 8, that is, over the way: electrical contact, clamping gland, sintered bearing, lubricating gap, shaft, rotor unit (pole housing), cf. FIG. 5 and FIG.
  • the connecting device from the reference plate placed on the metal plate 13 to the outer surface of the sintered bearing 8, or the clamping glasses 10, comprises, in addition to the pin 14, an axially disposed first contact spring 15 which is resiliently applied to the first sintered bearing 8, in particular on a conductive first clamping glasses 10, which presses the first bearing 8 in his seat.
  • a second axially extending contact spring 16 electrically and mechanically connected, in the region of its free end resiliently on the second sintered bearing 9, in particular on a conductive second clamping glasses 11th is present, which presses the second bearing 9 in its seat.
  • the connection direction for electrical connection of the rotor unit 1 facing ends of the pin 14 and the first contact spring 15 comprises a strand 17, see Figure 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Bei einem elektronisch kommutierten Gleichstrommotor, mit einer Statoreinheit (5) und einer als Außenläufer ausgebildeten Rotoreinheit (1), und mit feststehen den Sinterlagern (8, 9), wird erfindungsgemäß vorgeschlagen, dass zur Anbindung einer an der Rotoreinheit (1) ausgebildeten leitenden Schirmung an ein definiertes elektrisches Potenzial die Rotoreinheit (1) mit der Welle (3) leitend verbunden ist, und dass das Sinterlager (8, 9) leitend mit dem Potenzial verbunden ist, so dass über den zwischen der Welle (3) und dem Sinterlager (8, 9) angeordneten, elektrisch isolierenden ölgefüllten Lagerspalt eine kapazitive Kopplung der Schirmung der Rotoreinheit (1) an das Potenzial entsteht. Somit ist ein Schleifkontakt nicht erforderlich.

Description

Elektronisch kommutierter Gleichstrommotor mit Abschirmung Stand der Technik
Die Erfindung betrifft einen Gleichstrommotor, mit einer Statoreinheit und einer Rotoreinheit, die drehfest mit einer elektrisch leitenden Welle verbunden ist, die in mindestens einem feststehenden Sinterlager drehbar gelagert ist, und mit ei- ner Abschirmung gegen hochfrequente elektromagnetische Felder.
Ein gattungsgemäßer Gleichstrommotor ist beispielsweise aus der DE 1 638 216 A1 bekannt. Dabei ist es auch bekannt, an der der Rotoreinheit gegenüberliegenden Stirnseite der Statoreinheit, also im Bereich einer Boden- oder Grund- platte der Statoreinheit, eine elektrisch an Masse angebundene Metallplatte zur
Abschirmung in diese axiale Richtung vorzusehen.
Die vorliegende Erfindung geht von einem bürstenlosen, elektronisch kommutierter Gleichstrommotor (EC = Electronically Commutated oder auch BLDC = Brushless Direct Current) in Flachbauweise aus, bei dem also die axiale Ausdehnung des Motors im Verhältnis zu seinem Durchmesser klein ist. Dies wird im Wesentlichen durch die bekannte Außenläuferbauart erreicht, bei der die Rotoreinheit die Statoreinheit außen umläuft. Konventionelle BLDC-Motoren kleiner Leistung strahlen über ihre Wicklung elektromagnetische Wellen während des Motorbetriebes ab. Diese abgestrahlten Wellen können im Rahmen von EMV-Prüfungen gemessen werden und sind in vielen technischen Umgebungen, beispielsweise Kraftfahrzeugen, die andere, elektrisch störempfindliche Geräte beinhalten, unerwünscht. Zur Reduktion dieser ab- gestrahlten Wellen können metallische Schirmungen in Wicklungsnähe, insbesondere die zuvor in Bezug zum gattungsgemäßen Gleichstrommotor erwähnte bodenseitige Metallplatte, angebracht werden. Beim Außenläufer kann die gegenüberliegende weitere Schirmung durch einen - nahe am Stator angebrachten - metallischen Rotor realisiert werden. Zum Erreichen einer wirksamen Abschirmung ist es nicht hinreichend, die abzuschirmenden Bauteile mit Leitern zu um- geben, sondern diese müssen auf Massepotenzial kontaktiert werden. Ansonsten kann es im schlimmsten Fall dazu kommen, dass die Abschirmung selbst in der Funktion einer Antenne hochfrequente Energie ein- oder auskoppelt und damit das Störproblem noch verschlimmert. Die damit erforderliche elektrische Anbin- dung an die drehende Rotor-Abschirmung ist jedoch nicht ohne weiteres möglich. Sie kann zwar in bekannter Weise über einen Schleifkontakt erfolgen, was jedoch Zusatzbauteile erfordert und auch hinsichtlich der Lebensdauer als problematisch gilt.
Aus der DE 10 2007 019 431 A1 ist es bei einem Bürstenmotor im Rahmen von Entstörmaßnahmen bekannt, die Rotorwelle über ein Lager der Welle und eine das Lager kontaktierende Verbindungseinrichtung elektrisch leitend mit einem Bezugspotenzial, insbesondere einem Versorgungspotenzial, galvanisch zu koppeln. Aus der DE 10 2006 024 551 A1 ist es zur Abschirmung einer elektronischen
Einrichtung, insbesondere einer Schaltung, die mit einer leitfähigen Kappe umgeben ist, bekannt, flächige Bereiche der Kappe elektrisch isoliert in geringem Abstand parallel zu einem flächigen Bereich eines Leiters eines Bezugspotenzials anzuordnen, so dass eine kapazitive Kopplung der Kappe an das Bezugspo- tenzial entsteht.
Offenbarung der Erfindung
Es ist daher Aufgabe der Erfindung, einen verbesserten Gleichstrommotor der eingangs genannten Art zu schaffen, der hinsichtlich der Schirmung eine einfache und wenig aufwändige leitfähige Kontaktierung des drehenden Rotors gewährleistet.
Die Aufgabe der Erfindung wird durch den Gleichstrommotor gemäß Patentanspruch 1 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung. Bei dem erfindungsgemäßen Gleichstrommotor wird, über die gattungsgemäßen Merkmale hinaus, zur Anbindung einer an der Rotoreinheit ausgebildeten leitenden Schirmung an ein definiertes elektrisches Potenzial die Schirmung der Rotoreinheit mit der Welle leitend verbunden. Weiter erfindungsgemäß ist das Sinterlager leitend mit dem Potenzial verbunden, so dass über den zwischen der Welle und dem Sinterlager angeordneten, elektrisch mindestens teilweise isolierenden ölgefüllten Lagerspalt eine kapazitive Kopplung der Schirmung der Rotoreinheit an das Potenzial entsteht.
Der Erfindung liegt die Idee zu Grunde, mittels des Sinterlagers eine besonders im hochfrequenten Bereich elektrisch leitfähige Verbindung, nämlich eine kapazitive elektrische Kopplung, zu nutzen, um die rotierende Welle an eine feststehende Lagerbuchse elektrisch leitfähig anzubinden und somit letztlich die Rotor- Abschirmung elektrisch mit dem Bezugspotenzial kontaktieren zu können. Vorteilhafterweise kann damit der sonst zur Kontaktierung des drehenden Rotors erforderliche Schleifkontakt entfallen.
Gemäß einer ersten Weiterbildung der Erfindung umfasst die Rotoreinheit ein die Schirmung bildendes topfförmig ausgebildetes metallisches Polgehäuse, so dass die Rotoreinheit im Wesentlichen selbst die Schirmung in diesem Bereich des Motors bildet.
Bei einer als besonders vorteilhaft angesehenen weiteren Weiterbildung der Erfindung ist die Welle in einem ersten und zweiten, axial beabstandeten Sinterlager drehbar gelagert, die jeweils mit dem definierten Potenzial leitend verbunden sind, so dass zwei parallel geschaltete kapazitive Kopplungen der Welle an das Potenzial entstehen. Durch die höhere Kapazität können die vom Motor erzeugten hochfrequenten Störungen, die in die Rotor-Schirmung einkoppeln, besser über die kapazitive Kopplung zum Massepotenzial abgeleitet werden.
Gemäß einer weiteren Weiterbildung der Erfindung ist zur weiteren Abschirmung des Motors in die der Schirmung der Rotoreinheit gegenüberliegende axiale Richtung eine an das definierte Potenzial angebundene Metallplatte vorgesehen, die auf der von der Rotoreinheit abgewandten Stirnseite der Statoreinheit angeordnet ist, und die über eine Verbindungseinrichtung mit mindestens einem Sin- terlager leitend verbunden ist, um die kapazitive Kopplung herzustellen. Dadurch ist die komplette Schirmung des Motors ermöglicht.
Da es sich bei Messungen herausgestellt hat, dass es günstiger ist, mindestens das obere, erste Sinterlager, das im Bereich der der Rotoreinheit zugewandten
Stirnseite der Statoreinheit angeordnet ist, zur kapazitive Ankopplung zu nutzen, ist es von Vorteil, dass die Verbindungseinrichtung einen, vorzugsweise einstückig mit der Metallplatte verbundenen, Pin umfasst, der sich in axialer Richtung von der Metallplatte durch die Statoreinheit hindurch bis in den Bereich von de- ren der Rotoreinheit zugewandten Stirnseite erstreckt. Von diesem Pin aus eröffnet sich die Möglichkeit einer einfachen Kontaktierung des oberen Sinterlagers. In einer Weiterbildung dieser Ausführungsform ist der Pin bis nahe seinem freien Ende mit einer domartigen Kunststoffumspritzung umhüllt, so dass von seinem freien Ende her keine Feuchtigkeit in den Motor eindringen kann.
Bevorzugt ist außerhalb der Rotoreinheit ein Lüfterrad drehfest an der Welle befestigt, so dass der Gleichstrommotor als Gebläsemotor mit integrierter Kommutierungselektronik ausgebildet beziehungsweise einsetzbar ist. Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher beschrieben. Dabei zeigen
Figur 1 eine perspektivische teilweise geschnittene Darstellung eines erfindungsgemäßen Gleichstrommotors mit Lüfterrad,
Figur 2 den Gleichstrommotor gemäß Figur 1 , ohne Lüfterrad, jedoch mit geschnittener Stator- und Rotoreinheit,
Figur 3 eine perspektivische Ansicht eines Gehäuseflansch aus Kunststoff mit domartig umspritzten Pins,
Figur 4 eine Ansicht einer zur Abschirmung in axialer Richtung dienenden Metallplatte mit angebundenem Pin zur elektrischen Verbindung der Metallplatte mit einem Sinterlager, Figur 5 eine perspektivische Ansicht von Komponenten der Abschirmung des erfindungsgemäßen Gleichstrommotors,
Figur 6 eine vergrößerte Teilansicht der Komponenten von Figur 5.
In Figur 1 ist ein Schnitt durch den Luftkanal 4 eines Ausführungsbeispiels des erfindungsgemäßen Gleichstrommotors dargestellt. Eine bevorzugte Verwendung des flachbauenden Gleichstrommotors besteht im Einsatz als Lüfter für die Klimaanlage eines Kraftfahrzeugs. Dazu ist an der rotierenden Welle 3 ein ent- sprechendes Lüfterrad 2 befestigt, das über den Luftkanal 4 Luft aus dem Außenbereich des Fahrzeugs ansaugt. Die ebenfalls drehfest an der Welle 3 angeordnete Rotoreinheit 1 besteht aus einem metallischen topfförmig ausgebildeten Polgehäuse, an dessen Innenseite Magnete befestigt sind, die im Betrieb des Elektromotors in an sich bekannter Weise in Wechselwirkung mit den Spulen der Statoreinheit 5 treten, die ,im Topf der Rotoreinheit 1 angeordnet und auf dem
Gehäuseflansch 6 befestigt ist. Die Lagerung der rotierenden Welle 3 in einem ersten und zweiten Sinterlager 8 beziehungsweise 9, deren axiale Beabstandung in etwa der Bauhöhe der Statoreinheit 5 entspricht, ist in Figur 2 erkennbar. Die als kalottenförmige Buchsenlager ausgebildeten Sinterlager 8 und 9 sitzen in der so genannten Isoliermaske der Statoreinheit 5, wobei jeweils eine Klemmbrille 10 beziehungsweise 11 vorgesehen ist, die das jeweilige Sinterlager in den jeweiligen Sitz presst. Die an sich bekannten Sinterlager sind Gleitlager, die beispielsweise aus Sintereisen, einem sehr porösen Material, bestehen, das im Betrieb einen großen Schmierstoffvorrat (Öl) aufnehmen kann.
Unterhalb des Gehäuseflansch 6 ist eine Leiterplatte mit der Kommutierungselektronik für den BLDC-Motor angeordnet. Erkennbar in Figur 1 sind ferner Anschlusspins 7, die die Kommutierungssignale von der Elektronik an die Spulen der Statoreinheit 5 weiterleiten. In Figur 3 ist der Gehäuseflansch 6 alleine dar- gestellt, wobei vier (je zwei für jeden Anschlusspin 7 der beiden Spulen) mit dem
Kunststoff des Flansch 6 umspritzte Dome 12 vorgesehen sind. In der Statoreinheit 5 sind Ausnehmungen für die domartigen Kunststoffumspritzungen 12 vorgesehen, so dass die Statoreinheit 5 auf die Dome 12 (elastisch) aufsetzbar ist, wobei der Bereich um die Anschlusspins 7 herum durch die Dome 12 feuchtig- keitsdicht verschlossen ist. Ohne die Dome 12 wäre ansonsten ein unerwünsch- tes Eindringen von Feuchtigkeit aus der angesaugten Außenluft in den Gleichstrommotor praktisch nicht zu vermeiden.
Da die Trägerfrequenz der Kommutierungssignale 23 kHz beträgt, werden hochfrequente elektromagnetische Felder erzeugt, die eine Abschirmung des
Gleichstrommotors erforderlich machen. Dazu ist zunächst, in an sich bekannter Weise, an der bodenseitigen Stirnfläche der Statoreinheit 5, genauer: unterhalb des Gehäuseflansch 6, eine Metallplatte 13, vergleiche Figur 4, mit (nicht dargestelltem) Masseanschluss vorgesehen, die als magnetische Abschirmung des Motors in diese axiale Richtung dient. Um die weitere Schirmung des Motors mittels des Polgehäuses der Rotoreinheit 1 , beziehungsweise einer daran angebrachten leitfähigen Schirmung zu realisieren, ist eine leitfähige Kontaktierung der Rotoreinheit 1 mit der an Masse angeschlossenen Metallplatte 13 erforderlich, was aufgrund der rotierenden Bewegung nicht ohne weiteres möglich ist. Beispielsweise ist keine konventionelle galvanische Kopplung via Lager 8 und
Welle 3 möglich, da sich zwischen den beiden leitfähigen Teilen der ölgefüllte Lagerspalt befindet, der zwar mehr oder weniger metallischen Abrieb enthält, jedoch keine, insbesondere nicht in allen Betriebszuständen, ausreichende ohm- sche Verbindung ermöglicht. Erfindungsgemäß wird stattdessen eine kapazitive Kopplung insbesondere über das erste, obere Sinterlager 8, realisiert.
Um eine elektrische Kontaktierung des ersten Sinterlagers 8 zu ermöglichen, ist, wie in Figur 4 dargestellt, ein mit der Metallplatte 13 einstückig verbundener Pin 14 vorgesehen, der sich axial bis in den Bereich der der Rotoreinheit 1 zuge- wandten Stirnseite der Statoreinheit 5 erstreckt. Auch dieser Pin 14 ist, wie in Figur 3 erkennbar, mit einer domartigen Kunststoffumspritzung 12 versehen.
Die elektrische Kontaktierung erfolgt vorteilhaft an der Klemmbrille 10 des Sinterlagers 8, also über den Weg: elektrischer Kontakt, Klemmbrille, Sinterlager, Schmierspalt, Welle, Rotoreinheit (Polgehäuse), vergleiche Figur 5 und Figur 6.
Die Verbindungseinrichtung von der auf Bezugspotenzial gelegten Metallplatte 13 zur Außenfläche des Sinterlagers 8, beziehungsweise der Klemmbrille 10, umfasst, neben dem Pin 14, eine axial angeordnete erste Kontaktfeder 15, die federnd am ersten Sinterlager 8, insbesondere an einer leitfähigen ersten Klemmbrille 10 anliegt, die das erste Lager 8 in seinen Sitz presst. Vorteilhafterweise ist, zur Vervollständigung der Verbindungseinrichtung zur Kontaktierung beider Lager 8 und 9, an das von der Rotoreinheit 1 abgewandte Ende der ersten Kontaktfeder 15 eine zweite, sich axial erstreckende Kontaktfeder 16 elektrisch und mechanisch angebunden, die im Bereich ihres freien Endes federnd am zweiten Sinterlager 9, insbesondere an einer leitfähigen zweiten Klemmbrille 11 anliegt, die das zweite Lager 9 in seinen Sitz presst. Ferner umfasst die Verbindungsrichtung zur elektrischen Verbindung der der Rotoreinheit 1 zugewandten Enden des Pins 14 und der ersten Kontaktfeder 15 eine Litze 17, vergleiche Figur 6.

Claims

Ansprüche
1. Gleichstrommotor, mit einer Statoreinheit (5) und einer Rotoreinheit (1), die drehfest mit einer elektrisch leitenden Welle (3) verbunden ist, die in mindes- tens einem feststehenden Sinterlager (8, 9) drehbar gelagert ist, und mit einer Abschirmung (13) gegen hochfrequente elektromagnetische Felder, dadurch gekennzeichnet,
dass zur Anbindung einer an der Rotoreinheit (1) ausgebildeten leitenden Schirmung an ein definiertes elektrisches Potenzial die Schirmung der Ro- toreinheit (1) mit der Welle (3) leitend verbunden ist, und dass das Sinterlager (8, 9) leitend mit dem Potenzial verbunden ist, so dass über den zwischen der Welle (3) und dem Sinterlager (8, 9) angeordneten, elektrisch mindestens teilweise isolierenden ölgefüllten Lagerspalt eine kapazitive Kopplung der Schirmung der Rotoreinheit (1) an das Potenzial entsteht.
2. Gleichstrommotor nach Anspruch 1 , dadurch gekennzeichnet, dass die Rotoreinheit (1) ein die Schirmung bildendes topfförmig ausgebildetes metallisches Polgehäuse umfasst. 3. Gleichstrommotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Welle (3) in einem ersten und zweiten, axial beabstandeten Sinterlager (8, 9) drehbar gelagert ist, die jeweils mit dem definierten Potenzial leitend verbunden sind, so dass zwei parallel geschaltete kapazitive Kopplungen der Welle (3) an das Potenzial entstehen.
4. Gleichstrommotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zur weiteren Abschirmung des Motors in die der Schirmung der Rotoreinheit (1) gegenüberliegende axiale Richtung eine an das definierte Potenzial angebundene Metallplatte (13) vorgesehen ist, die auf der von der Rotoreinheit (1) abgewandten Stirnseite der Statoreinheit (5) angeordnet ist, und die über eine Verbindungseinrichtung (14, 15, 16, 17) mit mindestens einem Sinterlager (8, 9) leitend verbunden ist.
Gleichstrommotor nach Anspruch 4, dadurch gekennzeichnet, dass das erste Sinterlager (8) im Bereich der der Rotoreinheit (1) zugewandten Stirnseite der Statoreinheit (5) angeordnet ist, und dass die Verbindungseinrichtung (14, 15, 16, 17) einen, vorzugsweise einstückig mit der Metallplatte (13) verbundenen, Pin (14) umfasst, der sich in axialer Richtung von der Metallplatte
(13) durch die Statoreinheit (5) hindurch bis in den Bereich von deren der Rotoreinheit (1) zugewandten Stirnseite erstreckt.
Gleichstrommotor nach Anspruch 5, dadurch gekennzeichnet, dass der Pin
(14) bis nahe seinem freien Ende mit einer domartigen Kunststoffumsprit- zung (12) umhüllt ist.
Gleichstrommotor nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Verbindungseinrichtung eine axial angeordnete erste Kontaktfeder (15) umfasst, die federnd am ersten Sinterlager (8), insbesondere an einer elektrisch leitenden ersten Klemmbrille (10), anliegt, die das erste Lager (8) in seinen Sitz presst.
Gleichstrommotor nach Anspruch 7, dadurch gekennzeichnet, dass an das von der Rotoreinheit (1) abgewandte Ende der ersten Kontaktfeder (15) eine zweite, sich axial erstreckende Kontaktfeder (16) elektrisch leitend angebunden ist, die im Bereich ihres freien Endes federnd am zweiten Sinterlager (9), insbesondere an einer elektrisch leitenden zweiten Klemmbrille (1 1), anliegt, die das zweite Lager (9) in seinen Sitz presst.
Gleichstrommotor nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die der Rotoreinheit (1) zugewandten Enden des Pins (14) und der ersten Kontaktfeder (15) mittels einer Litze (17) elektrisch miteinander verbunden sind.
10. Gleichstrommotor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass außerhalb der Rotoreinheit (1) ein Lüfterrad (2) drehfest an der Welle (3) befestigt ist, und dass der Gleichstrommotor als Gebläsemotor mit integrierter Kommutierungselektronik ausgebildet ist.
EP13719115.1A 2012-05-25 2013-04-29 Elektronisch kommutierter gleichstrommotor mit abschirmung Withdrawn EP2856620A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012208847A DE102012208847A1 (de) 2012-05-25 2012-05-25 Elektronisch kommutierter Gleichstrommotor mit Abschirmung
PCT/EP2013/058895 WO2013174626A1 (de) 2012-05-25 2013-04-29 Elektronisch kommutierter gleichstrommotor mit abschirmung

Publications (1)

Publication Number Publication Date
EP2856620A1 true EP2856620A1 (de) 2015-04-08

Family

ID=48190990

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13719115.1A Withdrawn EP2856620A1 (de) 2012-05-25 2013-04-29 Elektronisch kommutierter gleichstrommotor mit abschirmung

Country Status (5)

Country Link
US (1) US9673686B2 (de)
EP (1) EP2856620A1 (de)
CN (1) CN104303402B (de)
DE (1) DE102012208847A1 (de)
WO (1) WO2013174626A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012208847A1 (de) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Elektronisch kommutierter Gleichstrommotor mit Abschirmung
DE102015013541B4 (de) * 2015-10-19 2023-10-05 Audi Ag Verfahren zum Betrieb einer Elektromaschine
DE102016210314A1 (de) * 2016-06-10 2018-01-11 Robert Bosch Gmbh Abgeschirmter Elektromotor
DE102016211230A1 (de) * 2016-06-23 2017-12-28 Robert Bosch Gmbh Verschaltungsvorrichtung eines Stators, elektrische Maschine beinhaltend eine solche Verschaltungsvorrichtung, und Verfahren zum Herstellen einer solchen
CN107846116A (zh) * 2016-09-18 2018-03-27 德昌电机(深圳)有限公司 电机及电机组件
DE102017210734A1 (de) * 2017-06-26 2018-12-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotorischer Antrieb für ein Kraftfahrzeug
DE102018107408B4 (de) * 2018-03-28 2022-10-27 Schunk Carbon Technology Gmbh Ableitvorrichtung zur Ableitung elektrischer Ströme
CN110401301B (zh) * 2019-07-29 2021-12-07 广东美的白色家电技术创新中心有限公司 一种直流无刷电机及家用电器
DE102021202249A1 (de) 2021-03-09 2022-09-15 Mahle International Gmbh Elektrische Maschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045829A1 (de) * 2009-09-18 2011-04-14 Johnson Electric S.A. Bürstenloser DC Motor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1638216A1 (de) 1968-02-07 1971-07-01 Hornstein Wolf Freiherr Von Buerstenloser Gleichstrommotor
USRE38673E1 (en) * 1980-05-10 2004-12-21 Papst Licensing Gmbh & Co. Kg Disk storage device having a hub sealing member feature
USRE38662E1 (en) * 1980-05-10 2004-11-30 Papst Licensing Gmbh & Co. Kg Disk storage device having a sealed bearing tube
CH670323A5 (de) * 1985-03-30 1989-05-31 Papst Motoren Gmbh & Co Kg
US4779165A (en) * 1981-09-07 1988-10-18 Papst-Motoren Gmbh & Co. Kg Disk storage drive
USRE38772E1 (en) * 1981-03-18 2005-08-09 Papst Licensing Gmbh & Co. Kg Disk storage device having an undercut hub member
US5243242A (en) * 1987-05-29 1993-09-07 Papst-Motoren Gmbh & Co. Kg In-hub motor
MY113834A (en) 1990-06-01 2002-06-29 Mitsubishi Electric Corp Electric motor
US5313129A (en) 1993-08-05 1994-05-17 Ametek Technical Motor Division Sleeve bearing ground lead for motors
US6202285B1 (en) * 1998-01-16 2001-03-20 Reliance Electric Technologies, Llc Electric motor having electrostatic shield arrangement
US6809898B1 (en) * 2000-01-13 2004-10-26 Maxtor Corporation Disk drive rocking mode vibration damper
DE60111436T2 (de) * 2000-02-21 2006-05-11 Canon K.K. Entwickler, Bildherstellungsverfahren und Prozesskartusche
DE20021796U1 (de) * 2000-12-22 2002-05-02 Ebm Werke Gmbh & Co Kg Elektromotor, insbesondere Außenläufermotor, und Gebläse mit einem solchen Elektromotor
US6670733B2 (en) * 2001-09-27 2003-12-30 Reliance Electric Technologies, Llc System and method of reducing bearing voltage
US7659648B2 (en) * 2004-03-10 2010-02-09 Comair Rotron Inc. Motor with raised rotor
ATE439695T1 (de) * 2006-03-13 2009-08-15 Skf Ab Verfahren und gerät zum anzeigen elektrischer entladungen in einem lager eines elektrischen antriebssystems
DE102006024551A1 (de) 2006-05-23 2007-11-29 Siemens Ag Elektrische Einrichtung mit Abschirmung
DE102006048900B4 (de) 2006-10-17 2024-02-29 Robert Bosch Gmbh Förderaggregat
DE102007019431A1 (de) 2007-04-25 2008-10-30 Robert Bosch Gmbh Elektromotor
JP5414198B2 (ja) * 2008-04-23 2014-02-12 キヤノン株式会社 コロナ帯電器及び電子写真装置
DE102010002297A1 (de) * 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 Verfahren und Vorrichtung zur Bewertung der Schädigung von Wälzlagern, insbesondere an umrichtergespeisten elektrischen Maschinen
DE102012208847A1 (de) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Elektronisch kommutierter Gleichstrommotor mit Abschirmung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045829A1 (de) * 2009-09-18 2011-04-14 Johnson Electric S.A. Bürstenloser DC Motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013174626A1 *

Also Published As

Publication number Publication date
US20150171713A1 (en) 2015-06-18
CN104303402A (zh) 2015-01-21
DE102012208847A1 (de) 2013-11-28
US9673686B2 (en) 2017-06-06
CN104303402B (zh) 2018-01-16
WO2013174626A1 (de) 2013-11-28

Similar Documents

Publication Publication Date Title
EP2856620A1 (de) Elektronisch kommutierter gleichstrommotor mit abschirmung
WO2011147499A2 (de) Elektromotor
EP2949029B1 (de) Rotierende elektrische maschine
EP2384535A2 (de) Entstörungsanordnung für eine elektrische maschine
DE112017000304T5 (de) Bürstenloser Motor
DE102017104114A1 (de) Bürstenanordnung und diese verwendender Motor
WO2008128838A1 (de) Gleichstrommotor mit einem durchführungskondensator
DE102014101340B4 (de) Drehende elektrische Maschine
DE102015112864A1 (de) Motor und Endkappenanordnung davon
EP2143190B1 (de) Elektromotor
DE102021208084A1 (de) Elektrische Maschine mit einer ein Statorgehäuse kontaktierenden Elektronikplatine
EP2665162B1 (de) Gleichstrommotor zum Antrieb von Aggregaten eines Kraftfahrzeugs
EP1668747B1 (de) Kommutator für eine elektrische maschine
DE102020210692A1 (de) Elektrische Maschine mit einer elektrisch leitenden Abschirmplatte
DE19902433C1 (de) Kommutatormotor
DE102020210693A1 (de) Elektrische Maschine mit einer eine EMV-abgeschirmte Stromdurchführung aufweisenden Elektronikplatine
WO2022043052A1 (de) Elektrische maschine mit einem elektrischen schleifkontakt
WO2005046031A1 (de) Elektrische kommutatorläufer-maschine mit entstörfilter
DE102011078226B4 (de) Antriebsvorrichtung für eine Scheibenwischeinrichtung
DE102014012739B4 (de) Elektrischer Steckverbinder, Verbinderelement und Verwendung
DE10326255A1 (de) Einrichtung zur Entstörung eines Elektromotors
WO2018091242A1 (de) Elektrische maschine
DE102007058089A1 (de) Elektromotor mit einem Motorgehäuse
DE102012102811A1 (de) Scheibenwischermotor und Entstörbaugruppe für einen Scheibenwischermotor
DE102021214282A1 (de) Elektrische Maschine mit einem elektrischen Schleifkontakt sowie Verfahren zum Herstellen einer solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190415

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190827