EP2852472B1 - Method for grinding workpieces, in particular for centring grinding of workpieces such as optical lenses - Google Patents
Method for grinding workpieces, in particular for centring grinding of workpieces such as optical lenses Download PDFInfo
- Publication number
- EP2852472B1 EP2852472B1 EP13723403.5A EP13723403A EP2852472B1 EP 2852472 B1 EP2852472 B1 EP 2852472B1 EP 13723403 A EP13723403 A EP 13723403A EP 2852472 B1 EP2852472 B1 EP 2852472B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grinding
- movement
- current
- actuator
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 43
- 230000003287 optical effect Effects 0.000 title claims description 15
- 230000033001 locomotion Effects 0.000 claims description 94
- 230000009467 reduction Effects 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 26
- 238000003754 machining Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000005068 cooling lubricant Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B9/00—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
- B24B9/02—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
- B24B9/06—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
- B24B9/08—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
- B24B9/14—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
- B24B9/148—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms electrically, e.g. numerically, controlled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B9/00—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
- B24B9/02—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
- B24B9/06—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
- B24B9/065—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B9/00—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
- B24B9/02—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
- B24B9/06—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
- B24B9/08—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
- B24B9/085—Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass for watch glasses
Definitions
- the present invention generally relates to a method of grinding workpieces by means of a grinding tool using an actuator for generating a relative feed movement between the grinding tool and the workpiece, wherein the actuator is integrated with a current controller for an actuator current determining a feed force of the actuator in a position control loop, which is traversed with a predetermined control cycle.
- the invention relates to a method for centering grinding of workpieces from the fields of fine optics (optical lenses), watch industry (watch glasses) and semiconductor industry (wafers), where workpieces are centered by means of centering initially tensioned and to be subsequently sanded on the edge.
- Lenses for lenses or the like. are "centered" after the processing of the optical surfaces, so that the optical axis, whose position is characterized by a straight line passing through the two centers of curvature of the optical surfaces, also passes through the geometric center of the lens.
- the lens is initially aligned and tensioned between two aligned centering spindles such that the two centers of curvature of the lens coincide with the common axis of rotation of the centering spindles.
- the edge of the lens is processed in a defined relationship to the optical axis of the lens, as will be seen later for the Installation of the lens in a socket is necessary.
- the edge is shown by machining a defined geometry both in the plan view of the lens - the peripheral contour of the lens - as well as in radial section - contour of the edge, about rectilinear training or education with stage (s) / facet (s) - given. This is done especially in the case of glass lenses by a grinding process.
- grinding in the context of the present invention, it is intended to include “fine grinding” and “polishing” where equally geometrically indeterminate cutting is used.
- the invention has for its object to provide a method for grinding workpieces, namely for centering grinding workpieces such as optical lenses, which addresses the above-mentioned in the prior art problems.
- the feed movement between the grinding tool and the workpiece should be such that on the one hand during grinding neither an overload of the grinding tool still a "burning" or a shape defect on the workpiece occurs / arises, on the other hand, the feed movement and Materialzerspanung be performed as quickly and efficiently.
- a predetermined current limit for the actuator current delivered via the current regulator is definedly reduced in order to reduce the advancing force of the actuator.
- the actual feed rate is ultimately determined by the removal rate of the tool, which can change in the process by, for example, blunting or clogging of the abrasive coating or a change in the coolant and lubricant properties.
- the setpoint and actual positions of the actuator are evaluated from the current control cycle and from the preceding control cycle, which can be tapped without problems on the position control loop.
- a comparison signal is generated in the comparison of the ascertained actual direction of movement of the feed movement with the determined desired direction of movement of the feed movement in step (ii) above, via a PI - or PID transmission element generates a current reduction signal, wherein in step (iii) then a signal for the predetermined current limit to the respective current reduction signal is reduced as the current limiting signal is applied to the current regulator.
- actuators can be used as a feed drive for the grinding method according to the invention, as long as they have a defined force / current dependency, it is finally preferred, in particular with regard to high control sensitivity, fast reaction behavior, ease of movement and self-locking freedom, etc. when a linear motor is used as the actuator for generating the relative feed movement between the grinding tool and the workpiece.
- Fig. 1 a CNC-controlled centering machine 10 for grinding workpieces, in particular optical lenses L is shown only schematically and only insofar as it appears necessary for the understanding of the present invention. Further details on the structure and function of the centering machine 10 can be submitted at the same time German patent application DE 10 2012 XXX XXX.X are taken from the present applicant, which is hereby incorporated by reference.
- Fig. 1 On the left, two centering spindles 12, 14 arranged in alignment with respect to a centering axis C, whose centering spindle shafts 16, 18 can be driven in rotation independently of one another in the rotation angle (workpiece rotation axes C1, C2).
- a synchronous operation of Zentrierspindelwellen 16, 18 is effected in a conventional manner CNC technically.
- the centering spindle shafts 16, 18 are each designed to receive a clamping bell 20, 22, as is known from the German standard DIN 58736-3. Between the tensioning bells 20, 22, the optical lens L for firmly gripped the grinding of its edge.
- the necessary lifting and tensioning devices that allow a defined movement or force application to one of the centering spindles 12, 14 along the centering axis C, are in Fig. 1 Not shown. In a direction perpendicular to the centering axis C, the centering spindles 12, 14 are fixed, ie not movable.
- a tool spindle 24 On the tool side (at least) a tool spindle 24 is provided with a rotary drive for a tool spindle shaft 26, on which a grinding wheel G is held as a grinding tool.
- the grinding wheel G is thus according to the arrow in FIG Fig. 1 Controlled rotationally driven in the rotational speed (tool rotation axis A) in order to provide with its circumferential surface U for a material removal on the workpiece L.
- the tool spindle 24 is further mounted on an X-carriage 28, the CNC-position controlled in Fig. 1 is linearly movable to the right or left (linear axis X, feed movement).
- the X-carriage 28 is guided over guide carriages, not shown here, on two parallel running guide rails 30, 32 (not shown) on a machine bed.
- a linear motor 34 for driving the X-carriage 28 is a linear motor 34 as an actuator, from the in Fig. 1 the machine bed fixed stator 36 can be seen with its magnets.
- the rotor (coils) of the linear motor 34 is mounted under the X-carriage 28 and in Fig. 1 not to be seen.
- a linear displacement measuring system 38 is arranged, by means of which the axial position (x is ) of the X-carriage 28 can be detected in a known per se.
- the Fig. 2 illustrates a centering grinding process in general form: Via the linear motor 34, a feed movement V of the rotating around the tool rotation axis A grinding wheel G is effected according to the arrow.
- the X-axis is to be adjusted in such a way that the axis (C) rotatably driven about the centering axis (workpiece rotation axis C1) optical lens L, which may initially have any outer contour AK (octagonal in the example shown), defined by an NC program Final contour EK is centered.
- the feed axis X is additionally coordinated in a known manner with the workpiece rotation axis C1, for which the latter is provided with a high-resolution angle measuring system WM (see Fig. 1 ) is provided.
- a high-resolution angle measuring system WM see Fig. 1
- the grinding wheel G in a non-circular machining of workpieces L is not continuous in a feed direction, ie in Fig. 2 can only be moved to the left, but rather - at least at the end of machining - must be moved back and forth in dependence on the angle of rotation of the workpiece L about the centering axis C along the feed axis X to generate the non-circular final contour EK.
- the Fig. 3 shows the position control circuit 40 for the linear motor 34 (feed drive) with the aid of a simplified block diagram the centering machine 10 according to Fig. 1 to which a particular current control or limiting circuit, short current limiting 42, is assigned for the actuator current I for carrying out the inventive grinding process.
- the position control loop 40 comprises in a manner known per se - cf. for example the Textbook "Machine Tools Volume 3, Automation and Control Technology" by Prof. Dr.-Ing. Manfred Weck, 3rd edition 1989, VDI-Verlag, Dusseldorf, p.
- Figure 8-3 a position controller 44, a speed controller 46, a current regulator 48 and the actuator driven therefrom (the linear motor 34 in the present case) as well as in the context of bearing recirculation a summation point 50 for the desired position x soll and the actual position x is .
- the linear displacement measuring system 38 which provides the actual position x ist , is in Fig. 3 shown as little as the NC control, which specifies the desired position x soll . Also subordinate speed and current feedbacks are not shown, which may be provided as part of a cascade control.
- the position control loop 40 is traversed as usual with a predetermined control cycle, eg with a cycle time or sampling rate of 2 ms.
- the input variables for the current limitation 42 are the ones predefined by the NC control for the feed axis X.
- Target position x soll the actual position x detected by the linear position measuring system 38 is the feed axis X and also a maximum setpoint feed force F Vsollmax predetermined by the NC control, which results in a predetermined current limit I sollmax and which is even closer later will be explained.
- the left upper functional element 52 is the setpoint positions X soll (n) , x soll (n-1) of the linear motor 34 from the current control cycle (n) and from the previous control cycle (n-1) by means of a Signumfunktion ("Sgn"). evaluated.
- the result of the formed Signumfunktion is the target direction of movement R soll (n) of the feed movement V in the current control cycle (s).
- the detected actual positions x is (n)
- x is (n-1) of the linear motor 34 from the current control cycle (n) and from the previous control cycle (n-1) evaluated by means of a Signumfunktion.
- d / dt x is n - x is n - 1 / t n - t n - 1
- the thus determined direction values (1, 0 or -1) for the desired direction of movement R is intended and the actual direction of movement R is the feed movement V are then each connected to a proportional-action transfer member (P term) 56 and 58, which outputs the respective signal with an adjustable gain. This gain can be varied to weight the influence of each signal.
- the thus amplified signals to the intended direction R to and the actual direction of movement R is the feed movement V are thereafter switched to a summing point 60, which by means of a difference (target value minus actual value) a Comparison of the determined actual direction of movement R is the feed movement V with the determined target direction of movement R soll of the feed movement V causes.
- the grinding wheel G should move in the direction of the centering axis C (feed movement V in Fig. 2 ), but does not (blocking the feed axis X). Accordingly, at this time of the feed force F V counteracting process force component F P is at least equal to the feed force F V (see. Fig. 1 ), causing the grinding wheel G is prevented from its further feed movement V.
- the reason for this can be, for example, a truncated / worn grinding wheel G or an insufficient supply of cooling lubricant.
- the second-mentioned deviation case (e) can result in the grinding of a non-circular geometry on the workpiece L, if the process force component F P exceeds the feed force F V , after it comes due to the angle-dependent changing point of intervention for magnitude and effective direction changes of the grinding force, the workpiece L the grinding wheel G pushes away due to the non-circular outer contour AK of the workpiece L against the feed direction.
- Fig. 4 illustrates: The rotating workpiece L pushes with its circumferentially changing radius to the centering axis C and its radially "protruding" contour sections the grinding wheel G by an amount .DELTA.x counter to the feed direction in Fig. 4 to the right.
- a comparison signal is generated, which via a proportional integrating acting transfer element (PI element) 62 generates a current reduction signal I red (n) .
- PI element proportional integrating acting transfer element
- a fast PID element with, for example, a differential or derivative time T V of zero or almost zero can be used here, which acts in a similar way to a PI controller.
- the current reduction signal I red (n) is applied as a subtrahend of a further summation point 64.
- the minuenden at the summation point 64 forms the predetermined current limit, ie a signal for a maximum target current I sollmax , which results from a further proportional acting transfer member (P-member) 66 from the above-mentioned maximum target feed force F Vsollmax , which is specified by the NC control.
- the summation point 64 finally outputs a current limiting signal I max (n) (maximum nominal current I sollmax minus the respective current reduction I red (n) ), which is applied to the current regulator 48.
- I max (n) maximum nominal current I sollmax minus the respective current reduction I red (n)
- the output from the current controller 48 to the linear motor 34 actuator current I which determines the feed force F V of the linear motor 34, dynamically limited to the current I max (n) , ie despite possibly higher current setting I soll (n) in the position control loop 40th the current regulator 48 outputs only the limited current I max (n) to the linear motor 34.
- the current reduction signal I red (n) increases correspondingly via the PI element 62; after the summation point 64, the permitted current I max (n) accordingly becomes smaller and smaller from one control cycle to another.
- the control behavior of the PI member 62 - such as fast, "hard” or “soft” - can be influenced here by the parameters for the proportional component (gain K P ) and the integral component (reset time T N ) and also with regard to the material being processed be optimized.
- the reinforcement K P and the reset time T N from grinding process to grinding process, but then to be consistent throughout the grinding process.
- the gain K P is quite high, but the reset time T N is rather small; for a round or cornerless, for example elliptical outer contour AK, the gain K P tends to be lower, but the reset time T N tends to be higher preselected.
- the actual values for the controller parameterization are to be optimized individually for the respective centering machine 10 and the respective grinding process, so that a quantification should not take place here.
- the actuator current I is again set via the current regulator 48 to a maximum of the preset value Current limit I sollmax increases, whereby the feed force F V of the linear motor 34 increases again accordingly.
- the Fig. 5 shows in a diagram by way of example for a centering grinding process with the above - optionally switched on or off - Aktuatorstrom- or force limiting the linear motor 34 plotted over the time t above the feed path x (solid or dashed line) of the X-carriage 28, thus the tool spindle 24 with the grinding wheel G and underneath which builds up as a result of the limitation of the actuator current I following error (dotted line).
- the X-carriage 28 starts moving at a preselected feed rate, which does not have to be coupled to the removal capability of the tool and is preferably selected to be as high as possible from the grinding removal with a view to the fastest possible and efficient material cutting.
- the actual positions of the grinding wheel G is x, and the speed of the feed movement V (slope of the graph) only as a result of the allowed over the current limit 42 feed force F V.
- the latter is between the points b and due to the current limit 42 be d so large that is no longer deviation between the actual movement direction R and the target traveling direction R to the feed movement results in V, is therefore always have a maximum size within the permissible .
- the described force grinding process can be terminated if, at d, an adjustable limit value for the following error (eg 0.01 mm) is exceeded during a complete revolution of the workpiece L.
- the amount of the preselected feed rate basically does not matter, because the desired actuator current I soll output by the speed controller 46 may be limited in the current controller 48 during the processing anyway (I max ).
- I max the desired actuator current I soll output by the speed controller 46 may be limited in the current controller 48 during the processing anyway.
- the switching point between rapid traverse and operation can be easily and safely found by continuous evaluation of the following error of the feed axis X. Be (edge detection) because at the moment of contact between tool G and workpiece L of the following error of the feed axis X by the lack of power reserve or limited feed force F V of the linear motor 34 increases rapidly and sharply (see Fig.
- a method for centering grinding workpieces such as optical lenses by means of a grinding tool using an actuator for generating a relative feed movement between the grinding tool and the workpiece, wherein the actuator is integrated with a current regulator for an actuator current determining a feed force of the actuator in a position control loop which is traversed with a predetermined control cycle.
- a desired direction of movement of the feed movement and an actual direction of movement of the feed movement are determined; then (ii) the determined actual and desired directions of movement are compared with each other; and finally, (iii) when the comparison results in a deviation between the actual and desired directions of travel, a predetermined current limit for the actuator current delivered via the current regulator is definedly reduced to reduce the advancing force of the actuator.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Description
Die vorliegende Erfindung bezieht sich allgemein auf ein Verfahren zum Schleifen von Werkstücken mittels eines Schleifwerkzeugs unter Verwendung eines Aktuators zur Erzeugung einer relativen Vorschubbewegung zwischen Schleifwerkzeug und Werkstück, wobei der Aktuator mit einem Stromregler für einen eine Vorschubkraft des Aktuators bestimmenden Aktuatorstrom in einem Lageregelkreis integriert ist, welcher mit einem vorbestimmten Regelzyklus durchlaufen wird.The present invention generally relates to a method of grinding workpieces by means of a grinding tool using an actuator for generating a relative feed movement between the grinding tool and the workpiece, wherein the actuator is integrated with a current controller for an actuator current determining a feed force of the actuator in a position control loop, which is traversed with a predetermined control cycle.
Insbesondere bezieht sich die Erfindung auf ein Verfahren zum zentrierenden Schleifen von Werkstücken aus den Anwendungsgebieten Feinoptik (optische Linsen), Uhrenindustrie (Uhrengläser) und Halbleiterindustrie (Wafer), wo Werkstücke mittels Zentriermaschinen zunächst zentriert zu spannen und in der Folge am Rand zu schleifen sind.In particular, the invention relates to a method for centering grinding of workpieces from the fields of fine optics (optical lenses), watch industry (watch glasses) and semiconductor industry (wafers), where workpieces are centered by means of centering initially tensioned and to be subsequently sanded on the edge.
Linsen für Objektive od.dgl. werden nach der Bearbeitung der optischen Flächen "zentriert", damit die optische Achse, deren Lage durch eine Gerade gekennzeichnet ist, welche durch die beiden Krümmungsmittelpunkte der optischen Flächen hindurch verläuft, auch durch die geometrische Mitte der Linse geht. Die Linse wird zu diesem Zweck zunächst zwischen zwei fluchtenden Zentrierspindeln derart ausgerichtet und gespannt, dass die beiden Krümmungsmittelpunkte der Linse mit der gemeinsamen Rotationsachse der Zentrierspindeln zusammenfallen. In der Folge wird der Rand der Linse in einer definierten Beziehung zur optischen Achse der Linse bearbeitet, wie es später für den Einbau der Linse in einer Fassung notwendig ist. Dabei wird dem Rand durch spanende Bearbeitung eine definierte Geometrie sowohl in der Draufsicht auf die Linse - Umfangskontur der Linse - als auch im Radialschnitt gesehen - Kontur des Rands, etwa geradlinige Ausbildung oder Ausbildung mit Stufe(n)/Facette(n) - gegeben. Dies erfolgt namentlich im Falle von Glaslinsen durch einen Schleifprozess. Wenn im Zusammenhang mit der vorliegenden Erfindung allgemein von "Schleifen" die Rede ist, soll dies allerdings auch "Feinschleifen" und "Polieren" mit umfassen, wo gleichermaßen mit geometrisch unbestimmten Schneiden gearbeitet wird.Lenses for lenses or the like. are "centered" after the processing of the optical surfaces, so that the optical axis, whose position is characterized by a straight line passing through the two centers of curvature of the optical surfaces, also passes through the geometric center of the lens. For this purpose, the lens is initially aligned and tensioned between two aligned centering spindles such that the two centers of curvature of the lens coincide with the common axis of rotation of the centering spindles. As a result, the edge of the lens is processed in a defined relationship to the optical axis of the lens, as will be seen later for the Installation of the lens in a socket is necessary. In this case, the edge is shown by machining a defined geometry both in the plan view of the lens - the peripheral contour of the lens - as well as in radial section - contour of the edge, about rectilinear training or education with stage (s) / facet (s) - given. This is done especially in the case of glass lenses by a grinding process. However, when referring to "grinding" in the context of the present invention, it is intended to include "fine grinding" and "polishing" where equally geometrically indeterminate cutting is used.
Was die beim Zentrieren verwendeten Mechanismen zur Erzeugung der relativen Vorschubbewegung zwischen Schleifwerkzeug und Werkstück angeht, wurden bei den älteren kurvengesteuerten Zentriermaschinen "LZ 80" der LOH Optikmaschinen AG, Wetzlar, Deutschland (Rechtsvorgängerin der Satisloh GmbH), die zwei Schleifspindeln für den drehenden Antrieb der Schleifwerkzeuge (Schleifscheiben) mittels einstellbarer Gewichte über einen Seilzug zugestellt. Die maximale Zustellbewegung der Schleifspindeln selbst wurde hierbei über langsam rotierende Kurvenscheiben gesteuert, auf denen eine mit der jeweiligen Schleifspindel gekoppelte Abtastrolle als Festanschlag ablief. Wenngleich diese sehr einfache mechanische Lösung Vorteile in Bezug auf die mögliche Prozessgeschwindigkeit hatte, weil sich der Vorschub weitgehend abhängig von der Leistungsfähigkeit der Schleifscheiben und dem geschliffenen Substratmaterial selbst einstellte, bestand ein gravierender Nachteil darin, dass für jede Werkstückgeometrie eine eigene Kurvenscheibe vorzusehen war.With regard to the mechanisms used to center the relative feed motion between the grinding tool and the workpiece, LOH Optikmaschinen AG, Wetzlar, Germany (legal predecessor of Satisloh GmbH), used the two grinding spindles for the rotary drive of the older LZ 80 cam - controlled centering machines Grinding tools (grinding wheels) delivered by means of adjustable weights via a cable. The maximum feed movement of the grinding spindles themselves was controlled by slowly rotating cams on which a scanning roller coupled to the respective grinding spindle ran as a fixed stop. Although this very simple mechanical solution had advantages in terms of the possible process speed, because the feed largely depends on the performance of the grinding wheels and the ground substrate material itself, a serious disadvantage was that a separate cam was provided for each workpiece geometry.
Auch sind Lösungen bekannt (siehe z.B. die Druckschrift
Bei modernen CNC-gesteuerten Zentriermaschinen, die über eine entsprechende Bahnführung von Werkzeug und/oder Werkstück die Schleifbearbeitung beliebiger Werkstückformen ermöglichen, wird üblicherweise eine Zwangs-Vorschubregelung vorgesehen. Wenn hierbei die Vorschubgeschwindigkeit jedoch zu schnell gewählt wird, kann es zu einer Überlastung des Schleifwerkzeugs und unter Umständen auch zum "Brennen" des Werkstücks im Berührpunkt zwischen Werkzeug und Werkstück kommen, was insbesondere bei der Verwendung von Mineralöl als Kühlschmierstoff zu Verpuffungen und erheblichen Folgeschäden (nicht nur) an der Zentriermaschine führen kann. Abhilfe können hier freilich programmierte Sicherheitsabstände schaffen, z.B. derart, dass die Vorschubgeschwindigkeit bis zu einem vorbestimmten Abstand zwischen Werkzeug und Werkstück hoch eingestellt wird und bei Erreichen dieses Abstands auf eine niedrigere Vorschubgeschwindigkeit umgeschaltet wird. Solche Sicherheitsmechanismen bedingen jedoch zwangsläufig längere Bearbeitungszeiten.In modern CNC-controlled centering, which enable the grinding of any workpiece shapes via a corresponding web guide of the tool and / or workpiece, usually a forced feed control is provided. However, if the feed rate is chosen too fast, it may lead to an overload of the grinding tool and possibly also to "burning" of the workpiece in the contact point between the tool and workpiece, which in particular when using mineral oil as a cooling lubricant to deflagration and significant consequential damage ( not only) on the centering machine can lead. Of course, this can be remedied by programmed safety distances, e.g. such that the feed rate is set high up to a predetermined distance between tool and workpiece and is switched to a lower feed rate when this distance is reached. However, such security mechanisms inevitably require longer processing times.
Schließlich sind auch sogenannte "Adaptive-Control"-Lösungen bekannt (siehe etwa die Druckschrift
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Schleifen von Werkstücken, namentlich zum zentrierenden Schleifen von Werkstücken wie optischen Linsen bereitzustellen, das die oben zum Stand der Technik angesprochenen Probleme adressiert. Insbesondere soll hierbei die Vorschubbewegung zwischen Schleifwerkzeug und Werkstück derart erfolgen, dass einerseits während der Schleifbearbeitung weder eine Überlastung des Schleifwerkzeugs noch ein "Brennen" oder ein Formfehler am Werkstück auftritt/entsteht, andererseits die Vorschubbewegung und Materialzerspanung dennoch möglichst schnell und effizient durchgeführt werden.The invention has for its object to provide a method for grinding workpieces, namely for centering grinding workpieces such as optical lenses, which addresses the above-mentioned in the prior art problems. In particular, in this case, the feed movement between the grinding tool and the workpiece should be such that on the one hand during grinding neither an overload of the grinding tool still a "burning" or a shape defect on the workpiece occurs / arises, on the other hand, the feed movement and Materialzerspanung be performed as quickly and efficiently.
Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Merkmale gelöst. Vorteilhafte oder zweckmäßige Weiterbildungen der Erfindung sind Gegenstand der Patentansprüche 2 bis 5.This object is achieved by the features specified in
Erfindungsgemäß werden bei einem Verfahren zum Schleifen von Werkstücken, insbesondere zum zentrierenden Schleifen von Werkstücken wie optischen Linsen, mittels eines Schleifwerkzeugs unter Verwendung eines Aktuators zur Erzeugung einer relativen Vorschubbewegung zwischen Schleifwerkzeug und Werkstück, der mit einem Stromregler für einen eine Vorschubkraft des Aktuators bestimmenden Aktuatorstrom in einem Lageregelkreis integriert ist, welcher mit einem vorbestimmten Regelzyklus durchlaufen wird, für jeden Regelzyklus zunächst (i) eine Soll-Bewegungsrichtung der Vorschubbewegung sowie eine Ist-Bewegungsrichtung der Vorschubbewegung ermittelt; sodann (ii) wird die ermittelte Ist-Bewegungsrichtung der Vorschubbewegung mit der ermittelten Soll-Bewegungsrichtung der Vorschubbewegung verglichen; und schließlich (iii) wird, wenn der Vergleich eine Abweichung zwischen der Ist-Bewegungsrichtung der Vorschubbewegung und der Soll-Bewegungsrichtung der Vorschubbewegung ergibt, eine vorbestimmte Stromgrenze für den über den Stromregler abgegebene Aktuatorstrom definiert reduziert, um die Vorschubkraft des Aktuators zu verringern.According to the invention, in a method for grinding workpieces, in particular for centering grinding of workpieces such as optical lenses, by means of a grinding tool using an actuator for generating a relative feed movement between the grinding tool and the workpiece, which is integrated with a current regulator for an actuator current determining actuator force in a position control loop which is traversed with a predetermined control cycle, for each control cycle first (i) Direction of movement of the feed motion and an actual direction of movement of the feed motion determined; then (ii) the determined actual direction of movement of the feed movement is compared with the determined desired direction of movement of the feed movement; and finally (iii), if the comparison results in a deviation between the actual direction of movement of the advancing movement and the desired direction of movement of the advancing movement, a predetermined current limit for the actuator current delivered via the current regulator is definedly reduced in order to reduce the advancing force of the actuator.
Durch dieses Verfahren, bei dem dem Vorschubmotor (Aktuator) eine variable Vorschubkraft über den Motorstrom vorgegeben, anhand der Soll- und Ist-Richtungen der Vorschubbewegung auf die aktuellen Kraftverhältnisse geschlossen und daraus resultierend die Vorschubkraft prozessabhängig über den Motorstrom beeinflusst wird, wird insbesondere die Abtragsleistung beim Schleifen, speziell bei dem Abzentrieren von unrunden Werkstücken optimiert. Es ergeben sich verglichen zum Stand der Technik deutliche Verkürzungen der Prozesszeiten, ein Wegfall von Sicherheitsabständen, eine einfache Anschnitterkennung sowie eine sichere Verhinderung von Überlastungszuständen von Werkstück und Werkzeug durch zu hohe Vorschubgeschwindigkeiten oder durch Kollisionen. Die tatsächliche Vorschubgeschwindigkeit wird hier letztendlich bestimmt über die Abtragsleistung des Werkzeugs, welche sich im Prozessablauf verändern kann durch z.B. Abstumpfen oder Zusetzen des Schleifbelags oder eine Veränderung der Kühl- und Schmiermitteleigenschaften. Durch die Auswertung der Soll- und Ist-Richtungen der Vorschubbewegung und die Nutzung der Kraft/Strom-Abhängigkeit des Vorschubmotors sind schließlich externe Kraftaufnehmer od.dgl. entbehrlich; der Werkstückgüte und -genauigkeit ggf. abträgliche Nachgiebigkeiten werden somit vermieden.By this method, in which the feed motor (actuator) specified a variable feed force on the motor current, closed on the basis of the desired and actual directions of the feed movement on the current force ratios and as a result the feed force is influenced process dependent on the motor current, in particular the removal rate optimized during grinding, especially when centering off non-circular workpieces. This results in comparison to the prior art significant shortening of the process times, a loss of safety distances, a simple Anschnitterkennung and a secure prevention of overload conditions of workpiece and tool due to excessive feed speeds or collisions. The actual feed rate is ultimately determined by the removal rate of the tool, which can change in the process by, for example, blunting or clogging of the abrasive coating or a change in the coolant and lubricant properties. By evaluating the setpoint and actual directions of the feed motion and the use of the power / current dependence of the feed motor are finally external force transducer or the like. dispensable; The workpiece quality and accuracy possibly detrimental resiliency are thus avoided.
Vorzugsweise werden für die Ermittlung bzw. Bestimmung der Bewegungsrichtungen der Vorschubbewegung im obigen Schritt (i) die Soll- und Ist-Positionen des Aktuators aus dem aktuellen Regelzyklus und aus dem vorhergehenden Regelzyklus ausgewertet, die am Lageregelkreis problemlos abgegriffen werden können.Preferably, for determining or determining the directions of movement of the feed movement in step (i) above, the setpoint and actual positions of the actuator are evaluated from the current control cycle and from the preceding control cycle, which can be tapped without problems on the position control loop.
Im Hinblick auf eine gute Einflussnahmemöglichkeit auf das Verhalten der Stromänderung ist es ferner bevorzugt, wenn bei dem Vergleich der ermittelten Ist-Bewegungsrichtung der Vorschubbewegung mit der ermittelten Soll-Bewegungsrichtung der Vorschubbewegung im obigen Schritt (ii) ein Vergleichssignal generiert wird, welches über ein PI- oder PID-Übertragungsglied ein Stromreduktionssignal erzeugt, wobei im Schritt (iii) sodann ein Signal für die vorbestimmte Stromgrenze um das jeweilige Stromreduktionssignal verringert als Strombegrenzungssignal dem Stromregler aufgeschaltet wird.With regard to a good possibility of influencing the behavior of the current change, it is further preferred if a comparison signal is generated in the comparison of the ascertained actual direction of movement of the feed movement with the determined desired direction of movement of the feed movement in step (ii) above, via a PI - or PID transmission element generates a current reduction signal, wherein in step (iii) then a signal for the predetermined current limit to the respective current reduction signal is reduced as the current limiting signal is applied to the current regulator.
Um das Schleifverfahren für die Bearbeitung unrunder Geometrien, die mehr oder weniger "eckig" sein können, zu optimieren, werden vorzugsweise in Abhängigkeit von der Form des zu schleifenden Werkstücks verschiedene Parametersätze für den Proportionalanteil (Verstärkung KP) und den Integralanteil (Nachstellzeit TN) des PI- oder PID-Übertragungsglieds eingesetzt.In order to optimize the grinding process for the machining of non-circular geometries, which may be more or less "angular", preferably depending on the shape of the workpiece to be ground, different parameter sets for the proportional component (gain K P ) and the integral component (reset time T N ) of the PI or PID transmission link.
Wenngleich für das erfindungsgemäße Schleifverfahren beliebige Aktuatoren als Vorschubantrieb eingesetzt werden können, solange diese eine definierte Kraft/Strom-Abhängigkeit aufweisen, ist es schließlich insbesondere im Hinblick auf eine hohe Feinfühligkeit der Regelung, ein schnelles Reaktionsverhalten, Leichtgängigkeit und Selbsthemmungsfreiheit, etc. bevorzugt, wenn als Aktuator zur Erzeugung der relativen Vorschubbewegung zwischen Schleifwerkzeug und Werkstück ein Linearmotor verwendet wird.Although arbitrary actuators can be used as a feed drive for the grinding method according to the invention, as long as they have a defined force / current dependency, it is finally preferred, in particular with regard to high control sensitivity, fast reaction behavior, ease of movement and self-locking freedom, etc. when a linear motor is used as the actuator for generating the relative feed movement between the grinding tool and the workpiece.
Im Folgenden wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die beigefügten, vereinfachten Zeichnungen näher erläutert. In den Zeichnungen zeigen:
- Fig. 1
- eine Vorderansicht einer lediglich schematisch dargestellten Zentriermaschine für insbesondere optische Linsen, bei der das erfindungsgemäße Schleifverfahren Anwendung finden kann;
- Fig. 2
- eine prinzipielle Darstellung zu einem zentrierenden Schleifprozess, wobei im oberen Teil der Figur der Beginn der eigentlichen Schleifbearbeitung und im unteren Teil der Figur das Ende der eigentlichen Schleifbearbeitung gezeigt ist;
- Fig. 3
- ein vereinfachtes Blockschaltbild eines Lageregelkreises für einen Vorschubantrieb der Zentriermaschine gemäß
Fig. 1 , mit übergeordneter Stromsteuerung bzw. -begrenzung für die Durchführung des erfindungsgemäßen Schleifverfahrens; - Fig. 4
- eine prinzipielle Darstellung zu einem zentrierenden Schleifprozess mit erfindungsgemäßer Verfahrensweise, der an einem Werkstück mit unrunder Außenkontur durchgeführt wird, zur Veranschaulichung der Änderung des entgegen der Vorschubkraft wirkenden Prozesskraftanteils infolge des sich drehwinkelabhängig ändernden Abstands des Eingriffspunkts zwischen Schleifwerkzeug und Werkstück zur Werkstück-Drehachse und der sodann entsprechend reduzierten Vorschubkraft; und
- Fig. 5
- ein Diagramm, in dem exemplarisch für einen zentrierenden Schleifprozess mit erfindungsgemäßer Verfahrensweise der Vorschubweg x (oben) und der infolge der Begrenzung des Aktuatorstroms zugelassene Schleppfehler (unten) über der Zeit t aufgetragen sind.
- Fig. 1
- a front view of a centering machine only schematically shown for optical lenses in particular, in which the grinding method according to the invention can be applied;
- Fig. 2
- a schematic representation of a centering grinding process, wherein in the upper part of the figure, the beginning of the actual grinding machining and in the lower part of the figure, the end of the actual grinding machining is shown;
- Fig. 3
- a simplified block diagram of a position control loop for a feed drive of the centering according to
Fig. 1 , with superordinate current control or limitation for carrying out the inventive grinding process; - Fig. 4
- a schematic representation of a centering grinding process with inventive method, which is performed on a workpiece with non-circular outer contour, to illustrate the change in the counter to the feed force acting process force component as a result of the angle of rotation changing distance of the engagement point between the grinding tool and the workpiece to the workpiece axis of rotation and the then correspondingly reduced feed force; and
- Fig. 5
- a diagram in which, for example, for a centering grinding process with the inventive method of the feed path x (top) and the permitted due to the limitation of the actuator current lag error (below) are plotted over time t.
In
In
Werkzeugseitig ist (wenigstens) eine Werkzeugspindel 24 mit einem Drehantrieb für eine Werkzeugspindelwelle 26 vorgesehen, an der eine Schleifscheibe G als Schleifwerkzeug gehalten ist. Die Schleifscheibe G ist somit entsprechend dem Pfeil in
Die Werkzeugspindel 24 ist ferner auf einem X-Schlitten 28 montiert, der CNC-lagegeregelt in
In
Die
Die
Zu erwähnen ist an dieser Stelle schließlich noch, dass Isoll im Lageregelkreis 40 gemäß
Als Eingangsgrößen für die Strombegrenzung 42 dienen ersichtlich die von der NC-Steuerung für die Vorschubachse X vorgegebene Soll-Position xsoll, die vom linearen Wegmesssystem 38 erfasste Ist-Position xist der Vorschubachse X und eine ebenfalls von der NC-Steuerung vorgegebene maximale Soll-Vorschubkraft FVsollmax, aus der sich eine vorbestimmte Stromgrenze Isollmax ergibt und die später noch näher erläutert werden wird.The input variables for the
In dem in
Da die Abtastrate konstant ist kann dies mit (t(n) - t(n-1)) = konst. vereinfacht werden zu:
Das Ergebnis der gebildeten Signumfunktion ist die Soll-Bewegungsrichtung Rsoll(n) der Vorschubbewegung V im aktuellen Regelzyklus (n). Die folgenden drei Fälle sind hierbei möglich:
In analoger Weise werden in dem in
Mit (t(n) - t(n-1)) = konst. vereinfacht sich dieser Ausdruck wiederum zu:
Demnach sind die folgenden drei Fälle für die Ist-Bewegungsrichtung Rist(n) der Vorschubbewegung im aktuellen Regelzyklus (n) möglich:
Mit anderen Worten gesagt findet im ersten Fall (1.) bezogen auf die Zentrierachse C tendenziell eine Vorwärtsbewegung der Schleifscheibe G statt, in dem zweiten Fall (2.) ändert sich der Abstand der Schleifscheibe G zur Zentrierachse C nicht, d.h. die Schleifscheibe G steht (keine Bewegung) und in dem dritten Fall (3.) liegt bezogen auf die Zentrierachse C tendenziell eine Rückwärtsbewegung der Schleifscheibe G vor.In other words, in the first case (1), forward movement of the grinding wheel G tends to take place with respect to the centering axis C; in the second case (2), the distance of the grinding wheel G from the centering axis C does not change, that is. the grinding wheel G is stationary (no movement) and in the third case (3) there is a tendency, with respect to the centering axis C, for a rearward movement of the grinding wheel G.
Die so bestimmten Richtungswerte (1, 0 bzw. -1) für die Soll-Bewegungsrichtung Rsoll und die Ist-Bewegungsrichtung Rist der Vorschubbewegung V werden sodann jeweils auf ein proportional wirkendes Übertragungsglied (P-Glied) 56 bzw. 58 geschaltet, welches das jeweilige Signal mit einer einstellbaren Verstärkung ausgibt. Diese Verstärkung kann variiert werden, um den Einfluss des jeweiligen Signals zu gewichten.The thus determined direction values (1, 0 or -1) for the desired direction of movement R is intended and the actual direction of movement R is the feed movement V are then each connected to a proportional-action transfer member (P term) 56 and 58, which outputs the respective signal with an adjustable gain. This gain can be varied to weight the influence of each signal.
Die derart verstärkten Signale für die Soll-Bewegungsrichtung Rsoll und die Ist-Bewegungsrichtung Rist der Vorschubbewegung V werden danach auf eine Summationsstelle 60 geschaltet, die vermittels einer Differenzbildung (Soll-Wert minus Ist-Wert) einen Vergleich der ermittelten Ist-Bewegungsrichtung Rist der Vorschubbewegung V mit der ermittelten Soll-Bewegungsrichtung Rsoll der Vorschubbewegung V bewirkt. Stimmen hierbei die ermittelten Soll- und Ist-Bewegungsrichtungen Rsoll bzw. Rist der Vorschubbewegung V überein -
Die möglichen Abweichungsfälle bei dem vorbeschriebenen Vergleich in der Summationsstelle 60 umfassen insbesondere die Zustände:
Im erstgenannten Abweichungsfall (d) soll sich die Schleifscheibe G in Richtung auf die Zentrierachse C bewegen (Vorschubbewegung V in
Der zweitgenannte Abweichungsfall (e) kann sich bei der Schleifbearbeitung einer Unrundgeometrie am Werkstück L ergeben, wenn der Prozesskraftanteil FP die Vorschubkraft FV übersteigt, nachdem es bedingt durch den sich winkelabhängig ändernden Eingriffspunkt zu Betrags- und Wirkrichtungsänderungen der Schleifkraft kommt, wobei das Werkstück L die Schleifscheibe G infolge der unrunden Außenkontur AK des Werkstücks L entgegen der Vorschubrichtung wegdrückt. Dies ist in
In den beschriebenen Abweichungsfällen besteht die Gefahr einer Überbeanspruchung/Überlastung von Werkstück L und/oder Werkzeug G, was zu einem "Brennen" an der Eingriffsstelle führen kann, bei der Unrundbearbeitung zudem die Gefahr eines "Eingrabens" der Schleifscheibe G in das Werkstück L und somit von Formfehlern am Werkstück L. Um in diesen Fällen ein Ausweichen der Vorschubachse X zu erleichtern und auch das damit verbundene Losbrechmoment der Linearführungen 30, 32 zu eliminieren, wird die Kraftgrenze der Vorschubachse X über den Aktuatorstrom I dynamisch reduziert.In the described deviation cases, there is a risk of overstressing / overloading of workpiece L and / or tool G, which can lead to a "burning" at the point of engagement, in the non-circular machining also the risk of "digging" of the grinding wheel G in the workpiece L and Thus, of form errors on the workpiece L. In order to facilitate evasion of the feed axis X in these cases and to eliminate the associated breakaway torque of the
Genauer gesagt wird bei dem Vergleich der ermittelten Ist-Bewegungsrichtung Rist(n) der Vorschubbewegung V mit der ermittelten Soll-Bewegungsrichtung Rsoll(n) der Vorschubbewegung V in der Summationsstelle 60 ein Vergleichssignal generiert, welches über ein proportional-integrierend wirkendes Übertragungsglied (PI-Glied) 62 ein Stromreduktionssignal Ired(n) erzeugt. Alternativ kann hier auch ein schnelles PID-Glied mit z.B. einer Differential- oder Vorhaltezeit TV von Null oder nahezu Null zum Einsatz kommen, der ähnlich wie ein PI-Regler wirkt.More precisely, in the comparison of the determined actual direction of movement R ist (n) of the feed movement V with the determined desired direction of movement R soll (n) of the feed movement V in the
Das Stromreduktionssignal Ired(n) wird als Subtrahend einer weiteren Summationsstelle 64 aufgeschaltet. Den Minuenden an der Summationsstelle 64 bildet die vorbestimmte Stromgrenze, d.h. ein Signal für einen maximalen Soll-Strom Isollmax, das sich über ein weiteres proportional wirkendes Übertragungsglied (P-Glied) 66 aus der oben bereits erwähnten maximalen Soll-Vorschubkraft FVsollmax ergibt, die von der NC-Steuerung vorgegeben wird. Bei dieser Vorgabe für die maximale Soll-Vorschubkraft FVsollmax (z.B. 100 N) findet zum einen Berücksichtigung, welche Vorschubkraft für den tatsächlichen Schleifprozess gewünscht ist, was vom Bediener eingegeben werden kann; zum anderen werden Kraftschwankungen der Zustellachse X durch den Einfluss von Rastmomenten des Linearmotors 34 sowie Kraftverluste durch Reibung in den Linearführungen 30, 32 und an den Arbeitsraumabdeckungen (nicht gezeigt) berücksichtigt, die einmalig exemplarisch ermittelt werden und als additiver Wert in die Soll-Vorschubkraft FVsollmax einfließen.The current reduction signal I red (n) is applied as a subtrahend of a
Die Summationsstelle 64 gibt schließlich ein Strombegrenzungssignal Imax(n) (maximaler Soll-Strom Isollmax minus der jeweiligen Stromreduktion Ired(n)) aus, das dem Stromregler 48 aufgeschaltet wird. Im Ergebnis wird der vom Stromregler 48 an den Linearmotor 34 abgegebene Aktuatorstrom I, der die Vorschubkraft FV des Linearmotors 34 bestimmt, dynamisch auf den Strom Imax(n) begrenzt, d.h. trotz ggf. höherer Stromvorgabe Isoll(n) im Lageregelkreis 40 gibt der Stromregler 48 lediglich den begrenzten Strom Imax(n) an den Linearmotor 34 ab. Dies führt in den obigen Bewegungsrichtungs-Abweichungsfällen (d) und (e) zu einer Verringerung der Vorschubkraft FV(n) des Linearmotors 34 (illustriert mit unterschiedlich langen Kraftpfeilen für die Vorschubkraft FV in
Liegt eine Bewegungsrichtungs-Abweichung gemäß den Fällen (d) und (e) über mehrere Regelzyklen n vor, so erhöht sich über das PI-Glied 62 das Stromreduktionssignal Ired(n) entsprechend; nach der Summationsstelle 64 wird der zugelassene Strom Imax(n) demgemäß von Regelzyklus zu Regelzyklus immer kleiner. Das Regelverhalten des PI-Glieds 62 - wie schnell, "hart" oder "weich" - kann hierbei bekanntlich über die Parameter für den Proportionalanteil (Verstärkung KP) und den Integralanteil (Nachstellzeit TN) beeinflusst und auch im Hinblick auf das bearbeitete Material optimiert werden. Vorteilhaft werden in Abhängigkeit von der Rundheit bzw. der Eckigkeit der zu schleifenden Werkstückgeometrie von Schleifprozess zu Schleifprozess verschiedene Parametersätze für die Verstärkung KP und die Nachstellzeit TN verwendet, dann aber für den jeweiligen Schleifprozess durchgängig. So werden für eine eckige, z.B. quadratische Außenkontur AK die Verstärkung KP durchaus hoch, die Nachstellzeit TN aber eher klein, für eine runde bzw. eckenlose, beispielsweise elliptische Außenkontur AK die Verstärkung KP eher niedriger, die Nachstellzeit TN indes tendenziell höher vorgewählt. Die tatsächlichen Werte für die Regler-Parametrierung sind für die jeweilige Zentriermaschine 10 und den jeweiligen Schleifprozess individuell zu optimieren, so dass eine Quantifizierung hier nicht erfolgen soll. Ergibt sich schließlich bei dem Vergleich der Ist- und Soll-Bewegungsrichtungen an der Summationsstelle 60 keine Abweichung mehr, wird der Aktuatorstrom I über den Stromregler 48 wieder bis maximal zur voreingestellten Stromgrenze Isollmax erhöht, wodurch die Vorschubkraft FV des Linearmotors 34 wieder entsprechend wächst.If there is a movement direction deviation according to cases (d) and (e) over several control cycles n, the current reduction signal I red (n) increases correspondingly via the PI element 62; after the
Die
Während (u.a.) am Punkt b in
Bei aktivierter Strombegrenzung 42 ist der Betrag der vorgewählten Vorschubgeschwindigkeit im Grunde egal, denn der vom Geschwindigkeitsregler 46 ausgegebene Soll-Aktuatorstrom Isoll wird im Stromregler 48 bei der Bearbeitung ggf. ohnehin limitiert (Imax). So kann auch mit verschiedenen vorgewählten Vorschubgeschwindigkeiten gearbeitet werden, z.B. mit einem schnellen Eilgang zur schnellen Annäherung von Werkzeug G und Werkstück L und einem demgegenüber langsameren Arbeitsgang während der Zerspanung. Der Umschaltpunkt zwischen Eilgang und Arbeitsgang kann dabei durch kontinuierliche Auswertung des Schleppfehlers der Vorschubachse X einfach und sicher gefunden werden (Anschnitterkennung), weil im Moment der Berührung zwischen Werkzeug G und Werkstück L der Schleppfehler der Vorschubachse X durch die fehlende Kraftreserve bzw. begrenzte Vorschubkraft FV des Linearmotors 34 schnell und stark ansteigt (vgl. in
Es wird ein Verfahren insbesondere zum zentrierenden Schleifen von Werkstücken wie optischen Linsen mittels eines Schleifwerkzeugs unter Verwendung eines Aktuators zur Erzeugung einer relativen Vorschubbewegung zwischen Schleifwerkzeug und Werkstück offenbart, wobei der Aktuator mit einem Stromregler für einen eine Vorschubkraft des Aktuators bestimmenden Aktuatorstrom in einem Lageregelkreis integriert ist, welcher mit einem vorbestimmten Regelzyklus durchlaufen wird. Bei dem Verfahren werden für jeden Regelzyklus: (i) eine Soll-Bewegungsrichtung der Vorschubbewegung sowie eine Ist-Bewegungsrichtung der Vorschubbewegung ermittelt; sodann werden (ii) die ermittelten Ist- und Soll-Bewegungsrichtungen miteinander verglichen; und schließlich wird, (iii) wenn der Vergleich eine Abweichung zwischen den Ist- und Soll-Bewegungsrichtungen ergibt, eine vorbestimmte Stromgrenze für den über den Stromregler abgegebenen Aktuatorstrom definiert reduziert, um die Vorschubkraft des Aktuators zu verringern. Im Ergebnis werden die Vorschubbewegung und Materialzerspanung schnell und effizient durchgeführt, ohne dass es zu einer Überbeanspruchung von Werkzeug oder Werkstück kommen kann.A method is disclosed, in particular, for centering grinding workpieces such as optical lenses by means of a grinding tool using an actuator for generating a relative feed movement between the grinding tool and the workpiece, wherein the actuator is integrated with a current regulator for an actuator current determining a feed force of the actuator in a position control loop which is traversed with a predetermined control cycle. In the method, for each control cycle: (i) a desired direction of movement of the feed movement and an actual direction of movement of the feed movement are determined; then (ii) the determined actual and desired directions of movement are compared with each other; and finally, (iii) when the comparison results in a deviation between the actual and desired directions of travel, a predetermined current limit for the actuator current delivered via the current regulator is definedly reduced to reduce the advancing force of the actuator. As a result, the feed movement and material cutting are carried out quickly and efficiently, without being able to overuse the tool or workpiece.
- 1010
- ZentriermaschineCentering
- 1212
- untere Zentrierspindellower centering spindle
- 1414
- obere ZentrierspindelUpper centering spindle
- 1616
- untere Zentrierspindelwellelower center spindle shaft
- 1818
- obere ZentrierspindelwelleUpper center spindle shaft
- 2020
- untere Spannglockelower clamping bell
- 2222
- obere Spannglockeupper clamping bell
- 2424
- Werkzeugspindeltool spindle
- 2626
- WerkzeugspindelwelleTool spindle shaft
- 2828
- X-SchlittenX slide
- 3030
- Führungsschieneguide rail
- 3232
- Führungsschieneguide rail
- 3434
- Linearmotorlinear motor
- 3636
- Statorstator
- 3838
- lineares Wegmesssystemlinear displacement measuring system
- 4040
- LageregelkreisPosition control loop
- 4242
- Strombegrenzungcurrent limit
- 4444
- Lagereglerposition controller
- 4646
- Geschwindigkeitsreglercruise control
- 4848
- Stromreglercurrent regulator
- 5050
- SummationsstelleSummation point
- 5252
- Funktionsgliedfunctional member
- 5454
- Funktionsgliedfunctional member
- 5656
- P-GliedP element
- 5858
- P-GliedP element
- 6060
- SummationsstelleSummation point
- 6262
- PI-GliedPI element
- 6464
- SummationsstelleSummation point
- 6666
- P-GliedP element
- AA
- Werkzeug-Drehachse (drehzahlgesteuert)Tool rotation axis (speed-controlled)
- AKAK
- Außenkonturouter contour
- C1, C2C1, C2
- Werkstück-Drehachse (winkellagegeregelt)Workpiece rotation axis (angular position-controlled)
- CC
- Zentrierachsecentering
- EKEK
- Endkonturfinal contour
- FP F P
- Prozesskraftanteil in x-RichtungProcess force component in x-direction
- FV F V
- Vorschubkraftfeed force
- GG
- Schleifwerkzeug / SchleifscheibeGrinding tool / grinding wheel
- II
- Aktuatorstromactuator current
- LL
- Werkstück / optische LinseWorkpiece / optical lens
- RR
- Bewegungsrichtung der VorschubbewegungDirection of movement of the feed motion
- tt
- ZeitTime
- UU
- Umfangsfläche der SchleifscheibePeripheral surface of the grinding wheel
- VV
- Vorschubbewegungfeed motion
- WMWM
- WinkelmesssystemAngle measuring system
- xx
- Position des SchleifwerkzeugsPosition of the grinding tool
- ΔxAx
- Betrag der WerkzeugverschiebungAmount of tool offset
- XX
- Vorschubachse / Linearachse Schleifwerkzeug (lagegeregelt)Feed axis / linear axis grinding tool (position-controlled)
Claims (5)
- Method of grinding workpieces (L), particularly for centered grinding of workpieces such as optical lenses, by means of a grinding tool (G) with use of an actuator (34) for producing a relative advancing movement (V) between grinding tool (G) and workpiece (L), wherein the actuator (34) together with a controller (48) for an actuator current (I), which determines an advance force (FV) of the actuator (34), is integrated in a position control circuit (40) which is run through with a predetermined control cycle (n), and characterized in that for each control cycle (n):(i) a target movement direction (Rsoll(n) = -1, 0 or 1) of the advancing movement (V) as well as an actual movement direction (Rist(n) = -1, 0 or 1) of the advancing movement (V) are determined;(ii) the determined actual movement direction (Rist(n)) of the advancing movement (V) is then compared with the determined target movement direction (Rsoll(n)) of the advancing movement (V); and(iii) if the comparison gives a difference between the actual movement direction (Rist(n)) of the advancing movement (V) and the target movement direction (Rsoll(n)) of the advancing movement (V) a predetermined current limit (Isollmax) for the actuator current (I(n)) delivered by way of the current controller (48) is subject to defined reduction in order to reduce the advance force (FV(n)) of the actuator (34).
- Method according to claim 1, wherein for determination of the movement directions (Rist(n); Rsoll(n)) of the advancing movement (V) in step (i) the target and actual positions (xsoll(n), xsoll(n-1); xist(n), xist(n-1)) of the actuator (34) are evaluated from the present control cycle (n) and from the preceding control cycle (n-1).
- Method according to claim 1 or 2, wherein for the comparison of the determined actual movement direction (Rist(n)) of the advancing movement (V) with the determined target movement direction (Rsoll(n)) of the advancing movement (V) in the step (ii) a comparison signal is generated which produces a current reduction signal (Ired(n)) by way of a PI or PID transfer element (62) and wherein in the step (iii) a signal for the predetermined current limit (Isollmax) reduced by the respective current reduction signal (Ired(n)) is applied as current limitation signal (Imax(n)) to the current controller (48).
- Method according to claim 3, wherein different parameter sets for the proportional component (amplification KP) and the integral component (reset time TN) of the PI or PID transfer element (62) are used depending on the shape of the workpiece (L) to be ground.
- Method according to any one of the preceding claims, wherein a linear motor (34) is used as actuator for producing the relative advancing movement (V) between grinding tool (G) and workpiece (L).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012010004A DE102012010004A1 (en) | 2012-05-22 | 2012-05-22 | Method for grinding workpieces, in particular for centering grinding of workpieces such as optical lenses |
PCT/EP2013/001240 WO2013174468A2 (en) | 2012-05-22 | 2013-04-25 | Method for grinding workpieces, in particular for centring grinding of workpieces such as optical lenses |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2852472A2 EP2852472A2 (en) | 2015-04-01 |
EP2852472B1 true EP2852472B1 (en) | 2016-06-29 |
Family
ID=48463909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13723403.5A Active EP2852472B1 (en) | 2012-05-22 | 2013-04-25 | Method for grinding workpieces, in particular for centring grinding of workpieces such as optical lenses |
Country Status (6)
Country | Link |
---|---|
US (1) | US9278421B2 (en) |
EP (1) | EP2852472B1 (en) |
CN (1) | CN104321163B (en) |
DE (1) | DE102012010004A1 (en) |
HK (1) | HK1202489A1 (en) |
WO (1) | WO2013174468A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015209916A1 (en) * | 2015-05-29 | 2016-12-01 | Zf Friedrichshafen Ag | Control of a machining process by means of P-controller and load-dependent control factor |
DE102016006791A1 (en) | 2016-06-07 | 2017-12-07 | Satisloh Ag | Machine for machining workpieces in optical quality |
CN108061956B (en) * | 2017-12-18 | 2020-05-05 | 中国航空工业集团公司洛阳电光设备研究所 | High-precision lens centering and assembling correction method |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2930309C2 (en) * | 1979-07-26 | 1982-10-14 | M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach | Method for recognizing the desired contour of a workpiece with burrs while the burr is being processed |
DD159927A1 (en) * | 1981-06-19 | 1983-04-13 | Siegfried Lasch | CIRCUIT ARRANGEMENT FOR TORQUE MONITORING FOR CONTROLLED DC CURRENT DRIVES |
DE3418365A1 (en) * | 1984-05-17 | 1985-11-21 | Siemens AG, 1000 Berlin und 8000 München | Control system for a direct-current work-spindle drive |
JPH0698554B2 (en) | 1986-09-22 | 1994-12-07 | 豊田工機株式会社 | Numerical control processing equipment |
CN2031931U (en) * | 1988-01-26 | 1989-02-01 | 中国科学院长春光机所 | Photoelectric automatic centering device for optical lenses |
US5804940A (en) * | 1994-04-08 | 1998-09-08 | Siemens Aktiengesellschaft | Device designed to compensate for non-linearity of machine shafts |
CN2262467Y (en) * | 1996-12-23 | 1997-09-17 | 南京仪机股份有限公司 | Mechanical centring edge polishers capable of bidirectional accurate positioning |
TW467792B (en) * | 1999-03-11 | 2001-12-11 | Ebara Corp | Polishing apparatus including attitude controller for turntable and/or wafer carrier |
JP3695988B2 (en) * | 1999-04-30 | 2005-09-14 | 株式会社ニデック | Eyeglass frame shape measuring device |
JP4689982B2 (en) * | 2004-07-14 | 2011-06-01 | アルプス電気株式会社 | Optical element manufacturing method |
JP4183672B2 (en) | 2004-10-01 | 2008-11-19 | 株式会社ノリタケカンパニーリミテド | Rotary grinding method and rotary grinding machine control device |
DE102005007523A1 (en) | 2005-02-17 | 2006-08-24 | Weco Optik Gmbh | Spectacle lens edging machine |
JP4290673B2 (en) * | 2005-04-28 | 2009-07-08 | 株式会社ニデック | Glasses lens peripheral processing method |
JP4839720B2 (en) * | 2005-08-04 | 2011-12-21 | トヨタ自動車株式会社 | Precision processing equipment |
JP5405720B2 (en) * | 2007-03-30 | 2014-02-05 | 株式会社ニデック | Eyeglass lens processing equipment |
JP5073345B2 (en) * | 2007-03-30 | 2012-11-14 | 株式会社ニデック | Eyeglass lens processing equipment |
JP5302029B2 (en) * | 2009-02-04 | 2013-10-02 | 株式会社ニデック | Eyeglass lens processing equipment |
US8647170B2 (en) * | 2011-10-06 | 2014-02-11 | Wayne O. Duescher | Laser alignment apparatus for rotary spindles |
US8747188B2 (en) * | 2011-02-24 | 2014-06-10 | Apple Inc. | Smart automation of robotic surface finishing |
DE102012010005A1 (en) | 2012-05-22 | 2013-11-28 | Satisloh Ag | Centering machine for workpieces, in particular optical lenses |
-
2012
- 2012-05-22 DE DE102012010004A patent/DE102012010004A1/en not_active Withdrawn
-
2013
- 2013-04-25 US US14/402,374 patent/US9278421B2/en active Active
- 2013-04-25 CN CN201380026654.5A patent/CN104321163B/en active Active
- 2013-04-25 WO PCT/EP2013/001240 patent/WO2013174468A2/en active Application Filing
- 2013-04-25 EP EP13723403.5A patent/EP2852472B1/en active Active
-
2015
- 2015-03-20 HK HK15102871.3A patent/HK1202489A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE102012010004A1 (en) | 2013-11-28 |
US9278421B2 (en) | 2016-03-08 |
EP2852472A2 (en) | 2015-04-01 |
WO2013174468A2 (en) | 2013-11-28 |
CN104321163B (en) | 2016-05-25 |
HK1202489A1 (en) | 2015-10-02 |
CN104321163A (en) | 2015-01-28 |
WO2013174468A3 (en) | 2014-08-07 |
US20150093967A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69009890T2 (en) | METHOD AND DEVICE FOR FINISHING AND SUPFINING. | |
DE102015007132B4 (en) | Motor controller | |
DE102015104164B4 (en) | Method and device for robot-assisted surface treatment | |
EP2174748B1 (en) | Machine tool and method for dampening the oscillations of a machine element of a machine tool | |
DE102016108498A1 (en) | WORKING SYSTEM FOR ADJUSTING THE SPEED OF A MACHINING TOOL AND THE FEEDING SPEED OF A WORKPIECE | |
EP2542382B1 (en) | Autocalibration | |
EP2852472B1 (en) | Method for grinding workpieces, in particular for centring grinding of workpieces such as optical lenses | |
DE69904769T2 (en) | Method and device for processing sheet-like materials | |
WO2013024457A1 (en) | Clamping device for a spindle of a machine tool for machining rotationally symmetric workpieces | |
DE202013104891U1 (en) | Device for changing the preload of a spindle bearing | |
EP0803325B1 (en) | Shaped grinding process for the circumferential edge of spectacle lenses and if necessary subsequently bevelling grinding and spectacle lens edge grinding machine | |
EP2676174B1 (en) | Method and device for adjusting a drive for a tool or workpiece | |
EP2218545B1 (en) | Device and method for fine processing of a rotation-symmetric workpiece surface | |
EP2844429B1 (en) | Finishing method and finishing device for finish machining of rotationally symmetrical workpiece sections | |
DE19914174A1 (en) | Method and device for shaping the peripheral edge of spectacle lenses | |
DE102005045143A1 (en) | Method and device for machining workpieces | |
EP1693151B1 (en) | Eyeglass beveling machine | |
WO2019052724A1 (en) | Method and device for fine machining cylindrical workpiece surfaces | |
EP2883635B1 (en) | Balancing device and method of balancing for a bar loading cartridge | |
DE2818840C2 (en) | Feed device for grinding flat or spherical surfaces | |
WO2019052722A1 (en) | Finishing module for a machine tool and machine tool and machining method | |
DE4413229A1 (en) | Method and apparatus for the finish machining of gears | |
EP2449435B1 (en) | Control device for a hydraulic cylinder unit | |
DE102012202158A1 (en) | Processing machine e.g. milling machine has machine axes that are tilted at predetermined angle with respect to working axis of workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141114 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160122 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 808700 Country of ref document: AT Kind code of ref document: T Effective date: 20160715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TSWPAT LUZERN AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013003550 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160929 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160930 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161029 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161031 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013003550 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
26N | No opposition filed |
Effective date: 20170330 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160929 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170425 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 808700 Country of ref document: AT Kind code of ref document: T Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: SATISLOH AG, CH Free format text: FORMER OWNER: SATISLOH AG, CH |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240429 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240429 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240422 Year of fee payment: 12 Ref country code: FR Payment date: 20240425 Year of fee payment: 12 |