EP2848865A1 - Procédé de stabilisation thermoacoustique - Google Patents
Procédé de stabilisation thermoacoustique Download PDFInfo
- Publication number
- EP2848865A1 EP2848865A1 EP13184151.2A EP13184151A EP2848865A1 EP 2848865 A1 EP2848865 A1 EP 2848865A1 EP 13184151 A EP13184151 A EP 13184151A EP 2848865 A1 EP2848865 A1 EP 2848865A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burners
- burner
- oxidant
- fuel
- mass flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/26—Controlling the air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the present invention relates to gas turbine combustion systems. It refers to a thermoacoustic stabilization method, which keeps engine pulsations under control for the lifetime of the engine.
- premix burners for example EV burners (EV stands for environmental) as described in general in EP 0 321 809 B1 or US 4,932,861 are used.
- EV burners EV stands for environmental
- the flame stabilization that is necessary by using lean fuel relying mostly on free standing recirculation regions. These flames are typically very sensitive to flow perturbations and easily couple with the dynamics of the combustion chamber to lead to thermoacoustic instabilities. These flow dynamics have a strong impact on the combustion quality, components lifetime, etc., and are thus undesirable.
- thermoacoustic stabilization currently used in gas turbines rely on passive control, and use either fuel staging in burner groups (operation concepts where groups of burners are defined to operate at different power through fuel staging), burner staging (burners with multiple fuel nozzles to combine the stability brought by rich zones to leaner flame regions) or Helmholtz resonators/dampers.
- thermoacoustic stabilization for gas turbine combustion systems composed of multiple burners which overcomes the disadvantages of the prior art methods.
- thermoacoustic stabilization of gas turbine combustors with multiple burners wherein the burners are arranged in at least one burner group and each of them is supplied with fuel and oxidant, is characterized in operating neighboring burners in that burner group at different nominal velocities of the oxidant by an oxidant pressure drop across the individual burners. This is called in the following "velocity staging".
- the nominal burner velocity is proportional to the mass flow of oxidant through the burner.
- the core of the invention is to operate neighboring burners of gas turbine combustors at different nominal mass flows of oxidant by an oxidant pressure drop across the individual burners.
- the oxidant is for example air or air with water addition etc.
- thermoacoustic stabilization at minimal implementation costs. Furthermore, it can be retrofitted.
- an added value is to modulate the specific powers of the individual burners in relation with their nominal velocities (velocity and fuel staging), keeping the temperature spread across burners to a low value and hence reducing NOx penalty.
- the stabilization is as effective as the state of the art approaches but without the undesired increasing of NOx that is associated with the known prior art methods.
- a quantification of the response of individual burners to acoustic perturbations can be made through measurements of flame transfer functions (FTF hereafter).
- FTF flame transfer functions
- the pressure drop right upstream of the burner can be controlled on a burner by burner basis, by implementing varying sieves upstream of the burners.
- the oxidant mass flow will be redistributed across burners, providing more oxidant flow to the burner with low pressure drop (higher burner velocity) and less oxidant flow to the burners with an additional pressure drop induced by the sieve.
- This arrangement leads to a burner velocity staging which provides additional stability to the system.
- orifices are implemented in the fuel distribution of the burner groups to control the fuel mass flows according to the respective burner oxidant mass flow and approach homogeneous flame temperature operation of the different groups.
- the present velocity staging concept is illustrated here for a specific annular combustor with a predefined burner grouping. It is clear, however, that a similar velocity staging can be achieved in all other gas turbines types where multiple burners are used, in annular, cannular or silo combustors.
- Fig. 1 shows a schematic view of an annular combustor 1 of the front segments 360° (front plate 4), with 24 premix burners 2 of the EV type (double-cone type).
- the burners 2 are arranged in 8 groups 3, each of four burners 2.
- One group 3 is circled with a dotted line in Fig. 1 .
- the following figures focus on such a group of burners.
- Fig. 2 shows in a schematic view such an EV burner 2 from Fig.1 in the longitudinal direction of the burner for explanation of the nomenclature and should always be discussed in connection with the following figures.
- the burner 2 opens in the front plate 4.
- Fuel 5 and oxidant 6 are supplied to the burner 2.
- a longer fuel line 5 means more fuel mass flow and a thicker oxidant line 6 means more oxidant flow.
- the burner is surrounded with a sieve 7, the thickness of the dashed line indicates the blockage strength.
- Reference number 8 indicates the flame front.
- Fig. 3 shows a schematic view of a burner group 3 with four burners 2 according to Fig. 1 (Prior Art).
- Fig. 4 shows a second schematic view of a burner group 3 with four burners 4 according to Fig. 1 (Prior Art).
- a pulsation mitigation according to the known prior art is here achieved wherein the fuel only is staged (unequally fuel distribution-the burner 2 below in Fig. 4 has a lower fuel mass flow (M_fuel ⁇ m_fuel_avg) than the other three burners (M_fuel>m_fuel_avg)), and all burners 2 get same amount of oxidant 6 as indicated by the arrows 6 with the same thickness.
- M_fuel ⁇ m_fuel_avg fuel mass flow
- M_fuel>m_fuel_avg average flame temperature
- a higher amount of oxidant 6 (higher mass flow) is supplied to one burner 2 (see burner 2 below in Fig. 5 ) while the other three burners 2 are each supplied with a lower amount of oxidant 6 as can be seen by the thinner lines in Fig. 5 .
- a lower amount of oxidant 6 is supplied to one burner 2 (see burner 2 below in Fig. 6 with a lower mass flow of oxidant 6) while the other three burners 2 are each supplied with a higher amount of oxidant 6 as can be seen by the thicker lines in Fig. 6 .
- thermoacoustic stabilization method The application in velocity staging in combination with uniform fuel injection is a thermoacoustic stabilization method, but leads also to flame temperature staging which should be avoided because of the NOx penalty.
- Fig. 7 shows the preferred embodiment of the present invention in a schematic view of a burner group 3 according to Fig. 1 with both velocity and fuel staging.
- a lower amount of oxidant 6 is supplied to one burner 2 (see burner 2 below in Fig. 7 ) while the other three burners 2 are each supplied with a higher amount of oxidant 6 as can be seen by the thicker lines in Fig. 7 .
- thermoacoustic pulsations mitigations whereby a velocity staging between burners is applied. Such an approach permits neighboring burners to be detuned hence increasing the stability. Combining this to a fuel distribution that matches the oxidant distribution, the combustor can be operated near homogeneous conditions, so that the penalty in pollutant emissions is reduced to its minimum.
- This approach can be implemented in a number of different ways, for example installation of different burner sizes, of burners with different pressure drop characteristics, etc.
- all burners are identical, and the individual burners pressure drops are controlled by the implementation of different sieves (already implemented in the engines, however currently with same characteristics for all burners) upstream of the burners.
- This approach leads to velocity staging with minimal cost because such sieves are inexpensive.
- the proposed staging concept is applicable to any gas turbine system composed of multiple burners (annular, cannular, silo).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13184151.2A EP2848865A1 (fr) | 2013-09-12 | 2013-09-12 | Procédé de stabilisation thermoacoustique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13184151.2A EP2848865A1 (fr) | 2013-09-12 | 2013-09-12 | Procédé de stabilisation thermoacoustique |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2848865A1 true EP2848865A1 (fr) | 2015-03-18 |
Family
ID=49209233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13184151.2A Withdrawn EP2848865A1 (fr) | 2013-09-12 | 2013-09-12 | Procédé de stabilisation thermoacoustique |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2848865A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4148327A1 (fr) * | 2021-09-09 | 2023-03-15 | Ansaldo Energia Switzerland AG | Moteur à turbine à gaz à stabilisation de mode acoustique, procédé de commande et procédé de modification de moteur à turbine à gaz |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4932861A (en) | 1987-12-21 | 1990-06-12 | Bbc Brown Boveri Ag | Process for premixing-type combustion of liquid fuel |
WO1998011383A2 (fr) * | 1996-09-09 | 1998-03-19 | Siemens Aktiengesellschaft | Dispositif et procede pour la combustion d'un combustible dans l'air |
WO1998012478A1 (fr) * | 1996-09-16 | 1998-03-26 | Siemens Aktiengesellschaft | Procede et dispositif pour la combustion d'un combustible avec de l'air |
GB2375601A (en) * | 2001-05-18 | 2002-11-20 | Siemens Ag | Burner apparatus for reducing combustion vibrations |
EP1158247B1 (fr) | 2000-05-26 | 2006-04-19 | ALSTOM Technology Ltd | Dispositif pour la réduction des vibrations accoustiques dans une chambre de combustion |
WO2006082210A1 (fr) * | 2005-02-04 | 2006-08-10 | Enel Produzione S.P.A. | Reduction d’oscillation thermoacoustique dans des chambres de combustion de turbine a gaz avec plenum annulaire |
EP1906093A2 (fr) * | 2006-09-26 | 2008-04-02 | United Technologies Corporation | Procédé pour le contrôle d'instabilités thermoacoustiques dans une chambre de combustion |
WO2010115980A2 (fr) | 2009-04-11 | 2010-10-14 | Alstom Technology Ltd. | Chambre de combustion dotée d'un amortisseur de helmholtz |
US8205714B2 (en) | 2008-08-14 | 2012-06-26 | Alstom Technology Ltd. | Method for adjusting a Helmholtz resonator and an adjustable Helmholtz resonator |
-
2013
- 2013-09-12 EP EP13184151.2A patent/EP2848865A1/fr not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4932861A (en) | 1987-12-21 | 1990-06-12 | Bbc Brown Boveri Ag | Process for premixing-type combustion of liquid fuel |
EP0321809B1 (fr) | 1987-12-21 | 1991-05-15 | BBC Brown Boveri AG | Procédé pour la combustion de combustible liquide dans un brûleur |
WO1998011383A2 (fr) * | 1996-09-09 | 1998-03-19 | Siemens Aktiengesellschaft | Dispositif et procede pour la combustion d'un combustible dans l'air |
WO1998012478A1 (fr) * | 1996-09-16 | 1998-03-26 | Siemens Aktiengesellschaft | Procede et dispositif pour la combustion d'un combustible avec de l'air |
EP1158247B1 (fr) | 2000-05-26 | 2006-04-19 | ALSTOM Technology Ltd | Dispositif pour la réduction des vibrations accoustiques dans une chambre de combustion |
GB2375601A (en) * | 2001-05-18 | 2002-11-20 | Siemens Ag | Burner apparatus for reducing combustion vibrations |
WO2006082210A1 (fr) * | 2005-02-04 | 2006-08-10 | Enel Produzione S.P.A. | Reduction d’oscillation thermoacoustique dans des chambres de combustion de turbine a gaz avec plenum annulaire |
EP1906093A2 (fr) * | 2006-09-26 | 2008-04-02 | United Technologies Corporation | Procédé pour le contrôle d'instabilités thermoacoustiques dans une chambre de combustion |
US8205714B2 (en) | 2008-08-14 | 2012-06-26 | Alstom Technology Ltd. | Method for adjusting a Helmholtz resonator and an adjustable Helmholtz resonator |
WO2010115980A2 (fr) | 2009-04-11 | 2010-10-14 | Alstom Technology Ltd. | Chambre de combustion dotée d'un amortisseur de helmholtz |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4148327A1 (fr) * | 2021-09-09 | 2023-03-15 | Ansaldo Energia Switzerland AG | Moteur à turbine à gaz à stabilisation de mode acoustique, procédé de commande et procédé de modification de moteur à turbine à gaz |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10451283B2 (en) | Sequential combustor arrangement with a mixer | |
EP2593723B1 (fr) | Dispositif de combustion à division de combustible pulsée et procédé pour l'operation de dispositif | |
US9631816B2 (en) | Bundled tube fuel nozzle | |
EP2559946B1 (fr) | Système et procédé de réduction des dynamiques de combustion dans une chambre de combustion | |
US8037688B2 (en) | Method for control of thermoacoustic instabilities in a combustor | |
EP2837889B1 (fr) | Combustion séquentielle avec un mélangeur de gaz de dilution | |
CN105716116B (zh) | 喷射稀释空气的轴向分级混合器 | |
EP2894405A1 (fr) | Dispositif à combustion séquentielle avec un gaz de dilution | |
JP2011137629A (ja) | マルチノズルドライ低NOx燃焼システムの燃焼ダイナミクスを軽減するための燃料システム音響特性 | |
KR20100061538A (ko) | 2차 연료 전달 시스템 | |
EP2738471B1 (fr) | Tube d'allumage transversale entre deux chambres de combustion adjacentes | |
JP2015083779A (ja) | ガスタービン燃焼器及びガスタービン燃焼器の制御方法 | |
CN109073221B (zh) | 燃烧室衬里的高频声学阻尼器 | |
US9028247B2 (en) | Combustion chamber and method for damping pulsations | |
US9464809B2 (en) | Gas turbine combustor and operating method for gas turbine combustor | |
US20120317986A1 (en) | Method for operating a combustion device and combustion device for implementing the method | |
EP2848865A1 (fr) | Procédé de stabilisation thermoacoustique | |
WO2014173578A1 (fr) | Combustion séquentielle avec gaz de dilution | |
US20060080962A1 (en) | Combustion device | |
EP2989389B1 (fr) | Combustion séquentielle avec gaz de dilution | |
JP2020079685A (ja) | ガスタービン燃焼器 | |
EP4148327A1 (fr) | Moteur à turbine à gaz à stabilisation de mode acoustique, procédé de commande et procédé de modification de moteur à turbine à gaz | |
CN109416181B (zh) | 用于减少排放的选择性燃烧器控制方法 | |
Hernandez et al. | Retrofittable Solutions to Keep Existing Gas Turbine Power Plants Viable and Profitable in an Increasingly Dynamic Power Generation Market: Validation of Low Pressure Drop FlameSheet™ Combustor | |
KR20180089299A (ko) | 연소 시스템 내에서 흐름 불균일을 보정하는 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130912 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150919 |