EP2847558A1 - Emission device for emitting a light beam of controlled spectrum - Google Patents

Emission device for emitting a light beam of controlled spectrum

Info

Publication number
EP2847558A1
EP2847558A1 EP13727243.1A EP13727243A EP2847558A1 EP 2847558 A1 EP2847558 A1 EP 2847558A1 EP 13727243 A EP13727243 A EP 13727243A EP 2847558 A1 EP2847558 A1 EP 2847558A1
Authority
EP
European Patent Office
Prior art keywords
light
optical
light beam
optical assembly
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13727243.1A
Other languages
German (de)
French (fr)
Inventor
Mejdi NCIRI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
True Spirit
Original Assignee
Archimej Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1201353A external-priority patent/FR2990512B1/en
Priority claimed from FR1261015A external-priority patent/FR2990582B1/en
Application filed by Archimej Technology filed Critical Archimej Technology
Publication of EP2847558A1 publication Critical patent/EP2847558A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0216Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using light concentrators or collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J3/4338Frequency modulated spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1282Spectrum tailoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1286Polychromator in general

Definitions

  • the present invention relates to a device for transmitting a light beam of controlled spectrum, implementing innovative spectral multiplexing means.
  • Spectral multiplexing refers to the spatial combination of several light beams each contributing to the final spectral composition of a combined light beam.
  • the field of the invention is more particularly but not limited to that of the spectral multiplexing of at least two wavelengths each emitted by a distinct light source.
  • Separate light sources include quasi-monochromatic sources.
  • a spectrophotometer comprising a plurality of light-emitting diodes (hereinafter referred to as LEDs for light-emitting diodes) emitting at different wavelengths: in blue at 470 nanometers (nm), in green at 574 nm , and in the red at 636 nm.
  • the different light beams emitted by the three LEDs are each coupled with a respective optical fiber, then a fiber-splitter (“fiber splitter”) combines and mixes these different light beams.
  • a disadvantage of such a device is that it is difficult to effectively couple the light beam emitted by an LED with an optical fiber whose numerical aperture is generally limited relative to the divergence of the light beam emitted by the LED. The losses of light intensity are therefore significant.
  • the alignment of the LED with the corresponding optical fiber must be very precise which limits the possibilities industrial production and repeatability of alignments.
  • fibered multiplexers have a significant cost.
  • the source for a microscope Colibri marketed by the company Zeiss in which four beams at 400 nm, 470 nm, 530 nm and 625 nm respectively, are combined thanks to a block comprising mirrors and dichroic reflectors is also known. Thanks to internal reflection games, the four beams form a single beam of white light at the output.
  • a disadvantage of such a device is that the number of beams that can be combined is limited and can hardly exceed the number of four.
  • the higher the number of beams that it is desired to combine the more the dichroic mirror arrangement is complex, expensive, and of low energy efficiency.
  • An object of the present invention is to provide a device for emitting a controlled spectrum light beam which does not have the drawbacks of the prior art.
  • the spectral multiplexing means do not have the drawbacks of the prior art.
  • an object of the present invention is to provide a device for emitting a light beam of controlled spectrum, simple in principle and its embodiment, allowing in particular to be made in several copies with good reproducibility.
  • Another objective of the present invention is to propose a device for emitting a light beam of controlled spectrum, making it possible to mix more than three or even four beams of light, for example twelve.
  • Another object of the present invention is to propose a device for emitting a low cost controlled spectrum light beam.
  • Another object of the present invention is to provide a device for emitting a controlled energy light spectrum beam of good energy efficiency, wherein the energy losses are minimized.
  • This objective is achieved with a device for emitting a controlled spectrum light beam comprising at least two light sources each emitting a light beam with at least one wavelength ⁇ respectively ⁇ 2 , as well as spectral multiplexing means.
  • the spectral multiplexing means comprise an optical assembly formed of at least one lens and / or an optical prism, said optical assembly having chromatic dispersion properties and being arranged to be traversed by the light beams of the light sources. distinct, without spectrally selective reflection, and for spatially approximating said light beams, so that the spectral multiplexing means spatially superimpose said light beams.
  • the transmission device is furthermore arranged so that each light beam with at least one wavelength ⁇ respectively ⁇ 2 propagates in free space from the corresponding light source to the optical assembly.
  • Each light source is associated with a respective wavelength.
  • each source can emit at other wavelengths in addition to this associated wavelength.
  • Each light beam with at least one wavelength ⁇ respectively ⁇ 2 has in any event a certain spectral width.
  • the superimposed light beams form a so-called superimposed or multiplexed beam.
  • the light beams can be superimposed at one point, or preferentially at infinity, thus forming a single collimated multiplexed beam.
  • the optical assembly thanks to its chromatic dispersion properties, can transform a multicolored light beam (that is to say comprising at least two wavelengths) into at least two light beams each at a respective wavelength. .
  • each of the light beams at at least one wavelength can be brought spatially close to the output of the optical assembly. It is in this sense of use that one chooses to use the optical assembly, in the device according to the invention. It can be considered that the device according to the invention is a "Inverted optical spectrometer", using no diffraction grating or filter wheel.
  • chromatic dispersion according to the invention includes chromatic aberrations.
  • the optical assembly is formed by at least one lens and / or an optical prism, and there is no spectrally selective reflection (ie reflection of a portion of light beam at certain lengths of light). wave only, the portion of the light beam at the other wavelengths being either transmitted or deflected in another preferred direction). In particular, there is no dichroic reflector or diffraction grating.
  • the emission device according to the invention is therefore of simple design.
  • the spectrally selective reflections according to the invention do not include spurious reflections that may exist in any optical system, particularly at the interfaces, and which can then be attenuated by anti-glare treatments.
  • Free space refers to any spatial medium of signal routing: air, inter-sidereal space, void, etc., as opposed to a physical transport medium, such as optical fiber or wired or coaxial transmission lines.
  • this feature provides a greater freedom of positioning of the light sources which reduces the production cost of the device according to the invention and makes possible a production line.
  • the light sources emit at wavelengths in the visible range (between 400 nm and 800 nm).
  • the light sources can emit light beams with spectral widths greater than 6 nm.
  • the spectral multiplexing means are formed by the optical assembly only.
  • the optical assembly alone brings the light beams spatially together and spatially superimposed.
  • each light source is placed on an object focus of the optical assembly, where said object focus corresponds to the wavelength of the light beam emitted by this light source, so that at the output of the optical assembly the light beams are spatially superimposed and collimated.
  • This variant requires a minimum of optical elements. The manufacturing cost of the device according to the invention is thus reduced.
  • This variant can be called the "infinite point" variant.
  • the optical assembly transforms a light beam of parallel (called “collimated”) and multicolored (that is to say at least two wavelengths) beams, at least two light beams converging respectively to two distinct foci and separated from the optical assembly and corresponding to the two wavelengths of the multicolored light beam.
  • each light source is placed at an object point of the optical assembly, where said object point corresponds to the wavelength of the light beam emitted by this light source, and so that at the output of the optical assembly the light beams are spatially superposed in a single image point.
  • the spectral multiplexing means comprise the optical assembly, a homogenization waveguide and optical collimation means, the optical assembly being arranged to send the light beams at the input of the guide.
  • the homogenization waveguide makes it possible to perform a homogenization function of the different light beams brought together spatially by the optical assembly.
  • a homogeneous beam is obtained which is collimated by the optical means of collimation.
  • a homogenization waveguide typically has a core diameter greater than or equal to 1 mm, which makes it possible to perform this homogenization function which could not be performed by an optical fiber.
  • the optical means of collimation are preferably achromatic.
  • the homogenization waveguide may be formed by a liquid core optical fiber.
  • An advantage of such an optical fiber is its large diameter (for example 5 mm and up to 10 mm in diameter), allowing light beams evenly distributed over a large volume (for example a cylinder 5 mm in diameter and 3 mm in diameter). mm thick) are at the entrance of the optical fiber. A lesser spatial approximation of the light beams, implemented by the optical assembly, can be compensated for by the use of such a homogenization waveguide.
  • the homogenization waveguide may be formed by a hexagonal homogenization bar.
  • the term "light pipe” is sometimes used.
  • a TECHSPEC® homogenizer bar can be used in N-BK7.
  • the optical assembly focuses the light beams at a focal point or a focal area, at which is a simple filter hole.
  • the separate light sources are arranged coplanar.
  • the separate light sources can be aligned on a straight line and arranged in increasing order of wavelength ⁇ respectively ⁇ 2 (ie in ascending order of wavelength associated with the light source).
  • the optical assembly comprises at least one optical system used off axis and having a lateral chromatic aberration.
  • This lateral chromatic aberration forms the property of chromatic dispersion according to the invention.
  • Off-axis use accentuates or even reveals the lateral spatial dispersion of wavelengths.
  • the light sources can be respectively placed at the focal points of the optical system corresponding to the wavelengths ⁇ and ⁇ 2 , so that their light beams are multiplexed at the output of the optical system.
  • the optical system is said to be “used off axis", that is to say outside its optical axis.
  • an incident light beam, converging at the object focus of the optical system does not emerge from this optical system parallel to the optical axis of said system.
  • the foci of the optical system corresponding to different wavelengths are sufficiently separated to be able to place the corresponding light sources at the location of these homes.
  • the spectral multiplexing is precisely and automatically performed by the aberrant optical system used off axis.
  • the optical assembly comprises at least one optical system used in the axis and having lateral chromatic aberration.
  • the light sources can be almost monochromatic, each emitting a light beam at wavelengths ⁇ respectively ⁇ 2 .
  • the emission device can form a source part of an absorption spectrometer, the spectral multiplexing means according to the invention being adapted to mix the light beams to form a multiplexed (or superimposed) light beam for illuminating a sample at analyze.
  • the optical assembly comprises a doublet or a triplet of lenses, usually used for the correction of chromatic aberrations.
  • the doublet or triplet of lenses is thus diverted from its dedicated use.
  • a flint / crown doublet (the name of the two types of glass used for each of the two lenses of the doublet) is used.
  • the optical assembly comprises an optical prism and optical focusing means and / or optical collimation means.
  • the optical assembly comprises:
  • optical collimation means arranged to form and direct collimated light beams from the light sources to the optical prism;
  • optical focusing means arranged to direct light beams emerging from the prism towards a common point of focus.
  • any optical spectral decomposition system comprising at least one lens and / or an optical prism, taken in the opposite direction, can be used as an optical assembly according to the invention.
  • each light source is a light emitting diode (LED).
  • An LED is a quasi-point light source emitting a diverging light beam.
  • the transmission device according to the invention may comprise more than three light sources, for example at least five, eight, or twelve, or even at least twelve light sources. One could even provide dozens of light sources.
  • the wavelengths of the light sources may be between 340 nm and 800 nm.
  • the transmission device may further comprise modulation means arranged to modulate the light intensity of at least two of the light sources at different frequencies from each other.
  • the device according to the invention comprises modulation means arranged to modulate the light intensity of each light source, independently of each other.
  • the device according to the invention further comprises means for controlling the light intensity of at least two of the light sources, independently of one another.
  • the device according to the invention comprises means for controlling the light intensity of each light source, independently of one another.
  • a spectrally controlled multispectral source is obtained, each spectral contribution being intensity controlled independently.
  • one of the light sources according to the invention can be ignited in turn. At every moment, the energy contribution of all light sources except one is zero.
  • Such an embodiment makes it possible, for example, to produce a device for transmitting a beam bright for an absorption spectrometer.
  • a spectrometer instead of sending a white light to a sample, which must then be decomposed into a wavelength after passing through the sample, only one wavelength is sent at each instant. (subject to the spectral width of each light source of course). We thus get rid of a final stage of spectral decomposition. It is chosen to control the emission device instead of separating the wavelengths in the beam transmitted by the sample.
  • one can turn on all the light sources at once, but thanks to the modulation means as defined above continue to overcome a final step of spectral decomposition by spatial separation in an absorption spectrometer.
  • the light intensity control means can furthermore make it possible to adapt the light intensity of each light source to an absorption by a sample and / or a response of a detector.
  • the invention also relates to an installation M 2 for transmitting a controlled spectrum light beam, comprising at least two M devices for transmitting a controlled spectrum light beam according to the invention, each device M providing a light beam said superimposed, the emission facility M 2 of a controlled spectrum light beam further comprising additional spectral multiplexing means arranged to spatially superpose the respective superimposed light beams of each device M of emission of a light beam of controlled spectrum.
  • the additional spectral multiplexing means advantageously comprise any conventional multiplexing means. Some examples are given below.
  • the additional spectral multiplexing means may comprise a set of at least one dichroic mirror. Through games of reflection or transmission, one can spatially superimpose light beams each associated with a respective transmission device.
  • the additional spectral multiplexing means may comprise a fiber-shaped mutiplexer arranged to multiplex together light beams. from its several input optical fibers. We can speak of "fiber splitter” to designate such a fibered mutiplexer.
  • Each device for transmitting a controlled spectrum light beam may comprise a respective waveguide, and common collimation optical means with the other devices for emitting a controlled spectrum light beam, and the multiplexing means.
  • Spectral annexes are arranged to multiplex the light beams from each of the waveguides.
  • each device for transmitting a controlled spectrum light beam may comprise a respective homogenization waveguide.
  • each transmission device corresponds to a waveguide (possibly homogenization) in which are propagated light beams superimposed or brought together by the corresponding optical assembly.
  • the outputs of the various waveguides are multiplexed (or mixed) by the fiber multiplexer, and then collimated by the common optical collimation means.
  • the invention also relates to a spectrometer for analyzing at least one sample, comprising means for illuminating the sample.
  • the means for illuminating the sample comprise a device M for transmitting a controlled spectrum light beam according to the invention or an installation M 2 for transmitting a controlled spectrum light beam according to the invention.
  • the spectrometer according to the invention can form an absorption spectrometer and comprise:
  • At least one detector adapted to collect a light beam transmitted by the sample to be analyzed and delivering a signal relating to the light fluxes received by the detector at the wavelengths ⁇ respectively ⁇ 2 , and
  • the absorption spectrometer according to the invention does not use, contrary to conventional absorption spectrometers, expensive and bulky optical components such as a diffraction grating or a linear multi-channel detector (for example CCD sensor or photodiode array), its cost remains under control.
  • expensive and bulky optical components such as a diffraction grating or a linear multi-channel detector (for example CCD sensor or photodiode array)
  • the spectrometer according to the invention directly integrates the light source.
  • the absorption spectrometer according to the invention may comprise modulation means arranged to modulate the light intensity of each of the light sources at different frequencies from each other, and signal processing means arranged to demodulate the signal delivered by the detector synchronously with the light sources.
  • the absorption spectrometer according to the invention comprises the variant of the transmission device or transmission facility according to the invention, comprising means for controlling the light intensity of at least two of the light sources, independently of the one of the other.
  • the principle implemented is fundamentally different, since it consists of controlling the emission (by modulation, or activation of a single source at a time) instead of spectrally decomposing along a line of detection, the light beam transmitted by the sample to be analyzed.
  • the absorption spectrometer according to the invention then has many other advantages:
  • the spectral decomposition of the beam transmitted by the sample is not perfect.
  • most (but not all) of the component at a wavelength ⁇ are: most (but not all) of the component at a wavelength ⁇ , and stray light at all other wavelengths of the transmitted beam.
  • This stray light is essentially due to the diffusion introduced by the use of a network of diffraction.
  • the absorption spectrometer according to the invention may comprise at least one optical fiber in which is coupled the light beam multiplexed and illuminating the sample to be analyzed.
  • the absorption spectrometer according to the invention may comprise optical collimation means, arranged at the output of the device or the installation according to the invention, so as to direct a collimated light beam toward the sample.
  • the absorption spectrometer may comprise servo-control means adapted to modify the luminous intensity of each light source as a function of the absorption of each of the wavelengths ⁇ , ⁇ 2 (and, where appropriate, ⁇ , at N, 02) by the sample to be analyzed. This ensures that you always work in the best area of sensitivity and linearity of the detector. This improves the signal-to-noise ratio.
  • the spectrometer according to the invention can form a fluorescence spectrometer and comprise:
  • At least one detector adapted to collect a fluorescence light beam emitted by the sample to be analyzed
  • signal processing means arranged to deliver a signal relating to the luminous flux (of the fluorescence light beam) received by the detector as a function of the wavelength ⁇ respectively ⁇ 2 received by the sample.
  • the wavelength ⁇ respectively ⁇ 2 received by the sample is generally called the excitation wavelength.
  • the detector may be arranged to detect only a predetermined spectral band.
  • the fluorescence spectrometer is particularly advantageous, in the variant in which the emission device (or the transmission system) according to the invention comprises means for controlling the light intensity of at least two of the light sources, independently of one another.
  • the signal processing means deliver a signal relating to the luminous flux received by the detector as a function of a given intensity (excitation) of each wavelength ⁇ respectively ⁇ 2 and a duration excitation.
  • the duration of excitation is controlled by means of control of the light intensity. It is thus possible to produce fluorescence resolved in time.
  • different molecules do not undergo the same excitation. It is less expensive to play on a fast excitation time, than on a fast detection.
  • the invention makes it possible to play rather on a fast excitation time, thanks for example to the use of LEDs.
  • the detector comprises a simple intensity detector
  • the signal processing means deliver a signal relating to the total intensity of the fluorescence light beam received by the detector as a function of the excitation wavelength ( wavelength ⁇ respectively ⁇ 2 received by the sample).
  • the detector may comprise a spectrometer, and the signal processing means deliver a signal relative to the fluorescence spectrum of the fluorescence light beam received by the detector as a function of the excitation wavelength.
  • the fluorescence spectrometer may comprise servo-control means adapted to modify the light intensity of each light source as a function of the intensity of the fluorescence light beam emitted by the sample in response to wavelength absorption. ⁇ respectively ⁇ 2 corresponding.
  • the fluorescence spectrometer according to the invention may comprise modulation means arranged to modulate the light intensity of each of the light sources at different frequencies from each other, and signal processing means arranged to demodulate the signal delivered by the detector synchronously with the light sources.
  • the absorption spectrometer according to the invention or the fluorescence spectrometer according to the invention may comprise a reference chain: a part of the light beam emitted by the means for illuminating the sample is not directed towards the sample to be analyzed but to a reference sample. It is thus possible to have a reference for calculating an absorption respectively a signal relating to the luminous flux received by the detector as a function of the wavelength ⁇ respectively ⁇ 2 received by the sample. Rather than a reference sample, one can predict a simple empty location (ambient air), which makes it easy to integrate the reference chain into the spectrometer.
  • a calibration can be performed by initially analyzing a reference sample and then a sample to be analyzed.
  • the invention also relates to a fluorescence or absorption imaging apparatus comprising means for illuminating a sample.
  • the means for illuminating the sample comprise a device M for transmitting a controlled spectrum light beam according to the invention or an installation M 2 for transmitting a controlled spectrum light beam according to the invention.
  • the imaging apparatus according to the invention can form a fluorescence microscopy apparatus and include:
  • collection means arranged to collect a return signal comprising a fluorescence light beam emitted by the sample to be analyzed
  • the imaging apparatus can form an absorption microscopy apparatus and comprise:
  • collection means arranged to collect a return signal comprising a light beam reflected or backscattered by the sample to be analyzed
  • the fluorescence microscopy apparatus may comprise servo-control means adapted to modify the light intensity of each light source as a function of the intensity of the fluorescence light beam emitted by the sample in response to the absorption of the respective wavelength ⁇ ⁇ 2 .
  • the absorption microscopy apparatus may comprise servo-control means adapted to modify the light intensity of each light source as a function of the intensity of the light beam reflected or backscattered by the sample. in response to the absorption of the wavelength ⁇ respectively ⁇ 2 corresponding.
  • the fluorescence microscopy or absorption apparatus may comprise modulation means arranged to modulate the intensity each of the light sources at different frequencies from each other.
  • Signal processing means may be arranged to demodulate the signal delivered by a detector (for example display means) synchronously with the light sources.
  • the invention also relates to a multispectral imaging apparatus for observing at least one sample illuminated successively by light beams at different wavelengths, comprising:
  • means for illuminating the sample comprising a device M for transmitting a controlled spectrum light beam according to the invention or an installation M 2 for transmitting a controlled spectrum light beam according to the invention
  • control means of the separate light sources arranged to activate each moment a light source at a time
  • the invention relates to a use of a device M for transmitting a light beam of controlled spectrum according to the invention or an installation M 2 for transmitting a light beam of controlled spectrum according to the invention. , to form illumination means in any apparatus such as a spectrometer or an imaging apparatus. All the advantages stated about the transmission device according to the invention are found in these various uses (in particular, the adaptability of the emission, and the spectral control of the emission).
  • the invention may also relate to a use of an emission device M according to the invention or an emission installation M 2 according to the invention, to form illumination means optimizing the colorimetric rendering of an object (in a museum, a jewelery shop, a teething device for the use of a dentist, etc.).
  • the invention relates to a light emission block comprising at least three semiconductor chips each emitting a quasi-monochromatic light beam at an emission wavelength ⁇ respectively ⁇ 2 and ⁇ 3 respectively.
  • the semiconductor chips are arranged in chromatic order according to their emission wavelength.
  • the emission wavelength of a chip is the wavelength corresponding to its maximum intensity on its emission spectrum. This wavelength is generally central on its emission spectrum if the latter is bell-shaped.
  • the light emission block according to the invention incorporates the general principle of multicore LEDs (we speak in English of "multichip LED"), but by modifying it.
  • multi-core LEDs are made to optimize the emission intensity of the LED.
  • Each semiconductor chip then has the same emission spectrum. According to the invention, on the contrary, it is desired that each semiconductor chip has a distinct emission wavelength.
  • the semiconductor chips are placed according to their emission wavelength.
  • the semiconductor chips may be numerous, for example twelve may be provided in the same light source.
  • Semiconductor chips can be coplanar.
  • the semiconductor chips can be aligned.
  • the width of a semiconductor chip is less than 1 mm, for example between 90 ⁇ m and 500 ⁇ m or even between 90 ⁇ m and 200 ⁇ m.
  • the distance between two neighboring diodes is advantageously between 90 pm and 500 pm. This distance may vary in particular according to the spectral width of each semiconductor chip, and the difference between the emission wavelengths of two neighboring semiconductor chips. This distance depends on the number of semiconductor chips that it is desired to use in the light source according to the invention.
  • the distance between two neighboring diodes can be fixed.
  • the distance between a first diode and the neighboring diode varies with the emission wavelength of the first diode and the emission wavelength of the neighboring diode.
  • the light emission block according to the invention may be adapted to be used in a device for emitting a controlled spectrum light beam according to the invention, to form the light sources.
  • the invention may relate to a device for transmitting a controlled spectrum light beam as described above, in which the light sources are formed by such a light emission block.
  • FIG. 1 illustrates the emission spectra of two light sources used in a device for emitting a controlled spectrum light beam according to the invention
  • FIG. 2 illustrates a first embodiment of an emission device according to the invention
  • FIG. 3 illustrates a second embodiment of an emission device according to the invention
  • FIG. 4 illustrates a third embodiment of an emission device according to the invention
  • FIG. 5 illustrates a fourth embodiment of an emission device according to the invention
  • FIG. 6 illustrates an embodiment of a transmission installation according to the invention
  • FIG. 7 illustrates an embodiment of an absorption spectrometer according to the invention
  • FIG. 8 illustrates an embodiment of a fluorescence spectrometer according to the invention
  • FIG. 9 illustrates an embodiment of a fluorescence microscopy apparatus according to the invention.
  • FIG. 10 illustrates an embodiment of a multispectral imaging apparatus according to the invention.
  • FIG. 11 illustrates an embodiment of a light emission block according to the invention.
  • the emission spectra of two light sources used in a transmission device according to the invention will first describe, with reference to Figure 1, the emission spectra of two light sources used in a transmission device according to the invention.
  • Each spectrum ⁇ ( ⁇ ), respectively ⁇ 2 ( ⁇ ), has the shape of a "bell-shaped" curve (for example a Gaussian) having a peak at the so-called working wavelength ⁇ , respectively ⁇ 2 .
  • This peak has a relatively low half-height width relative to the working wavelength.
  • a first light source SI has a bell emission spectrum with:
  • a half-height width ⁇ around the peak at ⁇ , here equal to 10 nm.
  • a second light source S2 has a bell emission spectrum with:
  • ⁇ 2 a half-height width ⁇ 2 around the peak at ⁇ 2 , here equal to 10 nm.
  • the half-height width ⁇ of the light source SI is small compared with the wavelength ⁇ because ⁇ / ⁇ ⁇ 1
  • the half-height width ⁇ 2 of the light source S2 is small compared with the wavelength ⁇ 2 because ⁇ 2 / ⁇ 2 ⁇ 1.
  • the light sources here comprise light emitting diodes (LEDs or "LEDs” in English for “Light-Emitting Diodes”).
  • LEDs light emitting diodes
  • the use of light-emitting diodes makes it possible to reduce risk of failure, LEDs being light sources having a longer life than the light sources usually used in devices such as a spectrometer, such as incandescent or discharge sources.
  • LEDs have the advantage of being small.
  • a first embodiment of a device for emitting a light beam of controlled spectrum 1 according to the invention will now be described with reference to FIG.
  • These light sources SI to S12 are considered to be quasi-monochromatic sources, each emitting a light beam at wavelengths ⁇ K 12l respectively.
  • quasi-monochromatic source a light source whose emission spectrum is narrow in wavelength. This can be understood in the light of FIG. 1, on which the emission spectra of the light-emitting diodes SI and S2 have been represented.
  • the ten other light sources S3 to S12 emit light beams at the following wavelengths:
  • the sources S1 to S12 are therefore arranged in ascending order chromaticity. Alternatively, any other wavelength suitable for the application implemented may be used.
  • the wavelengths of the light sources are between 340 nanometers and 800 nanometers.
  • the light sources S1 to S12 are advantageously selected so that their respective emission spectra do not overlap. This means, taking again the example of the light sources S1 and S2 whose respective spectra are represented in FIG. 1, that:
  • the luminous intensity ⁇ ( ⁇ 2 ) of the light source SI for the wavelength ⁇ 2 is very small compared with the value of the peak I 2 , m ax, for example less than 5%, preferably less than 1% of the value of this peak, and that - the luminous intensity ⁇ 2 ( ⁇ ) of the light source S2 for the wavelength ⁇ is very small relative to the value of the peak Ii, m ax, for example less than 5%, preferably less than 1% of the value of this peak.
  • the light sources may each comprise an optical filter placed in front of them to further limit their respective half-height width.
  • This optical filter is a conventional spectral filter known to those skilled in the art for transmitting a light beam only over a specific wavelength range, called its "bandwidth".
  • This filter may be for example an absorption filter, or an interference filter.
  • the twelve light sources S1 to S12 are, in the embodiment of the invention shown in FIG. 2, light-emitting diodes of the encapsulated type.
  • the light emitting diodes S1 to S12 here each comprise a chip ("LED chip” in English) which emits light and placed in a housing allowing, on the one hand, to dissipate the heat released by the chip when it emits, and, secondly, to bring the power to the chip for its operation.
  • the housing is therefore generally made of a thermally resistant material and electrically insulating such as an epoxy polymer such as epoxy resin, or a ceramic. It generally comprises two metal tabs which are welded to the printed circuit board 21 by means of two soldering points, these welds making it possible, on the one hand, to fix the light-emitting diode on the printed circuit board, and, on the other hand, on the other hand, to power the LEDs while running.
  • the same housing could have several chips ("mutichip LED" in English), the housing then generally comprising as many pairs of metal legs as chips embedded in the housing. We are talking about multi-core LEDs. The different chips of the case are identical.
  • the printed circuit board 21 or "PCB” for "Printed Circuit
  • the printed circuit board 21 comprises a connector 22.
  • the connector 22 is not shown in all the figures, for the sake of readability of the figures. It will be seen, with reference to FIG. 7, that on this connector 22 is connected a cable 23 connected to a supply and control box 24 supplying a current adjusted for each of the light-emitting diodes.
  • the electroluminescent diodes S1 to S12 each emit a light beam at their emission wavelength ⁇ to K 12 .
  • Each light beam is generally a divergent beam, the LEDs being light sources emitting in a quasi-Lambertian manner.
  • the transmission device 1 comprises spectral multiplexing means mixing the light beams of the light sources S1 to S12 to form a multiplexed light beam 26.
  • these spectral multiplexing means are formed by an optical assembly itself formed by a thick biconcave lens 25 having an optical axis A1.
  • a lens 25 has a lateral chromatic aberration when it is operated outside its optical axis Al.
  • the lens 25 has foci Fl to F12 corresponding to the wavelengths ⁇ to K 12 . Because of the lateral chromatic aberration, these foci are distinct and separated, aligned along a line intersecting with the optical axis A1 of the lens 25.
  • optical feature of these singular points of the lens 25 is that a light beam from these points is transmitted and transformed by the lens 25 in the form of a light beam of parallel rays, said "collimated" light beam.
  • a light beam emitted at the wavelength ⁇ from the focus Fl towards the lens 25 emerges from the lens 25 into a light beam parallel to the same wavelength ⁇ .
  • a light beam emitted at the wavelength ⁇ 2 from the focus F2 towards the lens 25 emerges from the lens 25 into a light beam parallel to the same wavelength ⁇ 2 , superimposed with the light beam parallel to the wavelength ⁇ .
  • the two light beams emitted from the foci Fl and F2 are thus mixed, or "multiplexed" at the exit of the lens 25.
  • the light beams emitted by the LEDs SI to S12 are multiplexed at the exit of the lens 25, to form a multiplexed light beam 26, here in the form of a collimated light beam.
  • the multiplexed light beam 26 is therefore a polychromatic light beam, since it comprises several mixed wavelengths.
  • FIG. 3 illustrates a second embodiment of a transmission device 1 according to the invention.
  • FIG. 3 will only be described for its differences from FIG. 2. While in the embodiment represented in FIG. 2, the light sources S1 to S12 are located at the positions of the foci F1 to F12 corresponding to the lengths of FIG. wave ⁇ to K 12 of the lens 25, in this embodiment it is not. We thus implement a conjugation optical "point-point", not "focus-infinite".
  • the light sources S1 to S12 are located at positions such that the lens 25 achieves the optical conjugation between the light sources and a common image point 37.
  • a spatial filtering hole 39 placed at this image point 37 makes it possible to carry out a filtering space on the light beam emerging from the lens 25.
  • FIG. 4 illustrates a third embodiment of a transmission device 1 according to the invention.
  • FIG. 4 will only be described for its differences from FIG. 3.
  • the geometric aberrations of the lens 25 are such that a common image point for the sources is not obtained. lights SI to S12.
  • Each light source is imaged by the lens 25 at an image point 401 to 4012 respectively.
  • the lens 25, although it does not image the sources S1 to S12 in a single point, spatially approximates the light beams from each of the sources.
  • the points 40i to 40i 2 are thus combined in a focusing volume of small dimension, for example a disk thick a few millimeters in diameter and a few millimeters in height. Therefore, a homogenization waveguide 41 is placed, so that the light beams, forming the image points 40i to 40i 2 , fit inside the waveguide 41.
  • the waveguide is for example a liquid-core optical fiber having a diameter of 3 mm and a length of 75 mm.
  • the light beams coming from each of the sources S1 to S12 are mixed inside the waveguide, so that a homogenized light beam is obtained at the output of the waveguide.
  • the beam is said to be homogenized because the contributions of each of the beams at respective wavelengths are spatially mixed.
  • an achromatic collimator 38 makes it possible to obtain a collimated multiplexed beam 26.
  • the diameter of the liquid core optical fiber is much greater than the diameter of a conventional optical fiber (a few hundred micrometers).
  • a liquid-core optical fiber having a diameter of approximately 3 mm is chosen, typically between 2 mm and 6 mm. mm, in order to guarantee an efficient coupling in the fiber at the same time as a good quality of collimation at the output of fiber.
  • FIG. 5 illustrates a fourth embodiment of a transmission device 1 according to the invention.
  • the spectral multiplexing means comprise an optical assembly formed by an optical prism 51 surrounded by a collimating lens 55 and a focusing lens 52.
  • the collimating lens makes it possible to collimate the light beams emerging from each of the light sources S1 to S12.
  • several collimated beams are directed to the prism 51.
  • the several collimated beams can be spatially distinct, or partially superimposed.
  • the prism 51 spatially brings these beams which emerge on the opposite face of the prism towards the focusing lens 52 which spatially brings into an image point 53 the light beams emitted by the different light sources.
  • the prism and lens assembly is generally used in the context of spectrometers, to spatially separate the different wavelengths. Here, it is used on the contrary to spatially bring together beams at different wavelengths, by exploiting the principle of inverse return of light.
  • the image point 53 is at the focus object of an achromatic collimation lens 38, so that one obtains at the output of this lens 38 a multiplexed beam 26 collimated.
  • the transmission installation 60 according to the invention comprises three transmission devices 1 according to the invention. More specifically, in the embodiment as shown in FIG. 6, the transmission facility 60 comprises:
  • each optical assembly 61 the light beams corresponding to each source block are focused at a single point or a plurality of points joined together in a focussing zone of restricted volume (for example a disc five millimeters in diameter and 2 millimeter in height).
  • the light beams corresponding to each source block each penetrate inside a respective waveguide 41 which may be a homogenization waveguide.
  • a fibered multiplexer 63 which spatially brings together the beams propagating in each waveguide 41, in a single waveguide 64 at the output of the fiber multiplexer 63.
  • a multiplexed collimated polychromatic beam 65 is obtained at the output, bringing together the emission wavelengths of each of the light sources of each transmission device 1.
  • each transmission device 1 corresponds to a dedicated collimation optics 38, then placed upstream of the fiber multiplexer 63.
  • the fiber multiplexer can advantageously be replaced. by an arrangement of dichroic mirrors.
  • the absorption spectrometer 70 according to the invention has lighting means formed by a transmission device 1 according to the invention.
  • the multiplexed light beam 26 makes it possible to illuminate a sample 11 to be analyzed, constituted here by a human blood sample placed in a tank 12, the characteristics of which will be detailed below.
  • the light sources may each comprise a polarizing filter placed in front of them.
  • This polarizing filter makes it possible to increase the signal-to-noise ratio by dissociating, after transmission through the sample 11 to be analyzed, the light absorbed by it from the possibly fluorescence-re-emitted light.
  • a polarizing filter would also measure the rotational power of the sample 11 to be analyzed, if it presented.
  • the multiplexed light beam 26 propagates to illuminate the sample 11 to be analyzed.
  • the sample 11 is for example placed in a tank 12 whose walls are transparent and absorb little for the wavelengths used in the emission device 1.
  • the tank 12 is here formed of a parallelepiped tube made of quartz.
  • the multiplexed light beam 26 then passes through the sample 11, in which it is absorbed along its path. More precisely, each of the light beams at the wavelengths ⁇ to K 12 of the multiplexed light beam 26 is absorbed by the sample 11, the absorption being a priori different for each of the wavelengths ⁇ to K 12 .
  • sample 11 it is possible to add to the sample 11 to analyze one or more chemical reagents making it possible to carry out a titration of the sample 11 to be analyzed.
  • a transmitted light beam 34 is obtained from the sample 11 to be analyzed, the spectrum of this transmitted light beam 34 being characteristic of the sample 11, as a partial signature of its chemical composition.
  • the transmitted light beam 34 is then detected and analyzed by a "detector block".
  • the detector block comprises a detector 31, for example "single-channel", collecting the transmitted light beam 34 by the sample 11 to be analyzed.
  • the detector 31 is here a semiconductor photodiode of the silicon type.
  • the detector could be an avalanche photodiode, a photomultiplier or a CCD or CMOS sensor.
  • the detector 31 then delivers a signal relating to the luminous flux received for each of the wavelengths ⁇ to K 12 .
  • the luminous flux received at a given wavelength is connected to the absorption level of this wavelength by the sample 11.
  • the signal relating to the luminous flux received by the detector 31 is transmitted to signal processing means 32 which determine the absorption of each of the wavelengths ⁇ to K 12 by the sample 11 to be analyzed.
  • the results of the analysis of the sample 11 are then transmitted to the display means 33 representing the results in the form of an absorption spectrum in which the wavelength is represented on the abscissa and on the ordinate the absorption level of the sample 11, for example in percentage, for the wavelength considered.
  • Power and control means 24 are arranged to control the light intensity of each of the light sources, for example frequency modulate.
  • each of the light sources S1 to S12 it is thus possible to modulate the light intensity of each of the light sources S1 to S12 at a frequency different from each other. As explained above, it is thus possible to distinguish the signals coming from each source, during the detection. Generally, the modulation frequencies are between 1 kilohertz and 1 Gigahertz.
  • the signal processing means 32 then demodulate the signal delivered by the detector 31 synchronously with the light sources S1 to S12. This allows in particular to use only one detector to perform the measurement. Alternatively, one can simply provide to turn on or off each light source, so that at each moment only one light source emits light.
  • the measurement of the absorption on the sample 11 to be analyzed is performed with greater precision.
  • the detection noise is considerably reduced.
  • the response time of the LEDs is very fast, of the order of 100 ns, typically between 10 ns and 1000 ns. Such rapid spectral control may be termed time-resolved spectroscopy. Such power supply and control means 24 thus make it possible to observe very fast phenomena.
  • the response time of the LEDs is of the same order of magnitude as the response time of a photodiode appropriately selected. Thanks to such response times both transmission side and reception side, we can observe very fast phenomena, these response times (for example of the order of a few hundred nanoseconds) being of the same order as the life time vibrational and rotational states of the molecules. For example, an absorption phenomenon can be observed over time. For example, it is possible to observe how fast the energy levels of a molecule are excited and de-excited.
  • the absorption spectrometer 70 also comprises servo-control means that modify the light intensity of each of the light sources S1 to S12 as a function of the absorption of each of the wavelengths ⁇ , A 2 by the sample 11 to analyze.
  • the servo means include
  • calculation means adapted to implement the servocontrol.
  • the signal processing means 32 transmit via the connection cable 35 to the power supply and control means 24 a signal relating to the measurement of the absorption of each of the wavelengths ⁇ to K 12 by the sample 11 to be analyzed.
  • connection cable 35 thus establishes a control loop between the transmitting device and the detector unit.
  • This control loop makes it possible to adapt the intensity of each wavelength in order to work in the best zone of sensitivity and linearity of the detector 31.
  • the operator starts the power supply and control means 24 for supplying the printed circuit board 21 comprising the 12 LEDs S1 to S12 which each then emit a divergent light beam at their wavelengths. respective ⁇ to K 12 .
  • a multiplexed light beam 26 is then formed, this multiplexed light beam propagating to the tank 12 to illuminate it.
  • the operator then performs a measurement "empty", that is to say that in this step, the tank 12 of the absorption spectrometer is empty and does not yet contain the sample 11 to be analyzed.
  • the multiplexed light beam 26 is thus almost entirely transmitted by the tank 12 into a transmitted light beam 34.
  • the detector 31 then collects the transmitted light beam 34 and delivers a signal connected to the light intensity of each of the light beams emitted by the different LEDs S1 to S12, the signal processing means 32 which record this signal.
  • the signal processing means stored in memory a calibrated value of the light intensity of each of the light beams emitted by each of the light sources S1 to S12 and transmitted through the empty tank 12.
  • absorption spectrometer. Measurement step In this step, the operator performs a new measurement taking care to place the sample 11 to be analyzed in the tank 12 of the absorption spectrometer.
  • the signal processing means have stored in memory a measured value of the light intensity of each of the light beams emitted by each of the light sources S1 to S12 and transmitted through the light source.
  • tank 12 of the absorption spectrometer 10 filled with the sample 11 to be measured.
  • the signal processing means 32 determine for each of the wavelengths ⁇ K 12l to the ratio of the value calibrated at the calibration step and the measured value of the measuring step, this ratio being connected to absorption of each of the monochromatic light beams forming the multiplexed light beam 26.
  • results are then displayed on the display means 33 in the form of a graph that the operator can view.
  • FIG. 8 will only be described for its differences from FIG. 7.
  • the multiplexed light beam 26 is directed towards the sample 11.
  • the sample emits, in response to the absorption of the light beam multiplexed 26, a fluorescence beam 81.
  • a detector 82 receives this fluorescence beam 81.
  • the detector 82 may for example consist of a photodiode, or a spectrometer.
  • the measurement of the fluorescence spectrum makes it possible to identify the components of the sample 11.
  • the detector 82 is connected to signal processing means 83. If the detector 82 is a spectrometer, the signal processing means may be an integral part of the spectrometer.
  • calculation means adapted to implement the servocontrol.
  • the signal processing means 83 transmit indeed via the connecting cable 35 to the power supply and control means 24 a signal relating to the measurement of the fluorescence signal associated with each of the wavelengths ⁇ to K 12 .
  • Such a control loop makes it possible to work in the best zone of sensitivity and linearity of the detector 82.
  • Sample 11 may consist of biological tissue.
  • the fluorescence beam 81 is directed towards collecting means 91 such as an arrangement of at least one lens making it possible to collect the entire fluorescence beam 81
  • the fluorescence beam 81 is then brought to optical magnification means 92 which focus an enlarged image of an observation zone of the sample 11, for example on the retina of the eye of an observer. It is thus possible to obtain an image of the fluorescence signal emitted by the sample 11, for example to locate in the sample certain particular components that have previously been labeled with fluorescent molecules.
  • the multispectral imaging apparatus 100 has lighting means formed by a transmission device 1 according to the invention.
  • the multiplexed light beam 26 makes it possible to illuminate a sample 11 to be analyzed, constituted here by a sample of human tissue, as part of an in vivo observation.
  • a focusing lens 105 focuses the multiplexed light beam 26 at a particular location of the sample 11 to be analyzed.
  • spectral bands can be chosen according to characteristic wavelengths of the materials or products to be analyzed. This can be done by selecting the different light sources SI to S12.
  • the multispectral imaging apparatus 100 thus comprises control means 101, comprising means for supplying and controlling the light sources as well as calculation means arranged to successively activate one of the plurality of light sources. These successive activations can be controlled manually, or be automated.
  • the focused light beam 26 is reflected on the sample 11 in a reflected beam 102, and propagates to imaging means 103 comprising for example lens sets and optionally a display screen.
  • Figures 7 to 10 illustrate different applications of the transmission device according to the invention. It will be possible to envisage all the possible combinations between these applications, and the various transmission device embodiments described with reference to FIGS. 2 to 5. It may also be envisaged to replace, in each example described with reference to FIGS. 7 to 10, the transmission device according to the invention by a transmission system according to the invention (FIG. 6).
  • the light emission block 110 comprises three semiconductor chips 114, represented hatched.
  • the doping of each semiconductor chip makes it possible to determine the central emission wavelength of the chip, as well as the emission width.
  • the chips are integrated within a single component. This component can be plastic or ceramic.
  • Each chip is glued with electrically insulating glue on a substrate (for example aluminum), and sometimes even directly on an electrode.
  • Each chip is micro-welded with two dedicated electrodes 115i respectively 115 2 by welding with gold wire.
  • the realization of the light emission block will not be described further, the invention residing in the choice and the arrangement of the chips of the transmission block.
  • the light emission block 110 is a CMS component.
  • the light emission block 110 is shown connected to a support 112 comprising metal tabs 116i respectively 116 2 , Each metal tab 116i respectively 116 2 is electrically connected to an electrode 115i respectively 115 2 .
  • These metal tabs allow simplified wiring on a printed circuit board.
  • Each semiconductor chip 114 has for example a shape of a square of 500 pm side.
  • the distance between two semiconductor chips 114 is of the order of 1.5 mm. This distance is measured along a line 117 along which its aligned semiconductor chips.
  • multipath variants, that is to say furthermore comprising means of spatial separation of the beam multiplexed into several beams of the same spectrum.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Led Device Packages (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)
  • Luminescent Compositions (AREA)
  • Optical Communication System (AREA)

Abstract

The invention concerns an emission device (1) for emitting a light beam of controlled spectrum. The emission device comprises: - at least two separate light sources (Si to N) each emitting a light beam of wavelength λι or λ2, and - spectral multiplexing means (25). The spectral multiplexing means (25) comprise an optical assembly (25) formed from at least one lens (25) and/or an optical prism. The optical assembly (25) has chromatic dispersion properties and moves the light beams spatially closer together. Moreover, each light beam having at least wavelength λι or λ2 propagates in free space from the corresponding light source (Si to N) to the optical assembly (25). Therefore the emission device (1) is particularly robust. It can have small dimensions and be produced at low cost.

Description

« Dispositif d'émission d'un faisceau lumineux de spectre contrôlé»  "Device for emitting a controlled spectrum light beam"
Domaine technique Technical area
La présente invention concerne un dispositif d'émission d'un faisceau lumineux de spectre contrôlé, mettant en œuvre des moyens de multiplexage spectral innovants. On parle de multiplexage spectral pour désigner la combinaison spatiale de plusieurs faisceaux lumineux contribuant chacun à la composition spectrale finale d'un faisceau lumineux combiné.  The present invention relates to a device for transmitting a light beam of controlled spectrum, implementing innovative spectral multiplexing means. Spectral multiplexing refers to the spatial combination of several light beams each contributing to the final spectral composition of a combined light beam.
Le domaine de l'invention est plus particulièrement mais de manière non limitative celui du multiplexage spectral d'au moins deux longueurs d'onde émises chacune par une source lumineuse distincte. Les sources lumineuses distinctes sont notamment des sources quasi-monochromatiques. Etat de la technique antérieure  The field of the invention is more particularly but not limited to that of the spectral multiplexing of at least two wavelengths each emitted by a distinct light source. Separate light sources include quasi-monochromatic sources. State of the art
On connaît dans l'art antérieur différents dispositifs d'émission d'un faisceau lumineux de spectre contrôlé.  Various devices for transmitting a light beam of controlled spectrum are known in the prior art.
On connaît par exemple du document « Multispectral absorbance photometry with a single light detector using frequency division mutiplexing » de G. K. Kurup et A. S. Basu (14th International Conférence on Miniaturized Systems for Chemistry and Life Sciences, 3-7 October 2010, Groningen, The Netherlands) un spectrophotomètre comportant une pluralité de diodes électroluminescentes (ci-après désignées LEDs pour l'anglais « light-emitting diodes ») émettant à des longueurs d'onde différentes : dans le bleu à 470 nanomètres (nm), dans le vert à 574 nm, et dans le rouge à 636 nm.  For example, GK Kurup and AS Basu's "Multispectral absorbance photometry with a single light detector using frequency division mutiplexing" is known (14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 3-7 October 2010, Groningen, The Netherlands). a spectrophotometer comprising a plurality of light-emitting diodes (hereinafter referred to as LEDs for light-emitting diodes) emitting at different wavelengths: in blue at 470 nanometers (nm), in green at 574 nm , and in the red at 636 nm.
Selon ce document, les différents faisceaux lumineux émis par les trois LEDs sont chacun couplés avec une fibre optique respective, puis un multiplexeur fibré (« fiber splitter », en anglais) combine et mélange ces différents faisceaux lumineux.  According to this document, the different light beams emitted by the three LEDs are each coupled with a respective optical fiber, then a fiber-splitter ("fiber splitter") combines and mixes these different light beams.
Un inconvénient d'un tel dispositif est qu'il est difficile de coupler efficacement le faisceau lumineux émis par une LED avec une fibre optique, dont l'ouverture numérique est généralement limitée relativement à la divergence du faisceau lumineux émis par la LED. Les pertes d'intensité lumineuse sont donc conséquentes. En outre, l'alignement de la LED avec la fibre optique correspondante doit être très précis ce que limite les possibilités de production industrielle et de répétabilité des alignements. De plus, les multiplexeurs fibrés ont un coût important. A disadvantage of such a device is that it is difficult to effectively couple the light beam emitted by an LED with an optical fiber whose numerical aperture is generally limited relative to the divergence of the light beam emitted by the LED. The losses of light intensity are therefore significant. In addition, the alignment of the LED with the corresponding optical fiber must be very precise which limits the possibilities industrial production and repeatability of alignments. In addition, fibered multiplexers have a significant cost.
On connaît également la source pour microscope Colibri commercialisé par la société Zeiss, dans lequel quatre faisceaux respectivement à 400 nm, 470 nm, 530 nm et 625 nm, sont combinés grâce à un bloc comprenant des miroirs et réflecteurs dichroïques. Grâce à des jeux de réflexions internes, les quatre faisceaux forment en sortie un unique faisceau de lumière blanche.  The source for a microscope Colibri marketed by the company Zeiss, in which four beams at 400 nm, 470 nm, 530 nm and 625 nm respectively, are combined thanks to a block comprising mirrors and dichroic reflectors is also known. Thanks to internal reflection games, the four beams form a single beam of white light at the output.
Un inconvénient d'un tel dispositif est que le nombre de faisceaux que l'on peut combiner est limité et peut difficilement dépasser le nombre de quatre. En outre, plus le nombre de faisceaux que l'on souhaite combiner est élevé, plus l'agencement de miroirs dichroïques est complexe, coûteux, et de faible rendement énergétique.  A disadvantage of such a device is that the number of beams that can be combined is limited and can hardly exceed the number of four. In addition, the higher the number of beams that it is desired to combine, the more the dichroic mirror arrangement is complex, expensive, and of low energy efficiency.
Un objectif de la présente invention est de proposer un dispositif d'émission d'un faisceau lumineux de spectre contrôlé qui ne présente pas les inconvénients de l'art antérieur. En particulier, dont les moyens de multiplexage spectral ne présentent pas les inconvénients de l'art antérieur.  An object of the present invention is to provide a device for emitting a controlled spectrum light beam which does not have the drawbacks of the prior art. In particular, the spectral multiplexing means do not have the drawbacks of the prior art.
En particulier, un objectif de la présente invention est de proposer un dispositif d'émission d'un faisceau lumineux de spectre contrôlé, simple dans son principe et sa réalisation, permettant notamment d'être réalisé en plusieurs exemplaires avec une bonne reproductibilité.  In particular, an object of the present invention is to provide a device for emitting a light beam of controlled spectrum, simple in principle and its embodiment, allowing in particular to be made in several copies with good reproducibility.
Un autre objectif de la présente invention est de proposer un dispositif d'émission d'un faisceau lumineux de spectre contrôlé, permettant de mélanger plus de trois voire quatre faisceaux de lumière, par exemple douze.  Another objective of the present invention is to propose a device for emitting a light beam of controlled spectrum, making it possible to mix more than three or even four beams of light, for example twelve.
Un autre but de la présente invention est de proposer un dispositif d'émission d'un faisceau lumineux de spectre contrôlé à faible coût.  Another object of the present invention is to propose a device for emitting a low cost controlled spectrum light beam.
Un autre but de la présente invention est de proposer un dispositif d'émission d'un faisceau lumineux de spectre contrôlé de bon rendement énergétique, dans lequel les pertes énergétiques sont minimisées.  Another object of the present invention is to provide a device for emitting a controlled energy light spectrum beam of good energy efficiency, wherein the energy losses are minimized.
Exposé de l'invention Presentation of the invention
Cet objectif est atteint avec un dispositif d'émission d'un faisceau lumineux de spectre contrôlé comportant au moins deux sources lumineuses distinctes émettant chacune un faisceau lumineux à au moins une longueur d'onde λι respectivement λ2, ainsi que des moyens de multiplexage spectral . This objective is achieved with a device for emitting a controlled spectrum light beam comprising at least two light sources each emitting a light beam with at least one wavelength λι respectively λ 2 , as well as spectral multiplexing means.
Selon l'invention, les moyens de multiplexage spectral comportent un ensemble optique formé d'au moins une lentille et/ou un prisme optique, ledit ensemble optique présentant des propriétés de dispersion chromatique et étant agencé pour être traversé par les faisceaux lumineux des sources lumineuses distinctes, sans réflexion spectralement sélective, et pour rapprocher spatialement lesdits faisceaux lumineux, de façon que les moyens de multiplexage spectral superposent spatialement lesdits faisceaux lumineux.  According to the invention, the spectral multiplexing means comprise an optical assembly formed of at least one lens and / or an optical prism, said optical assembly having chromatic dispersion properties and being arranged to be traversed by the light beams of the light sources. distinct, without spectrally selective reflection, and for spatially approximating said light beams, so that the spectral multiplexing means spatially superimpose said light beams.
Selon l'invention, le dispositif d'émission est en outre agencé de façon que chaque faisceau lumineux à au moins une longueur d'onde λι respectivement λ2 se propage en espace libre depuis la source lumineuse correspondante jusqu'à l'ensemble optique. According to the invention, the transmission device is furthermore arranged so that each light beam with at least one wavelength λι respectively λ 2 propagates in free space from the corresponding light source to the optical assembly.
A chaque source lumineuse est associée une longueur d'onde respective. Each light source is associated with a respective wavelength.
Dans toute la suite, lorsqu'on parlera de longueur d'onde d'une source, ou longueur d'onde d'émission d'une source, ou longueur d'onde λι respectivement λ2 d'une source, on désignera cette longueur d'onde associée. Chaque source peut émettre à d'autres longueurs d'onde outre cette longueur d'onde associée. Chaque faisceau lumineux à au moins une longueur d'onde λι respectivement λ2 présente en tout état de cause une certaine largeur spectrale. In the following, when we speak of wavelength of a source, or emission wavelength of a source, or wavelength λι respectively λ 2 of a source, we will designate this length associated wave. Each source can emit at other wavelengths in addition to this associated wavelength. Each light beam with at least one wavelength λι respectively λ 2 has in any event a certain spectral width.
Les faisceaux lumineux superposés forment un faisceau dit superposé ou multiplexé. Les faisceaux lumineux peuvent être superposés en un point, ou préférentiellement à l'infini, formant alors un unique faisceau multiplexé collimaté.  The superimposed light beams form a so-called superimposed or multiplexed beam. The light beams can be superimposed at one point, or preferentially at infinity, thus forming a single collimated multiplexed beam.
L'ensemble optique, grâce à ses propriétés de dispersion chromatique, peut transformer un faisceau lumineux multicolore (c'est-à-dire comprenant au moins deux longueurs d'onde) en au moins deux faisceaux lumineux chacun à une longueur d'onde respective.  The optical assembly, thanks to its chromatic dispersion properties, can transform a multicolored light beam (that is to say comprising at least two wavelengths) into at least two light beams each at a respective wavelength. .
Ainsi, par le principe du retour inverse de la lumière, des faisceaux lumineux chacun à au moins une longueur d'onde, peuvent être rapprochés spatialement en sortie de l'ensemble optique. C'est dans ce sens d'utilisation que l'on choisit d'utiliser l'ensemble optique, dans le dispositif selon l'invention. On peut considérer que le dispositif selon l'invention est un « spectromètre optique inversé », n'utilisant ni réseau de diffraction ni roue à filtre. Thus, by the principle of the inverse return of light, each of the light beams at at least one wavelength can be brought spatially close to the output of the optical assembly. It is in this sense of use that one chooses to use the optical assembly, in the device according to the invention. It can be considered that the device according to the invention is a "Inverted optical spectrometer", using no diffraction grating or filter wheel.
Le terme de dispersion chromatique selon l'invention inclut les aberrations chromatiques.  The term chromatic dispersion according to the invention includes chromatic aberrations.
L'ensemble optique est formé par au moins une lentille et/ou un prisme optique, et il n'y a pas de réflexion spectralement sélective (c'est-à-dire de réflexion d'une portion de faisceau lumineux à certaines longueurs d'onde seulement, la portion du faisceau lumineux aux autres longueurs d'onde étant soit transmise, soit déviée dans une autre direction privilégiée). Notamment, il n'y a pas de réflecteur dichroïque ni de réseau de diffraction. Le dispositif d'émission selon l'invention est donc de conception simple. Les réflexions spectralement sélectives selon l'invention n'incluent pas les réflexions parasites qui peuvent exister dans tout système optique, notamment aux interfaces, et qui peuvent alors être atténuées par des traitements antireflets.  The optical assembly is formed by at least one lens and / or an optical prism, and there is no spectrally selective reflection (ie reflection of a portion of light beam at certain lengths of light). wave only, the portion of the light beam at the other wavelengths being either transmitted or deflected in another preferred direction). In particular, there is no dichroic reflector or diffraction grating. The emission device according to the invention is therefore of simple design. The spectrally selective reflections according to the invention do not include spurious reflections that may exist in any optical system, particularly at the interfaces, and which can then be attenuated by anti-glare treatments.
Ce sont les propriétés de dispersion chromatique de l'ensemble optique, ainsi que le principe de retour inverse de la lumière, qui permettent de rapprocher spatialement les faisceaux lumineux. Le coût de fabrication d'un tel dispositif est donc réduit. En outre, il est ainsi possible de multiplexer spectralement et de façon simple plus de quatre faisceaux lumineux dont les spectres respectifs sont chacun centrés sur une longueur d'onde respective.  It is the chromatic dispersion properties of the optical assembly, as well as the reverse light return principle, which bring the light beams spatially closer together. The manufacturing cost of such a device is reduced. In addition, it is thus possible to spectrally multiplex and more simply four light beams whose respective spectra are each centered on a respective wavelength.
La propagation d'un faisceau lumineux émis par une source lumineuse associée se fait en espace libre depuis ladite source jusqu'à l'ensemble optique. "Espace libre" désigne tout médium spatial d'acheminement du signal : air, espace inter-sidéral, vide, etc, ceci par opposition à un médium de transport matériel, tel la fibre optique ou les lignes de transmission filaires ou coaxiales. Il n'y a donc pas de couplage entre le faisceau lumineux émis par une source lumineuse, et un guide d'onde. Il n'y a pas de couplage dit « fibre- à-fibre » tel qu'il peut exister dans des dispositifs de l'art antérieur. Le dispositif selon l'invention présente ainsi peu de pertes énergétiques. Les faisceaux lumineux sont efficacement mélangés, et l'intensité du faisceau superposé est élevée. En outre, cette caractéristique offre une plus grande liberté de positionnement des sources lumineuses ce qui réduit le coût de production du dispositif selon l'invention et rend possible une production à la chaîne. De préférence, les sources lumineuses émettent à des longueurs d'onde situées dans le visible (entre 400 nm et 800 nm) . The propagation of a light beam emitted by an associated light source is in free space from said source to the optical assembly. "Free space" refers to any spatial medium of signal routing: air, inter-sidereal space, void, etc., as opposed to a physical transport medium, such as optical fiber or wired or coaxial transmission lines. There is therefore no coupling between the light beam emitted by a light source, and a waveguide. There is no so-called "fiber-to-fiber" coupling as it can exist in devices of the prior art. The device according to the invention thus has little energy loss. The light beams are effectively mixed, and the intensity of the superimposed beam is high. In addition, this feature provides a greater freedom of positioning of the light sources which reduces the production cost of the device according to the invention and makes possible a production line. Preferably, the light sources emit at wavelengths in the visible range (between 400 nm and 800 nm).
Les sources lumineuses peuvent émettent des faisceaux lumineux présentant des largeurs spectrales supérieures 6 nm.  The light sources can emit light beams with spectral widths greater than 6 nm.
Selon une variante avantageuse de l'invention, les moyens de multiplexage spectral sont formés par l'ensemble optique uniquement. Dans cette variante, l'ensemble optique seul rapproche et superpose spatialement les faisceaux lumineux. According to an advantageous variant of the invention, the spectral multiplexing means are formed by the optical assembly only. In this variant, the optical assembly alone brings the light beams spatially together and spatially superimposed.
Avantageusement, chaque source lumineuse est placée sur un foyer objet de l'ensemble optique, où ledit foyer objet correspond à la longueur d'onde du faisceau lumineux émis par cette source lumineuse, de sorte qu'à la sortie de l'ensemble optique les faisceaux lumineux soient superposés spatialement et collimatés. Advantageously, each light source is placed on an object focus of the optical assembly, where said object focus corresponds to the wavelength of the light beam emitted by this light source, so that at the output of the optical assembly the light beams are spatially superimposed and collimated.
Un avantage de cette variante est qu'elle nécessite un minimum d'éléments optiques. Le coût de fabrication du dispositif selon l'invention est ainsi réduit. On peut appeler cette variante la variante « point infini » .  An advantage of this variant is that it requires a minimum of optical elements. The manufacturing cost of the device according to the invention is thus reduced. This variant can be called the "infinite point" variant.
Par exemple, l'ensemble optique, dans cette configuration classique, transforme un faisceau lumineux de rayons parallèles (on parle de faisceau «collimaté ») et multicolore (c'est-à-dire comprenant au moins deux longueurs d'onde), en au moins deux faisceaux lumineux convergeant respectivement vers deux foyers distincts et séparés de l'ensemble optique et correspondant aux deux longueurs d'onde du faisceau lumineux multicolore.  For example, the optical assembly, in this conventional configuration, transforms a light beam of parallel (called "collimated") and multicolored (that is to say at least two wavelengths) beams, at least two light beams converging respectively to two distinct foci and separated from the optical assembly and corresponding to the two wavelengths of the multicolored light beam.
Par le principe du retour inverse de la lumière, si l'on place deux sources lumineuses émettant chacune un faisceau lumineux, aux foyers objets correspondant à leurs longueurs d'onde d'émission respectives, alors le faisceau lumineux sortant de l'ensemble optique sera un faisceau lumineux collimaté dans lequel se superposent et se mélangent les faisceaux lumineux émis par chacune des sources lumineuses. C'est cette deuxième configuration qui est alors mise en œuvre dans le dispositif selon l'invention .  By the principle of the inverse return of light, if two light sources, each emitting a light beam, are placed at the object focal points corresponding to their respective emission wavelengths, then the light beam coming out of the optical assembly will be a collimated light beam in which the light beams emitted by each of the light sources are superimposed and mixed together. It is this second configuration which is then implemented in the device according to the invention.
Alternativement, chaque source lumineuse est placée en un point objet de l'ensemble optique, où ledit point objet correspond à la longueur d'onde du faisceau lumineux émis par cette source lumineuse, et de sorte qu'à la sortie de l'ensemble optique les faisceaux lumineux soient superposés spatialement en un point image unique. Alternatively, each light source is placed at an object point of the optical assembly, where said object point corresponds to the wavelength of the light beam emitted by this light source, and so that at the output of the optical assembly the light beams are spatially superposed in a single image point.
Cette alternative correspond à l'équivalent en conjugaison dite « point- point » de la variante « point infini ».  This alternative corresponds to the so-called "point-point" equivalent of the "infinite point" variant.
Selon une autre variante de l'invention, les moyens de multiplexage spectral comprennent l'ensemble optique, un guide d'onde d'homogénéisation et des moyens optiques de collimation, l'ensemble optique étant agencé pour envoyer les faisceaux lumineux en entrée du guide d'onde d'homogénéisation, guide d'onde d'homogénéisation à la sortie duquel se trouvent les moyens optiques de collimation. According to another variant of the invention, the spectral multiplexing means comprise the optical assembly, a homogenization waveguide and optical collimation means, the optical assembly being arranged to send the light beams at the input of the guide. homogenization waveguide, homogenization waveguide at the output of which are the optical means of collimation.
Le guide d'onde d'homogénéisation permet de réaliser une fonction d'homogénéisation des différents faisceaux lumineux rapprochés spatialement par l'ensemble optique. On obtient en sortie du guide d'onde d'homogénéisation un faisceau homogène qui est collimaté par les moyens optiques de collimation.  The homogenization waveguide makes it possible to perform a homogenization function of the different light beams brought together spatially by the optical assembly. At the output of the homogenization waveguide, a homogeneous beam is obtained which is collimated by the optical means of collimation.
Un guide d'onde d'homogénéisation présente typiquement un diamètre de cœur supérieur ou égal à 1 mm, ce qui permet de réaliser cette fonction d'homogénéisation qui ne pourrait pas être réalisée par une fibre optique A homogenization waveguide typically has a core diameter greater than or equal to 1 mm, which makes it possible to perform this homogenization function which could not be performed by an optical fiber.
« classique ». "Classic".
Les moyens optiques de collimation sont de préférence achromatiques. Le guide d'onde d'homogénéisation peut être formé par une fibre optique à cœur liquide. Un avantage d'une telle fibre optique est son diamètre élevé (par exemple 5 mm et jusqu'à 10 mm de diamètre), permettant que des faisceaux lumineux même répartis sur un grand volume (par exemple un cylindre de 5 mm de diamètre et 3 mm d'épaisseur) se trouvent en entrée de la fibre optique. Un moindre rapprochement spatial des faisceaux lumineux, mis en œuvre par l'ensemble optique, peut être compensé par l'utilisation d'un tel guide d'onde d'homogénéisation.  The optical means of collimation are preferably achromatic. The homogenization waveguide may be formed by a liquid core optical fiber. An advantage of such an optical fiber is its large diameter (for example 5 mm and up to 10 mm in diameter), allowing light beams evenly distributed over a large volume (for example a cylinder 5 mm in diameter and 3 mm in diameter). mm thick) are at the entrance of the optical fiber. A lesser spatial approximation of the light beams, implemented by the optical assembly, can be compensated for by the use of such a homogenization waveguide.
Selon une variante, le guide d'onde d'homogénéisation peut être formé par un barreau hexagonal d'homogénéisation. On utilise parfois le terme anglais de « light pipe ». On pourra par exemple utiliser une barre d'homogénéisation TECHSPEC® en N-BK7. Selon une autre variante, on pourra utiliser un système de filtrage spatial pour réaliser la fonction d'homogénéisation. Par exemple, l'ensemble optique focalise les faisceaux lumineux en un point focal ou une zone focale, au niveau duquel se trouve un simple trou de filtrage. According to one variant, the homogenization waveguide may be formed by a hexagonal homogenization bar. The term "light pipe" is sometimes used. For example, a TECHSPEC® homogenizer bar can be used in N-BK7. According to another variant, it will be possible to use a spatial filtering system to perform the homogenization function. For example, the optical assembly focuses the light beams at a focal point or a focal area, at which is a simple filter hole.
De préférence, les sources lumineuses distinctes sont agencées coplanaires. Preferably, the separate light sources are arranged coplanar.
Les sources lumineuses distinctes peuvent être alignées selon une droite et rangées par ordre croissant de longueur d'onde λι respectivement λ2 (i.e. par ordre croissant de longueur d'onde associée à la source lumineuse). The separate light sources can be aligned on a straight line and arranged in increasing order of wavelength λι respectively λ 2 (ie in ascending order of wavelength associated with the light source).
Selon un mode de réalisation particulier de l'invention, l'ensemble optique comprend au moins un système optique utilisé hors d'axe et présentant une aberration chromatique latérale. Cette aberration chromatique latérale forme la propriété de dispersion chromatique selon l'invention. According to a particular embodiment of the invention, the optical assembly comprises at least one optical system used off axis and having a lateral chromatic aberration. This lateral chromatic aberration forms the property of chromatic dispersion according to the invention.
L'utilisation hors d'axe accentue, voire fait apparaître, la dispersion spatiale latérale des longueurs d'onde. On peut également parler de chromatisme de grandeur apparente.  Off-axis use accentuates or even reveals the lateral spatial dispersion of wavelengths. One can also speak of chromaticism of apparent size.
Le coût d'un tel système optique est généralement faible car, de manière intrinsèque, tout système optique exploité hors d'axe présente de l'aberration chromatique latérale, s'il n'est pas spécifiquement corrigé de cette aberration au moyen de solutions connues dans la conception optique.  The cost of such an optical system is generally low because, intrinsically, any optical system operating off axis has lateral chromatic aberration, if it is not specifically corrected for this aberration by means of known solutions. in the optical design.
Les sources lumineuses peuvent être placées respectivement aux foyers du système optique correspondant aux longueurs d'onde λι et λ2, de sorte que leurs faisceaux lumineux soient multiplexés à la sortie du système optique. The light sources can be respectively placed at the focal points of the optical system corresponding to the wavelengths λι and λ 2 , so that their light beams are multiplexed at the output of the optical system.
Le système optique est dit « utilisé hors d'axe », c'est-à-dire hors de son axe optique. En d'autres termes, un faisceau lumineux incident, convergent au foyer objet du système optique, ne ressort pas de ce système optique parallèle à l'axe optique dudit système. Ainsi, les foyers du système optique correspondant à différentes longueurs d'onde sont suffisamment séparés pour pouvoir placer les sources lumineuses correspondantes à l'endroit de ces foyers. Ce faisant, le multiplexage spectral est précisément et automatiquement réalisé par le système optique aberrant utilisé hors d'axe. Selon une variante, l'ensemble optique comprend au moins un système optique utilisé dans l'axe et présentant une aberration chromatique latérale. The optical system is said to be "used off axis", that is to say outside its optical axis. In other words, an incident light beam, converging at the object focus of the optical system, does not emerge from this optical system parallel to the optical axis of said system. Thus, the foci of the optical system corresponding to different wavelengths are sufficiently separated to be able to place the corresponding light sources at the location of these homes. In doing so, the spectral multiplexing is precisely and automatically performed by the aberrant optical system used off axis. According to a variant, the optical assembly comprises at least one optical system used in the axis and having lateral chromatic aberration.
Les sources lumineuses peuvent être quasi monochromatiques, émettant chacune un faisceau lumineux aux longueurs d'onde d'onde λι respectivement λ2. The light sources can be almost monochromatic, each emitting a light beam at wavelengths λι respectively λ 2 .
Le dispositif d'émission peut former une partie source d'un spectromètre d'absorption, les moyens de multiplexage spectral selon l'invention étant adaptés à mélanger les faisceaux lumineux pour former un faisceau lumineux multiplexé (ou superposé) destiné à illuminer un échantillon à analyser.  The emission device can form a source part of an absorption spectrometer, the spectral multiplexing means according to the invention being adapted to mix the light beams to form a multiplexed (or superimposed) light beam for illuminating a sample at analyze.
Selon une variante de ce mode de réalisation, l'ensemble optique comprend un doublet ou un triplet de lentilles, usuellement utilisé pour la correction des aberrations chromatiques. Le doublet ou triplet de lentilles est ainsi détourné de son utilisation dédiée. On utilise par exemple un doublet flint/crown (du nom des deux types de verre utilisés pour chacune des deux lentilles du doublet). According to a variant of this embodiment, the optical assembly comprises a doublet or a triplet of lenses, usually used for the correction of chromatic aberrations. The doublet or triplet of lenses is thus diverted from its dedicated use. For example, a flint / crown doublet (the name of the two types of glass used for each of the two lenses of the doublet) is used.
Selon une autre variante de ce mode de réalisation, l'ensemble optique comprend un prisme optique et des moyens optiques de focalisation et/ou des moyens optiques de collimation. Typiquement, l'ensemble optique comprend : According to another variant of this embodiment, the optical assembly comprises an optical prism and optical focusing means and / or optical collimation means. Typically, the optical assembly comprises:
- des moyens optiques de collimation, agencés pour former et diriger des faisceaux lumineux collimatés depuis les sources lumineuses vers le prisme optique ; et  optical collimation means, arranged to form and direct collimated light beams from the light sources to the optical prism; and
- des moyens optiques de focalisation, agencés pour diriger des faisceaux lumineux émergeant du prisme vers un point de focalisation commun.  optical focusing means, arranged to direct light beams emerging from the prism towards a common point of focus.
On peut considérer que tout système optique de décomposition spectrale comprenant au moins une lentille et/ou un prisme optique, pris en sens inverse, peut être utilisé en tant qu'ensemble optique selon l'invention. It can be considered that any optical spectral decomposition system comprising at least one lens and / or an optical prism, taken in the opposite direction, can be used as an optical assembly according to the invention.
De préférence, chaque source lumineuse est une diode électroluminescente (LED). Une LED est une source lumineuse quasi ponctuelle émettant un faisceau lumineux divergeant. Le dispositif d'émission selon l'invention peut comporter plus de trois sources lumineuses, par exemple au moins cinq, huit, ou douze, voire au moins douze sources lumineuses. On pourrait même prévoir plusieurs dizaines de sources lumineuses. Preferably, each light source is a light emitting diode (LED). An LED is a quasi-point light source emitting a diverging light beam. The transmission device according to the invention may comprise more than three light sources, for example at least five, eight, or twelve, or even at least twelve light sources. One could even provide dozens of light sources.
Les longueurs d'onde des sources lumineuses peuvent être comprises entre 340 nm et 800 nm.  The wavelengths of the light sources may be between 340 nm and 800 nm.
Le dispositif d'émission selon l'invention peut comprendre en outre des moyens de modulation agencés pour moduler l'intensité lumineuse d'au moins deux des sources lumineuses à des fréquences différentes les unes des autres. The transmission device according to the invention may further comprise modulation means arranged to modulate the light intensity of at least two of the light sources at different frequencies from each other.
En particulier, le dispositif selon l'invention comprend des moyens de modulation agencés pour moduler l'intensité lumineuse de chaque source lumineuse, indépendamment les unes des autres.  In particular, the device according to the invention comprises modulation means arranged to modulate the light intensity of each light source, independently of each other.
On peut ainsi retrouver aisément la contribution de chaque source lumineuse dans le faisceau multiplexé, par mise en œuvre d'une détection à filtrage fréquentiel, par exemple une détection synchrone. On peut ainsi améliorer un rapport signal à bruit d'un détecteur recevant le faisceau multiplexé, notamment puisque les signaux ne sont perturbés que par le bruit à la fréquence observée.  It is thus easy to find the contribution of each light source in the multiplexed beam, by implementing a frequency-filtered detection, for example a synchronous detection. It is thus possible to improve a signal-to-noise ratio of a detector receiving the multiplexed beam, in particular since the signals are disturbed only by the noise at the observed frequency.
De préférence, le dispositif selon l'invention comprend en outre des moyens de contrôle de l'intensité lumineuse d'au moins deux des sources lumineuses, indépendamment l'une de l'autre. Preferably, the device according to the invention further comprises means for controlling the light intensity of at least two of the light sources, independently of one another.
En particulier, le dispositif selon l'invention comprend des moyens de contrôle de l'intensité lumineuse de chaque source lumineuse, indépendamment les unes des autres.  In particular, the device according to the invention comprises means for controlling the light intensity of each light source, independently of one another.
On peut ainsi contrôler aisément la contribution énergétique de chaque source lumineuse dans le faisceau multiplexé.  It is thus easy to control the energy contribution of each light source in the multiplexed beam.
On obtient une source multispectrale contrôlée en spectre, chaque contribution spectrale étant contrôlée en intensité de manière indépendante.  A spectrally controlled multispectral source is obtained, each spectral contribution being intensity controlled independently.
On peut par exemple allumer tour à tour une seule des sources lumineuses selon l'invention. A chaque instant, la contribution énergétique de toutes les sources lumineuses sauf une est nulle. Un tel mode de réalisation permet par exemple de réaliser un dispositif d'émission d'un faisceau lumineux pour un spectromètre d'absorption. Dans un tel spectromètre, au lieu d'envoyer vers un échantillon une lumière blanche que l'on doit ensuite décomposer en longueur d'onde après traversée de l'échantillon, on n'envoie à chaque instant qu'une seule longueur d'onde (sous réserve de la largeur spectrale de chaque source lumineuse bien sûr). On s'affranchit ainsi d'une étape finale de décomposition spectrale. On choisit de contrôler le dispositif d'émission au lieu de séparer les longueurs d'onde dans le faisceau transmis par l'échantillon. Alternativement, on peut allumer toutes les sources lumineuses à la fois, mais grâce aux moyens de modulation tels que défini ci- avant continuer à s'affranchir d'une étape finale de décomposition spectrale par séparation spatiale dans un spectromètre d'absorption. For example, one of the light sources according to the invention can be ignited in turn. At every moment, the energy contribution of all light sources except one is zero. Such an embodiment makes it possible, for example, to produce a device for transmitting a beam bright for an absorption spectrometer. In such a spectrometer, instead of sending a white light to a sample, which must then be decomposed into a wavelength after passing through the sample, only one wavelength is sent at each instant. (subject to the spectral width of each light source of course). We thus get rid of a final stage of spectral decomposition. It is chosen to control the emission device instead of separating the wavelengths in the beam transmitted by the sample. Alternatively, one can turn on all the light sources at once, but thanks to the modulation means as defined above continue to overcome a final step of spectral decomposition by spatial separation in an absorption spectrometer.
Les moyens de contrôle de l'intensité lumineuse peuvent en outre permettre d'adapter l'intensité lumineuse de chaque source lumineuse à une absorption par un échantillon et/ou une réponse d'un détecteur.  The light intensity control means can furthermore make it possible to adapt the light intensity of each light source to an absorption by a sample and / or a response of a detector.
L'invention concerne également une installation M2 d'émission d'un faisceau lumineux de spectre contrôlé, comprenant au moins deux dispositifs M d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention, chaque dispositif M fournissant un faisceau lumineux dit superposé, l'installation M2 d'émission d'un faisceau lumineux de spectre contrôlé comprenant en outre des moyens de multiplexage spectral annexes agencés pour superposer spatialement les faisceaux lumineux superposés respectifs de chaque dispositif M d'émission d'un faisceau lumineux de spectre contrôlé. The invention also relates to an installation M 2 for transmitting a controlled spectrum light beam, comprising at least two M devices for transmitting a controlled spectrum light beam according to the invention, each device M providing a light beam said superimposed, the emission facility M 2 of a controlled spectrum light beam further comprising additional spectral multiplexing means arranged to spatially superpose the respective superimposed light beams of each device M of emission of a light beam of controlled spectrum.
On peut ainsi superposer encore plus de faisceaux, notamment quasi- monochromatiques. On peut en particulier superposer au moins deux fois plus de faisceaux lumineux qu'avec un dispositif d'émission selon l'invention.  It is thus possible to superpose even more beams, in particular quasi-monochromatic. In particular, it is possible to superimpose at least two times more light beams than with a transmission device according to the invention.
Les moyens de multiplexage spectral annexes comprennent avantageusement tout moyen de multiplexage classique. Quelques exemples sont donnés ci-dessous.  The additional spectral multiplexing means advantageously comprise any conventional multiplexing means. Some examples are given below.
Les moyens de multiplexage spectral annexes peuvent comprendre un ensemble d'au moins un miroir dichroïque. Par des jeux de réflexion ou transmission, on peut superposer spatialement des faisceaux lumineux associés chacun à un dispositif d'émission respectif.  The additional spectral multiplexing means may comprise a set of at least one dichroic mirror. Through games of reflection or transmission, one can spatially superimpose light beams each associated with a respective transmission device.
Les moyens de multiplexage spectral annexes peuvent comprendre un mutiplexeur fibré agencé pour multiplexer ensemble des faisceaux lumineux provenant de ses plusieurs fibres optiques d'entrée. On peut parler de « fiber splitter » pour désigner un tel mutiplexeur fibré. The additional spectral multiplexing means may comprise a fiber-shaped mutiplexer arranged to multiplex together light beams. from its several input optical fibers. We can speak of "fiber splitter" to designate such a fibered mutiplexer.
Chaque dispositif d'émission d'un faisceau lumineux de spectre contrôlé peut comprendre un guide d'onde respectif, et des moyens optiques de collimation communs avec les autres dispositifs d'émission d'un faisceau lumineux de spectre contrôlé, et les moyens de multiplexage spectral annexes sont agencés pour multiplexer les faisceaux lumineux issus de chacun des guides d'onde. En particulier, chaque dispositif d'émission d'un faisceau lumineux de spectre contrôlé peut comprendre un guide d'onde respectif d'homogénéisation. Dans ces variantes, à chaque dispositif d'émission correspond un guide d'onde (éventuellement d'homogénéisation) dans lequel se propagent des faisceaux lumineux superposés ou rapprochés par l'ensemble optique correspondant. Les sorties des différents guides d'onde sont multiplexées (ou mélangées) par le multiplexeur fibré, puis collimatées par les moyens optiques de collimation communs.  Each device for transmitting a controlled spectrum light beam may comprise a respective waveguide, and common collimation optical means with the other devices for emitting a controlled spectrum light beam, and the multiplexing means. Spectral annexes are arranged to multiplex the light beams from each of the waveguides. In particular, each device for transmitting a controlled spectrum light beam may comprise a respective homogenization waveguide. In these variants, each transmission device corresponds to a waveguide (possibly homogenization) in which are propagated light beams superimposed or brought together by the corresponding optical assembly. The outputs of the various waveguides are multiplexed (or mixed) by the fiber multiplexer, and then collimated by the common optical collimation means.
L'invention concerne également un spectromètre pour analyser au moins un échantillon, comprenant des moyens pour illuminer l'échantillon. Les moyens pour illuminer l'échantillon comprennent un dispositif M d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention ou une installation M2 d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention. The invention also relates to a spectrometer for analyzing at least one sample, comprising means for illuminating the sample. The means for illuminating the sample comprise a device M for transmitting a controlled spectrum light beam according to the invention or an installation M 2 for transmitting a controlled spectrum light beam according to the invention.
Le spectromètre selon l'invention peut former un spectromètre d'absorption et comprendre :  The spectrometer according to the invention can form an absorption spectrometer and comprise:
- au moins un détecteur adapté à collecter un faisceau lumineux transmis par l'échantillon à analyser et délivrant un signal relatif aux flux lumineux reçus par le détecteur aux longueurs d'onde λι respectivement λ2, et at least one detector adapted to collect a light beam transmitted by the sample to be analyzed and delivering a signal relating to the light fluxes received by the detector at the wavelengths λι respectively λ 2 , and
- des moyens de traitement du signal adaptés à déterminer l'absorption de chacune des longueurs d'onde λι respectivement λ2, par l'échantillon à analyser. - Signal processing means adapted to determine the absorption of each wavelength λι respectively λ 2 by the sample to be analyzed.
Comme le spectromètre d'absorption selon l'invention n'utilise pas, contrairement aux spectromètres d'absorption classiques, de composants optiques coûteux et volumineux comme un réseau de diffraction ou un détecteur linéaire multicanaux (par exemple capteur CCD ou matrice de photodiodes), son coût reste maîtrisé. As the absorption spectrometer according to the invention does not use, contrary to conventional absorption spectrometers, expensive and bulky optical components such as a diffraction grating or a linear multi-channel detector (for example CCD sensor or photodiode array), its cost remains under control.
En outre, le spectromètre selon l'invention intègre directement la source lumineuse. Le spectromètre d'absorption selon l'invention peut comprendre des moyens de modulation agencés pour moduler l'intensité lumineuse de chacune des sources lumineuses à des fréquences différentes les unes des autres, et des moyens de traitement du signal agencés pour démoduler le signal délivré par le détecteur de manière synchrone avec les sources lumineuses.  In addition, the spectrometer according to the invention directly integrates the light source. The absorption spectrometer according to the invention may comprise modulation means arranged to modulate the light intensity of each of the light sources at different frequencies from each other, and signal processing means arranged to demodulate the signal delivered by the detector synchronously with the light sources.
Avantageusement, le spectromètre d'absorption selon l'invention comprend la variante du dispositif d'émission ou installation d'émission selon l'invention, comprenant des moyens de contrôle de l'intensité lumineuse d'au moins deux des sources lumineuses, indépendamment l'une de l'autre.  Advantageously, the absorption spectrometer according to the invention comprises the variant of the transmission device or transmission facility according to the invention, comprising means for controlling the light intensity of at least two of the light sources, independently of the one of the other.
Ainsi, comme développé précédemment, le principe mis en œuvre est fondamentalement différent, puisqu'il consiste à contrôler l'émission (par modulation, ou activation d'une seule source à la fois) au lieu de décomposer spectralement le long d'une ligne de détection, le faisceau lumineux transmis par l'échantillon à analyser. Le spectromètre d'absorption selon l'invention possède alors de nombreux autres avantages :  Thus, as previously developed, the principle implemented is fundamentally different, since it consists of controlling the emission (by modulation, or activation of a single source at a time) instead of spectrally decomposing along a line of detection, the light beam transmitted by the sample to be analyzed. The absorption spectrometer according to the invention then has many other advantages:
- sa sensibilité à la lumière parasite est limitée si bien que sa dynamique de mesure est étendue et son seuil de détection abaissé par rapport à un spectromètre d'absorption utilisant un réseau de diffraction de la lumière, et  its sensitivity to stray light is limited so that its measurement dynamic is extended and its detection threshold lowered compared to an absorption spectrometer using a light diffraction grating, and
- sa rapidité de mesure est améliorée par rapport à un spectromètre monochromateur qui implique un mouvement mécanique pour balayer le spectre de mesure (roue à filtre ou monochromateur à réseaux de diffraction). Cette rapidité est encore meilleure dans la variante mettant en œuvre une modulation d'intensité lumineuse.  - Its measurement speed is improved compared to a monochromator spectrometer which involves a mechanical movement to scan the measurement spectrum (filter wheel or monochromator with diffraction gratings). This speed is even better in the variant implementing a light intensity modulation.
En effet, dans l'art antérieur, la décomposition spectrale du faisceau transmis par l'échantillon n'est pas parfaite. A un emplacement donné sur la ligne de détection on trouve : la majeure partie (mais pas l'intégralité) de la composante à une longueur d'onde λΐ, et de la lumière parasite à toutes les autres longueurs d'onde du faisceau transmis. Cette lumière parasite est essentiellement due à la diffusion introduite par l'utilisation d'un réseau de diffraction. Le changement de principe, consistant à jouer plutôt sur le contrôle de l'émission, résout cette limitation. Indeed, in the prior art, the spectral decomposition of the beam transmitted by the sample is not perfect. At a given location on the detection line are: most (but not all) of the component at a wavelength λΐ, and stray light at all other wavelengths of the transmitted beam. This stray light is essentially due to the diffusion introduced by the use of a network of diffraction. The change of principle, consisting in playing rather on the control of the emission, solves this limitation.
Le spectromètre d'absorption selon l'invention peut comporter au moins une fibre optique dans laquelle est couplé le faisceau lumineux multiplexé et illuminant l'échantillon à analyser.  The absorption spectrometer according to the invention may comprise at least one optical fiber in which is coupled the light beam multiplexed and illuminating the sample to be analyzed.
Le spectromètre d'absorption selon l'invention peut comporter des moyens optiques de collimation, agencés en sortie du dispositif ou de l'installation selon l'invention, de façon à diriger vers l'échantillon un faisceau lumineux collimaté.  The absorption spectrometer according to the invention may comprise optical collimation means, arranged at the output of the device or the installation according to the invention, so as to direct a collimated light beam toward the sample.
Le spectromètre d'absorption selon l'invention peut comprendre des moyens d'asservissements adaptés à modifier l'intensité lumineuse de chaque source lumineuse en fonction de l'absorption de chacune des longueurs d'onde λι , λ2 (et le cas échéant λ, à N, 02) par l'échantillon à analyser. On s'assure ainsi de travailler toujours dans la meilleure zone de sensibilité et de linéarité du détecteur. On améliore ainsi le rapport signal sur bruit. The absorption spectrometer according to the invention may comprise servo-control means adapted to modify the luminous intensity of each light source as a function of the absorption of each of the wavelengths λι, λ 2 (and, where appropriate, λ , at N, 02) by the sample to be analyzed. This ensures that you always work in the best area of sensitivity and linearity of the detector. This improves the signal-to-noise ratio.
Le spectromètre selon l'invention peut former un spectromètre à fluorescence et comprendre : The spectrometer according to the invention can form a fluorescence spectrometer and comprise:
- au moins un détecteur adapté à collecter un faisceau lumineux de fluorescence émis par l'échantillon à analyser et at least one detector adapted to collect a fluorescence light beam emitted by the sample to be analyzed and
- des moyens de traitement du signal agencés pour délivrer un signal relatif au flux lumineux (du faisceau lumineux de fluorescence) reçu par le détecteur en fonction de la longueur d'onde λι respectivement λ2 reçue par l'échantillon. signal processing means arranged to deliver a signal relating to the luminous flux (of the fluorescence light beam) received by the detector as a function of the wavelength λι respectively λ 2 received by the sample.
La longueur d'onde λι respectivement λ2 reçue par l'échantillon est généralement appelée longueur d'onde d'excitation. The wavelength λι respectively λ 2 received by the sample is generally called the excitation wavelength.
Le détecteur peut être agencé pour ne détecter qu'une bande spectrale prédéterminée.  The detector may be arranged to detect only a predetermined spectral band.
Le spectromètre à fluorescence est particulièrement avantageux, dans la variante dans laquelle le dispositif d'émission (ou l'installation d'émission) selon l'invention comprend des moyens de contrôle de l'intensité lumineuse d'au moins deux des sources lumineuses, indépendamment l'une de l'autre. Dans ce cas, les moyens de traitement du signal délivrent un signal relatif au flux lumineux reçu par le détecteur en fonction d'une intensité (d'excitation) donnée de chaque longueur d'onde λι respectivement λ2 et d'une durée d'excitation. La durée d'excitation est contrôlée grâce aux moyens de contrôle de l'intensité lumineuse. On peut ainsi réaliser de la fluorescence résolue en temps. En fonction de la durée d'excitation, différentes molécules ne subissent pas la même excitation. Il est moins onéreux de jouer sur un temps d'excitation rapide, que sur une détection rapide. L'invention rend possible de jouer plutôt sur un temps d'excitation rapide, grâce par exemple à l'utilisation de LED. The fluorescence spectrometer is particularly advantageous, in the variant in which the emission device (or the transmission system) according to the invention comprises means for controlling the light intensity of at least two of the light sources, independently of one another. In this case, the signal processing means deliver a signal relating to the luminous flux received by the detector as a function of a given intensity (excitation) of each wavelength λι respectively λ 2 and a duration excitation. The duration of excitation is controlled by means of control of the light intensity. It is thus possible to produce fluorescence resolved in time. Depending on the duration of excitation, different molecules do not undergo the same excitation. It is less expensive to play on a fast excitation time, than on a fast detection. The invention makes it possible to play rather on a fast excitation time, thanks for example to the use of LEDs.
Par exemple, le détecteur comprend un simple détecteur d'intensité, et les moyens de traitement du signal délivrent un signal relatif à l'intensité totale du faisceau lumineux de fluorescence reçu par le détecteur en fonction de la longueur d'onde d'excitation (longueur d'onde λι respectivement λ2 reçue par l'échantillon). For example, the detector comprises a simple intensity detector, and the signal processing means deliver a signal relating to the total intensity of the fluorescence light beam received by the detector as a function of the excitation wavelength ( wavelength λι respectively λ 2 received by the sample).
Alternativement, ou en supplément, le détecteur peut comprendre un spectromètre, et les moyens de traitement du signal délivrent un signal relatif au spectre de fluorescence du faisceau lumineux de fluorescence reçu par le détecteur en fonction de la longueur d'onde d'excitation.  Alternatively, or in addition, the detector may comprise a spectrometer, and the signal processing means deliver a signal relative to the fluorescence spectrum of the fluorescence light beam received by the detector as a function of the excitation wavelength.
Le spectromètre à fluorescence peut comprendre des moyens d'asservissements adaptés à modifier l'intensité lumineuse de chaque source lumineuse en fonction de l'intensité du faisceau lumineux de fluorescence émis par l'échantillon en réponse à l'absorption de la longueur d'onde λι respectivement λ2 correspondante. The fluorescence spectrometer may comprise servo-control means adapted to modify the light intensity of each light source as a function of the intensity of the fluorescence light beam emitted by the sample in response to wavelength absorption. λι respectively λ 2 corresponding.
Le spectromètre à fluorescence selon l'invention peut comprendre des moyens de modulation agencés pour moduler l'intensité lumineuse de chacune des sources lumineuses à des fréquences différentes les unes des autres, et des moyens de traitement du signal agencés pour démoduler le signal délivré par le détecteur de manière synchrone avec les sources lumineuses.  The fluorescence spectrometer according to the invention may comprise modulation means arranged to modulate the light intensity of each of the light sources at different frequencies from each other, and signal processing means arranged to demodulate the signal delivered by the detector synchronously with the light sources.
Le spectromètre d'absorption selon l'invention ou le spectromètre à fluorescence selon l'invention peut comprendre une chaîne de référence : une partie du faisceau lumineux émis par les moyens pour illuminer l'échantillon n'est pas dirigée vers l'échantillon à analyser mais vers un échantillon de référence. On peut ainsi disposer d'une référence de façon à calculer une absorption respectivement un signal relatif au flux lumineux reçu par le détecteur en fonction de la longueur d'onde λι respectivement λ2 reçue par l'échantillon. Plutôt qu'un échantillon de référence, on peut prévoir un simple emplacement vide (air ambiant), ce qui permet d'intégrer facilement la chaîne de référence dans le spectromètre. The absorption spectrometer according to the invention or the fluorescence spectrometer according to the invention may comprise a reference chain: a part of the light beam emitted by the means for illuminating the sample is not directed towards the sample to be analyzed but to a reference sample. It is thus possible to have a reference for calculating an absorption respectively a signal relating to the luminous flux received by the detector as a function of the wavelength λι respectively λ 2 received by the sample. Rather than a reference sample, one can predict a simple empty location (ambient air), which makes it easy to integrate the reference chain into the spectrometer.
Alternativement, on peut réaliser un étalonnage en analysant initialement un échantillon de référence, puis un échantillon à analyser.  Alternatively, a calibration can be performed by initially analyzing a reference sample and then a sample to be analyzed.
L'invention concerne également un appareil d'imagerie de fluorescence ou d'absorption, comprenant des moyens pour illuminer un échantillon. Les moyens pour illuminer l'échantillon comprennent un dispositif M d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention ou une installation M2 d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention. The invention also relates to a fluorescence or absorption imaging apparatus comprising means for illuminating a sample. The means for illuminating the sample comprise a device M for transmitting a controlled spectrum light beam according to the invention or an installation M 2 for transmitting a controlled spectrum light beam according to the invention.
L'appareil d'imagerie selon l'invention peut former un appareil de microscopie à fluorescence et comprendre :  The imaging apparatus according to the invention can form a fluorescence microscopy apparatus and include:
- des moyens de collecte agencés pour collecter un signal retour comprenant un faisceau lumineux de fluorescence émis par l'échantillon à analyser, et  collection means arranged to collect a return signal comprising a fluorescence light beam emitted by the sample to be analyzed, and
- des moyens de grossissement optique du signal retour. means of optical magnification of the return signal.
De façon similaire, l'appareil d'imagerie selon l'invention peut former un appareil de microscopie d'absorption et comprendre : Similarly, the imaging apparatus according to the invention can form an absorption microscopy apparatus and comprise:
- des moyens de collecte agencés pour collecter un signal retour comprenant un faisceau lumineux réfléchi ou rétrodiffusé par l'échantillon à analyser, et  collection means arranged to collect a return signal comprising a light beam reflected or backscattered by the sample to be analyzed, and
- des moyens de grossissement optique du signal retour. L'appareil de microscopie à fluorescence selon l'invention peut comprendre des moyens d'asservissements adaptés à modifier l'intensité lumineuse de chaque source lumineuse en fonction de l'intensité du faisceau lumineux de fluorescence émis par l'échantillon en réponse à l'absorption de la longueur d'onde λι respectivement λ2 correspondante. means of optical magnification of the return signal. The fluorescence microscopy apparatus according to the invention may comprise servo-control means adapted to modify the light intensity of each light source as a function of the intensity of the fluorescence light beam emitted by the sample in response to the absorption of the respective wavelength λι λ 2 .
De façon similaire, l'appareil de microscopie d'absorption selon l'invention peut comprendre des moyens d'asservissements adaptés à modifier l'intensité lumineuse de chaque source lumineuse en fonction de l'intensité du faisceau lumineux réfléchi ou rétrodiffusé par l'échantillon en réponse à l'absorption de la longueur d'onde λι respectivement λ2 correspondante. Similarly, the absorption microscopy apparatus according to the invention may comprise servo-control means adapted to modify the light intensity of each light source as a function of the intensity of the light beam reflected or backscattered by the sample. in response to the absorption of the wavelength λι respectively λ 2 corresponding.
L'appareil de microscopie à fluorescence ou d'absorption selon l'invention peut comprendre des moyens de modulation agencés pour moduler l'intensité lumineuse de chacune des sources lumineuses à des fréquences différentes les unes des autres. Des moyens de traitement du signal peuvent être agencés pour démoduler le signal délivré par un détecteur (par exemple des moyens d'affichage) de manière synchrone avec les sources lumineuses. The fluorescence microscopy or absorption apparatus according to the invention may comprise modulation means arranged to modulate the intensity each of the light sources at different frequencies from each other. Signal processing means may be arranged to demodulate the signal delivered by a detector (for example display means) synchronously with the light sources.
L'invention concerne également un appareil d'imagerie multispectrale pour observer au moins un échantillon éclairé successivement par des faisceaux lumineux à différentes longueurs d'onde, comprenant :  The invention also relates to a multispectral imaging apparatus for observing at least one sample illuminated successively by light beams at different wavelengths, comprising:
- des moyens pour illuminer l'échantillon comprenant un dispositif M d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention ou une installation M2 d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention, means for illuminating the sample comprising a device M for transmitting a controlled spectrum light beam according to the invention or an installation M 2 for transmitting a controlled spectrum light beam according to the invention,
les moyens de contrôle des sources lumineuses distinctes, agencés pour activer à chaque instant une source lumineuse à la fois, et  the control means of the separate light sources, arranged to activate each moment a light source at a time, and
- des moyens d'imagerie.  imaging means.
De façon générale, l'invention concerne une utilisation d'un dispositif M d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention ou une installation M2 d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention, pour former des moyens d'illumination dans tout appareil tel qu'un appareil de spectrométrie ou un appareil d'imagerie. L'ensemble des avantages énoncés à propos du dispositif d'émission selon l'invention se retrouvent dans ces différentes utilisations (en particulier, l'adaptabilité de l'émission, et le contrôle spectral de l'émission). In general, the invention relates to a use of a device M for transmitting a light beam of controlled spectrum according to the invention or an installation M 2 for transmitting a light beam of controlled spectrum according to the invention. , to form illumination means in any apparatus such as a spectrometer or an imaging apparatus. All the advantages stated about the transmission device according to the invention are found in these various uses (in particular, the adaptability of the emission, and the spectral control of the emission).
L'invention peut également concerner une utilisation d'un dispositif M d'émission selon l'invention ou une installation M2 d'émission selon l'invention, pour former des moyens d'éclairage optimisant le rendu colorimétrique d'un objet (dans un musée, une joaillerie, un appareil d'observation de dentition à l'usage d'un dentiste, etc). The invention may also relate to a use of an emission device M according to the invention or an emission installation M 2 according to the invention, to form illumination means optimizing the colorimetric rendering of an object (in a museum, a jewelery shop, a teething device for the use of a dentist, etc.).
L'invention concerne enfin un bloc d'émission lumineuse comprenant au moins trois puces semiconductrices émettant chacune un faisceau lumineux quasi-monochromatique à une longueur d'onde d'émission λι respectivement λ2 respectivement λ3. Les puces semiconductrices sont rangées par ordre chromatique en fonction de leur longueur d'onde d'émission . Finally, the invention relates to a light emission block comprising at least three semiconductor chips each emitting a quasi-monochromatic light beam at an emission wavelength λι respectively λ 2 and λ 3 respectively. The semiconductor chips are arranged in chromatic order according to their emission wavelength.
La longueur d'onde d'émission d'une puce est la longueur d'onde correspondant à son maximum d'intensité sur son spectre d'émission. Cette longueur d'onde est généralement centrale sur son spectre d'émission si ce dernier est en forme de cloche. The emission wavelength of a chip is the wavelength corresponding to its maximum intensity on its emission spectrum. This wavelength is generally central on its emission spectrum if the latter is bell-shaped.
On peut parler en anglais de « chip », pour parler d'une puce semiconductrice. On peut parler plus précisément de « microchip » . On peut également parler de « LED chip » et de « puce LED » pour parler d'une puce semiconductrice émettant un faisceau lumineux.  We can speak in English of "chip", to speak of a semiconductor chip. We can talk more specifically about "microchip". We can also talk about "LED chip" and "LED chip" to talk about a semiconductor chip emitting a light beam.
Le bloc d'émission lumineuse selon l'invention reprend le principe général des LED multicoeur (on parle en anglais de « multichip LED »), mais en le modifiant. Dans l'art antérieur, on réalise des LED multicoeur afin d'optimiser l'intensité d'émission de la LED. Chaque puce semiconductrice présente alors un même spectre d'émission . Selon l'invention, au contraire, on souhaite que chaque puce semiconductrice possède une longueur d'onde d'émission bien distincte. En outre, selon l'invention, les puces semiconductrices sont placées en fonction de leur longueur d'onde d'émission . En outre, selon l'invention, les puces semiconductrices peuvent être nombreuses, par exemple on peut en prévoir douze dans une même source lumineuse.  The light emission block according to the invention incorporates the general principle of multicore LEDs (we speak in English of "multichip LED"), but by modifying it. In the prior art, multi-core LEDs are made to optimize the emission intensity of the LED. Each semiconductor chip then has the same emission spectrum. According to the invention, on the contrary, it is desired that each semiconductor chip has a distinct emission wavelength. In addition, according to the invention, the semiconductor chips are placed according to their emission wavelength. In addition, according to the invention, the semiconductor chips may be numerous, for example twelve may be provided in the same light source.
Les puces semiconductrices peuvent être coplanaires.  Semiconductor chips can be coplanar.
Plus particulièrement, les puces semiconductrices peuvent être alignées. On pourrait également prévoir qu'elles soient réparties le long d'un arc de cercle, ou d'ellipse, ou de tout autre arc de conique.  More particularly, the semiconductor chips can be aligned. One could also predict that they are distributed along an arc of circle, or ellipse, or any other arc of conic.
De préférence, la largeur d'une puce semiconductrice est inférieure à 1 mm, par exemple comprise entre 90pm et 500pm voire entre 90pm et 200pm . On parle de largeur d'une puce semiconductrice, pour désigner sa dimension mesurée selon sa plus faible dimension .  Preferably, the width of a semiconductor chip is less than 1 mm, for example between 90 μm and 500 μm or even between 90 μm and 200 μm. We speak of the width of a semiconductor chip, to designate its measured dimension according to its smallest dimension.
La distance entre deux diodes voisines est avantageusement comprise entre 90pm et 500pm. Cette distance peut varier notamment en fonction de la largueur spectrale de chaque puce semiconductrice, et de la différence entre les longueurs d'onde d'émission de deux puces semiconductrices voisines. Cette distance dépend du nombre de puce semiconductrives que l'on souhaite utiliser dans la source lumineuse selon l'invention .  The distance between two neighboring diodes is advantageously between 90 pm and 500 pm. This distance may vary in particular according to the spectral width of each semiconductor chip, and the difference between the emission wavelengths of two neighboring semiconductor chips. This distance depends on the number of semiconductor chips that it is desired to use in the light source according to the invention.
La distance entre deux diodes voisines peut être fixe.  The distance between two neighboring diodes can be fixed.
Alternativement, la distance entre une première diode et la diode voisine varie avec la longueur d'onde d'émission de la première diode et la longueur d'onde d'émission de la diode voisine. En particulier, le bloc d'émission lumineuse selon l'invention peut être adapté à être utilisée dans un dispositif d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention, pour former les sources lumineuses. Ainsi, l'invention peut concerner un dispositif d'émission d'un faisceau lumineux de spectre contrôlé tel que décrit précédemment, dans lequel les sources lumineuses sont formées par un tel bloc d'émission lumineuse. Alternatively, the distance between a first diode and the neighboring diode varies with the emission wavelength of the first diode and the emission wavelength of the neighboring diode. In particular, the light emission block according to the invention may be adapted to be used in a device for emitting a controlled spectrum light beam according to the invention, to form the light sources. Thus, the invention may relate to a device for transmitting a controlled spectrum light beam as described above, in which the light sources are formed by such a light emission block.
Description des figures et modes de réalisation Description of the Figures and Embodiments
D'autres avantages et particularités de l'invention apparaîtront à la lecture de la description détaillée de mises en œuvre et de modes de réalisation nullement limitatifs, et des dessins annexés suivants :  Other advantages and particularities of the invention will appear on reading the detailed description of implementations and non-limiting embodiments, and the following appended drawings:
- la figure 1 illustre les spectres d'émission de deux sources lumineuses utilisées dans un dispositif d'émission d'un faisceau lumineux de spectre contrôlé selon l'invention ;  FIG. 1 illustrates the emission spectra of two light sources used in a device for emitting a controlled spectrum light beam according to the invention;
- la figure 2 illustre un premier mode de réalisation d'un dispositif d'émission selon l'invention ;  FIG. 2 illustrates a first embodiment of an emission device according to the invention;
- la figure 3 illustre un deuxième mode de réalisation d'un dispositif d'émission selon l'invention ;  FIG. 3 illustrates a second embodiment of an emission device according to the invention;
- la figure 4 illustre un troisième mode de réalisation d'un dispositif d'émission selon l'invention ;  FIG. 4 illustrates a third embodiment of an emission device according to the invention;
- la figure 5 illustre un quatrième mode de réalisation d'un dispositif d'émission selon l'invention ;  FIG. 5 illustrates a fourth embodiment of an emission device according to the invention;
- la figure 6 illustre un mode de réalisation d'une installation d'émission selon l'invention ;  FIG. 6 illustrates an embodiment of a transmission installation according to the invention;
- la figure 7 illustre un mode de réalisation d'un spectromètre d'absorption selon l'invention ;  FIG. 7 illustrates an embodiment of an absorption spectrometer according to the invention;
- la figure 8 illustre un mode de réalisation d'un spectromètre de fluorescence selon l'invention ;  FIG. 8 illustrates an embodiment of a fluorescence spectrometer according to the invention;
- la figure 9 illustre un mode de réalisation d'un appareil de microscopie à fluorescence selon l'invention ;  FIG. 9 illustrates an embodiment of a fluorescence microscopy apparatus according to the invention;
- la figure 10 illustre un mode de réalisation d'un appareil d'imagerie multispectrale selon l'invention ; et  FIG. 10 illustrates an embodiment of a multispectral imaging apparatus according to the invention; and
- la figure 11 illustre un mode de réalisation d'un bloc d'émission lumineuse selon l'invention. On va tout d'abord décrire, en référence à la figure 1, les spectres d'émission de deux sources lumineuses utilisées dans un dispositif d'émission selon l'invention . FIG. 11 illustrates an embodiment of a light emission block according to the invention. We will first describe, with reference to Figure 1, the emission spectra of two light sources used in a transmission device according to the invention.
On repère l'intensité lumineuse Ιι(λ), respectivement Ι2(λ), de deux sources lumineuses quasiment monochromatiques aux longueurs d'onde λι, respectivement λ2. Chaque spectre Ιι(λ), respectivement Ι2(λ), a la forme d'une courbe « en cloche » (par exemple une gaussienne) présentant un pic à la longueur d'onde dite de travail λι, respectivement λ2. Ce pic présente une largeur à mi-hauteur relativement faible par rapport à la longueur d'onde de travail . We find the luminous intensity Ιι (λ), respectively Ι 2 (λ), of two almost monochromatic light sources at wavelengths λι, respectively λ 2 . Each spectrum Ιι (λ), respectively Ι 2 (λ), has the shape of a "bell-shaped" curve (for example a Gaussian) having a peak at the so-called working wavelength λι, respectively λ 2 . This peak has a relatively low half-height width relative to the working wavelength.
Ainsi, une première source lumineuse SI présente un spectre d'émission en cloche avec :  Thus, a first light source SI has a bell emission spectrum with:
- un pic de hauteur Ii,max (valeur maximale de l'intensité lumineuse Ιι(λ), c'est-à-dire Ii,max (λι)) pour la longueur d'onde de travail λι = 340 nm, et a peak height Ii, ma x (maximum value of the luminous intensity Ιι (λ), that is to say Ii, ma x (λι)) for the working wavelength λι = 340 nm, and
- une largeur à mi-hauteur Δλι autour du pic à λι, égale ici à 10 nm.  a half-height width Δλι around the peak at λι, here equal to 10 nm.
De la même manière, une deuxième source lumineuse S2 présente un spectre d'émission en cloche avec :  In the same way, a second light source S2 has a bell emission spectrum with:
- un pic de hauteur I2,max (valeur maximale de l'intensité lumineuse Ι2(λ), c'est-à-dire I2,max (λ2)) pour la longueur d'onde de travail λ2 = 405 nm, et a peak height I 2 , ma x (maximum value of the luminous intensity Ι 2 (λ), that is to say I 2 , ma x (λ 2 )) for the working wavelength λ 2 = 405 nm, and
- une largeur à mi-hauteur Δλ2 autour du pic à λ2, égale ici à 10 nm. a half-height width Δλ 2 around the peak at λ 2 , here equal to 10 nm.
On peut alors considérer donc les sources lumineuses SI et S2 sont quasi monochromatiques, car :  We can then consider the light sources SI and S2 are almost monochromatic because:
- la largeur à mi-hauteur Δλι de la source lumineuse SI est faible par rapport à la longueur d'onde λι car Δλι/λι < < 1  the half-height width Δλι of the light source SI is small compared with the wavelength λι because Δλι / λι <<1
- la largeur à mi-hauteur Δλ2 de la source lumineuse S2 est faible par rapport à la longueur d'onde λ2 car Δλ22 < < 1. the half-height width Δλ 2 of the light source S2 is small compared with the wavelength λ 2 because Δλ 2 / λ 2 <<1.
On peut également prévoir d'utiliser des sources polychromatiques présentant d'autres formes de spectre. Selon l'invention, en fonction de la position de la source lumineuse, seule une partie de son spectre centrée sur une longueur d'onde dite de travail ou d'émission sera exploitée. On peut donc utiliser une source polycromatique, pourvu que son spectre présente une intensité élevée à cette longueur d'onde de travail .  It is also possible to use polychromatic sources having other forms of spectrum. According to the invention, depending on the position of the light source, only part of its spectrum centered on a so-called working or emission wavelength will be exploited. It is therefore possible to use a polycromatic source, provided that its spectrum has a high intensity at this working wavelength.
Les sources lumineuses comprennent ici des diodes électroluminescentes (DELs ou « LEDs » en anglais pour « Light-Emitting Diodes ») . L'utilisation de diodes électroluminescentes permet de réduire les risques de défaillances, les LEDs étant des sources lumineuses ayant une durée de vie supérieure aux sources lumineuses utilisées habituellement dans des dispositifs tels qu'un spectromètre, comme les sources à incandescence ou à décharge. En outre, les LED présentent l'avantage d'être de taille réduite. The light sources here comprise light emitting diodes (LEDs or "LEDs" in English for "Light-Emitting Diodes"). The use of light-emitting diodes makes it possible to reduce risk of failure, LEDs being light sources having a longer life than the light sources usually used in devices such as a spectrometer, such as incandescent or discharge sources. In addition, LEDs have the advantage of being small.
On va maintenant décrire, en référence à la figure 2, un premier mode de réalisation dispositif d'émission d'un faisceau lumineux de spectre contrôlé 1 selon l'invention . A first embodiment of a device for emitting a light beam of controlled spectrum 1 according to the invention will now be described with reference to FIG.
Dans ce mode de réalisation, les sources lumineuses sont au nombre de douze. Pour des raisons de lisibilité de la figure, on a représenté seulement cinq sources lumineuses : SI, S2, Si, SN, où N = 12. On pourra prévoir cependant autant de sources lumineuses que souhaité.  In this embodiment, the light sources are twelve in number. For reasons of legibility of the figure, only five light sources have been represented: SI, S2, Si, SN, where N = 12. However, as many light sources as desired can be provided.
Ces sources lumineuses SI à S12 sont considérées comme des sources quasi monochromatiques, émettant chacune un faisceau lumineux aux longueurs d'onde λι à K12l respectivement. These light sources SI to S12 are considered to be quasi-monochromatic sources, each emitting a light beam at wavelengths λι K 12l respectively.
On entendra par source quasi monochromatique, une source de lumière dont le spectre d'émission est étroit en longueur d'onde. Ceci peut être compris à la lumière de la figure 1 sur laquelle on a représenté les spectres d'émission des diodes électroluminescentes SI et S2.  By quasi-monochromatic source is meant a light source whose emission spectrum is narrow in wavelength. This can be understood in the light of FIG. 1, on which the emission spectra of the light-emitting diodes SI and S2 have been represented.
En plus des sources lumineuses SI et S2 décrites en référence à la figure 1, les dix autres sources lumineuses S3 à S12 émettent des faisceaux lumineux aux longueurs d'onde suivantes :  In addition to the light sources S1 and S2 described with reference to FIG. 1, the ten other light sources S3 to S12 emit light beams at the following wavelengths:
- Source S3 : λ3 = 450 nm ; Source S3: λ 3 = 450 nm;
- Source S4 : λ4 = 480 nm ; Source S4: λ 4 = 480 nm;
- Source S5 : λ5 = 505 nm ; Source S5: λ 5 = 505 nm;
- Source S6 : λ6 = 546 nm ; Source S6: λ 6 = 546 nm;
- Source S7 : λ7 = 570 nm ; Source S7: λ 7 = 570 nm;
- Source S8 : λ8 = 605 nm ; Source S8: λ 8 = 605 nm;
- Source S9 : λ9 = 660 nm ; Source S9: λ 9 = 660 nm;
- Source S10 : λ 10 = 700 nm  Source S10: λ 10 = 700 nm
- Source SU : λ 11 = 750 nm  - Source SU: λ 11 = 750 nm
- Source S12 : λ 12 = 800 nm  Source S12: λ 12 = 800 nm
Les sources SI à S12 sont donc rangées par ordre croissant chromaticité. En variante, toute autre longueur d'onde adaptée à l'application mise en œuvre peut être utilisée. The sources S1 to S12 are therefore arranged in ascending order chromaticity. Alternatively, any other wavelength suitable for the application implemented may be used.
De manière préférée, les longueurs d'onde des sources lumineuses sont comprises entre 340 nanomètres et 800 nanomètres.  Preferably, the wavelengths of the light sources are between 340 nanometers and 800 nanometers.
Dans ce premier mode de réalisation, les sources lumineuses SI à S12 sont avantageusement sélectionnées de telle sorte que leurs spectres d'émission respectifs ne se recouvrent pas. Ceci signifie, en prenant encore l'exemple des sources lumineuses SI et S2 dont les spectres respectifs sont représentés sur la figure 1, que :  In this first embodiment, the light sources S1 to S12 are advantageously selected so that their respective emission spectra do not overlap. This means, taking again the example of the light sources S1 and S2 whose respective spectra are represented in FIG. 1, that:
- l'intensité lumineuse Ιι(λ2) de la source lumineuse SI pour la longueur d'onde λ2 est très faible par rapport à la valeur du pic I2,max, par exemple inférieure à 5%, de préférence inférieure à 1% de la valeur de ce pic, et que - l'intensité lumineuse Ι2(λι) de la source lumineuse S2 pour la longueur d'onde λι est très faible par rapport à la valeur du pic Ii,max, par exemple inférieure à 5%, de préférence inférieure à 1% de la valeur de ce pic. the luminous intensity Ιι (λ 2 ) of the light source SI for the wavelength λ 2 is very small compared with the value of the peak I 2 , m ax, for example less than 5%, preferably less than 1% of the value of this peak, and that - the luminous intensity Ι 2 (λι) of the light source S2 for the wavelength λι is very small relative to the value of the peak Ii, m ax, for example less than 5%, preferably less than 1% of the value of this peak.
De manière avantageuse, les sources lumineuses peuvent comprendre chacune un filtre optique placé devant elles permettant de limiter encore davantage leur largeur à mi-hauteur respective. Ce filtre optique est un filtre spectral classique connu de l'homme du métier permettant de ne transmettre un faisceau lumineux que sur une gamme de longueurs d'onde spécifique, appelée sa « bande passante ». Ce filtre peut être par exemple un filtre par absorption, ou un filtre interférentiel .  Advantageously, the light sources may each comprise an optical filter placed in front of them to further limit their respective half-height width. This optical filter is a conventional spectral filter known to those skilled in the art for transmitting a light beam only over a specific wavelength range, called its "bandwidth". This filter may be for example an absorption filter, or an interference filter.
Les douze sources lumineuses SI à S12 sont, dans le mode de réalisation de l'invention représenté sur la figure 2, des diodes électroluminescentes de type encapsulées. On entend par là que les diodes électroluminescentes SI à S12 comportent ici chacune une puce (« LED chip » en anglais) qui émet de la lumière et placée dans un boîtier permettant, d'une part, de dissiper la chaleur dégagée par la puce lorsque celle-ci émet, et, d'autre part, d'amener la puissance électrique jusqu'à la puce pour son fonctionnement. The twelve light sources S1 to S12 are, in the embodiment of the invention shown in FIG. 2, light-emitting diodes of the encapsulated type. By this is meant that the light emitting diodes S1 to S12 here each comprise a chip ("LED chip" in English) which emits light and placed in a housing allowing, on the one hand, to dissipate the heat released by the chip when it emits, and, secondly, to bring the power to the chip for its operation.
Le boîtier est donc généralement constitué d'un matériau résistant thermiquement et isolant électriquement comme par exemple un polymère époxyde tel que la résine époxy, ou bien une céramique. Il comprend généralement deux pattes métalliques qui sont soudées sur la carte de circuit imprimé 21 au moyen de deux points de soudure, ces soudures permettant, d'une part, de fixer la diode électroluminescente sur la carte de circuit imprimé, et, d'autre part, d'alimenter les LEDs en courant. The housing is therefore generally made of a thermally resistant material and electrically insulating such as an epoxy polymer such as epoxy resin, or a ceramic. It generally comprises two metal tabs which are welded to the printed circuit board 21 by means of two soldering points, these welds making it possible, on the one hand, to fix the light-emitting diode on the printed circuit board, and, on the other hand, on the other hand, to power the LEDs while running.
En variante, un même boîtier pourrait comporter plusieurs puces (« mutichip LED » en anglais), le boîtier comprenant alors généralement autant de paires de pattes métalliques que de puces intégrées dans le boîtier. On parle alors de LED multicoeur. Les différentes puces du boîtier son identiques.  Alternatively, the same housing could have several chips ("mutichip LED" in English), the housing then generally comprising as many pairs of metal legs as chips embedded in the housing. We are talking about multi-core LEDs. The different chips of the case are identical.
Dans chaque variante, on pourrait prévoir de remplacer les pattes métalliques par de simples surfaces conductrices et de mettre en œuvre une technique dite CMS pour « composant monté en surface » (ou an anglais SMD pour « surface mounted device »).  In each variant, provision could be made to replace the metal tabs with simple conductive surfaces and to implement a so-called SMD technique for "surface mounted device".
Une autre possibilité de réalisation des sources lumineuses selon l'invention sera décrite plus loin, en référence à la figure 11.  Another possibility of producing the light sources according to the invention will be described later, with reference to FIG. 11.
La carte de circuit imprimé 21 ou « PCB » (pour « Printed Circuit The printed circuit board 21 or "PCB" (for "Printed Circuit
Board» en anglais) est ici réalisée dans un matériau composite de résine époxy renforcé par des fibres de verre, de type « FR4 » bien connu de la technique. Board "in English) is here made of a fiberglass-reinforced epoxy resin composite material of the" FR4 "type well known in the art.
Pour apporter la puissance nécessaire, la carte de circuit imprimé 21 comprend un connecteur 22. Le connecteur 22 n'est pas représenté sur toutes les figures, pour des raisons de lisibilités des figures. On verra, en référence à la figure 7, que sur ce connecteur 22 vient se brancher un câble 23 relié à un boîtier d'alimentation et de pilotage 24 fournissant un courant ajusté pour chacune des diodes électroluminescentes.  To provide the necessary power, the printed circuit board 21 comprises a connector 22. The connector 22 is not shown in all the figures, for the sake of readability of the figures. It will be seen, with reference to FIG. 7, that on this connector 22 is connected a cable 23 connected to a supply and control box 24 supplying a current adjusted for each of the light-emitting diodes.
Les diodes électroluminescentes SI à S12 émettent chacune un faisceau lumineux à leur longueur d'onde d'émission λι à K12. Chaque faisceau lumineux est généralement un faisceau divergent, les LEDs étant des sources lumineuses émettant de manière quasi-lambertienne. The electroluminescent diodes S1 to S12 each emit a light beam at their emission wavelength λι to K 12 . Each light beam is generally a divergent beam, the LEDs being light sources emitting in a quasi-Lambertian manner.
Le dispositif d'émission 1 comprend des moyens de multiplexage spectral mélangeant les faisceaux lumineux des sources lumineuses SI à S12 pour former un faisceau lumineux multiplexé 26.  The transmission device 1 comprises spectral multiplexing means mixing the light beams of the light sources S1 to S12 to form a multiplexed light beam 26.
Dans le mode de réalisation de l'invention représenté sur la figure 2, ces moyens de multiplexage spectral sont formés par un ensemble optique formé lui-même par une lentille biconcave épaisse 25 d'axe optique Al. Il est connu qu'une telle lentille 25 présente une aberration chromatique latérale lorsqu'elle est exploitée hors de son axe optique Al . In the embodiment of the invention shown in FIG. 2, these spectral multiplexing means are formed by an optical assembly itself formed by a thick biconcave lens 25 having an optical axis A1. such a lens 25 has a lateral chromatic aberration when it is operated outside its optical axis Al.
En effet, la lentille 25 possède des foyers Fl à F12 correspondant aux longueurs d'onde λι à K12. À cause de l'aberration chromatique latérale, ces foyers sont distincts et séparés, alignés selon une droite sécante avec l'axe optique Al de la lentille 25. Indeed, the lens 25 has foci Fl to F12 corresponding to the wavelengths λι to K 12 . Because of the lateral chromatic aberration, these foci are distinct and separated, aligned along a line intersecting with the optical axis A1 of the lens 25.
La particularité optique de ces points singuliers de la lentille 25 est qu'un faisceau lumineux issu de ces points est transmis et transformé par la lentille 25 sous la forme d'un faisceau lumineux de rayons parallèles, dit faisceau lumineux « collimaté ».  The optical feature of these singular points of the lens 25 is that a light beam from these points is transmitted and transformed by the lens 25 in the form of a light beam of parallel rays, said "collimated" light beam.
Ainsi, un faisceau lumineux émis à la longueur d'onde λι depuis le foyer Fl en direction de la lentille 25 émerge de la lentille 25 en un faisceau lumineux parallèle à la même longueur d'onde λι . De la même manière, un faisceau lumineux émis à la longueur d'onde λ2 depuis le foyer F2 en direction de la lentille 25 émerge de la lentille 25 en un faisceau lumineux parallèle à la même longueur d'onde λ2, se superposant avec le faisceau lumineux parallèle à la longueur d'onde λι . Les deux faisceaux lumineux émis depuis les foyers Fl et F2 sont donc mélangés, ou « multiplexés » à la sortie de la lentille 25. Thus, a light beam emitted at the wavelength λι from the focus Fl towards the lens 25 emerges from the lens 25 into a light beam parallel to the same wavelength λι. In the same way, a light beam emitted at the wavelength λ 2 from the focus F2 towards the lens 25 emerges from the lens 25 into a light beam parallel to the same wavelength λ 2 , superimposed with the light beam parallel to the wavelength λι. The two light beams emitted from the foci Fl and F2 are thus mixed, or "multiplexed" at the exit of the lens 25.
On comprend ainsi qu'en plaçant respectivement les sources lumineuses SI à S12 aux positions des foyers Fl à F12 correspondant aux longueurs d'onde λι à K12 de la lentille 25 présentant de l'aberration chromatique latérale, les faisceaux lumineux émis par les LEDs SI à S12 sont multiplexés à la sortie de la lentille 25, pour former un faisceau lumineux multiplexé 26, ici sous la forme d'un faisceau lumineux collimaté. It is thus understood that by respectively placing the light sources SI to S12 the positions of the foci Fl to F12 corresponding to the wavelengths λι K to 12 of the lens 25 having the lateral chromatic aberration, the light beams emitted by the LEDs SI to S12 are multiplexed at the exit of the lens 25, to form a multiplexed light beam 26, here in the form of a collimated light beam.
Le faisceau lumineux multiplexé 26 est donc un faisceau lumineux polychromatique, puisqu'il comprend plusieurs longueurs d'onde mélangées.  The multiplexed light beam 26 is therefore a polychromatic light beam, since it comprises several mixed wavelengths.
La figure 3 illustre un deuxième mode de réalisation d'un dispositif d'émission 1 selon l'invention . FIG. 3 illustrates a second embodiment of a transmission device 1 according to the invention.
La figure 3 ne sera décrite que pour ses différences d'avec la figure 2. Alors que dans le mode de réalisation représenté à la figure 2, les sources lumineuses SI à S12 sont situées aux positions des foyers Fl à F12 correspondant aux longueurs d'onde λι à K12 de la lentille 25, dans ce mode de réalisation il n'en n'est rien . On met donc en œuvre une conjugaison optique « point-point », et non « foyer-infini ». Les sources lumineuses SI à S12 sont situées aux positions telles que la lentille 25 réalise la conjugaison optique entre les sources lumineuses et un point image commun 37. Un trou de filtrage spatial 39 placé au niveau de ce point image 37 permet d'effectuer un filtrage spatial sur le faisceau lumineux émergeant de la lentille 25. FIG. 3 will only be described for its differences from FIG. 2. While in the embodiment represented in FIG. 2, the light sources S1 to S12 are located at the positions of the foci F1 to F12 corresponding to the lengths of FIG. wave λι to K 12 of the lens 25, in this embodiment it is not. We thus implement a conjugation optical "point-point", not "focus-infinite". The light sources S1 to S12 are located at positions such that the lens 25 achieves the optical conjugation between the light sources and a common image point 37. A spatial filtering hole 39 placed at this image point 37 makes it possible to carry out a filtering space on the light beam emerging from the lens 25.
Une lentille de collimation 38 achromatique est placée de façon que le point image commun 37 soit placé à son foyer objet, ce qui permet d'obtenir un faisceau multiplexé 26 collimaté. La figure 4 illustre un troisième mode de réalisation d'un dispositif d'émission 1 selon l'invention.  An achromatic collimating lens 38 is placed so that the common image point 37 is placed at its object focus, thereby obtaining a collimated multiplexed beam 26. FIG. 4 illustrates a third embodiment of a transmission device 1 according to the invention.
La figure 4 ne sera décrite que pour ses différences d'avec la figure 3. Dans l'exemple représenté à la figure 4, les aberrations géométriques de la lentille 25 sont telles qu'on n'obtient pas un point image commun pour les sources lumineuses SI à S12.  FIG. 4 will only be described for its differences from FIG. 3. In the example shown in FIG. 4, the geometric aberrations of the lens 25 are such that a common image point for the sources is not obtained. lights SI to S12.
Chaque source lumineuse est imagée par la lentille 25 en un point image 40i à 40i2 respectif. La lentille 25, bien qu'elle n'image pas les sources SI à S12 en un unique point, rapproche spatialement les faisceaux lumineux issus de chacune des sources. Les points 40i à 40i2 se trouvent donc réunis dans un volume de focalisation de faible dimension, par exemple un disque épais de quelques millimètres de diamètre et quelques millimètres de hauteur. On place donc un guide d'onde d'homogénéisation 41, de façon que les faisceaux lumineux, formant les points images 40i à 40i2, rentrent à l'intérieur du guide d'onde 41. Le guide d'onde est par exemple une fibre optique à cœur liquide, d'un diamètre de 3 mm et d'une longueur de 75 mm. Les faisceaux lumineux provenant de chacune des sources SI à S12 sont mélangés à l'intérieur du guide d'onde, de façon qu'on obtient en sortie du guide d'onde un faisceau lumineux homogénéisé. Le faisceau est dit homogénéisé, car les contributions de chacun des faisceaux à des longueurs d'onde respectives sont mélangées spatialement. En sortie du guide d'onde, un collimateur achromatique 38 permet d'obtenir un faisceau multiplexé 26 collimaté. Le diamètre de la fibre optique à cœur liquide est bien supérieur au diamètre d'une fibre optique classique (quelques centaines de micromètres). On choisit une fibre optique à cœur liquide, d'un diamètre de 3 mm environ, typiquement entre 2 mm et 6 mm, afin de garantir un couplage efficace dans la fibre en même temps qu'une bonne qualité de collimation en sortie de fibre. Each light source is imaged by the lens 25 at an image point 401 to 4012 respectively. The lens 25, although it does not image the sources S1 to S12 in a single point, spatially approximates the light beams from each of the sources. The points 40i to 40i 2 are thus combined in a focusing volume of small dimension, for example a disk thick a few millimeters in diameter and a few millimeters in height. Therefore, a homogenization waveguide 41 is placed, so that the light beams, forming the image points 40i to 40i 2 , fit inside the waveguide 41. The waveguide is for example a liquid-core optical fiber having a diameter of 3 mm and a length of 75 mm. The light beams coming from each of the sources S1 to S12 are mixed inside the waveguide, so that a homogenized light beam is obtained at the output of the waveguide. The beam is said to be homogenized because the contributions of each of the beams at respective wavelengths are spatially mixed. At the exit of the waveguide, an achromatic collimator 38 makes it possible to obtain a collimated multiplexed beam 26. The diameter of the liquid core optical fiber is much greater than the diameter of a conventional optical fiber (a few hundred micrometers). A liquid-core optical fiber having a diameter of approximately 3 mm is chosen, typically between 2 mm and 6 mm. mm, in order to guarantee an efficient coupling in the fiber at the same time as a good quality of collimation at the output of fiber.
La figure 5 illustre un quatrième mode de réalisation d'un dispositif d'émission 1 selon l'invention . FIG. 5 illustrates a fourth embodiment of a transmission device 1 according to the invention.
La figure 5 ne sera décrite que pour ses différences d'avec la figure 2. Dans ce mode de réalisation, les moyens de multiplexage spectral comprennent un ensemble optique formé par un prisme optique 51 entouré d'une lentille de collimation 55 et d'une lentille de focalisation 52. La lentille de collimation permet de collimater les faisceaux lumineux émergeant de chacune des sources lumineuses SI à S12. Ainsi, plusieurs faisceaux collimatés sont dirigés vers le prisme 51. A ce stade, les plusieurs faisceaux collimatés peuvent être spatialement distincts, ou partiellement superposés. Le prisme 51 rapproche spatialement ces faisceaux qui émergent sur la face opposée du prisme pour se diriger vers la lentille de focalisation 52 qui réunit spatialement en un point image 53 les faisceaux lumineux émis par les différentes sources lumineuses.  FIG. 5 will only be described for its differences from FIG. 2. In this embodiment, the spectral multiplexing means comprise an optical assembly formed by an optical prism 51 surrounded by a collimating lens 55 and a focusing lens 52. The collimating lens makes it possible to collimate the light beams emerging from each of the light sources S1 to S12. Thus, several collimated beams are directed to the prism 51. At this point, the several collimated beams can be spatially distinct, or partially superimposed. The prism 51 spatially brings these beams which emerge on the opposite face of the prism towards the focusing lens 52 which spatially brings into an image point 53 the light beams emitted by the different light sources.
L'ensemble prisme et lentilles est généralement utilisé dans le cadre des spectromètres, pour séparer spatialement les différentes longueurs d'onde. Ici, on l'utilise au contraire pour rapprocher spatialement des faisceaux à différentes longueurs d'onde, en exploitant le principe de retour inverse de la lumière.  The prism and lens assembly is generally used in the context of spectrometers, to spatially separate the different wavelengths. Here, it is used on the contrary to spatially bring together beams at different wavelengths, by exploiting the principle of inverse return of light.
Le point image 53 se trouve au foyer objet d'une lentille de collimation achromatique 38, de sorte qu'on obtienne en sortie de cette lentille 38 un faisceau multiplexé 26 collimaté.  The image point 53 is at the focus object of an achromatic collimation lens 38, so that one obtains at the output of this lens 38 a multiplexed beam 26 collimated.
On pourra envisager de combiner le mode de réalisation décrit en référence à la figure 5 avec le mode de réalisation décrit en référence à la figure 4. En particulier, si on n'obtient pas un point image unique 53 mais un ensemble de points images 40i à N situés dans un volume de faibles dimensions.  We can consider combining the embodiment described with reference to Figure 5 with the embodiment described with reference to Figure 4. In particular, if we do not obtain a single image point 53 but a set of image points 40i at N located in a small volume.
On va maintenant décrire, en référence à la figure 6, un mode de réalisation d'une installation d'émission 60 selon l'invention . An embodiment of a transmission installation 60 according to the invention will now be described with reference to FIG.
L'installation d'émission 60 selon l'invention comprend trois dispositifs d'émission 1 selon l'invention . Plus précisément, dans le mode de réalisation tel que représenté à la figure 6, l'installation d'émission 60 comprend : The transmission installation 60 according to the invention comprises three transmission devices 1 according to the invention. More specifically, in the embodiment as shown in FIG. 6, the transmission facility 60 comprises:
- trois blocs source comprenant chacun des sources lumineuses SI à SN, où N est supérieur à cinq ;  - three source blocks each comprising light sources SI to SN, where N is greater than five;
- pour chaque bloc source, un ensemble optique 61 tel que décrit précédemment, notamment en référence à la figure 3, 45 ;  for each source block, an optical assembly 61 as previously described, in particular with reference to FIG. 3, 45;
- en sortie de chaque ensemble optique 61, les faisceaux lumineux correspondant à chaque bloc source sont focalisés en un point unique ou une pluralité de points réunis dans une zone de focalisation de volume restreint (par exemple un disque épais de cinq millimètres de diamètre et 2 millimètre de hauteur). Les faisceaux lumineux correspondant à chaque bloc source pénètrent chacun à l'intérieur d'un guide d'onde 41 respectif qui peut être un guide d'onde d'homogénéisation.  at the output of each optical assembly 61, the light beams corresponding to each source block are focused at a single point or a plurality of points joined together in a focussing zone of restricted volume (for example a disc five millimeters in diameter and 2 millimeter in height). The light beams corresponding to each source block each penetrate inside a respective waveguide 41 which may be a homogenization waveguide.
- un multiplexeur fibré 63, qui réunit spatialement les faisceaux se propageant dans chaque guide d'onde 41, dans un guide d'onde unique 64 en sortie du multiplexeur fibré 63.  a fibered multiplexer 63, which spatially brings together the beams propagating in each waveguide 41, in a single waveguide 64 at the output of the fiber multiplexer 63.
- une optique de collimation 38 commune aux trois dispositifs d'émission a collimation optics 38 common to the three transmission devices
1. 1.
On obtient donc en sortie un faisceau 65 multiplexé collimaté polychromatique, réunissant les longueurs d'onde d'émission de chacune des sources lumineuses de chaque dispositif d'émission 1.  Thus, a multiplexed collimated polychromatic beam 65 is obtained at the output, bringing together the emission wavelengths of each of the light sources of each transmission device 1.
On peut également prévoir une variante de ce mode de réalisation, dans laquelle à chaque dispositif d'émission 1 correspond une optique de collimation 38 dédiée, placée alors en amont du multiplexeur fibré 63. On peut avantageusement, dans cette variante, remplacer le multiplexeur fibré par un agencement de miroirs dichroïques.  It is also possible to provide a variant of this embodiment, in which each transmission device 1 corresponds to a dedicated collimation optics 38, then placed upstream of the fiber multiplexer 63. In this variant, the fiber multiplexer can advantageously be replaced. by an arrangement of dichroic mirrors.
On pourra envisager toutes les variantes possibles, mettant en œuvre plusieurs dispositifs d'émission 1 tels que décrits en référence aux figures 2 à 5.  It is possible to envisage all the possible variants, implementing several transmission devices 1 as described with reference to FIGS. 2 to 5.
On va maintenant décrire, en référence à la figure 7, un mode de réalisation d'un spectromètre d'absorption 70 selon l'invention. Un tel spectromètre permet de réaliser une analyse chimique précise d'un échantillon. Le spectromètre d'absorption 70 selon l'invention présente des moyens d'éclairage formés par un dispositif d'émission 1 selon l'invention . An embodiment of an absorption spectrometer 70 according to the invention will now be described with reference to FIG. Such a spectrometer makes it possible to perform a precise chemical analysis of a sample. The absorption spectrometer 70 according to the invention has lighting means formed by a transmission device 1 according to the invention.
Le faisceau lumineux multiplexé 26 permet d'illuminer un échantillon 11 à analyser, constitué ici par un échantillon de sang humain placé dans une cuve 12, dont on détaillera par la suite les caractéristiques.  The multiplexed light beam 26 makes it possible to illuminate a sample 11 to be analyzed, constituted here by a human blood sample placed in a tank 12, the characteristics of which will be detailed below.
On peut prévoir un unique échantillon, un opérateur remplaçant un échantillon par un autre entre deux mesures, ou une suite d'échantillons placés en parallèle de façon à simplement translater un unique support entre deux mesures.  We can provide a single sample, an operator replacing a sample with another between two measurements, or a sequence of samples placed in parallel so as to simply translate a single medium between two measurements.
On peut prévoir un filtre polarisant pour les sources lumineuses, placé devant l'échantillon sur le chemin du faisceau lumineux multiplexé 26. Alternativement, les sources lumineuses peuvent comprendre chacune un filtre polarisant placé devant elles. Ce filtre polarisant permet d'augmenter le rapport signal à bruit en dissociant, après transmission au travers de l'échantillon 11 à analyser, la lumière absorbée par celui-ci de la lumière éventuellement réémise par fluorescence. En outre, un tel filtre polarisant permettrait de mesurer également le pouvoir rotatoire de l'échantillon 11 à analyser, si celui-ci en présentait.  It is possible to provide a polarizing filter for the light sources placed in front of the sample on the path of the multiplexed light beam 26. Alternatively, the light sources may each comprise a polarizing filter placed in front of them. This polarizing filter makes it possible to increase the signal-to-noise ratio by dissociating, after transmission through the sample 11 to be analyzed, the light absorbed by it from the possibly fluorescence-re-emitted light. In addition, such a polarizing filter would also measure the rotational power of the sample 11 to be analyzed, if it presented.
Le faisceau lumineux multiplexé 26 se propage pour venir illuminer l'échantillon 11 à analyser.  The multiplexed light beam 26 propagates to illuminate the sample 11 to be analyzed.
L'échantillon 11 est par exemple placé dans une cuve 12 dont les parois sont transparentes et absorbent peu pour les longueurs d'onde utilisées dans le dispositif d'émission 1. La cuve 12 est ici formée d'un tube parallélépipédique fabriqué en quartz.  The sample 11 is for example placed in a tank 12 whose walls are transparent and absorb little for the wavelengths used in the emission device 1. The tank 12 is here formed of a parallelepiped tube made of quartz.
Le faisceau lumineux multiplexé 26 traverse ensuite l'échantillon 11 , dans lequel il est absorbé le long de son parcours. Plus précisément, chacun des faisceaux lumineux aux longueurs d'onde λι à K12 du faisceau lumineux multiplexé 26 est absorbé par l'échantillon 11, l'absorption étant a priori différente pour chacune des longueurs d'onde λι à K12. The multiplexed light beam 26 then passes through the sample 11, in which it is absorbed along its path. More precisely, each of the light beams at the wavelengths λι to K 12 of the multiplexed light beam 26 is absorbed by the sample 11, the absorption being a priori different for each of the wavelengths λι to K 12 .
Avantageusement, il peut être ajouté à l'échantillon 11 à analyser un ou plusieurs réactifs chimiques permettant d'effectuer un titrage de l'échantillon 11 à analyser.  Advantageously, it is possible to add to the sample 11 to analyze one or more chemical reagents making it possible to carry out a titration of the sample 11 to be analyzed.
En sortie de la cuve 12, on obtient un faisceau lumineux transmis 34 par l'échantillon 11 à analyser, le spectre de ce faisceau lumineux transmis 34 étant caractéristique de l'échantillon 11, telle une signature partielle de sa composition chimique. At the outlet of the tank 12, a transmitted light beam 34 is obtained from the sample 11 to be analyzed, the spectrum of this transmitted light beam 34 being characteristic of the sample 11, as a partial signature of its chemical composition.
Le faisceau lumineux transmis 34 est ensuite détecté et analysé par un « bloc-détecteur » .  The transmitted light beam 34 is then detected and analyzed by a "detector block".
En particulier, le bloc-détecteur comprend un détecteur 31, par exemple « single-channel », collectant le faisceau lumineux transmis 34 par l'échantillon 11 à analyser. Le détecteur 31 est ici une photodiode à semiconducteur de type silicium .  In particular, the detector block comprises a detector 31, for example "single-channel", collecting the transmitted light beam 34 by the sample 11 to be analyzed. The detector 31 is here a semiconductor photodiode of the silicon type.
En variante, le détecteur pourrait être une photodiode à avalanche, un photomultiplicateur ou bien un capteur CCD ou CMOS.  Alternatively, the detector could be an avalanche photodiode, a photomultiplier or a CCD or CMOS sensor.
Le détecteur 31 délivre alors un signal relatif au flux lumineux reçu pour chacune des longueurs d'onde λι à K12. Le flux lumineux reçu à une longueur d'onde donnée est relié au niveau d'absorption de cette longueur d'onde par l'échantillon 11. The detector 31 then delivers a signal relating to the luminous flux received for each of the wavelengths λι to K 12 . The luminous flux received at a given wavelength is connected to the absorption level of this wavelength by the sample 11.
Le signal relatif au flux lumineux reçu par le détecteur 31 est transmis à des moyens de traitement du signal 32 qui déterminent l'absorption de chacune des longueurs d'onde λι à K12 par l'échantillon 11 à analyser. Les résultats de l'analyse de l'échantillon 11 sont alors transmis à des moyens d'affichage 33 représentant les résultats sous la forme d'un spectre d'absorption où l'on représente en abscisses la longueur d'onde et en ordonnées le niveau d'absorption de l'échantillon 11, par exemple en pourcentage, pour la longueur d'onde considérée. The signal relating to the luminous flux received by the detector 31 is transmitted to signal processing means 32 which determine the absorption of each of the wavelengths λι to K 12 by the sample 11 to be analyzed. The results of the analysis of the sample 11 are then transmitted to the display means 33 representing the results in the form of an absorption spectrum in which the wavelength is represented on the abscissa and on the ordinate the absorption level of the sample 11, for example in percentage, for the wavelength considered.
Des moyens d'alimentation et de pilotage 24 sont agencés pour contrôler l'intensité lumineuse de chacune des sources lumineuses, par exemple la moduler en fréquence.  Power and control means 24 are arranged to control the light intensity of each of the light sources, for example frequency modulate.
On peut ainsi prévoir de moduler l'intensité lumineuse de chacune des sources lumineuses SI à S12 à une fréquence différente les unes des autres. Comme expliqué ci-avant, on peut ainsi distinguer les signaux provenant de chaque source, lors de la détection . Généralement, les fréquences de modulation sont comprises entre 1 kilohertz et 1 Gigahertz. Les moyens de traitement du signal 32 démodulent alors le signal délivré par le détecteur 31 de manière synchrone avec les sources lumineuses SI à S12. Ceci permet notamment de n'utiliser qu'un seul détecteur pour effectuer la mesure. Alternativement, on peut simplement prévoir d'allumer ou éteindre chaque source lumineuse, de façon qu'à chaque instant une seule des sources lumineuse émette de la lumière. It is thus possible to modulate the light intensity of each of the light sources S1 to S12 at a frequency different from each other. As explained above, it is thus possible to distinguish the signals coming from each source, during the detection. Generally, the modulation frequencies are between 1 kilohertz and 1 Gigahertz. The signal processing means 32 then demodulate the signal delivered by the detector 31 synchronously with the light sources S1 to S12. This allows in particular to use only one detector to perform the measurement. Alternatively, one can simply provide to turn on or off each light source, so that at each moment only one light source emits light.
On peut prévoir de combiner ces deux modes de réalisation .  It is possible to combine these two embodiments.
On peut parler de contrôle spectral et temporel du spectre du faisceau multiplexé 26.  We can speak of spectral and temporal control of the spectrum of the multiplexed beam 26.
En séparant ainsi les différentes sources lumineuses SI à S12 (par modulation de fréquence ou allumages successifs), la mesure de l'absorption sur l'échantillon 11 à analyser est réalisée avec une plus grande précision . En particulier, comme vu ci-avant, on diminue considérablement le bruit de détection .  By thus separating the different light sources S1 to S12 (by frequency modulation or successive ignitions), the measurement of the absorption on the sample 11 to be analyzed is performed with greater precision. In particular, as seen above, the detection noise is considerably reduced.
Le temps de réponse des LED est très rapide, de l'ordre de 100 ns, typiquement entre 10 ns et 1000 ns. Un contrôle spectral aussi rapide peut être qualifié de spectroscopie résolue en temps. De tels moyens d'alimentation et de pilotage 24 permettent ainsi d'observer des phénomènes très rapides. Le temps de réponse des LED est du même ordre de grandeur que le temps de réponse d'une photodiode choisie de façon adéquate. Grâce à de tels temps de réponse à la fois côté émission et côté réception, on peut observer des phénomènes très rapides, ces temps de réponse (par exemple de l'ordre de quelques centaines de nanosecondes) étant du même ordre que le temps de vie des états vibrationnels et rotationnels des molécules. On peut par exemple observer un phénomène d'absorption, au cours du temps. On peut par exemple observer à quelle vitesse les niveaux d'énergie d'une molécule sont excitée et désexcitées.  The response time of the LEDs is very fast, of the order of 100 ns, typically between 10 ns and 1000 ns. Such rapid spectral control may be termed time-resolved spectroscopy. Such power supply and control means 24 thus make it possible to observe very fast phenomena. The response time of the LEDs is of the same order of magnitude as the response time of a photodiode appropriately selected. Thanks to such response times both transmission side and reception side, we can observe very fast phenomena, these response times (for example of the order of a few hundred nanoseconds) being of the same order as the life time vibrational and rotational states of the molecules. For example, an absorption phenomenon can be observed over time. For example, it is possible to observe how fast the energy levels of a molecule are excited and de-excited.
Le spectromètre d'absorption 70 comporte également des moyens d'asservissement qui modifient l'intensité lumineuse de chacune des sources lumineuses SI à S12 en fonction de l'absorption de chacune des longueurs d'onde λι, A2 par l'échantillon 11 à analyser. The absorption spectrometer 70 also comprises servo-control means that modify the light intensity of each of the light sources S1 to S12 as a function of the absorption of each of the wavelengths λι, A 2 by the sample 11 to analyze.
Les moyens d'asservissement comprennent notamment  The servo means include
- les moyens d'alimentation et de pilotage 24 ;  the supply and control means 24;
- le câble de liaison 35 entre les moyens de traitement du signal 32 et les moyens d'alimentation et de pilotage 24 ;  the connection cable 35 between the signal processing means 32 and the supply and control means 24;
- des moyens de calcul adaptés à mettre en œuvre l'asservissement.  calculation means adapted to implement the servocontrol.
Les moyens de traitement du signal 32 transmettent en effet via le câble de liaison 35 aux moyens d'alimentation et de pilotage 24 un signal relatif à la mesure de l'absorption de chacune des longueurs d'onde λι à K12 par l'échantillon 11 à analyser. The signal processing means 32 transmit via the connection cable 35 to the power supply and control means 24 a signal relating to the measurement of the absorption of each of the wavelengths λι to K 12 by the sample 11 to be analyzed.
Le câble de liaison 35 établit ainsi une boucle d'asservissement entre le dispositif d'émission et le bloc détecteur. Cette boucle d'asservissement permet d'adapter l'intensité de chaque longueur d'onde afin de travailler dans la meilleure zone de sensibilité et de linéarité du détecteur 31.  The connection cable 35 thus establishes a control loop between the transmitting device and the detector unit. This control loop makes it possible to adapt the intensity of each wavelength in order to work in the best zone of sensitivity and linearity of the detector 31.
On décrira ci-après la procédure qu'un opérateur met en place pour réaliser une mesure d'absorption au moyen spectromètre d'absorption représenté sur la figure 7.  The procedure that an operator sets up to perform an absorption measurement by means of absorption spectrometer shown in FIG. 7 will be described below.
Étape de calibration : Calibration step:
Dans cette étape, l'opérateur met en route les moyens d'alimentation et de pilotage 24 permettant d'alimenter la carte de circuit imprimé 21 comprenant les 12 LEDs SI à S12 qui émettent alors chacune un faisceau lumineux divergent à leurs longueurs d'onde respectives λι à K12. Un faisceau lumineux multiplexé 26 est alors formé, ce faisceau lumineux multiplexé se propageant jusqu'à la cuve 12 pour l'illuminer. In this step, the operator starts the power supply and control means 24 for supplying the printed circuit board 21 comprising the 12 LEDs S1 to S12 which each then emit a divergent light beam at their wavelengths. respective λι to K 12 . A multiplexed light beam 26 is then formed, this multiplexed light beam propagating to the tank 12 to illuminate it.
L'opérateur effectue alors une mesure « à vide », c'est-à-dire que, dans cette étape, la cuve 12 du spectromètre d'absorption est vide et ne contient pas encore l'échantillon 11 à analyser. Le faisceau lumineux multiplexé 26 est donc quasiment intégralement transmis par la cuve 12 en un faisceau lumineux transmis 34.  The operator then performs a measurement "empty", that is to say that in this step, the tank 12 of the absorption spectrometer is empty and does not yet contain the sample 11 to be analyzed. The multiplexed light beam 26 is thus almost entirely transmitted by the tank 12 into a transmitted light beam 34.
En variante, l'opérateur peut effectuer cette étape de calibration avec une cuve remplie d'eau à pH = 7 (potentiel Hydrogène) dont le spectre d'absorption est connu .  Alternatively, the operator can perform this calibration step with a tank filled with water at pH = 7 (hydrogen potential) whose absorption spectrum is known.
Le détecteur 31 collecte alors le faisceau lumineux transmis 34 et délivre un signal relié à l'intensité lumineuse de chacun des faisceaux lumineux émis par les différentes LEDs SI à S12, aux moyens de traitement du signal 32 qui enregistrent ce signal .  The detector 31 then collects the transmitted light beam 34 and delivers a signal connected to the light intensity of each of the light beams emitted by the different LEDs S1 to S12, the signal processing means 32 which record this signal.
À l'issue de cette étape de calibration, les moyens de traitement du signal ont stocké en mémoire une valeur calibrée de l'intensité lumineuse de chacun des faisceaux lumineux émis par chacune des sources lumineuses SI à S12 et transmis à travers la cuve 12 vide du spectromètre d'absorption . Étape de mesure Dans cette étape, l'opérateur effectue une nouvelle mesure en prenant soin de placer l'échantillon 11 à analyser dans la cuve 12 du spectromètre d'absorption . At the end of this calibration step, the signal processing means stored in memory a calibrated value of the light intensity of each of the light beams emitted by each of the light sources S1 to S12 and transmitted through the empty tank 12. absorption spectrometer. Measurement step In this step, the operator performs a new measurement taking care to place the sample 11 to be analyzed in the tank 12 of the absorption spectrometer.
Ainsi, à l'issue de cette étape de mesure, les moyens de traitement du signal ont donc stocké en mémoire une valeur mesurée de l'intensité lumineuse de chacun des faisceaux lumineux émis par chacune des sources lumineuses SI à S12 et transmis à travers la cuve 12 du spectromètre d'absorption 10 remplie par l'échantillon 11 à mesurer.  Thus, at the end of this measuring step, the signal processing means have stored in memory a measured value of the light intensity of each of the light beams emitted by each of the light sources S1 to S12 and transmitted through the light source. tank 12 of the absorption spectrometer 10 filled with the sample 11 to be measured.
Les moyens de traitement du signal 32 déterminent alors, pour chacune des longueurs d'onde λι à K12l le rapport entre la valeur calibrée à l'étape de calibration et la valeur mesurée de l'étape de mesure, ce rapport étant relié à l'absorption de chacun des faisceaux lumineux monochromatiques formant le faisceau lumineux multiplexé 26. The signal processing means 32 then determine for each of the wavelengths λι K 12l to the ratio of the value calibrated at the calibration step and the measured value of the measuring step, this ratio being connected to absorption of each of the monochromatic light beams forming the multiplexed light beam 26.
Les résultats sont alors affichés sur les moyens d'affichage 33 sous la forme d'un graphique que l'opérateur peut visualiser. 30  The results are then displayed on the display means 33 in the form of a graph that the operator can view. 30
En fonction des niveaux relatifs d'absorption d'une longueur d'onde à une autre, l'opérateur peut en déduire la nature de l'échantillon 11. Chaque composé chimique présente un spectre d'absorption connu . Le spectre de l'échantillon 11 est donc une superposition de spectres connus pondérés par une concentration . Par déconvolution, on peut retrouver la part de chaque composé chimique dans le spectre de l'échantillon . La grande sensibilité de mesure offerte par l'invention (comme expliqué ci-avant), améliore la précision de cette analyse de composition chimique. On va ensuite décrire, en référence à la figure 8, un spectromètre de fluorescence 80 selon l'invention .  Depending on the relative levels of absorption from one wavelength to another, the operator can deduce the nature of the sample 11. Each chemical compound has a known absorption spectrum. The spectrum of the sample 11 is therefore a superposition of known spectra weighted by a concentration. By deconvolution, we can find the share of each chemical compound in the spectrum of the sample. The high measurement sensitivity offered by the invention (as explained above) improves the accuracy of this chemical composition analysis. Then, with reference to FIG. 8, a fluorescence spectrometer 80 according to the invention will be described.
La figure 8 ne sera décrite que pour ses différences d'avec la figure 7. Dans ce mode de réalisation, le faisceau lumineux multiplexé 26 est dirigé vers l'échantillon 11. L'échantillon émet, en réponse à l'absorption du faisceau lumineux multiplexé 26, un faisceau de fluorescence 81.  FIG. 8 will only be described for its differences from FIG. 7. In this embodiment, the multiplexed light beam 26 is directed towards the sample 11. The sample emits, in response to the absorption of the light beam multiplexed 26, a fluorescence beam 81.
Un détecteur 82 reçoit ce faisceau de fluorescence 81. Le détecteur 82 peut par exemple consister en une photodiode, ou un spectromètre. La mesure du spectre de fluorescence permet d'identifier les composants de l'échantillon 11. Le détecteur 82 est relié à des moyens de traitement du signal 83. Si le détecteur 82 est un spectromètre, les moyens de traitement du signal peuvent faire partie intégrante du spectromètre. A detector 82 receives this fluorescence beam 81. The detector 82 may for example consist of a photodiode, or a spectrometer. The measurement of the fluorescence spectrum makes it possible to identify the components of the sample 11. The detector 82 is connected to signal processing means 83. If the detector 82 is a spectrometer, the signal processing means may be an integral part of the spectrometer.
On peut prévoir (non représentés), des moyens d'asservissement comprennent notamment  It is possible to provide (not shown) servo means including
- les moyens d'alimentation et de pilotage 24 ;  the supply and control means 24;
- un câble de liaison non représenté entre les moyens de traitement du signal 83 et les moyens d'alimentation et de pilotage 24 ;  - A connection cable not shown between the signal processing means 83 and the supply and control means 24;
- des moyens de calcul adaptés à mettre en œuvre l'asservissement.  calculation means adapted to implement the servocontrol.
Les moyens de traitement du signal 83 transmettent en effet via le câble de liaison 35 aux moyens d'alimentation et de pilotage 24 un signal relatif à la mesure du signal de fluorescence associé à chacune des longueurs d'onde λι à K12. The signal processing means 83 transmit indeed via the connecting cable 35 to the power supply and control means 24 a signal relating to the measurement of the fluorescence signal associated with each of the wavelengths λι to K 12 .
Une telle boucle d'asservissement permet de travailler dans la meilleure zone de sensibilité et de linéarité du détecteur 82.  Such a control loop makes it possible to work in the best zone of sensitivity and linearity of the detector 82.
On va ensuite décrire, en référence à la figure 9, un appareil de microscopie à fluorescence 90 selon l'invention . Then, with reference to FIG. 9, a fluorescence microscopy apparatus 90 according to the invention will be described.
La figure 9 ne sera décrite que pour ses différences d'avec la figure 8. L'échantillon 11 peut consister en un tissu biologique.  Figure 9 will only be described for its differences from Figure 8. Sample 11 may consist of biological tissue.
Le faisceau de fluorescence 81 est dirigé vers des moyens de collecte 91 tels qu'un agencement d'au moins une lentille permettant de recueillir l'ensemble du faisceau de fluorescence 81  The fluorescence beam 81 is directed towards collecting means 91 such as an arrangement of at least one lens making it possible to collect the entire fluorescence beam 81
Le faisceau de fluorescence 81 est ensuite amené jusqu'à des moyens de grossissement optiques 92 qui focalisent une image grossie d'une zone d'observation de l'échantillon 11, par exemple sur la rétine de l'œil d'un observateur. On peut ainsi obtenir une image du signal de fluorescence émis par l'échantillon 11, par exemple pour localiser dans l'échantillon certains composants particuliers ayant au préalable été marquées par des molécules fluorescentes.  The fluorescence beam 81 is then brought to optical magnification means 92 which focus an enlarged image of an observation zone of the sample 11, for example on the retina of the eye of an observer. It is thus possible to obtain an image of the fluorescence signal emitted by the sample 11, for example to locate in the sample certain particular components that have previously been labeled with fluorescent molecules.
On va ensuite décrire, en référence à la figure 10, un appareil d'imagerie multispectrale 100 selon l'invention . Next, a multispectral imaging apparatus 100 according to the invention will be described with reference to FIG.
L'appareil d'imagerie multispectrale 100 selon l'invention présente des moyens d'éclairage formés par un dispositif d'émission 1 selon l'invention . Le faisceau lumineux multiplexé 26 permet d'illuminer un échantillon 11 à analyser, constitué ici par un échantillon de tissu humain, dans le cadre d'une observation in vivo. The multispectral imaging apparatus 100 according to the invention has lighting means formed by a transmission device 1 according to the invention. The multiplexed light beam 26 makes it possible to illuminate a sample 11 to be analyzed, constituted here by a sample of human tissue, as part of an in vivo observation.
Une lentille de focalisation 105 focalise le faisceau lumineux multiplexé 26 sur un emplacement particulier de l'échantillon 11 à analyser.  A focusing lens 105 focuses the multiplexed light beam 26 at a particular location of the sample 11 to be analyzed.
En imagerie multispectrale on acquiert plusieurs images, chaque image correspondant à une bande très étroite du spectre. On a ainsi une définition beaucoup plus précise de la lumière réfléchie par une surface et on peut ainsi accéder à des caractéristiques non visibles à l'œil nu. Les bandes spectrales peuvent être choisies en fonction de longueurs d'ondes caractéristiques des matières ou des produits à analyser. Cela peut se faire en sélectionnant les différentes sources lumineuses SI à S12.  In multispectral imaging, several images are acquired, each image corresponding to a very narrow band of the spectrum. There is thus a much more precise definition of the light reflected by a surface and can thus access features not visible to the naked eye. The spectral bands can be chosen according to characteristic wavelengths of the materials or products to be analyzed. This can be done by selecting the different light sources SI to S12.
L'appareil d'imagerie multispectrale 100 comprend donc des moyens de contrôle 101, comprenant des moyens d'alimentation et de pilotage des sources lumineuses ainsi que des moyens de calculs agencés pour activer successivement l'une parmi les plusieurs sources lumineuses. Ces activations successives peuvent être commandées manuellement, ou être automatisées.  The multispectral imaging apparatus 100 thus comprises control means 101, comprising means for supplying and controlling the light sources as well as calculation means arranged to successively activate one of the plurality of light sources. These successive activations can be controlled manually, or be automated.
Le faisceau lumineux 26 focalisé se réfléchit sur l'échantillon 11 en un faisceau réfléchi 102, et se propage jusqu'à des moyens d'imagerie 103 comprenant par exemple des jeux de lentilles et les cas échéant un écran d'affichage.  The focused light beam 26 is reflected on the sample 11 in a reflected beam 102, and propagates to imaging means 103 comprising for example lens sets and optionally a display screen.
On peut ainsi suivre des événements très rapides, notamment dans le cadre d'une observation in vivo. Les figures 7 à 10 illustrent différentes application du dispositif d'émission selon l'invention. On pourra envisager toutes les combinaisons possibles entre ces applications, et les différents modes de réalisation de dispositif d'émission décrit en référence aux figures 2 à 5. On pourra également envisager de remplacer, dans chaque exemple décrit en référence aux figures 7 à 10, le dispositif d'émission selon l'invention par une installation de d'émission selon l'invention (figure 6).  We can follow very fast events, especially in the context of an in vivo observation. Figures 7 to 10 illustrate different applications of the transmission device according to the invention. It will be possible to envisage all the possible combinations between these applications, and the various transmission device embodiments described with reference to FIGS. 2 to 5. It may also be envisaged to replace, in each example described with reference to FIGS. 7 to 10, the transmission device according to the invention by a transmission system according to the invention (FIG. 6).
Enfin, on va décrire en référence à la 11 un mode de réalisation d'un bloc d'émission lumineuse 110 selon l'invention. Le bloc d'émission lumineuse 110 comprend trois puces semiconductrices 114, représentées hachurées. Le dopage de chaque puce semiconductrice permet de déterminer la longueur d'onde centrale d'émission de la puce, ainsi que la largeur d'émission. Les puces sont intégrées au sein d'un composant unique. Ce composant peut être en plastique ou en céramique. Chaque puce est collée avec de la colle électriquement isolante sur un substrat (par exemple de l'aluminium), et même parfois directement sur une électrode. Chaque puce est micro-soudée à deux électrodes dédiées 115i respectivement 1152 par soudure au fil d'or. La réalisation du bloc d'émission lumineuse ne sera pas décrite plus avant, l'invention résidant dans le choix et l'agencement des puces du bloc d'émission. Finally, we will describe with reference to the 11 an embodiment of a light emission block 110 according to the invention. The light emission block 110 comprises three semiconductor chips 114, represented hatched. The doping of each semiconductor chip makes it possible to determine the central emission wavelength of the chip, as well as the emission width. The chips are integrated within a single component. This component can be plastic or ceramic. Each chip is glued with electrically insulating glue on a substrate (for example aluminum), and sometimes even directly on an electrode. Each chip is micro-welded with two dedicated electrodes 115i respectively 115 2 by welding with gold wire. The realization of the light emission block will not be described further, the invention residing in the choice and the arrangement of the chips of the transmission block.
Le bloc d'émission lumineuse 110 selon l'invention est un composant CMS. A la figure 11, le bloc d'émission lumineuse 110 est représenté relié à un support 112 comprenant des pattes métalliques 116i respectivement 1162, Chaque patte métallique 116i respectivement 1162est reliée électriquement à une électrode 115i respectivement 1152. Ces pattes métalliques permettent un câblage simplifié sur une carte de circuit imprimé. The light emission block 110 according to the invention is a CMS component. In FIG. 11, the light emission block 110 is shown connected to a support 112 comprising metal tabs 116i respectively 116 2 , Each metal tab 116i respectively 116 2 is electrically connected to an electrode 115i respectively 115 2 . These metal tabs allow simplified wiring on a printed circuit board.
Chaque puce semiconductrice 114 présente par exemple une forme d'un carré de 500pm de côté. La distance entre deux puces semiconductrices 114 est de l'ordre de 1,5 mm. Cette distance est mesurée le long d'une droite 117 le long de laquelle son alignées les puces semiconductrices.  Each semiconductor chip 114 has for example a shape of a square of 500 pm side. The distance between two semiconductor chips 114 is of the order of 1.5 mm. This distance is measured along a line 117 along which its aligned semiconductor chips.
Bien sûr, chaque invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention correspondante. Of course, each invention is not limited to the examples which have just been described and many adjustments can be made to these examples without departing from the scope of the corresponding invention.
En particulier toutes les caractéristiques, formes, variantes et modes de réalisation décrits précédemment sont combinables entre eux selon diverses combinaisons dans la mesure où ils ne sont pas incompatibles ou exclusifs les uns des autres.  In particular all the features, shapes, variants and embodiments described above are combinable with each other in various combinations to the extent that they are not incompatible or exclusive of each other.
On pourra également envisager des variantes dites « multivoie », c'est- à-dire comprenant en outre des moyens de séparation spatiale du faisceau multiplexé en plusieurs faisceaux de même spectre.  It will also be possible to envisage so-called "multipath" variants, that is to say furthermore comprising means of spatial separation of the beam multiplexed into several beams of the same spectrum.

Claims

REVENDICATIONS
Dispositif d'émission (1) d'un faisceau lumineux de spectre contrôlé comportant au moins deux sources lumineuses distinctes (Si à N) émettant chacune un faisceau lumineux à au moins une longueur d'onde λι respectivement λ2, ainsi que des moyens de multiplexage spectral (25 ; 51, 55, 52 ; 25, 41), caractérisé en ce que Apparatus for transmitting (1) a controlled spectrum light beam having at least two distinct light sources (Si to N) each emitting a light beam at least one wavelength λι respectively λ 2 , and means for spectral multiplexing (25; 51, 55, 52; 25, 41), characterized in that
- les moyens de multiplexage spectral (25 ; 51, 55, 52 ; 25, 41) comportent un ensemble optique (25 ; 51, 55, 52) formé d'au moins une lentille (25 ; 51, 52) et/ou un prisme optique (51), ledit ensemble optique (25 ; 51, 55, 52) présentant des propriétés de dispersion chromatique et étant agencé pour être traversé par les faisceaux lumineux des sources lumineuses distinctes (Si à N), sans réflexion spectralement sélective, et pour rapprocher spatialement lesdits faisceaux lumineux, de façon que les moyens de multiplexage spectral (25 ; 51, 55, 52 ; 25, 41) superposent spatialement lesdits faisceaux lumineux ; et the spectral multiplexing means (25; 51, 55, 52, 25, 41) comprise an optical assembly (25; 51, 55, 52) formed of at least one lens (25; 51, 52) and / or a optical prism (51), said optical assembly (25; 51, 55, 52) having chromatic dispersion properties and being arranged to be traversed by the light beams of the separate light sources (Si to N), without spectrally selective reflection, and for spatially approximating said light beams, so that the spectral multiplexing means (25; 51, 55, 52; 25, 41) spatially overlap said light beams; and
- le dispositif d'émission (1) est agencé de façon que chaque faisceau lumineux à au moins une longueur d'onde λι respectivement λ2 se propage en espace libre depuis la source lumineuse (Si à N) correspondante jusqu'à l'ensemble optique (25 ; 51, 55, 52). the emission device (1) is arranged in such a way that each light beam with at least one wavelength λι respectively λ 2 propagates in free space from the corresponding light source (Si to N) up to the set optical (25; 51, 55, 52).
Dispositif (1) selon la revendication 1, caractérisé en ce que les moyens de multiplexage spectral sont formés par l'ensemble optique uniquement (25). Device (1) according to claim 1, characterized in that the spectral multiplexing means are formed by the optical assembly only (25).
Dispositif (1) selon la revendication 1 ou 2, caractérisé en ce que chaque source lumineuse (Si à N) est placée sur un foyer objet de l'ensemble optique (25), où ledit foyer objet correspond à la longueur d'onde du faisceau lumineux émis par cette source lumineuse (Si à N), de sorte qu'à la sortie de l'ensemble optique (25) les faisceaux lumineux soient superposés spatialement et collimatés. Dispositif (1) selon la revendication 1 ou 2, caractérisé en ce que chaque source lumineuse (Si à N) est placée en un point objet de l'ensemble optique (25), où ledit point objet correspond à la longueur d'onde du faisceau lumineux émis par cette source lumineuse, et de sorte qu'à la sortie de l'ensemble optique les faisceaux lumineux soient superposés spatialement en un point image unique (53). Device (1) according to claim 1 or 2, characterized in that each light source (Si to N) is placed on an object focus of the optical assembly (25), where said object focus corresponds to the wavelength of the light beam emitted by this light source (Si to N), so that at the output of the optical assembly (25) the light beams are spatially superposed and collimated. Device (1) according to claim 1 or 2, characterized in that each light source (Si to N) is placed at an object point of the optical assembly (25), where said object point corresponds to the wavelength of the light beam emitted by this light source, and so that at the output of the optical assembly the light beams are spatially superposed in a single image point (53).
Dispositif (1) selon la revendication 1, caractérisé en ce que les moyens de multiplexage spectral comprennent l'ensemble optique (25), un guide d'onde d'homogénéisation (41) et des moyens optiques de collimation (38), l'ensemble optique (25) étant agencé pour envoyer les faisceaux lumineux en entrée du guide d'onde d'homogénéisation (41), guide d'onde d'homogénéisation à la sortie duquel se trouvent les moyens optiques de collimation (38). Device (1) according to claim 1, characterized in that the spectral multiplexing means comprise the optical assembly (25), a homogenization waveguide (41) and optical collimation means (38), the an optical assembly (25) being arranged to send the light beams at the input of the homogenization waveguide (41), a homogenization waveguide at the output of which are the optical collimation means (38).
Dispositif (1) selon la revendication 5, caractérisé en ce que le guide d'onde (41) est formé par une fibre optique à cœur liquide. Device (1) according to claim 5, characterized in that the waveguide (41) is formed by a liquid core optical fiber.
Dispositif (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que les sources lumineuses distinctes (Si à N) sont agencées coplanaires. Device (1) according to any one of the preceding claims, characterized in that the separate light sources (Si to N) are arranged coplanar.
Dispositif (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que les sources lumineuses distinctes (Si à N) sont alignées selon une droite et rangées par ordre croissant de longueur d'onde λι respectivement λ2. Device (1) according to any one of the preceding claims, characterized in that the separate light sources (Si to N) are aligned along a straight line and arranged in increasing order of wavelength λι respectively λ 2 .
Dispositif (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ensemble optique comprend au moins un système optique (25) utilisé hors d'axe et présentant une aberration chromatique latérale. Dispositif (1) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'ensemble optique comprend un doublet ou un triplet de lentilles, usuellement utilisé pour la correction des aberrations chromatiques. Device (1) according to any one of the preceding claims, characterized in that the optical assembly comprises at least one optical system (25) used off axis and having lateral chromatic aberration. Device (1) according to any one of claims 1 to 8, characterized in that the optical assembly comprises a doublet or a triplet of lenses, usually used for the correction of chromatic aberrations.
Dispositif (1) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'ensemble optique comprend un prisme optique (51) et des moyens optiques de focalisation (52) et/ou des moyens optiques de collimation (55). Device (1) according to any one of claims 1 to 8, characterized in that the optical assembly comprises an optical prism (51) and optical focusing means (52) and / or optical collimation means (55) .
Dispositif (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque source lumineuse (Si à N) est une diode électroluminescente. Dispositif (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte au moins douze sources lumineuses (Si à i\i)- Device (1) according to any one of the preceding claims, characterized in that each light source (Si to N) is a light emitting diode. Device (1) according to any one of the preceding claims, characterized in that it comprises at least twelve light sources (Si to i \ i) -
Dispositif (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre des moyens de modulation (24) agencés pour moduler l'intensité lumineuse d'au moins deux des sources lumineuses (Si à N) à des fréquences différentes les unes des autres. Device (1) according to any one of the preceding claims, characterized in that it further comprises modulation means (24) arranged to modulate the luminous intensity of at least two of the light sources (Si to N) at different frequencies from each other.
Dispositif (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre des moyens de contrôle (24) de l'intensité lumineuse d'au moins deux des sources lumineuses, indépendamment l'une de l'autre.. Device (1) according to any one of the preceding claims, characterized in that it further comprises means (24) for controlling the luminous intensity of at least two of the light sources, independently of one of the other..
EP13727243.1A 2012-05-09 2013-04-30 Emission device for emitting a light beam of controlled spectrum Withdrawn EP2847558A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1201353A FR2990512B1 (en) 2012-05-09 2012-05-09 ABSORPTION SPECTROMETER
FR1261015A FR2990582B1 (en) 2012-11-20 2012-11-20 DEVICE FOR TRANSMITTING A CONTROLLED SPECTRUM LIGHT BEAM.
FR1350446A FR2990524B1 (en) 2012-05-09 2013-01-18 DEVICE FOR TRANSMITTING A CONTROLLED SPECTRUM LIGHT BEAM.
PCT/FR2013/050957 WO2013167824A1 (en) 2012-05-09 2013-04-30 Emission device for emitting a light beam of controlled spectrum

Publications (1)

Publication Number Publication Date
EP2847558A1 true EP2847558A1 (en) 2015-03-18

Family

ID=49487446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13727243.1A Withdrawn EP2847558A1 (en) 2012-05-09 2013-04-30 Emission device for emitting a light beam of controlled spectrum

Country Status (14)

Country Link
US (1) US20150304027A1 (en)
EP (1) EP2847558A1 (en)
JP (1) JP6055087B2 (en)
KR (1) KR20150003405A (en)
CN (1) CN104380065B (en)
AR (1) AR090963A1 (en)
BR (1) BR112014027758A2 (en)
CA (1) CA2872595A1 (en)
FR (1) FR2990524B1 (en)
HK (1) HK1207151A1 (en)
IL (1) IL235442A0 (en)
IN (1) IN2014DN10166A (en)
MX (1) MX338905B (en)
WO (1) WO2013167824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018537654A (en) * 2015-09-24 2018-12-20 ユニバーシティ・オブ・サウス・アラバマ Illumination device for spectral imaging

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201749B4 (en) * 2014-01-31 2015-08-20 Sypro Optics Gmbh Microlens arrangement and illumination device for uniform illumination with microlens arrangement
FR3024773B1 (en) 2014-08-08 2018-07-13 Archimej Technology DEVICE AND METHOD FOR VARYING WAVE LENGTH OF AT LEAST ONE LIGHT SOURCE FOR SPECTROSCOPY BY DERIVATIVES.
KR101621619B1 (en) * 2014-08-26 2016-05-16 단국대학교 천안캠퍼스 산학협력단 A temperature controlled beam combining device of multi-wavelength laser diodes and a method thereof
JP6813953B2 (en) * 2016-02-29 2021-01-13 シスメックス株式会社 Blood coagulation analyzer and blood coagulation analysis method
FR3048778A1 (en) 2016-03-10 2017-09-15 Archimej Tech ANALYSIS DEVICE, PREFERABLY FOR CHEMOMETRY OF A BLOOD SAMPLE.
US9749044B1 (en) * 2016-04-05 2017-08-29 Facebook, Inc. Luminescent detector for free-space optical communication
US11169076B2 (en) * 2016-07-25 2021-11-09 Cytek Biosciences, Inc. Compact detection module for flow cytometers
EP3330685A1 (en) * 2016-12-05 2018-06-06 Sick Ag Measuring device for absorption spectroscopy
ES2695923A1 (en) 2017-07-07 2019-01-11 Adwen Offshore S L LIGHTING AND WIND TURBINE LIGHTING DEVICE COMPRISING THE DEVICE (Machine-translation by Google Translate, not legally binding)
EP4046293A1 (en) * 2019-10-16 2022-08-24 Wyss Center for Bio and Neuro Engineering Optical transmission for an implantable system
WO2021226493A1 (en) * 2020-05-08 2021-11-11 The Regents Of The University Of California Label-free real-time hyperspectral endoscopy for molecular-guided cancer surgery
FR3113131B1 (en) * 2020-07-29 2023-03-31 Tiama Device and method for transmission inspection of containers comprising at least one light emitting diode light source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH690864A5 (en) * 1996-10-04 2001-02-15 Hera Rotterdam Bv Colour measurement and/or recognition device has transmitter module whose emitted light is focused onto specimen, receiver module receiving light from specimen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204782A (en) * 1982-09-20 1993-04-20 Lockheed Missiles & Space Company, Inc. Color-corrected optical systems
US4930865A (en) * 1988-11-04 1990-06-05 Miles Inc. Optical transmission spectrometer
JPH05257081A (en) * 1992-02-05 1993-10-08 Nec Corp Optical transmitter
JPH10281871A (en) * 1997-04-09 1998-10-23 Hightech Seiko Kk Light absorption characteristic measurement unit and light absorption characteristic measurement method
US6343169B1 (en) * 1999-02-25 2002-01-29 Lightchip, Inc. Ultra-dense wavelength division multiplexing/demultiplexing device
JP4222679B2 (en) * 1999-04-12 2009-02-12 横河電機株式会社 Spectral colorimeter
US6301054B1 (en) * 1999-10-28 2001-10-09 Xerox Corporation Optical element for multiple beam separation control
US6563977B1 (en) * 2000-06-27 2003-05-13 Bayspec, Inc. Compact wavelength multiplexer-demultiplexer providing low polarization sensitivity
US6735395B1 (en) * 2000-09-29 2004-05-11 Futurewei Technologies, Inc. WDM communication system utilizing WDM optical sources with stabilized wavelengths and light intensity and method for stabilization thereof
CA2449563C (en) * 2001-06-22 2011-12-06 John C. Carrick System and method for measuring power of optical signals carried over a fiber optic link
JP4213402B2 (en) * 2002-05-23 2009-01-21 富士フイルム株式会社 Condensing lens, combined laser light source and exposure apparatus
US20050083398A1 (en) * 2003-10-16 2005-04-21 Agfa Corporation Plate scanning system with field replaceable laser source subsystem
US20100014063A1 (en) * 2005-05-31 2010-01-21 Fujifilm Corporation Image exposure apparatus
US7988305B2 (en) * 2006-03-23 2011-08-02 Panasonic Corporation Projection type display device and light source device
JP2009105106A (en) * 2007-10-22 2009-05-14 Hitachi Ltd Optical transmitter/receiver module
US20100054655A1 (en) * 2008-08-28 2010-03-04 Fujitsu Limited Dynamic Reconfigurable Optical Interconnect System
JP5861122B2 (en) * 2010-10-19 2016-02-16 パナソニックIpマネジメント株式会社 Optical multiplexing device and projector
JP5692865B2 (en) * 2012-04-11 2015-04-01 独立行政法人産業技術総合研究所 Wavelength cross-connect equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH690864A5 (en) * 1996-10-04 2001-02-15 Hera Rotterdam Bv Colour measurement and/or recognition device has transmitter module whose emitted light is focused onto specimen, receiver module receiving light from specimen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018537654A (en) * 2015-09-24 2018-12-20 ユニバーシティ・オブ・サウス・アラバマ Illumination device for spectral imaging

Also Published As

Publication number Publication date
HK1207151A1 (en) 2016-01-22
IN2014DN10166A (en) 2015-08-21
CA2872595A1 (en) 2013-11-14
CN104380065A (en) 2015-02-25
US20150304027A1 (en) 2015-10-22
AR090963A1 (en) 2014-12-17
JP6055087B2 (en) 2016-12-27
JP2015524047A (en) 2015-08-20
CN104380065B (en) 2016-12-28
MX2014013591A (en) 2015-05-14
MX338905B (en) 2016-05-03
KR20150003405A (en) 2015-01-08
FR2990524B1 (en) 2016-05-13
WO2013167824A1 (en) 2013-11-14
FR2990524A1 (en) 2013-11-15
BR112014027758A2 (en) 2017-06-27
IL235442A0 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
EP2847558A1 (en) Emission device for emitting a light beam of controlled spectrum
EP3132237B9 (en) Apparatus and method of scanning optical microscopy
EP2198275B1 (en) Spectrometry device for fluid analysis
EP1817569B1 (en) Device for examining a fluid by uniform illumination using a configured light guide
FR2566543A1 (en) OPTICAL DEVICE WITH HIGH COLLECTION PERFORMANCE AND CYTOFLUORIMETER BY APPLYING
EP1461601B1 (en) Equipment for spectroscopy of subsurface autofluorescence
KR20150116999A (en) Micro Raman and photo-luminescence spectral analysis apparatus for multi-channel excitation laser source switching
WO2012076810A1 (en) System and method of multitechnique imaging for the chemical, biological or biochemical analysis of a sample
EP2198277B1 (en) Spectrometry device for fluid analysis
US11340114B2 (en) Spectrum measurement system
FR2990582A1 (en) Light emission device for emitting light beam of controlled spectrum in multispectral imaging apparatus, has optical assembly moving light beams spatially closer together, where light beams propagate in free space from LEDs to assembly
FR2848664A1 (en) Position and reflectivity meter for use in photometry and metrology has a light source with at least two different wavelengths that are processed separately by a measurement system
FR2949560A1 (en) WAVEGUIDE SPECTROSCOPY SYSTEM FOR ANALYSIS OF PARTICLES IN A MEDIUM
CA2920072A1 (en) Method of fabricating a light emitter
WO2017005909A1 (en) Spectroscopy and especially raman spectroscopy device and associated method
EP2021771B1 (en) Device and measurement method for characterizing surfaces by means of reflectometry
JP2009192284A (en) Spectral unit, spectroscopic analyzer, and wavelength division multiplex transmission system
FR2990512A1 (en) Absorption spectrometer, has off-axis optical system including side chromatic aberration, and light sources placed at focal points of system corresponding to wavelengths, so that light beams of sources are multiplexed at exit of system
EP3237889B1 (en) Led spectrofluorometer for analysis of an object and corresponding analysis method
EP4363814A1 (en) Multiphase synchronous spectrometer assembly applied to a modulated source of multi-wavelength optical radiation, and associated methods and uses
CN111122547A (en) Dynamic Raman scattering light analysis device
FR2719114A1 (en) Global spectral image analysing system for emission type optical and Raman diffusion or fluorescence spectrometer
WO2011086290A1 (en) Method and system for molecular analysis by switching imaging and spectroscopy measurements
WO2004086012A1 (en) Device for measuring fluorescence at a plurality of zones to be monitored

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1207151

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170410

19U Interruption of proceedings before grant

Effective date: 20170515

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20190201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRUE SPIRIT

R17C First examination report despatched (corrected)

Effective date: 20190201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190801

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1207151

Country of ref document: HK