EP2844932B1 - Circuit de réfrigération et système de chauffage et de refroidissement - Google Patents

Circuit de réfrigération et système de chauffage et de refroidissement Download PDF

Info

Publication number
EP2844932B1
EP2844932B1 EP12719374.6A EP12719374A EP2844932B1 EP 2844932 B1 EP2844932 B1 EP 2844932B1 EP 12719374 A EP12719374 A EP 12719374A EP 2844932 B1 EP2844932 B1 EP 2844932B1
Authority
EP
European Patent Office
Prior art keywords
liquid
refrigerant
separator
refrigeration circuit
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12719374.6A
Other languages
German (de)
English (en)
Other versions
EP2844932A1 (fr
Inventor
Manuel WOZNY
Christian Douven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP2844932A1 publication Critical patent/EP2844932A1/fr
Application granted granted Critical
Publication of EP2844932B1 publication Critical patent/EP2844932B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Definitions

  • the present invention relates to a refrigeration circuit comprising a heat rejecting heat exchanger and a gas-liquid-separator, and to a heating and cooling system comprising such refrigeration circuit.
  • Refrigeration circuits circulating a refrigerant and comprising in the direction of the flow of the refrigerant a compressor, a condenser, an expansion device and an evaporator have been known for a long time.
  • the heat rejected in the condenser can be dissipated e.g. to ambient air or can be used for heating in a heating system, for example a heat pump system or a heat recovery system, coupled to the refrigeration circuit.
  • a heating system can be coupled to the refrigeration circuit by means of the condenser of the refrigeration circuit, which may at the same time form the evaporator of the heating system.
  • a refrigeration circuit coupled to a heating system in that way is efficient, since the heat generated by the condenser is not wasted, but rather utilized by the heating system.
  • Another option of coupling a heating system to the refrigeration circuit is to provide a heat rejecting heat exchanger between the compressor and the condenser(s) of the refrigeration circuit. In this case, however, it is difficult to handle the refrigerant leaving the heat rejecting heat exchanger being in varying conditions of aggregation and to operate the refrigeration circuit efficiently.
  • EP 1 420 218 A2 discloses a single- or reversible-cycle heat-save cooler having a first heat exchanger where a cooling fluid exchanges heat with the outside environment; a second heat exchanger where the cooling fluid exchanges heat with a first liquid; a cooling fluid compressor unit where the cooling fluid is compressed to increase its pressure; and a third heat exchanger where the cooling fluid exchanges heat with a second liquid.
  • the third heat exchanger is located immediately downstream from the compressor unit; and the cooler has a liquid-gas separating unit located downstream from the third heat exchanger.
  • Exemplary embodiments of the invention include a refrigeration circuit circulating a refrigerant and comprising in the direction of flow of the refrigerant: at least one compressor; at least one condenser for rejecting heat from the refrigerant to the environment; a refrigerant line (condenser output line) fluidly connected to an output side of the at least one condenser; an expansion device inlet line; at least one expansion device for expanding the refrigerant; and at least one evaporator for evaporating the refrigerant.
  • a refrigeration circuit circulating a refrigerant and comprising in the direction of flow of the refrigerant: at least one compressor; at least one condenser for rejecting heat from the refrigerant to the environment; a refrigerant line (condenser output line) fluidly connected to an output side of the at least one condenser; an expansion device inlet line; at least one expansion device for expanding the refrigerant; and at least one evaporator for evaporating the ref
  • the refrigeration circuit further comprises: a heat rejecting heat exchanger being configured for heat exchange of the refrigerant with a heating system, an input side of the heat rejecting heat exchanger being fluidly connected the output side of the at least one compressor; a gas-liquid-separator fluidly connected to an output side of the heat rejecting heat exchanger and being configured to separate the refrigerant leaving the heat rejecting heat exchanger into a gaseous phase refrigerant portion and a liquid phase refrigerant portion, the gas-liquid-separator having a gaseous phase output line fluidly connected to an inlet side of the at least one condenser and a liquid phase output line fluidly connected to the expansion device inlet line and/or a collecting container, which may be arranged upstream of the expansion device for collecting liquid refrigerant; a liquid refrigerant control device, which may be a control valve arranged in the liquid phase output line, allowing to control the flow of liquid refrigerant flowing out of the gas-liquid-separator; and
  • the refrigeration circuit also comprises a liquid level control device coupled to both, the liquid meter and the liquid refrigerant control device, and a pressure regulation valve, which is arranged in the gaseous phase output line.
  • the liquid refrigerant control device is configured to drive the liquid refrigerant control device based on the at least one signal provided by the liquid meter in order to adjust the level of liquid refrigerant within the gas-liquid-separator.
  • Exemplary embodiments of the invention further include a heating and cooling system comprising a heating system and a refrigeration circuit according to an exemplary embodiment of the invention, wherein the heat rejecting heat exchanger of the refrigeration circuit is configured to serve as a heat source for the heating system.
  • Exemplary embodiments of the invention further include a method for controlling a refrigeration circuit circulating a refrigerant and comprising in the direction of flow of the refrigerant: at least one compressor; at least one condenser for rejecting heat from the refrigerant to the environment; at least one expansion device for expanding the refrigerant; and at least one evaporator for evaporating the refrigerant.
  • the refrigeration circuit further comprises: a heat rejecting heat exchanger for heat exchange of the refrigerant with a heating system, an input side of the heat rejecting heat exchanger being fluidly connected the output side of the compressor; a gas-liquid-separator fluidly connected to an output side of the heat rejecting heat exchanger and being configured to separate the refrigerant leaving the heat rejecting heat exchanger into a gaseous phase refrigerant portion and a liquid phase refrigerant portion, the gas-liquid-separator having a gaseous phase output line fluidly connected to the at least one condenser and a liquid phase output line fluidly connected to at least one of the expansion device and/or a collecting container (receiver) for collecting the refrigerant; a liquid refrigerant control device arranged in the liquid phase output line allowing to control the flow of liquid refrigerant flowing out of the gas-liquid-separator; and a liquid meter measuring the level of liquid refrigerant collected within the gas-liquid-separator
  • the method includes to control the liquid refrigerant control device based on the at least one signal provided by the liquid meter in order to adjust the level of liquid refrigerant collected within the gas-liquid-separator, and to regulate the pressure in the gaseous phase output line by means of a pressure regulation valve, which is arranged in the gaseous phase output line.
  • a refrigeration circuit and a heating and cooling system allow to adjust the level of liquid refrigerant collected within the gas-liquid-separator and the pressure of the gaseous liquid delivered to the condenser(s). It therefore allows to operate the refrigeration circuit with high efficiency independently of the actual amount of heat transferred to the heating system.
  • Figure 1 shows a schematic view of a refrigeration circuit 1a.
  • the refrigeration circuit 1a is depicted on the right-hand side of the dashed line shown in figure 1 .
  • a heating system 7 On the left-hand side of said dashed line part of a heating system 7 is shown, in particular a heating system side 4b of a heat rejecting heat exchanger 4 and fluid lines 9, 11 fluidly connecting to the heating system side 4b of the heat rejecting heat exchanger 4.
  • the refrigeration circuit 1a shown in figure 1 comprises in the flow direction of a refrigerant circulating in the refrigeration circuit 1a as indicated by the arrows at least one compressor 2 for compressing the refrigerant to a relatively high pressure and a pressure line (compressor output line) 3 fluidly connected to the (high pressure) output side of the compressor 2.
  • the pressure line 3 further connects to the refrigeration circuit side 4a of the heat rejecting heat exchanger 4, and after passage through the refrigeration circuit side 4a of the heat rejecting heat exchanger 4 the refrigerant is delivered via a refrigerant inlet line 6c into a gas-liquid-separator 6.
  • the refrigerant leaving the heat rejecting heat exchanger 4 generally comprises a gaseous phase and a liquid phase, wherein the ratio between the gaseous phase and the liquid phase of the refrigerant depends on the operational parameters of the refrigeration circuit 1a and the amount of heat transferred to the heating system 7 by means of the heat rejecting heat exchanger 4.
  • the gas-liquid-separator 6 is configured for separating the gaseous phase of the refrigerant from the liquid phase.
  • the gaseous phase is output via a gaseous phase output line 6a, which is attached to an upper portion of the gas-liquid-separator 6, and the liquid phase of the refrigerant is output via a liquid phase output line 6b, which is attached to a bottom portion of the gas-liquid-separator 6.
  • the gaseous phase output line 6a fluidly connects to a first and second, e.g. air-cooled, condenser 14a, 14b, the two condensers 14a, 14b being connected in parallel.
  • Switchable valves 5a and 5b may be provided in the gaseous phase output line 6a upstream of the respective condenser 14a, 14b allowing to activate and deactivate each of the condensers 14a, 14b by respectively opening and closing the associated switchable valve 5a, 5b in order to adjust the cooling capacity provided by the condensers 14a, 14b.
  • Providing more than one condenser 14a, 14b and providing switchable valves 5a, 5b for selectively activating and deactivating each of a plurality of condensers 14a, 14b is optional.
  • Alternative exemplary embodiments of the invention, which are not explicitly shown in the figures, may be provided with only a single condenser 14a and without any switchable valve 5a, 5b in order to reduce the costs for providing the system.
  • the outlet side of the at least one condenser 14a, 14b is fluidly connected by means of a common refrigerant line 13 (condenser output line) to a collecting container (receiver) 12, which is configured for collecting the condensed (liquid) refrigerant.
  • the collecting container 12 in particular its bottom portion, is fluidly connected by means of a expansion device inlet line 17 to the inlet side of an expansion device 8, and the output side of said expansion device 8 is fluidly connected to an evaporator 10, which is configured for evaporating the refrigerant thereby cooling the environment of the evaporator 10, e. g. in a refrigerating sales furniture or an air conditioning system.
  • the evaporated refrigerant leaving the evaporator 10 is supplied to the inlet side of the compressor 2. This completes the cycle of refrigerant circulating in the refrigeration circuit 1a.
  • the liquid phase output line 6b of the gas-liquid-separator 6 is fluidly connected to the expansion device inlet line 17 upstream of the expansion device 8.
  • a liquid refrigerant control device 16 which may be a refrigerant control valve, is arranged in the liquid phase output line 6b allowing to control the flow of liquid refrigerant flowing out of the gas-liquid-separator 6 via the liquid phase output line 6b.
  • the ratio between the liquid phase portion and the gaseous phase portion of the refrigerant leaving the heat rejecting heat exchanger 4 depends inter alia on the amount of heat which is needed/dissipated by the heating system 7.
  • the heating system 7 absorbs all the heat from the refrigerant so that the refrigerant is completely liquefied. In this case only liquid refrigerant will leave the heat rejecting heat exchanger 4.
  • a liquid meter 18, which is configured to measure the level of liquid refrigerant collected within the gas-liquid-separator 6, is provided at or in the gas-liquid-separator 6.
  • the liquid meter 18 is, e.g. electrically or mechanically, coupled to a liquid level control device 20 in order to transfer at least one signal indicating the level of liquid refrigerant collected within the gas-liquid-separator 6 to the liquid level control device 20.
  • the liquid level control device 20 is further coupled, e.g.
  • liquid refrigerant control device 16 electrically or mechanically, to the liquid refrigerant control device 16 and configured to drive the liquid refrigerant control device 16 based on the at least one signal provided by the liquid meter 18 in order to adjust the level of liquid refrigerant within the gas-liquid-separator 6 to at least one predetermined level.
  • the combination and interaction of the liquid meter 18, the liquid level control device 20 and the liquid refrigerant control device 16 thus allow to maintain at least one predetermined level of liquid refrigerant within the gas-liquid-separator 6 independently of the amount of heat transferred by the heat-rejecting heat exchanger 4 from the refrigeration circuit 1a to the heating system 7. It therefore allows for a very efficient operation of the refrigeration circuit 1a even under varying operational conditions.
  • an additional non-return valve 22 may be arranged in the refrigerant line 13 fluidly connecting the at least one condenser 14a, 14b to the collecting container 12 in order to prevent refrigerant from flowing back from the collecting container 12 into the at least one condenser 14a, 14b when the compressor 2 is not operating.
  • a pressure regulation valve 24 may be arranged in the gaseous phase output line 6a fluidly connecting the gas-liquid-separator 6 to the at least one condenser 14a, 14b in order to allow to additionally adjust the pressure of the gaseous refrigerant portion in the gas-liquid-separator 6. Adjusting the pressure of the gaseous refrigerant portion in the gas-liquid-separator 6 allows to optimize the efficiency of the heat recovery system even further.
  • control unit 15 which is in communication with appropriate sensors and actuators. For the sake of clarity these sensors and actuators are not explicitly shown in the figures.
  • the condensing power needed for providing the desired cooling at the evaporator 10 can be determined based on the temperature measured at the evaporator 10.
  • no condensing power at all is supplied by the heating system 7, for example because the heating system 7 is deactivated.
  • no refrigerant is liquefied by the heat-rejecting heat exchanger 4 and all the (gaseous) refrigerant entering the gas-liquid-separator 6 is directed to the condensers 14a, 14b in order to be liquefied.
  • the condensing power provided by the condensers 14a, 14b may be adjusted by selectively opening and closing the switchable valves 5a, 5b respectively activating and deactivating the associated condenser 14a, 14b.
  • the capacity of the first condenser 14a may be different, e. g. twice as large, from the capacity of the second condenser 14b allowing a flexible multi-stage adjustment of the condensing capacity provided by the condensers 14a, 14b.
  • additional condensers fluidly connected to the refrigeration circuit 1a by means of additional valves may be added to allow an even finer adjustment of the condensing capacity provided by the condensers 14a, 14b.
  • a mixture of gaseous and liquid phase refrigerant is delivered from the heat-rejecting heat exchanger 4 to the gas-liquid-separator 6.
  • Said refrigerant mixture is separated by the gas-liquid-separator 6 into a gas phase portion and a liquid phase portion.
  • the gas phase portion is delivered to the condensers 14a, 14b via the gaseous phase output line 6a in order to be liquefied, as described before with respect to the gaseous refrigerant present in the first mode of operation.
  • the liquid phase portion of the refrigerant mixture collects at the bottom of the gas-liquid-separator 6 and may not exit from the gas-liquid-separator 6 as long as the liquid refrigerant control device 16 provided in the liquid phase output line 6b is closed.
  • the liquid meter 18 detects the level of liquid refrigerant collected at the bottom of the gas-liquid-separator 6 and reports said level of liquid refrigerant to the liquid level control device 20.
  • the liquid level control device 20 drives the liquid refrigerant control device 16 to open in order to allow liquid refrigerant to flow out of the gas-liquid-separator 6 to the expansion device 8 via the liquid phase output line 6b.
  • the condensing power delivered by the heating system 7 is large enough to liquefy all the refrigerant delivered by the compressor 2 to the heat-rejecting heat exchanger 4.
  • only liquid refrigerant is delivered from the heat-rejecting heat exchanger 4 into the gas-liquid-separator 6 and the level of liquid refrigerant collected within the gas-liquid-separator 6 raises rapidly.
  • the liquid level control device 20 drives the liquid refrigerant control device 16 to open in order to allow liquid refrigerant to flow from the gas-liquid-separator 6 through the liquid phase output line 6b to the expansion device inlet line 17 and further into the expansion device 8.
  • the liquid level control device 20 drives the liquid refrigerant control device 16 to close in order to stop the flow of liquid phase refrigerant out of the gas-liquid-separator 6.
  • the level of liquid refrigerant collected within the gas-liquid-separator 6 may be controlled in the same way as it has been described before with respect to the second mode of operation.
  • FIG. 2 shows an example of a refrigeration circuit 1b according to a second embodiment of the invention.
  • the same features are denoted by the same reference signs and will not be discussed in detail again.
  • the second embodiment differs from the refrigeration circuit in figure 1 in that the liquid phase output line 6b of the gas-liquid-separator 6 is not directly connected to the expansion device inlet line 17 but to the inlet side of the collecting container 12 in order to allow to collect the liquid phase refrigerant portion delivered by the gas-liquid-separator 6 in the collecting container 12, as well.
  • FIG. 3 shows another example of a refrigeration circuit 1c according to a third embodiment of the invention.
  • the same features are denoted by the same reference signs and will not be discussed in detail again.
  • the third embodiment differs from the second embodiment in that the common refrigerant line 13 is not connected to the inlet side of the collecting container 12 but directly to the expansion device inlet line 17.
  • the liquid refrigerant provided by the condensers 14a, 14b is delivered directly to to the expansion device 8 via the common refrigerant line 13 and the expansion device inlet line 17 bypassing the collecting container 12.
  • Figure 4 shows a further example of a refrigeration circuit 1d according to a fourth embodiment of the invention. The same features are denoted by the same reference signs and will not be discussed in detail again.
  • the fourth embodiment differs from the second embodiment in that the liquid phase output line 6b of the gas-liquid-separator 6 is not directly connected to the expansion device inlet line 17 but to the refrigerant line 13 upstream of the collecting container 12 in order to deliver the liquid refrigerant leaving the gas-liquid-separator 6 into the collecting container 12 together with the liquid refrigerant from the condenser(s) 14a, 14b.
  • a non-claimed refrigeration circuit 1e which is shown in figure 5
  • no collecting container 12 is provided at all and the common refrigerant line 13 as well as the liquid phase output line 6b are both connected directly to the expansion device inlet line 17 thereby delivering the liquid phase refrigerant portion from the gas-liquid-separator 6 as well as the liquid refrigerant from the condenser(s) 14a, 14b directly into the expansion device 8 without using a collecting container 12.
  • the exemplary modes of operation which have been described in detail with respect to the refrigeration circuit 1a accordingly apply to the operation of the refrigeration circuits 1b, 1c, 1d according to the second to fourth exemplary embodiments, and to the operation of the refrigeration circuit 1e, as well.
  • Figure 6 shows a schematic view of a gas-liquid-separator 6 according to an exemplary embodiment of the invention, which may be used as the gas-liquid-separator 6 in any of the refrigeration circuits 1a, 1b, 1c, 1d, 1e described before.
  • gas-liquid-separator 6 can also be called condensate and oil separator, since it separates in operation the gaseous phase refrigerant from the condensate/liquid phase refrigerant and oil.
  • the gas-liquid-separator 6 comprises a first separator pipe 60, which extends in a basically vertical direction and which is connected to the gaseous phase output line 6a and to the liquid phase output line 6b at its respective upper and lower ends.
  • the refrigerant inlet line 6c opens in a basically horizontal direction into a middle portion of the first separator pipe 60.
  • the liquid phase portion of a gas-liquid-mixture of refrigerant entering via the refrigerant inlet line 6c into the first separator pipe 60 drops due to gravity to the lower portion of the first separator pipe 60 and exits through the liquid phase output line 6b connected to the bottom of the first separator pipe 60.
  • the gaseous phase portion of the gas-liquid-mixture collects in the upper portion of the first separator pipe 60 and may be extracted from the first separator pipe 60 via the gaseous phase output line 6a connected to the upper portion of the first separator pipe 60.
  • three connections 61, 62, 63 are formed within the first separator pipe 60 at different heights which correspond to a maximum liquid level L max , an intermediate liquid level L opt and a minimum liquid level L min , respectively, and which allow to determine the level of liquid refrigerant collected in the first separator pipe 60 using level detection means connected to the individual connections 61, 62, 63.
  • a second separator pipe 66 which is considerably shorter than the first separator pipe 60, extends basically parallel to the lower portion of the first separator pipe 60.
  • the bottom end of the second separator pipe 66 is connected to the liquid phase output line 6b, as well.
  • the upper portion of the second separator pipe 66 is fluidly connected to the first separator pipe 60 by means of a horizontally extending connecting pipe 65.
  • the second separator pipe 66 is provided with an inspection glass 64 arranged at the same height as the second connection 62 provided in the first separator pipe 60 at the intermediate liquid level L opt .
  • the exemplary embodiment shown in figure 6 provides a gas-liquid-separator 6 which is easy to produce at low costs and which provides a sufficient gas-liquid-separation for many applications and in particular for the refrigerant circuit 1a, 1b, 1c, 1d, 1e as it has been described with respect to figures 1 to 5 .
  • the gas-liquid-separator 6 shown in figure 6 is neither limited to any of the refrigeration circuits 1a, 1b, 1c, 1d, 1e shown in figures 1 to 5 , nor to the position 6 in the lines 6a, 6c, 6b of the refrigeration circuits 1a, 1b, 1c, 1d, 1e shown the figures. It rather can be provided in any refrigeration circuit 1a, 1b, 1c, 1d, 1e where a gas-liquid mixture of a refrigerant is to be separated into a gaseous phase portion and a liquid phase portion.
  • the skilled person will be aware that a plurality of compressors 2, expansion devices 8 and evaporators 10 may be provided without departing from the scope of the invention.
  • the skilled person will also recognize that a deep-freezing circuit for providing even lower (deep-freezing) temperatures may be combined with the refrigeration circuits 1a, 1b, 1c, 1d, 1e shown in the figures, as it is known in the state of the art.
  • additional heat rejecting heat exchangers may be arranged in parallel or serially to the heat rejecting heat exchanger 4 in order to connect further heat absorbing systems or components to the refrigeration circuit 1a, 1b, 1c, 1d, 1e.
  • the liquid portion of the refrigerant leaving the heat rejecting heat exchanger is delivered directly to the expansion device while the gas portion of the refrigerant leaving the heat rejecting heat exchanger is separated from said liquid portion and condensed in an additional condenser before being delivered to the expansion device.
  • Exemplary embodiments of the refrigeration circuit as described herein provide a refrigeration circuit in which the amount of liquid refrigerant collected in the gas-liquid-separator may be controlled so that the refrigeration circuit may be operated securely and with high efficiency under all environmental circumstances and which in particular can be adjusted to different heat dissipation rates of the heat rejecting heat exchanger.
  • liquid refrigerant control device is a shutoff-valve.
  • a shutoff-valve provides an inexpensive and reliable valve, which is easy to control, for controlling the level of liquid refrigerant within the gas-liquid-separator.
  • the liquid refrigerant control device is an adjustable valve, in particular a continuously adjustable valve.
  • An adjustable valve in particular a continuously adjustable valve, allows to control the level of liquid refrigerant within the gas-liquid-separator in a more sophisticated way.
  • liquid refrigerant control device is an electrically or mechanically driven valve.
  • An electrically or mechanically driven valve is easy to control by electrical means.
  • the liquid meter is a mechanical liquid meter, in particular a floating gauge.
  • a mechanical liquid meter, in particular a floating gauge provides an inexpensive and reliable meter for measuring the level of liquid refrigerant collected within the gas-liquid-separator.
  • the liquid meter is a capacity based liquid meter.
  • a capacity based liquid meter provides a reliable liquid meter allowing to measure the level of liquid refrigerant collected within the gas-liquid-separator with high accuracy and without moving mechanical parts which may be subject to wear or degenerated by the refrigerant.
  • the liquid meter is configured to provide at least one signal if the level of liquid refrigerant collected in the gas-liquid-separator exceeds and/or falls below a predetermined level, respectively.
  • a liquid meter providing such a signal allows a control of the level of liquid refrigerant collected within the gas-liquid-separator which is easy to implement.
  • the liquid meter is configured to provide a signal continuously indicating the level of liquid refrigerant collected within the gas-liquid-separator.
  • a signal continuously indicating the level of liquid refrigerant collected within the gas-liquid-separator allows a sophisticated control of the level of liquid refrigerant in the gas-liquid-separator, in particular in combination with an adjustable valve, which may be opened partially.
  • the opening degree of the adjustable valve may be controlled as a continuous function of the level of liquid refrigerant collected in the gas-liquid-separator, which is continuously indicated by the liquid meter.
  • a non-return valve is arranged in the refrigerant line preventing refrigerant from flowing back into at least one of the condensers after the compressor has been switched off in order to avoid that liquid refrigerant collects in the condenser(s) when the compressor is not operating.
  • a collecting container is provided downstream of the refrigerant line and upstream of the expansion device inlet line for collecting liquid refrigerant delivered by the condenser(s).
  • a collecting container allows to store excessive refrigerant, which is not needed in the actual operation.
  • a collecting container is provided downstream of the liquid phase output line and upstream of the expansion device inlet line allowing to collect the liquid phase refrigerant, which is delivered by the gas-liquid-separator, in the collecting container.
  • the liquid phase output line may be fluidly connected to the refrigerant line (condenser output line) upstream of the collecting container or to an inlet side of the collecting container.
  • a pressure regulation valve is arranged in the gaseous phase output line allowing to control the gas pressure within the gas-liquid-separator in order to optimize the efficiency of the refrigeration circuit even further.
  • the pressure regulation valve is a shutoff-valve which may be operated periodically. A periodically operated shutoff-valve provides an inexpensive, reliable and easy way for adjusting the gas pressure within the gas-liquid-separator.
  • the pressure regulation valve is an adjustable valve, in particular a continuously adjustable valve. An adjustable valve, in particular a continuously adjustable valve, allows to control the gas pressure within the gas-liquid-separator in a more sophisticated way.
  • the pressure regulation valve is an electrically or mechanically driven valve. An electrically or mechanically driven valve is easy to control e.g.
  • the condensing capacity can be adjusted to the needs of the refrigeration circuit in order to operate the refrigeration circuit with high efficiency.
  • At least one switchable valve is arranged upstream of each of the condensers allowing to selectively activate and deactivate the corresponding condenser.
  • the at least two condensers being connected in parallel differ in their maximum achievable condensing power.
  • the refrigeration circuit is configured to determine the condensing power needed in order to provide the desired cooling at the evaporator. This condensing power needed is used as a command variable for controlling the refrigeration circuit.
  • the refrigeration circuit is configured to measure the condensing power delivered by the heat rejecting heat exchanger.
  • an appropriate sensor may be provided at the heat rejecting heat exchanger.
  • the refrigeration circuit is configured to compare the condensing power needed to the condensing power available through the heat rejecting heat exchanger and the condenser(s). For determining such available condensing power the specifications of the heat rejecting heat exchanger and the condenser(s), appropriate sensors at the heat rejecting heat exchanger and/or the condenser(s) may be used. The comparison may be carried out in an appropriate controller of the refrigeration circuit. While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made without departing from the scope of the invention. In addition, modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention is not limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Claims (14)

  1. Circuit de réfrigération (1b, 1c, 1d) faisant circuler un réfrigérant et comprenant, dans le sens d'écoulement du réfrigérant :
    au moins un compresseur (2) ;
    au moins un condenseur (14a, 14b) ;
    une conduite de réfrigérant (13) ;
    une conduite d'entrée de dispositif d'expansion (17) ;
    au moins un dispositif d'expansion (8) ; et
    au moins un évaporateur (10) ;
    le circuit de réfrigération (1b, 1c, 1d) comprenant en outre :
    un échangeur de chaleur à rejet de chaleur (4) pour l'échange de chaleur du réfrigérant avec un système de chauffage (7), un côté d'entrée de l'échangeur de chaleur à rejet de chaleur (4) étant raccordé de manière fluidique au côté de sortie du compresseur (2) ;
    un séparateur gaz-liquide (6) raccordé de manière fluidique à un côté de sortie de l'échangeur de chaleur à rejet de chaleur (4) et étant configuré pour séparer le réfrigérant quittant l'échangeur de chaleur à rejet de chaleur (4) en une partie de fluide réfrigérant en phase gazeuse et en une partie de fluide réfrigérant en phase liquide, le séparateur gaz-liquide (6) ayant une conduite de sortie en phase gazeuse (6a) raccordée de manière fluidique à un côté d'entrée de l'au moins un condenseur (14a, 14b) et d'une conduite de sortie en phase liquide (6b) qui est raccordée de manière fluidique à la conduite d'entrée du dispositif d'expansion (17) et/ou à un récipient collecteur (12) fourni en amont de l'au moins une conduite d'entrée du dispositif d'expansion (17) ;
    un dispositif de commande de réfrigérant liquide (16) agencé dans la conduite de sortie en phase liquide (6b), qui est configuré pour commander l'écoulement du réfrigérant liquide s'écoulant hors du séparateur gaz-liquide (6) ;
    un compteur de liquide (18), qui est configuré pour mesurer le niveau de réfrigérant liquide recueilli à l'intérieur du séparateur gaz-liquide (6) et pour fournir au moins un signal indicatif du niveau de réfrigérant liquide recueilli à l'intérieur du séparateur gaz-liquide (6) ;
    un dispositif de commande de niveau de liquide (20) couplé au compteur de liquide (18) et au dispositif de commande de réfrigérant liquide (16), le dispositif de commande de niveau de liquide (20) étant configuré pour entraîner le dispositif de commande de réfrigérant liquide (16) sur la base de l'au moins un signal fourni par le compteur de liquide (18), caractérisé en ce que
    une soupape de régulation de pression (24) est agencée dans la conduite de sortie en phase gazeuse (6a) ; et
    dans lequel un récipient collecteur (12) est fourni entre la ligne de sortie en phase liquide (6b) et la ligne d'entrée du dispositif d'expansion (17).
  2. Circuit de réfrigération (1b, 1c, 1d) selon la revendication 1, dans lequel le compteur de liquide (18) est configuré pour fournir un premier signal si le niveau de réfrigérant liquide dans le séparateur gaz-liquide (6) s'élève au-delà d'un niveau prédéterminé et/ou pour fournir un second signal si le niveau de réfrigérant liquide dans le séparateur gaz-liquide (6) tombe en-deçà d'un niveau prédéterminé.
  3. Circuit de réfrigération (1b, 1c, 1d) selon la revendication 1 ou 2, dans lequel le compteur de liquide (18) est configuré pour fournir un signal continu indiquant le niveau de réfrigérant liquide recueilli à l'intérieur du séparateur gaz-liquide (6), dans lequel le compteur de liquide (18) est en particulier un compteur de liquide mécanique, en particulier une jauge à flotteur, ou un compteur de liquide basé sur la capacité.
  4. Circuit de réfrigération (1b, 1c, 1d) selon l'une quelconque des revendications précédentes, dans lequel le dispositif de commande de réfrigérant liquide (16) est une soupape d'arrêt ou une soupape réglable, en particulier une soupape réglable en continu, et/ou dans lequel le dispositif de commande de réfrigérant liquide (16) est une soupape entraînée électriquement, mécaniquement ou électromécaniquement.
  5. Circuit de réfrigération (1b, 1c, 1d) selon l'une quelconque des revendications précédentes, dans lequel une soupape anti-retour (22) est agencée dans la conduite de réfrigérant (13).
  6. Circuit de réfrigération (1b, 1d) selon l'une quelconque des revendications précédentes, dans lequel un récipient collecteur (12) est fourni entre la conduite de réfrigérant (13) et la conduite d'entrée du dispositif d'expansion (17).
  7. Circuit de réfrigération (1b, 1c, 1d) selon l'une quelconque des revendications précédentes,
    dans lequel la conduite de sortie en phase liquide (6b) est raccordée de manière fluidique à un côté d'entrée du récipient collecteur (12), et/ou
    dans lequel la conduite de sortie en phase liquide (6b) est raccordée de manière fluidique à la conduite de réfrigérant (13) en amont du récipient collecteur (12).
  8. Circuit de régénération (1b, 1c, 1d) selon la revendication 1, dans lequel la soupape de régulation de pression (24) est une soupape d'arrêt, une soupape réglable, en particulier une soupape réglable en continu et/ou une soupape entraînée électriquement, mécaniquement ou électromécaniquement.
  9. Circuit de réfrigération (1b, 1c, 1d) selon l'une quelconque des revendications précédentes, dans lequel au moins deux condenseurs (14a, 14b) sont fournis, lesquels sont raccordés en parallèle, dans lequel les au moins deux condenseurs (14a, 14b) raccordés en parallèle diffèrent en particulier dans leur puissance de condensation maximale atteignable respective.
  10. Circuit de réfrigération (1b, 1c, 1d) selon la revendication 9, dans lequel au moins une soupape commutable (5a, 5b) est agencée en amont de chacun des condenseurs (14a, 14b) permettant d'activer et de désactiver le condenseur correspondant (14a, 14b).
  11. Circuit de réfrigération (1b, 1c, 1d) selon l'une quelconque des revendications précédentes, le circuit de réfrigération (1b, 1c, 1d) comprenant en outre des moyens qui sont configurés pour déterminer la puissance de condensation nécessaire afin d'assurer le refroidissement souhaité au niveau de l'évaporateur (10).
  12. Circuit de réfrigération (1b, 1c, 1d) selon la revendication 11, le circuit de réfrigération (1b, 1c, 1d) comprenant en outre des moyens qui sont configurés pour mesurer la puissance de condensation délivrée par l'échangeur de chaleur à rejet de chaleur (4) et/ou des moyens qui sont configurés pour comparer la puissance de condensation nécessaire à la puissance de condensation qui est disponible par l'intermédiaire de l'échangeur de chaleur à rejet de chaleur (4) et des condenseurs (14a, 14b).
  13. Système de chauffage et de refroidissement comprenant un circuit de réfrigération (1b, 1c, 1d) selon l'une des revendications précédentes ; et
    un système de chauffage (7) ;
    dans lequel l'échangeur de chaleur à rejet de chaleur (4) du circuit de réfrigération (1b, 1c, 1d) est configuré pour servir de source de chaleur pour le système de chauffage (7),
    dans lequel le système de chauffage (7) comprend en particulier une pompe à chaleur.
  14. Procédé d'actionnement d'un circuit de réfrigération (1b, 1c, 1d) selon l'une quelconque des revendications 1 à 12, faisant circuler un réfrigérant et comprenant, dans le sens d'écoulement du réfrigérant :
    au moins un compresseur (2) ;
    au moins un condenseur (14a, 14b) ;
    au moins un dispositif d'expansion (8) ; et
    au moins un évaporateur (10) ;
    dans lequel le circuit de réfrigération (1b, 1c, 1d) comprend en outre :
    un échangeur de chaleur à rejet de chaleur (4) pour l'échange de chaleur du réfrigérant avec un système de chauffage (7), un côté d'entrée de l'échangeur de chaleur à rejet de chaleur (4) étant raccordé de manière fluidique au côté de sortie du compresseur (2) ;
    un séparateur gaz-liquide (6) qui est raccordé de manière fluidique à un côté de sortie de l'échangeur de chaleur à rejet de chaleur (4) et qui est configuré pour séparer le réfrigérant quittant l'échangeur de chaleur à rejet de chaleur (4) en une partie de fluide réfrigérant en phase gazeuse et en une partie de fluide réfrigérant en phase liquide, le séparateur gaz-liquide (6) ayant une conduite de sortie en phase gazeuse (6a) raccordée de manière fluidique à l'au moins un condenseur (14a, 14b) et une conduite de sortie en phase liquide (6b) raccordée de manière fluidique au récipient collecteur (12) fourni en amont de l'au moins un dispositif d'expansion (8) ;
    un dispositif de commande de réfrigérant liquide (16) agencé dans la conduite de sortie en phase liquide (6b), qui est configuré pour commander l'écoulement du réfrigérant liquide s'écoulant hors du séparateur gaz-liquide (6) ;
    un compteur de liquide (18) qui mesure le niveau de réfrigérant liquide à l'intérieur du séparateur gaz-liquide (6) et qui fournit au moins un signal indicatif du niveau de réfrigérant liquide à l'intérieur du séparateur gaz-liquide (6) ;
    dans lequel le procédé comprend la commande du niveau de réfrigérant liquide recueilli à l'intérieur du séparateur gaz-liquide (6) au moyen de l'entraînement du dispositif de commande de réfrigérant liquide (16) sur la base de l'au moins un signal fourni par le compteur de liquide (18) ; et
    dans lequel la pression dans la conduite de sortie en phase gazeuse (6a) est régulée au moyen d'une soupape de régulation de pression (24) agencée dans la conduite de sortie en phase gazeuse (6a).
EP12719374.6A 2012-05-04 2012-05-04 Circuit de réfrigération et système de chauffage et de refroidissement Active EP2844932B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/058274 WO2013164036A1 (fr) 2012-05-04 2012-05-04 Circuit de réfrigération et système de chauffage et de refroidissement

Publications (2)

Publication Number Publication Date
EP2844932A1 EP2844932A1 (fr) 2015-03-11
EP2844932B1 true EP2844932B1 (fr) 2019-02-27

Family

ID=46044699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12719374.6A Active EP2844932B1 (fr) 2012-05-04 2012-05-04 Circuit de réfrigération et système de chauffage et de refroidissement

Country Status (2)

Country Link
EP (1) EP2844932B1 (fr)
WO (1) WO2013164036A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000279A1 (fr) * 2015-07-01 2017-01-05 Trane Air Conditioning Systems (China) Co., Ltd. Système de récupération de chaleur à application de séparateur de liquide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162397A1 (en) * 2008-09-29 2011-07-07 Carrier Corporation Flash tank economizer cycle control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20020982A1 (it) * 2002-11-13 2004-05-14 Rhoss S P A Macchina frigorifera con recupero di calore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110162397A1 (en) * 2008-09-29 2011-07-07 Carrier Corporation Flash tank economizer cycle control

Also Published As

Publication number Publication date
WO2013164036A1 (fr) 2013-11-07
EP2844932A1 (fr) 2015-03-11

Similar Documents

Publication Publication Date Title
US10801757B2 (en) Refrigeration system
US10161661B2 (en) Refrigeration cycle apparatus, and abnormality detection system for refrigeration cycle apparatus
EP3334985B1 (fr) Système à compression de vapeur doté d'au moins deux groupes évaporateurs
ES2700466T3 (es) Optimización de funcionamiento de sistema de refrigeración enfriado por aire
EP2584291B1 (fr) Climatiseur et procédé de fonctionnement correspondant
EP3086057B1 (fr) Circuit de réfrigération avec module de récupération de chaleur
US20070245752A1 (en) Refrigerating Apparatus and Air Conditioner
EP3365620A1 (fr) Procédé de commande d'un système de compression de vapeur dans un état noyé
CN104838211A (zh) 空气调节装置
EP2663817B1 (fr) Système de réfrigération et procédé de fonctionnement d'un système de réfrigération
CA2567304A1 (fr) Climatiseur avec mode d'estimation de la quantite de fluide frigorigene
EP2841855B1 (fr) Système de refroidissement et procédé d'opération dudit système
US9500395B2 (en) Refrigeration circuit, gas-liquid separator and heating and cooling system
JP2016003848A (ja) 空気調和システムおよびその制御方法
US9816739B2 (en) Refrigeration system and refrigeration method providing heat recovery
EP3601907B1 (fr) Système de compression de vapeur doté d'un séparateur de liquide de conduite d'aspiration
EP2844932B1 (fr) Circuit de réfrigération et système de chauffage et de refroidissement
EP3978828B1 (fr) Dispositif à cycle frigorifique
KR20100046692A (ko) 히트펌프 연동 수열교환식 공기조화기

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180911

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101942

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012057100

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1101942

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012057100

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

26N No opposition filed

Effective date: 20191128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190504

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190504

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220420

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220420

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 12

Ref country code: DE

Payment date: 20230419

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601