EP2843446B1 - Capteur optique - Google Patents

Capteur optique Download PDF

Info

Publication number
EP2843446B1
EP2843446B1 EP13182608.3A EP13182608A EP2843446B1 EP 2843446 B1 EP2843446 B1 EP 2843446B1 EP 13182608 A EP13182608 A EP 13182608A EP 2843446 B1 EP2843446 B1 EP 2843446B1
Authority
EP
European Patent Office
Prior art keywords
light
guiding element
detected
transmission
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13182608.3A
Other languages
German (de)
English (en)
Other versions
EP2843446A1 (fr
Inventor
Sven BÜTTNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pepperl and Fuchs SE
Original Assignee
Pepperl and Fuchs SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pepperl and Fuchs SE filed Critical Pepperl and Fuchs SE
Priority to EP13182608.3A priority Critical patent/EP2843446B1/fr
Publication of EP2843446A1 publication Critical patent/EP2843446A1/fr
Application granted granted Critical
Publication of EP2843446B1 publication Critical patent/EP2843446B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers
    • G01V8/22Detecting, e.g. by using light barriers using multiple transmitters or receivers using reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present invention relates to an optical sensor for monitoring a surveillance space according to the preamble of claim 1.
  • a generic optical sensor for monitoring a monitoring space comprises at least one light transmitter for emitting transmitted light into the interstitial space and at least one light receiver for measuring light to be detected from the interstitial space.
  • optical sensors have a relatively complex structure. Thus, several lenses are used for beam shaping of the transmitted light and the light to be detected. For a so-called coaxial optics also a beam splitter is required. In a coaxial optical system, the optical axis of the transmitted light in the interstitial space coincides with the optical axis of the light to be detected in the interstitial space, which is directed onto the light receiver. Furthermore, a deflection mirror is required so that the light emitter and the light receiver do not have to be mounted on two different, mutually perpendicular printed circuit boards.
  • Such optical sensors are for example in DE 20 2009 007 612 U1 and in EP 2 256 522 A1 described.
  • an optical sensor which, as low as possible, conducts transmitted light and light to be detected as accurately as possible.
  • optical sensor having the features of claim 1.
  • a central idea of the invention can be considered to provide a one-piece, that is monolithic, light guide element, which achieves the effect of several conventional optical elements.
  • the effect of a lens or a mirror for beam shaping of transmitted light is additionally achieved with the light guide element.
  • this reduces the required number of components compared with the prior art. As a result, the installation effort of the sensor is reduced. In addition, positioning inaccuracies are reduced.
  • the reduction of the existing components compared to conventional optical sensors is achieved in particular by the fact that no separate beam splitter for generating a coaxial optical system is present.
  • the one-piece light guide element On several surfaces, to which meet the transmitted light and the detected light, the one-piece light guide element provides a coaxial optics, a light deflection and a concentration of the detected light ready.
  • a region of light-collecting effect is used. This area is formed by one or more surfaces of the light guide element, to which the light to be detected is conducted. Preferably, this area is formed or co-formed by the exit surface. Thus, the exit surface may be curved to provide a light-gathering effect. Alternatively or additionally, it is also possible to provide diffractive structures with light-collecting effect on the exit surface.
  • the said surfaces of the light guide element can be adjacent to air and thus achieve the described effects. However, one or more of the surfaces may also be coated to achieve the respective effect. This leaves the advantage of avoiding positional inaccuracies between different components.
  • a reflective coating may be provided on the deflection surface and / or on the at least one reflection region of the beam-splitting surface of the light-guiding element.
  • the deflecting surface and the reflection region form a boundary of the material of the light guiding element to the ambient air.
  • the orientation of the deflection surface and the reflection region is selected according to the invention such that light to be passed on impinges at an angle at which total reflection occurs.
  • the deflection surface acts as a cost-effective mirror, which even has a higher reflectance than conventional mirrors.
  • the light guide element for transmitted light and light to be detected can be transparent.
  • it may be transparent to light in the visible, infrared and / or ultraviolet wavelength range.
  • the material of the light guide element can basically be any material which is transparent to the light used. In order to achieve high precision with cost-effective production, plastic is preferably used.
  • the light guide element is a plastic molded part. This is preferably produced by injection molding.
  • light passes between the deflection surface and the beam-splitting surface continuously within the material of the light-guiding element.
  • a precise and simple beam guidance is achieved with a reduced number of components.
  • a shaping of the light guide element is preferred in which light to be detected from the end face to the exit surface is continuously conductive within the material of the light guide element and / or in which transmitted light from the entrance surface to the end surface is continuously conductive within the material of the light guide element.
  • one or more cavities may be provided in the light guide element, which are traversed by the transmitted light and / or light to be detected. Apart from these cavities but also move in this embodiment, the transmitted light and the light to be detected between the aforementioned surfaces continuously within the material of the light guide element.
  • the cavity or cavities may have a curved surface, whereby a light-collecting effect, a light-diffusing effect or a deflection is achieved for transmitted light or light to be detected. This allows a particularly compact design of the light guide element can be achieved.
  • the light guide element In order to forward transmitted transmitted light divergently emitted by the light transmitter in the direction of the interstitial space, the light guide element preferably has a light-collecting effect for transmitted light.
  • the bundled forwarding can be understood as either a forwarding as a parallel beam or a focus on a desired area in the interstitial space.
  • the light-collecting effect for transmitted light is generated at least partially by the entrance surface. If the transmitted light passes over the deflecting surface and the at least one reflection region of the beam splitting surface, then one or both of these may also contribute to the light-collecting effect.
  • the end face may also be arched for a light-collecting effect or provided with diffractive, that is, light-diffractive, structures.
  • Additional lenses between the light emitter and the entrance surface and / or between the end surface and the interstitial space may be provided, whereby the same light guide elements may be used for different optical sensors which differ in the nature of the light emitter or in the desired emission characteristic in the interstitial space. For a cost-effective design and avoid positioning inaccuracies between components of the optical sensor, it may be preferred that such lenses are not present.
  • the light-collecting effect of the light guide element is for light to be detected, which occurs as a parallel or approximately parallel beam at the end face, preferably so that it is focused on the light receiver.
  • the light guide element for transmitted light which diverges from the light emitter, preferably has such a light-collecting effect that it emerges as a parallel beam at the end face.
  • the end surface can directly adjoin the interstitial space. But there may also be additional components in between, for example a polarizing filter and / or a transparent cover window, with which a housing of the optical sensor is closed. Also, an optical fiber, a movable component for variable beam deflection, or another optically active element may be provided between the end surface and the monitoring space.
  • a coaxial beam path can be effected, in the transmission light and the proportion of the detected light, which is passed to the light receiver, within the interstitial space have a common optical axis. Due to the deflection surface, a coaxial beam path is also possible if the light transmitter and receiver are mounted on one and the same circuit board or alternatively on two parallel circuit boards. Such an arrangement of light emitter and receiver may be desired for a compact and inexpensive construction. In this case, the light emitter and the light receiver can be arranged in particular in a plane which is perpendicular to the propagation direction of the transmitted light at the end face.
  • the light emitter and the light receiver have different heights, they are not in a plane perpendicular to the direction of propagation of the transmitted light on the end face when mounted together on a printed circuit board. This position of light transmitter and receiver is to be considered in determining the light-collecting effect of the light guide element.
  • the entrance surface for transmitted light and the exit surface for light to be detected may have different focal lengths, that is, different levels of light-collecting effects.
  • the light guide member is shaped such that an optical axis of detected light passing from the exit surface to the light receiver is parallel to an optical axis of transmitted light passing from the light emitter to the entrance surface.
  • the light transmitter and the receiver can be easily mounted on a printed circuit board, wherein their main emission and main receiving direction can be perpendicular to the circuit board.
  • the transmission region of the beam-splitting surface is preferably not formed by a transition of the light-guiding element to the air or another material. Rather, the transmission range of the beam splitting surface is preferably a surface section, on both sides of which the light guide element extends. As a result, there is no refractive index difference at the transmission area and incident light propagates unhindered.
  • the transmission range of the beam splitting surface is a central region of the beam splitting surface.
  • This is preferably the transmission of transmitted light. It may have an elliptical shape, thus taking into account an inclined orientation of the beam splitting surface to the incident transmitted light, which may have a circular cross-section.
  • the reflection region of the beam-splitting surface can surround the transmission region and guide light to be detected in operation in the direction of the deflection surface and on to the light receiver.
  • the central region of the beam-splitting surface can also form the reflection region in a reverse manner and transmit transmitted light, which in this case comes from the deflection surface.
  • the reflection region is then surrounded by the transmission region, which passes on the light to be detected in the direction of the light receiver.
  • the central region forms the transmission region and passes on the light to be detected. Accordingly, transmitted light is transmitted via the reflection region, which can surround the transmission region.
  • the central region may form the reflection region and to relay light to be detected.
  • transmitted light is guided over the transmission area, which can surround the reflection area.
  • the at least one reflection region of the beam-splitting surface preferably has a curved shape for providing a light-directing effect for reflected light, in particular a light-collecting or expanding effect. As a result, the quality of the beam guidance can be improved.
  • the at least one reflection region In order for the at least one reflection region to reflect largely incident light irrespective of the angle, it can be formed as a boundary transition of the light guide element to form a mirror layer, which is mounted on the light guide element.
  • the mirror layer may in particular comprise a dielectric layer system.
  • the reflection region is accordingly formed as a transition from the light guide element to a medium having a lower refractive index.
  • This medium can be in particular air.
  • n1 is the refractive index of the material of the light guide element and n2 is the refractive index of the adjacent medium of lower refractive index.
  • the deflection surface may be formed in particular with a mirror layer or be aligned so that occurs when incident light total reflection.
  • the deflection surface is curved to provide a focusing effect of incident light.
  • a plurality of deflecting surfaces may also be formed on the light guiding element for a more complex beam guidance, which divert the transmitted light or the light to be detected several times.
  • it may also be provided to direct light to be detected by a plurality of deflection surfaces to a plurality of light receivers or to direct transmitted light from a plurality of light transmitters to the beam splitting surface.
  • a particularly simple and inexpensive design but exactly one deflection exists to light between the beam splitting surface and the light receiver or to deflect in other embodiments between the beam splitting surface and the light emitter.
  • the light guide element has different entrance surfaces side by side for the transmitted light of the different light emitters.
  • the light guide element is preferably shaped in such a way that its region running from the beam-splitting surface to the entry surface protrudes in the manner of a cone from the beam-splitting surface.
  • a cross section of the pin-like protruding portion is smaller than the steel parting surface.
  • the beam splitting surface here comprises a plurality of transmission regions, which are formed by the adjoining cone-like protruding regions. Depending on the shape and arrangement of the peg-like protruding regions, exactly one coherent reflection region or a plurality of separate reflection regions, at which the beam-splitting surface adjoins air or a reflective coating, results.
  • transmitted light is not conducted via one or more pin-like regions, but light to be detected, which then strikes one or more light receivers.
  • the optical sensor 100 has as essential components a light emitter 10, a light receiver 20 and a light guide element 30.
  • FIG. 1 shows a perspective view of the light guide member 30. This is shown in Figure 2 in perspective as a wire grid, that is, both the visible from a viewing point edges and the hidden edges are shown.
  • the Figures 3 and 4 each show a sectional view of the optical sensor 100. It is in FIG. 3 a simulated beam path of the transmitted light 15 drawn during FIG. 4 represents the simulated course of the detected light 25.
  • the light emitter 10 emits transmitted light 15, which is conducted via the light guide element 30 into a monitoring space 18. If the transmitted light 15 strikes an object, it can be reflected by this light. The proportion of this reflected light, which is measured by the light receiver 20 and / or is guided by the light guide element, is referred to as light to be detected 25. The detected light 25 is guided via the light guide element 30 to the light receiver 20.
  • the light guide member 30 is integrally formed and performs the function of a plurality of conventional optical elements.
  • the light guide element 30 initially comprises an entrance surface 32, at which transmitted light 15 enters the light guide element 30.
  • the entrance surface 32 may be curved outwards and thus fulfill the function of a converging lens. As a result, there is no need for a separate lens between the light emitter 10 and the light guide element 30.
  • the entry surface 32 is the end face of a pin-like protruding region of the light guide element 30.
  • the cross-sectional surface on which the pin-like projecting region merges into a main body of the light guide element 30 is referred to as the transmission region 36. Because of the one-piece design of the light guide element 30, there is no interruption, gap or material change at the transmission region 36. Therefore, the transmitted light 15 is transmitted without hindrance here.
  • An area surrounding the outside of the transmission area and adjacent to the non-peg-protruding area is a reflection area 35 for detecting light 25, and will be described later.
  • the transmitted light 15 continues to pass through the light guide element 30 from the transmission region 36 and leaves it at an end face 38. From there it passes into the interstitial space 18.
  • the end surface 38 may also be curved, thus achieving the effect of a lens.
  • the transmitted light 15 extends from the entrance surface 32 to the end surface 38 throughout the material of the light guide member 30th
  • Detected light 25 from the interstitial space 18 enters the light guide element 30 at the end face 38, see Fig. 4 ,
  • an optical axis of the detected light 25 in the interstitial space 18 coincides with the beam path of the transmitted light 15 in the interstitial space 18.
  • beam cross-section and opening angle in the light to be detected 25 may be greater than in the transmitted light 15.
  • the light 25 to be detected passes through the light guide element 30 until it at least partially strikes the reflection region 35.
  • the reflection region 35 together with the transmission region 36, forms a beam splitting surface 34.
  • the light 25 to be detected is deflected within the light guide element 30.
  • the reflection region 35 may be an interface of the light guide member 30 to air.
  • the orientation of the reflection area with respect to the propagation direction of the incident light 25 to be detected is such that total reflection occurs. Especially for other reflection angles may adjoin the reflection region of the light guide element, but also a mirror layer (not shown).
  • the deflection surface 40 may be an outer surface of the light guide element 30, which is provided with a mirror layer or is adjacent to air and oriented so that it deflected by total reflection, the detected light 25. Further deflection surfaces for transmitted light 15 and / or light 25 to be detected may be provided (not shown).
  • the light 25 to be detected leaves the light guide element 30 at an exit surface 42.
  • the exit surface 42 has an outwardly curved shape, whereby the light 25 to be detected is concentrated to a focus.
  • the light receiver 20 is located at this focus. Due to the focusing effect, it is possible to dispense with a separate lens between the light receiver 20 and the exit surface 42.
  • a parallel beam path of transmitted light 15 and detected light 25 in the interstitial space 18 is also effected when an optical axis of detected light 25 directly from the light receiver 20 and an optical axis of transmitted light 15 directly on the light emitter 10 parallel and offset to each other.
  • the reflection region 35 and the deflection surface 40 may be arched as well as the entrance surface 32 and the exit surface 42.
  • the bulges are selected such that light 25 to be detected, which enters the end face 38 as a parallel beam bundle or, alternatively, enters the end face 38 divergently from a certain point in the monitoring space 18, is focused on the light receiver 20.
  • the bulges are also chosen so that outgoing light 15 emanating from the light emitter 10 is directed as a parallel beam into the interstitial space 18, or to a certain point in the Surveillance space 18 is focused, or slightly divergent in the monitoring space 18 is discharged.
  • the detected light 25 is passed over the reflection region 35 and the deflection surface 40
  • the transmitted light can be passed over the deflection surface and the reflection region.
  • the positions of the light emitter and the light receiver can be interchanged with each other in this case.
  • the functions of several components of conventional optical sensors are fulfilled in a single component.
  • These components comprise, in particular, a positive-type focusing lens, a converging lens for light to be detected, a beam splitter, a deflection mirror between the beam splitter and the light transmitter or receiver, and a lens facing the monitoring space. Due to the reduced number of components on the one hand a cheaper production possible. On the other hand, positioning inaccuracies that occur between different components are avoided. This improves the quality of the beam guidance. In addition, the reduced number of components also reduces the number of interfaces at which light losses occur.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Claims (12)

  1. Capteur optique destiné à surveiller un espace de surveillance (18), ledit capteur étant pourvu d'au moins un émetteur de lumière (10) destiné à émettre une lumière émise (15) dans l'espace de surveillance (18) et d'au moins un récepteur de lumière (20) destiné à mesurer la lumière (25) à détecter provenant de l'espace de surveillance (18),
    dans lequel un élément de guidage de lumière (30) fabriqué d'une seule pièce est présent, et est destiné à guider la lumière émise (15) en direction de l'espace de surveillance (18) et à guider la lumière (25) à détecter vers le récepteur de lumière (20),
    dans lequel l'élément de guidage de lumière (30) présente :
    - une surface d'entrée (32) pour la lumière émise (15), au niveau de laquelle, pendant le fonctionnement, la lumière émise (15) pénètre dans l'élément de guidage de lumière (30),
    - une surface terminale (38), au niveau de laquelle, pendant le fonctionnement, la lumière émise (15) sort de l'élément de guidage de lumière (30) en direction de l'espace de surveillance (18) et au niveau de laquelle la lumière (25) à détecter provenant de l'espace de surveillance (18) pénètre dans l'élément de guidage de lumière (30),
    - une surface de séparation de faisceau (34) pourvue d'au moins une zone de transmission (36) et d'au moins une zone de réflexion (35), lesquelles sont agencées de telle sorte que la lumière émise (15) provenant de la surface d'entrée (32) est guidée vers la surface terminale (38) et que la lumière (25) à détecter provenant de la surface terminale (38) est guidée au moins en partie sur un chemin optique, qui est différent du chemin optique de la lumière émise (15),
    - une surface de sortie (42) pour la lumière (25) à détecter, au niveau de laquelle, pendant le fonctionnement, la lumière (25) à détecter, qui provient de la surface de séparation de faisceau (34), sort de l'élément de guidage de lumière (30),
    - au moins une surface de déflexion (40), au moyen de laquelle la lumière (15, 25), dont le chemin optique s'étend sur l'au moins une zone de réflexion (35), est défléchie à l'intérieur de l'élément de guidage de lumière (30), et
    - une zone à action concentratrice de lumière (42) destinée à concentrer la lumière (25) à détecter sur le récepteur de lumière (20),
    caractérisé
    en ce que l'élément de guidage de lumière (30) est une pièce moulée en matière plastique,
    en ce que la zone de transmission (36) et la zone de réflexion (35) sont séparées spatialement,
    en ce que la surface de déflexion (40) et la zone de réflexion (35) forment une limite entre le matériau de l'élément de guidage de lumière (30) et l'air ambiant,
    en ce qu'une orientation de la surface de déflexion (40) et de la zone de réflexion (35) est choisie de telle sorte que la lumière à transmettre est incidente selon un angle pour lequel une réflexion totale apparaît et
    en ce que, à partir de la surface de sortie (42), la zone à action concentratrice de lumière est formée par une forme bombée vers l'extérieur.
  2. Capteur optique selon la revendication 1,
    caractérisé
    en ce que l'élément de guidage de lumière (30) est formé de sorte
    - que la lumière (25) à détecter peut être guidée en continu de la surface terminale (38) jusqu'à la surface de sortie (42) à l'intérieur du matériau de l'élément de guidage de lumière (30) et/ou
    - que la lumière émise (15) peut être guidée en continu de la surface d'entrée (32) jusqu'à la surface terminale (38) à l'intérieur du matériau de l'élément de guidage de lumière (30).
  3. Capteur optique selon l'une quelconque des revendications 1 à 2,
    caractérisé
    en ce que l'élément de guidage de lumière (30) a une action concentratrice de lumière pour la lumière émise (15), afin de transmettre la lumière émise (15), émise de façon divergente par l'émetteur de lumière (10), de manière focalisée en direction de l'espace de surveillance (18).
  4. Capteur optique selon la revendication 3,
    caractérisé
    en ce que l'action concentratrice de lumière pour la lumière émise (15) est produite au moins en partie par la surface d'entrée (32).
  5. Capteur optique selon l'une quelconque des revendications 1 à 4,
    caractérisé
    en ce que l'élément de guidage de lumière (30) pour la lumière (25) à détecter, laquelle entre au niveau de la surface terminale (38) sous la forme d'un faisceau de rayons parallèles, a une action concentratrice de lumière telle qu'elle est focalisée sur le récepteur de lumière (20), et en ce que l'élément de guidage de lumière (30) présente pour la lumière émise (15), laquelle part de façon divergente de l'émetteur de lumière (10), une action concentratrice de lumière telle qu'elle sort au niveau de la surface terminale (38) sous la forme d'un faisceau de rayons parallèles.
  6. Capteur optique selon l'une quelconque des revendications 1 à 5,
    caractérisé
    en ce que l'élément de guidage de lumière (30) est formé de telle sorte qu'un axe optique de lumière (25) à détecter, laquelle circule de la surface de sortie (42) au récepteur de lumière (20), se situe parallèlement à un axe optique de lumière émise (15), laquelle circule de l'émetteur de lumière (10) à la surface d'entrée (32).
  7. Capteur optique selon l'une quelconque des revendications 1 à 6,
    caractérisé
    en ce que la zone de transmission (36) de la surface de séparation de faisceau (34) est une zone centrale de la surface de séparation de faisceau (34) sur laquelle la lumière émise (15) est guidée, et
    en ce que la zone de réflexion (35) de la surface de séparation de faisceau (34) entoure la zone de transmission (36) et, pendant le fonctionnement, guide la lumière (25) à détecter en direction de la surface de déflexion (40) et plus loin en direction du récepteur de lumière (20).
  8. Capteur optique selon l'une quelconque des revendications 1 à 7,
    caractérisé
    en ce que l'au moins une zone de réflexion (35) de la surface de séparation de faisceau (34) présente une forme bombée pour permettre d'obtenir une action directrice de lumière pour la lumière (15, 25) réfléchie.
  9. Capteur optique selon l'une quelconque des revendications 1 à 8,
    caractérisé
    en ce que l'au moins une zone de réflexion (35) de la surface de séparation de faisceau (34) est formée par un passage de limite entre l'élément de guidage de lumière (30) et une couche réfléchissante, qui est appliquée sur l'élément de guidage de lumière (30).
  10. Capteur optique selon l'une quelconque des revendications 1 à 9,
    caractérisé
    en ce que la surface de déflexion (40) est bombée pour permettre d'obtenir une action focalisatrice de la lumière (15, 25) incidente.
  11. Capteur optique selon l'une quelconque des revendications 1 à 10,
    caractérisé
    en ce que plusieurs émetteurs de lumière (10) sont présents et agencés les uns à côté des autres et en ce que, pour la lumière émise (15) de différents émetteurs de lumière (10), différentes surfaces d'entrée (32) sont présentes les unes à côté des autres sur l'élément de guidage de lumière (30).
  12. Capteur optique selon l'une quelconque des revendications 1 à 11,
    caractérisé
    en ce que l'élément de guidage de lumière (30) est formé de telle sorte que sa zone s'étendant de la surface de séparation de faisceau (34) à la surface d'entrée (32) fait saillie de façon conique, et en ce que, pour chaque émetteur de lumière (10), respectivement une zone faisant saillie de façon conique et pourvue respectivement d'une surface d'entrée (32) est présente.
EP13182608.3A 2013-09-02 2013-09-02 Capteur optique Active EP2843446B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13182608.3A EP2843446B1 (fr) 2013-09-02 2013-09-02 Capteur optique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13182608.3A EP2843446B1 (fr) 2013-09-02 2013-09-02 Capteur optique

Publications (2)

Publication Number Publication Date
EP2843446A1 EP2843446A1 (fr) 2015-03-04
EP2843446B1 true EP2843446B1 (fr) 2019-07-24

Family

ID=49084840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13182608.3A Active EP2843446B1 (fr) 2013-09-02 2013-09-02 Capteur optique

Country Status (1)

Country Link
EP (1) EP2843446B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121204A1 (de) * 2016-11-07 2018-05-09 Pepperl + Fuchs Gmbh Optischer Sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198867A (en) * 1986-12-17 1988-06-22 Philips Electronic Associated A liquid crystal display illumination system
DE3925128A1 (de) * 1989-07-28 1991-01-31 Hirschmann Richard Gmbh Co Optoelektrische sende- und empfangsvorrichtung
JP3618450B2 (ja) * 1995-11-15 2005-02-09 株式会社ソキア 多軸レーザ干渉測長機
JP2001174671A (ja) * 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd 光素子モジュール
US7239909B2 (en) * 2000-01-19 2007-07-03 Luminetx Technologies Corp. Imaging system using diffuse infrared light
JP2004240220A (ja) * 2003-02-06 2004-08-26 Seiko Epson Corp 光モジュール及びその製造方法、混成集積回路、混成回路基板、電子機器、光電気混載デバイス及びその製造方法
US7099536B1 (en) * 2003-12-08 2006-08-29 National Semiconductor Corporation Single lens system integrating both transmissive and reflective surfaces for light focusing to an optical fiber and light reflection back to a monitor photodetector
JP4433315B2 (ja) * 2006-01-12 2010-03-17 ソニー株式会社 光ピックアップ及び光情報装置
US8000358B2 (en) * 2009-04-20 2011-08-16 Emcore Corporation Power monitoring system for a parallel optical transmitter
EP2694870A4 (fr) * 2011-04-08 2015-05-06 Brite Shot Inc Ensemble d'éclairage à barrette de del

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2843446A1 (fr) 2015-03-04

Similar Documents

Publication Publication Date Title
EP2120025B1 (fr) Dispositif de capteur optique destiné à la détection de lumière ambiante
DE102007036492B4 (de) Optische Sensorvorrichtung
WO2019037809A1 (fr) Dispositif d'émission pour un scanner lidar présentant un miroir de balayage recouvert par un élément de recouvrement
DE102008020171A1 (de) Optische Sensorvorrichtung
WO2019025222A1 (fr) Système lidar à base de conduits de lumière
DE10341548A1 (de) Optoelektronische Erfassungseinrichtung
EP3078984B1 (fr) Capteur optoelectronique et procede de detection d'objets dans une zone de surveillance
CH695633A5 (de) Laserentfernungsmessgerät für den Nah- und Fernbereich mit speziellem Empfänger.
DE3143137C2 (de) Reflexions-ausblendende, fokussierende optische Vorrichtung
DE4113720C2 (de) Gabellichtschranke
EP2157449A1 (fr) Barrière lumineuse
EP2843446B1 (fr) Capteur optique
EP3324218B1 (fr) Cellule de détection à multifaisceau
EP3540459A1 (fr) Capteur optoélectronique et procédé de détection d'objets dans une zone de surveillance
EP3495845A1 (fr) Capteur optoélectronique et procédé de détection d'une zone de surveillance
EP2916143B1 (fr) Dispositif et procédé de détection d'objets dans une zone de surveillance
DE102018216201A1 (de) Optische Anordnung und LIDAR-Vorrichtung mit einer derartigen Anordnung
DE102019124265B4 (de) Optoelektronischer Sensor und Verfahren zum Erfassen von Objekten in einem Überwachungsbereich
EP1686398B1 (fr) Capteur optoélectronique
DE102017209645B4 (de) Mikromechanische Lichtumlenkvorrichtung, Verfahren zur Umlenkung von Licht mittels einer mikromechanischen Lichtumlenkvorrichtung und Lichtsendevorrichtung
DE19706053A1 (de) Schaltanordnung zum Schalten und Einkoppeln eines Lichtbündels in mindestens eine Ausgangsfaser
EP3454095A1 (fr) Système capteur optoélectronique
EP1510750A1 (fr) Dispositif optique de détection de position
EP3792668B1 (fr) Capteur optoélectronique et procédé de détection des objets dans une zone de surveillance
EP3187906B1 (fr) Barriere lumineuse

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150819

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013206

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1158854

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PEPPERL+FUCHS AG

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1158854

Country of ref document: AT

Kind code of ref document: T

Owner name: PEPPERL & FUCHS AG, DE

Effective date: 20191011

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013206

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190902

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190902

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191024

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230915

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 12