EP2843324B1 - Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque - Google Patents

Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque Download PDF

Info

Publication number
EP2843324B1
EP2843324B1 EP13181858.5A EP13181858A EP2843324B1 EP 2843324 B1 EP2843324 B1 EP 2843324B1 EP 13181858 A EP13181858 A EP 13181858A EP 2843324 B1 EP2843324 B1 EP 2843324B1
Authority
EP
European Patent Office
Prior art keywords
shell
heat exchanger
subcooler
condenser
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13181858.5A
Other languages
German (de)
English (en)
Other versions
EP2843324A1 (fr
Inventor
Christian Per Bunde-Pedersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Denmark ApS
Original Assignee
Johnson Controls Denmark ApS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Denmark ApS filed Critical Johnson Controls Denmark ApS
Priority to ES13181858T priority Critical patent/ES2848207T3/es
Priority to DK13181858.5T priority patent/DK2843324T3/da
Priority to EP13181858.5A priority patent/EP2843324B1/fr
Priority to CN201480043801.4A priority patent/CN105473958B/zh
Priority to PCT/DK2014/050236 priority patent/WO2015028021A1/fr
Priority to US14/906,602 priority patent/US20160161191A1/en
Publication of EP2843324A1 publication Critical patent/EP2843324A1/fr
Application granted granted Critical
Publication of EP2843324B1 publication Critical patent/EP2843324B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Definitions

  • the present invention relates to a shell-and-plate heat exchanger for cooling and condensing a circulating refrigerant.
  • the invention further relates to use of a shell-and-plate heat exchanger.
  • Shell-and-plate (or plate-and-shell) heat exchangers consist of a series of corrugated plates peripherally welded to each other in pairs (so-called cassettes) which in turn is welded to each other along the entrance holes and exit holes to for a complete plate pack.
  • the welded plate pack is inserted and either welded or bolted within a tubular shell, typically formed from steel and typically without peripheral gaskets.
  • the shell-and-plate heat exchanger is a versatile design which combines the strength of a shell-and-tube exchanger with the thermal efficiency of a plate exchanger in that the shell-and-plate heat exchanger combines the pressure and temperature capabilities of a typically cylindrical shell with the excellent heat transfer performance of a plate heat exchanger.
  • the shell-and-plate heat exchanger combines the benefits of a traditional shell and tube type heat exchanger but with the high efficiency provided for in a plate type exchanger. From WO 97/45689 it is therefore known to use a plate and shell heat exchanger for evaporating the refrigerant in a refrigerator circuit and another plate and shell heat exchanger for condensing the refrigerant in the refrigerator circuit. But this heat exchanger design is complex and difficult to install.
  • Document WO2010/103190 discloses a shell-and-plate heat exchanger, whose shell encircles the whole stack of corrugated heat transfer plates.
  • Documents EP2476975 and FR2846733 disclose plate heat exchangers with integrated condensers and subcoolers.
  • the invention relates to a shell-and-plate heat exchanger for cooling and condensing a circulating refrigerant.
  • the heat exchanger comprises a desuperheater for lowering the temperature of the gaseous refrigerant to a temperature above the condensation temperature of the refrigerant, wherein the desuperheater is formed by a stack of corrugated desuperheater heat transfer plates.
  • the desuperheater is connected to a condenser for condensing the refrigerant, wherein the condenser is formed by a stack of corrugated condenser heat transfer plates.
  • the condenser is connected to a subcooler for further lowering the temperature of the condensed refrigerant, wherein the subcooler is formed by a stack of corrugated subcooler heat transfer plates, and wherein the stack of corrugated desuperheater heat transfer plates, the stack of corrugated condenser heat transfer plates and the stack of corrugated subcooler heat transfer plates are arranged inside the same common continuous shell.
  • the shell-and-plate heat exchanger is characterized in that, the condenser and the subcooler are connected through a liquid refrigerant container arranged below the stack of condenser heat transfer plates and/or the stack of subcooler heat transfer plates, and in that the condensed refrigerant is collected in the liquid refrigerant container from which the liquid refrigerant continues into the subcooler through a subcooler inlet conduit.
  • the efficiency of the subcooler is severely reduced if the refrigerant is gaseous when entering the subcooler. And since the efficiency of a refrigeration cycle is also severely reduced if the shell-and-plate heat exchanger delivers gaseous refrigerant, it is advantageous to ensure that only liquid refrigerant is continued into the subcooler by using gravity to collect the liquid refrigerant in a liquid refrigerant container arranged beneath the condenser and/or the subcooler.
  • a conduit inlet opening of said subcooler inlet conduit is arranged at the bottom of said liquid refrigerant container.
  • Arranging the inlet opening of the subcooler inlet conduit at the bottom of the liquid refrigerant container is advantageous in that it increases the capacity of the refrigerant container, in that the subcooler inlet conduit hereby is capable of almost completely emptying the liquid refrigerant container.
  • said liquid refrigerant container is arranged outside said shell.
  • Arranging the liquid refrigerant container outside the heat exchanger shell is advantageous in that it enables a simpler heat exchanger design.
  • said shell encircles said desuperheater, said condenser and said subcooler.
  • said shell-and-plate heat exchanger comprises a refrigerant conduit through which said refrigerant is moved from said desuperheater to said condenser and wherein said refrigerant conduit is arranged inside said shell.
  • Arranging the refrigerant conduit inside the shell is advantageous in that complicated piping hereby can be avoided, thus reducing cost and simplifying installation.
  • said shell-and-plate heat exchanger comprises a coolant conduit extending continuously through said desuperheater, said condenser and said subcooler inside said common continuous shell.
  • Arranging the coolant conduit to extend continuously through the desuperheater, the condenser and the subcooler inside the shell is advantageous in that external piping is avoided, thus reducing cost and simplifying installation.
  • said desuperheater and said condenser are separated by a first separation plate arranged inside said common continuous shell and wherein said first separation plate comprises a refrigerant conduit and a coolant passage opening.
  • Arranging a separation plate between the desuperheater and the condenser is advantageous in that the plate will ensure that refrigerant is guided correctly from the desuperheater into the condenser, while at the same time ensuring that condensed liquid cannot pass from the condenser into the desuperheater.
  • the efficiency of both components is increased.
  • said condenser and said subcooler are separated by a second separation plate arranged inside said common continuous shell and wherein said second separation plate comprises only a coolant passage opening.
  • Arranging a separation plate between the condenser and the subcooler is advantageous in that the plate will prevent that refrigerant is passed directly from the condenser into the subcooler, hereby enabling that liquid and gaseous refrigerant can be separated to increase the functionality of the subcooler.
  • said continuous shell is formed as a monolithic tube.
  • Forming the shell as a monolithic tube is advantageous in that it simplifies the manufacturing process and reduces cost, since the shell is a pressure vessel.
  • said continuous shell is formed by two or more connected shell parts.
  • Forming the shell by two or more connected shell parts is advantageous in that hereby it is possible to subsequently open the shell e.g. in case of maintenance or repair work.
  • said heat exchanger comprises endplates welded to both ends of said shell.
  • said desuperheater heat transfer plates, said condenser heat transfer plates and said subcooler heat transfer plates are substantially identical.
  • Forming all the heat transfer plates inside the shell-and-plate heat exchanger substantially identical is advantageous in that it reduces production costs and simplifies assembly.
  • said common continuous shell is a pressure vessel designed and/or approved to withstand a pressure between 0.7 and 15 MPa, preferably between 1.5 and 10 MPa and most preferred between 2.5 and 7.5 MPa.
  • the present pressure ranges presents an advantageous relationship between safety and cost.
  • the invention also relates to a use of a shell-and-plate heat exchanger according to any of the claims 1-13 for cooling and condensing a refrigerant in a refrigeration cycle.
  • Using a shell-and-plate heat exchanger according to the present invention for cooling and condensing a refrigerant in a refrigeration cycle is advantageous in that it ensures a less expensive and a safer refrigeration cycle.
  • Figure 1 shows an embodiment of the shell-and-plate heat exchanger 1, as seen from the side.
  • the coolant inlet 22 is arranged in one endplate 21 and the coolant outlet 23 is arranged in the opposite endplate 21, while the refrigerant inlet 24 is arranged at the coolant outlet 23 end of the shell 8 and the refrigerant outlet 25 is arranged at the other end of the shell 8.
  • the refrigerant and the coolant are arranged to flow countercurrently but in another embodiment the refrigerant and the coolant could flow in the same direction through the heat exchanger 1.
  • the heat exchanger 1 could comprise more than one coolant inlet 22, coolant outlet 23, refrigerant inlet 24 and/or refrigerant outlet 25 and/or some or all the inlets 22, 24 and/or all the outlets 23, 25 could be arranged in the endplates 22.
  • the heat exchanger 1 comprises a desuperheater 2, a condenser 4 and a subcooler 6 arranged inside the same common continuous shell 8 encircling all three heat exchanger components.
  • Each of the desuperheater 2, the condenser 4 and the subcooler 6 are formed by a number of heat transfer plates 3, 5, 7 welded together as discussed in relation with fig. 4 .
  • the arrows on figure 1 illustrate a coolant flow through the coolant conduit 14 of the heat exchanger 1.
  • the coolant enters the heat exchanger 1 at the coolant inlet 22 and flows through the subcooler 6.
  • a second separation plate 18 blocks the access to the condenser 4 and thus forces the coolant to run transversely towards the upper coolant passage opening 17 in the second separation plate 18 from which it enters the condenser 4.
  • condenser coolant blocking means 30 forces the coolant to run transversely towards the bottom of the condenser 4 and then longitudinally until a first separation plate 15 forces the coolant upwards towards the upper coolant passage opening 17 in the first separation plate 15. From the coolant passage opening 17 the coolant is forced down through the desuperheater 2 and finally out through the coolant outlet 23.
  • the coolant performs one pass in the subcooler 6 and the desuperheater 2 and two passes in the condenser 4 but in another embodiment one or more of the desuperheater 2, condenser 4 and subcooler 6 could be arranged to comprise means for allowing fewer or particularly more passes.
  • the coolant is water e.g. circulating through an additional external air cooled heat exchanger or transporting the absorbed heat to a particular place where it can be utilised.
  • the coolant could be brine or another form of natural or artificial coolant suitable for flowing through a combined desuperheater 2, condenser 4 and subcooler 6.
  • the desuperheater heat transfer plates 3, the condenser heat transfer plates 5 and the subcooler heat transfer plates 7 are substantially identical to reduce production cost and to simplify the assembly but in another embodiment the plates 3, 5, 7 could be designed for their specific use, for their specific location in the heat exchanger 1, for specific temperatures, wherein making the design of the plates 3, 5, 7 in the heat exchanger different from each other.
  • all the plates 3, 5, 7, the shell 8 and the endplates 21 are all made from stainless steel because of its strength and durability but in another embodiment all or some of the heat exchanger parts could be made from another material such as titanium, aluminium, a composite material or other.
  • Fig. 2 shows an embodiment of the shell-and-plate heat exchanger 1, as seen from the side.
  • the arrows on figure 2 illustrate a refrigerant flow through the combined desuperheater 2, condenser 4 and subcooler 6.
  • the hot gaseous refrigerant enters the heat exchanger 1 through the refrigerant inlet 24 from which it is directed up through the desuperheater 2 to dissipate some of its heat to the coolant flowing through the inside of the plate pack in the desuperheater 2.
  • a refrigerant conduit 13 along the upper periphery of the first separation plate 15 ensures that the desuperheated gaseous refrigerant is directed into the condenser.
  • the refrigerant condenses while passing down through the relatively cold heat transfer plates 5 in the condenser 4.
  • the liquid refrigerant is then guided out of the shell 8 through the liquid refrigerant outlet 16 and collected in a liquid refrigerant container 9 arranged outside the shell 8.
  • a subcooler inlet conduit 10 extends down into the liquid refrigerant container 9 so that an conduit inlet opening 11 of the subcooler inlet conduit 10 is arranged at the bottom 12 of the liquid refrigerant container 9 to ensure that only liquid is guided into the subcooler 6.
  • the liquid refrigerant is further cooled before it exits the heat exchanger 1 through the refrigerant outlet 25 arranged at the top of the shell 8.
  • the refrigerant only makes one pass through each of the desuperheater 2, the condenser 4 and the subcooler 6 but in another embodiment one or more of the desuperheater 2, condenser 4 and subcooler 6 could be arranged to comprise means for allowing more than one pass.
  • the refrigerant is ammonia but in another embodiment the refrigerant could be carbon dioxide, Butane, a HFC , water vapour or another fluid suitable for acting as a refrigerant in a shell-and-plate heat exchanger 1.
  • the shell-and-plate heat exchanger 1 is used for cooling and condensing a refrigerant in a refrigeration cycle. I.e. after the cold liquid refrigerant leaves the shell-and-plate heat exchanger 1 it is typically directed to an expansion valve, which will reduce the pressure making at least some of the refrigerant evaporate and thus making its temperature drop drastically. At this stage the cold refrigerant is then used for cooling purposes by which the entire refrigerant evaporates. The gaseous refrigerant is then directed through a compressor compressing the refrigerant, which in turn raises its temperature drastically.
  • the hot gaseous refrigerant is then lead to the desuperheater 2, where the refrigerants temperature is lowered to just above the condensation temperature before it enters the condenser 4 where the gaseous refrigerant is condensed into a liquid refrigerant. Finally, the liquid refrigerant is cooled further in the subcooler 6 before the cycle is repeated.
  • the different components in the heat exchanger 1 i.e. the desuperheater 2, the condenser 4 and the subcooler 6 are separated by means of a first separation plate 15 and a second separation plate 18.
  • these components could be separated by means of dedicated gaskets (not shown) arranged to guide the refrigerant flow between the two neighbouring components .
  • gaskets are used instead of separation plates 15, 18, the desuperheater 2, condenser 4 and subcooler 6 could be formed as one big plate pack with coolant blocking means strategically arranged in one of the inlet cassette opening 26 and outlet cassette opening 27 where the gasket(s) is arranged - Inlet cassette opening 26 or outlet cassette opening 27 are shown and discussed in relation with fig. 4 .
  • Fig. 3 shows a cross section through a dividable shell-and-plate heat exchanger 1, as seen from the side.
  • the shell 8 is formed as a single monolithic cylindrical tube to increase the strength of the shell 8 and reduce the risk of unwanted stress concentrations in the shell 8.
  • the shell 8 could also be formed by a number of shell parts welded together or as disclosed in fig. 3 by means of several shell parts 19, 20 bolted together to ensure that the shell 8 subsequently can be opened e.g. in case of maintenance and/or repair.
  • the fully welded desuperheater heat transfer plate pack, condenser heat transfer plate pack and subcooler heat transfer plate pack allows quick and easy removal and refitting in the shell 8, thus ensuring that process downtime is kept to a minimum.
  • the first separation plate 15 is arranged to extend out between the two shell parts 19, 20 in the joint. It is hereby possible to securely arrange the first separation plate 15 in a fixed position.
  • Fig. 4 shows an embodiment of a heat transfer plate 3, 5, 7 for a shell-and-plate heat exchanger 1 according to the present invention, as seen from the front.
  • the plate 3, 5, 7 is welded back to back to another plate 3, 5, 7 to form a so-called cassette.
  • the plates 3, 5, 7 are welded along the outer periphery so that water entering the cassette at the inlet cassette opening 26 will only be able to exit the cassette through the outlet cassette opening 27.
  • a number of these cassettes are then welded together around the inlet cassette openings 26 and the outlet cassette openings 27 to form a desuperheater heat transfer plate pack, a condenser heat transfer plate pack and a subcooler heat transfer plate pack.
  • the coolant flow is then established inside the cassettes and the refrigerant flow is established across the outside of (i.e. between) the cassettes.
  • the plates 3, 5, 7 are primarily circular to fit into a circular shell 8 but in another embodiment the plates 3, 5, 7 could be formed differently to fit into a shell 8 of a different shape - such as oval or prolonged.
  • the plate 3, 5, 7 is provided with an embossed pattern of channels 29 so that when a cassette is formed the coolant can flow through these channels 29 from the inlet cassette opening 26 to the outlet cassette opening 27.
  • the embossed pattern also increases the surface area of the plate 3, 5, 7 thus increasing its heat transferring ability.
  • the plate 3, 5, 7 is provided with a peripheral cutting 28 both at the top and at the bottom of the plate 3, 5, 7 to allow the refrigerant to pass this plate along both the upper and the lower periphery while at the same time ensuring that the refrigerant does not pass along the sides of the plate 3, 5, 7 and ensuring that the plate 3, 5, 7 is firmly centred inside the shell 8.
  • the plates 3, 5, 7 - and thus the cassettes, and the plate packs - fits firmly inside the shell 8 to ensure correct refrigerant flow through and around the plates 3, 5, 7 but in another embodiment the plates 3, 5, 7, cassettes and /or plate packs could comprise gaskets or other form of sealing means ensuring correct flow through the shell 8.
  • the respective plate packs are also welded to the respective separation plates 15, 18 around the coolant passage openings 17, inlet cassette openings 26 and outlet cassette openings 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (14)

  1. Échangeur de chaleur à plaques et calandre (1) destiné à refroidir et condenser un réfrigérant en circulation, ledit échangeur de chaleur (1) comprenant un désurchauffeur (2) destiné à abaisser la température du réfrigérant gazeux à une température supérieure à la température de condensation dudit réfrigérant, dans lequel ledit désurchauffeur (2) est formé par un empilement de plaques de transfert de chaleur de désurchauffeur ondulées (3), ledit désurchauffeur (2) étant connecté à un condenseur (4) destiné à condenser ledit réfrigérant, dans lequel ledit condenseur (4) est formé par un empilement de plaques de transfert de chaleur de condenseur ondulées (5), ledit condenseur (4) étant connecté à un sous-refroidisseur (6) destiné à abaisser encore la température dudit réfrigérant condensé, dans lequel ledit sous-refroidisseur (6) est formé par un empilement de plaques de transfert de chaleur de sous-refroidisseur ondulées (7), et dans lequel ledit empilement de plaques de transfert de chaleur de désurchauffeur ondulées (3), ledit empilement de plaques de transfert de chaleur de condenseur ondulées (5) et ledit empilement de plaques de transfert de chaleur de sous-refroidisseur ondulées (7) sont agencés à l'intérieur de la même calandre continue commune (8), caractérisé en ce que ledit condenseur (4) et ledit sous-refroidisseur (6) sont connectés via un conteneur de réfrigérant liquide (9) agencé sous ledit empilement de plaques de transfert de chaleur de condensateur (5) et / ou ledit empilement de plaques de transfert de chaleur de sous-refroidisseur (7), dans lequel ledit réfrigérant condensé est collecté dans ledit conteneur de réfrigérant liquide (9) à partir duquel ledit réfrigérant liquide continue dans ledit sous-refroidisseur (6) à travers un conduit d'entrée de sous-refroidisseur (10).
  2. Échangeur de chaleur à plaques et calandre (1) selon la revendication 1, dans lequel une ouverture d'entrée de conduit (11) dudit conduit d'entrée de sous-refroidisseur (10) est agencée au fond (12) dudit conteneur de réfrigérant liquide (9).
  3. Échangeur de chaleur à plaques et calandre (1) selon la revendication 1 ou 2, dans lequel ledit conteneur de réfrigérant liquide (9) est agencé à l'extérieur de ladite calandre (8).
  4. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ladite calandre (8) enveloppe ledit désurchauffeur (2), ledit condenseur (4) et ledit sous-refroidisseur (6).
  5. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ledit échangeur de chaleur à plaques et calandre (1) comprend un conduit de réfrigérant (13) à travers lequel ledit réfrigérant est déplacé dudit désurchauffeur (2) audit condenseur (4) et dans lequel ledit conduit de réfrigérant (13) est agencé à l'intérieur de ladite calandre (8).
  6. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ledit échangeur de chaleur à plaques et calandre (1) comprend un conduit de réfrigérant (14) s'étendant en continu à travers ledit désurchauffeur (2), ledit condenseur (4) et ledit sous-refroidisseur (6) à l'intérieur de ladite calandre continue commune (8).
  7. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ledit désurchauffeur (2) et ledit condenseur (4) sont séparés par une première plaque de séparation (15) agencée à l'intérieur de ladite calandre continue commune (8) et dans lequel ladite première plaque de séparation (15) comprend un conduit de réfrigérant (13) et une ouverture de passage de réfrigérant (17).
  8. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ledit condenseur (4) et ledit sous-refroidisseur (6) sont séparés par une deuxième plaque de séparation (18) agencée à l'intérieur de ladite calandre continue commune (8) et dans lequel ladite deuxième plaque de séparation (18) comprend uniquement une ouverture de passage de réfrigérant (17).
  9. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ladite calandre continue (8) est formée sous la forme d'un tube monolithique.
  10. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications 1 à 8, dans lequel ladite calandre continue (8) est formée par deux ou plus parties de calandre connectées (19, 20).
  11. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ledit échangeur de chaleur (1) comprend des plaques d'extrémité (21) soudées aux deux extrémités de ladite calandre (8).
  12. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel lesdites plaques de transfert de chaleur de désurchauffeur (3), lesdites plaques de transfert de chaleur de condenseur (5) et lesdites plaques de transfert de chaleur de sous-refroidisseur (7) sont sensiblement identiques.
  13. Échangeur de chaleur à plaques et calandre (1) selon une ou plusieurs des revendications précédentes, dans lequel ladite calandre continue commune (8) est une cuve sous pression conçue et / ou certifiée pour résister à une pression comprise entre 0,7 et 15 MPa, de préférence entre 1,5 et 10 MPa et tout particulièrement entre 2,5 et 7,5 MPa.
  14. Utilisation d'un échangeur de chaleur à plaques et calandre (1) selon l'une quelconque des revendications précédentes pour refroidir et condenser un réfrigérant dans un cycle de réfrigération.
EP13181858.5A 2013-08-27 2013-08-27 Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque Active EP2843324B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES13181858T ES2848207T3 (es) 2013-08-27 2013-08-27 Un intercambiador de calor de carcasa y placas y el uso de un intercambiador de calor de carcasa y placas
DK13181858.5T DK2843324T3 (da) 2013-08-27 2013-08-27 Skal- og pladevarmeveksler og anvendelse af en skal- og pladevarmeveksler
EP13181858.5A EP2843324B1 (fr) 2013-08-27 2013-08-27 Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque
CN201480043801.4A CN105473958B (zh) 2013-08-27 2014-08-05 一种壳板式热交换器及壳板式热交换器的使用
PCT/DK2014/050236 WO2015028021A1 (fr) 2013-08-27 2014-08-05 Échangeur de chaleur à plaques et calandre et utilisation d'un échangeur de chaleur à plaques et calandre
US14/906,602 US20160161191A1 (en) 2013-08-27 2014-08-05 Shell-and-plate heat exchanger and use of a shell-and-plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13181858.5A EP2843324B1 (fr) 2013-08-27 2013-08-27 Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque

Publications (2)

Publication Number Publication Date
EP2843324A1 EP2843324A1 (fr) 2015-03-04
EP2843324B1 true EP2843324B1 (fr) 2020-12-23

Family

ID=49033974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13181858.5A Active EP2843324B1 (fr) 2013-08-27 2013-08-27 Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque

Country Status (6)

Country Link
US (1) US20160161191A1 (fr)
EP (1) EP2843324B1 (fr)
CN (1) CN105473958B (fr)
DK (1) DK2843324T3 (fr)
ES (1) ES2848207T3 (fr)
WO (1) WO2015028021A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10537465B2 (en) * 2015-03-31 2020-01-21 Zoll Circulation, Inc. Cold plate design in heat exchanger for intravascular temperature management catheter and/or heat exchange pad
EP3179190A1 (fr) * 2015-12-11 2017-06-14 Alfa Laval Corporate AB Échangeur thermique à plaque
EP3236188B1 (fr) * 2016-04-18 2018-12-19 Hamilton Sundstrand Corporation Échangeurs thermiques
EP3236190A1 (fr) * 2016-04-19 2017-10-25 HS Wroclaw Sp. z o.o. Échangeurs thermiques
FI127511B (en) 2016-12-19 2018-08-15 Vahterus Oy Evaporator and method for vaporizing the substance in the evaporator
CN106872372B (zh) * 2017-03-17 2023-11-17 广西电网有限责任公司电力科学研究院 一种用于气体分析的恒温积分球装置
EP3489604B1 (fr) * 2017-11-24 2020-12-23 TitanX Holding AB Condenseur de véhicule
US11221151B2 (en) * 2019-01-15 2022-01-11 Johnson Controls Technology Company Hot gas reheat systems and methods
CN114945792B (zh) * 2020-01-14 2023-12-22 大金工业株式会社 板壳式热交换器
CN115003976B (zh) 2020-01-14 2024-03-12 大金工业株式会社 板壳式热交换器
JP6860095B1 (ja) * 2020-01-14 2021-04-14 ダイキン工業株式会社 シェルアンドプレート式熱交換器
JP2023089961A (ja) * 2021-12-16 2023-06-28 ダンフォス アクチ-セルスカブ 多流路プレートおよびシェル熱交換器
CN116105404B (zh) * 2023-02-17 2024-04-26 珠海格力电器股份有限公司 换热器和制冷系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846733A1 (fr) * 2002-10-31 2004-05-07 Valeo Thermique Moteur Sa Condenseur, notamment pour un circuit de cimatisation de vehicule automobile, et circuit comprenant ce condenseur
EP2476975A2 (fr) * 2011-01-12 2012-07-18 Behr GmbH & Co. KG Dispositif de transfert thermique pour un véhicule

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2075511A (en) * 1936-01-17 1937-03-30 Baufre William Lane De Heat exchanger
US2392638A (en) * 1944-04-13 1946-01-08 Westinghouse Electric Corp Heat exchange apparatus
US2797554A (en) * 1954-01-06 1957-07-02 William J Donovan Heat exchanger in refrigeration system
US2864589A (en) * 1955-06-14 1958-12-16 United Aircraft Prod Heat transfer device
JPS6039960B2 (ja) * 1982-09-01 1985-09-09 株式会社日阪製作所 シエルアンドプレ−ト式熱交換器
US5129449A (en) * 1990-12-26 1992-07-14 Sundstrand Corporation High performance heat exchanger
EP0901602B1 (fr) 1996-05-24 2000-02-23 Alenko AG Echangeur de chaleur et appareil pour réaliser un cycle réversible
FI114738B (fi) * 2000-08-23 2004-12-15 Vahterus Oy Levyrakenteinen lämmönvaihdin
RU2206851C1 (ru) * 2001-12-27 2003-06-20 Худяков Алексей Иванович Кожухопластинчатый теплообменник (варианты)
US7635456B2 (en) * 2006-08-08 2009-12-22 Kellogg Brown & Root Llc Low pressure drop reforming reactor
US20090100854A1 (en) * 2007-10-18 2009-04-23 Ilya Reyzin Evaporatively cooled condenser
FI20095267A (fi) * 2009-03-13 2010-09-14 Mauri Kontu Levylämmönsiirrin ja menetelmä levylämmönsiirtimen paineenkestävyyden parantamiseksi
US20120011867A1 (en) * 2009-04-03 2012-01-19 Carrier Corporation Multi-circuit heat exchanger
US9239193B2 (en) * 2011-02-17 2016-01-19 Delphi Technologies, Inc. Unitary heat pump air conditioner having a heat exchanger with an integral receiver and sub-cooler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846733A1 (fr) * 2002-10-31 2004-05-07 Valeo Thermique Moteur Sa Condenseur, notamment pour un circuit de cimatisation de vehicule automobile, et circuit comprenant ce condenseur
EP2476975A2 (fr) * 2011-01-12 2012-07-18 Behr GmbH & Co. KG Dispositif de transfert thermique pour un véhicule

Also Published As

Publication number Publication date
EP2843324A1 (fr) 2015-03-04
US20160161191A1 (en) 2016-06-09
DK2843324T3 (da) 2021-03-08
CN105473958A (zh) 2016-04-06
ES2848207T3 (es) 2021-08-05
CN105473958B (zh) 2019-01-04
WO2015028021A1 (fr) 2015-03-05

Similar Documents

Publication Publication Date Title
EP2843324B1 (fr) Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque
EP2780650B1 (fr) Enceinte et échangeur de chaleur à tubes
US7845397B2 (en) Dryer for humid compressed gases
US9823025B2 (en) Heat recovery system having a plate heat exchanger
EP2673585B1 (fr) Échangeur de chaleur à plaques brazé pour dissipation thermique refroidie à l'eau dans un circuit de réfrigération
CN105066729B (zh) 一种具有分液功能的板式冷凝器
EP3034965B1 (fr) Condenseur bloc et plaque, procédé d'extraction d'huile à partir d'un fluide frigorigène et utilisation d'un tel condenseur
JP2020521100A (ja) 冷凍システム
CA1053097A (fr) Rechauffeur d'eau d'alimentation
JP6341099B2 (ja) 冷媒蒸発器
WO2008024066A1 (fr) Échangeur de chaleur à plaques et installation d'échangeur de chaleur
EP2787314B1 (fr) Échangeur de chaleur à tuyau double et climatiseur l'utilisant
EP3650794B1 (fr) Échangeur de chaleur à calandre et utilisation d'un tel échangeur de chaleur à calandre
US11725856B2 (en) Refrigerant processing unit, a method for evaporating a refrigerant and use of a refrigerant processing unit
US20230349604A1 (en) Receiver drier and economizer integration for vapor injection system
RU2570281C1 (ru) Газоразделительная теплообменная установка
EP0067044B1 (fr) Echangeur de chaleur
CN110094996A (zh) 一种应用于造纸设备的换热器
JP2011007467A (ja) プレート式熱交換容器
JP3567349B2 (ja) アンモニア冷凍装置
EP3637017B1 (fr) Agencement destiné à être utilisé dans un système de réfrigération à compression de vapeur
CN209639562U (zh) 一种应用于造纸设备的换热器
CN205619783U (zh) 一种板式冷凝器
KR20170026583A (ko) 블록­인­쉘 열 교환기
Sharifnia et al. Superchanger heat exchanger

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150831

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170502

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013074841

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1348128

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1348128

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201223

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2848207

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013074841

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210827

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210827

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 11

Ref country code: FI

Payment date: 20230828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 11

Ref country code: FR

Payment date: 20230824

Year of fee payment: 11

Ref country code: DK

Payment date: 20230824

Year of fee payment: 11

Ref country code: DE

Payment date: 20230828

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223