EP2841608B1 - Apparatus and method for priming a molten metal filter - Google Patents

Apparatus and method for priming a molten metal filter Download PDF

Info

Publication number
EP2841608B1
EP2841608B1 EP13728509.4A EP13728509A EP2841608B1 EP 2841608 B1 EP2841608 B1 EP 2841608B1 EP 13728509 A EP13728509 A EP 13728509A EP 2841608 B1 EP2841608 B1 EP 2841608B1
Authority
EP
European Patent Office
Prior art keywords
filter
coil
liquid metal
priming
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13728509.4A
Other languages
German (de)
French (fr)
Other versions
EP2841608A1 (en
Inventor
Mark William KENNEDY
Shahid Akhtar
Robert FRITZSCH
Jon Arne Bakken
Ragnhild Elisabeth AUNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norwegian University of Science and Technology NTNU
Original Assignee
Norwegian University of Science and Technology NTNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norwegian University of Science and Technology NTNU filed Critical Norwegian University of Science and Technology NTNU
Publication of EP2841608A1 publication Critical patent/EP2841608A1/en
Application granted granted Critical
Publication of EP2841608B1 publication Critical patent/EP2841608B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • C22B9/023By filtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention involves the priming of filters for removal of solid inclusions from liquid metal.
  • Disclosed herein are an apparatus and a method for priming a molten metal filter.
  • Ceramic filters and commonly Ceramic Foam Filters are currently available to purify liquid metal, such as disclosed in US Patent Number 3,893,917 . Most often this involves the removal of solid inclusions from liquid metal, such as steel and aluminum. These solid inclusions can lead to physical defects in the final metal products if not removed prior to solidification.
  • the open porosity of the filter In order to most efficiently use the filter media, the open porosity of the filter must be completely filled with liquid metal. Completely filing the filter with liquid metal improves the wetting of the surface of the filter media to facilitate the collection of the solid inclusions.
  • the problem to be solved is that incomplete priming results in locally higher liquid velocities in the active parts of the filter, higher operational pressure drops or lower total liquid metal throughput, combined with lower collection efficiency for the solid inclusions.
  • a common practice is to place a ceramic foam filter with a gasket material into a filtering device or 'bowl', such that the metal height builds up over the filter and is forced by gravity into and through the filter medium. The inclusions are then removed by either deep or bed filtration mechanisms.
  • Belley, L., et al. disclose a method using a vacuum system to generate an additional pressure gradient of about 6 kPa or about 25 cm of liquid aluminum head equivalent for the express purpose of increasing the effective priming pressure to ensure adequate priming for ceramic foam filters with a thickness from 2.5 to 7.6 cm and a low average pore or "window" size of 150-500 microns, which are typical of filters with 60 or more PPI. These filters otherwise require substantial metallostatic heads (vertical distance from trough bottom to filter top) to ensure adequate priming. Belley et al. also disclose that the typical range of priming heads for Ceramic Foam Filters is from about 20-80 cm. Higher values are associated with higher pore density and smaller window sizes, and are often impractical to implement at existing casting operations.
  • Filters are normally preheated to try to improve the flow of metal into the filter media and, hence, the priming efficiency for a fixed metal height over the filter. Difficulties are often encountered in obtaining uniform heating without localized overheating that can lead to thermal damage of the filter media. This makes it difficult to ensure that the entire filter area will be available to pass liquid metal.
  • US Patent Number 4,834,876, Walker, N.G. claims a process by which the non-conductive ceramic filter is rendered electrically conductive by the coating of the filter media particles with a conductive substance like nickel or by using an electrically conductive material, such as silicon carbide to construct the filter media. By passing a current through the media or by surrounding the filter with an induction coil to induce eddy currents, the media could be caused to self-heat due to the resistive (I 2 R) losses to ensure preheating and complete priming.
  • the inventors are well aware of the vorticity in the magnetic and Lorentz forces produced via such an induction coil and have therefore designed the method to make maximum advantageous use of the vorticity, in order to press metal into the filter media to achieve a better degree of priming with a low metallostatic head.
  • the term "priming” refers to the displacement of air contained in the open pore structure of a filter (e.g., a ceramic foam filter) and the improvement of wetting of the filter media by the liquid metal, thus, allowing the maximum volume and internal surface area to be available to pass flow and collect particles.
  • a filter e.g., a ceramic foam filter
  • inclusion refers to any contaminant of the liquid metal having a melting point greater than the metal, and therefore being solid at the processing temperature.
  • Various aspects of the present invention relate to: (1) a method of priming, without the use of externally applied vacuum or gas pressure, by applying a low frequency induction coil (1-60 Hz) to ensure complete priming of a non-electrically conductive filter element; (2) a method of priming to improve priming and subsequent operation of ceramic foam filters with small 'window' size, such as those typical of 50-80 PPI commercial Ceramic Foam Filters, in order to operate with higher efficiency and produce a metal product containing fewer inclusions; (3) a method of priming which allows thicker than traditional ceramic foam filters or a stack of traditional filters to be primed; and (4) an apparatus that allows filter media including previously used filter media, to be maintained hot or reheated, and subsequently reused for more than one casting cycle.
  • the apparatus for priming a filter includes a filter element contained in a filter bowl configured to receive a liquid metal flow; an induction coil surrounding the filter element, wherein said induction coil is accommodated in a separator separating the induction coil from the liquid metal flow and configured to produce a magnetic field, an axis of the induction coil being substantially aligned with an introduction direction of the liquid metal flow; and a gasket configured to provide a secure enclosure to a circumference of the filter element.
  • a low frequency induction coil is placed around and in very close proximity to a ceramic filter media, such as a Ceramic Foam Filter element or stack of said filter elements.
  • a ceramic filter media such as a Ceramic Foam Filter element or stack of said filter elements.
  • the presence of a magnetic field allows priming of thicker filters than the conventional industry standard of approximately 50 mm.
  • the total allowable thickness is determined by the installed length of the induction coil.
  • the orientation the coil and filter elements can be either vertical or horizontal, provided a path is made available for gas to escape during priming.
  • the electrical conductors of the induction coil can have many different shapes. For example, flat round, tubular, rectangular, or square. Unlike traditional induction furnace coils, the coils of the present invention need not be constructed for low electrical resistance, as they are not being used as part of a device primarily intended for electrically efficient melting. Thus, a higher current density can be advantageously used (e.g. 50 A/mm 2 vs. typical values from 1-10 A/mm 2 ) resulting in proportionately smaller diameter conductors that can provide more turns in a given height of coil, with a corresponding increase in the magnetic field strength. Single, double or more layers of coils can also be used advantageously to achieve even higher magnetic field strengths over the height of the filter media. Induction coils with more than 3 layers can also be used, but with diminishing benefits of additional magnetic field strength.
  • the filter media is substantially horizontal and surrounded by an induction coil.
  • the induction coil is positioned to extend over the upper surface of the filter element, which places the top of the filter within the zone of high longitudinal magnetic flux density.
  • the flux density of the magnetic field is very strong over the complete height of the coil, but dissipates rapidly after the last turn of the coil.
  • Another aspect of the invention features metal poured onto the filter to at least as high as the top of the coil.
  • the metal is substantially higher than the top of the coil to prevent the formation of a significant metal meniscus, and to reduce the potential for oxidation of the metal during priming.
  • the magnetic field of the coil induces eddy currents in the metal sitting on the filter media, which interact with the coil's strong magnetic field, to produce powerful Lorentz forces.
  • the depth at which these forces can be produced is enhanced by the use of a low alternating frequency in the coil excitation current.
  • a filter element with a large width will require the use of a lower frequency to achieve similar results to those of a smaller width filter.
  • the frequency of the coil excitation current is preferably between 1 and 60 Hz, and more preferably between 50 to 60 Hz. This frequency range provides an optimal combination of stirring and heating. Higher frequencies can optionally be used if a greater degree of heating is required to re-melt metal frozen in previously used filter media.
  • the radius of a round filter or the width of a rectangular or square filter is selected, such that the standard electrical line frequency of 50 or 60 Hz can be utilized to provide an optimal beneficial effect.
  • the coil and filter apparatus can be round, square or rectangular in section without deviating from the purpose of this invention.
  • a rectangular shape has the advantage that the overall filter area can be maximized, while minimizing the width that the magnetic field must be made to penetrate.
  • a rectangular shape can eliminate the need to use frequencies below the line frequency (50 or 60 Hz), where costly solid state power supplies become necessary.
  • the Lorentz forces are initially produced only in the metal and not in the non-electrically conductive filter media. Therefore, a large initial vorticity exists in the Lorentz force field, which causes rotation of the metal and impingement onto the surface of the filter element. It is the momentum of the impinging metal that forces metal into the filter.
  • the inventors have found that within the filter media, current flow is inhibited to a surprising degree by the presence of the ceramic matrix. As a result, less current flows within the filter than in the metal over or under the filter, thus reducing the magnitude of the Lorentz forces.
  • the reduced effective electrical conductivity in the filter ensures that a substantial vorticity in the Lorentz forces continues to exist up to and past the point of complete filter priming. The result is that metal is forced into and through the filter media.
  • Higher pore density filters e.g. 50 and 80 PPI, have increased resistivity, which increases the vorticity in the Lorentz forces and provides the increased driving forces to prime these 'tighter' filter elements.
  • liquid metal will initially freeze on the surface of the filter media.
  • solid metal has a substantially higher electrical conductivity than the liquid metal at the same temperature (approximately a factor of two for aluminum)
  • the solid will preferentially conduct current, while at the same time being impinged upon by fast flowing liquid metal. Being forced to remain stationary and within the height of the inductor, it will experience continuous heating until it liquefies.
  • the filter element is preheated by conventional means to reduce thermal stresses in order to prevent cracking. However, preheating is not a requirement for priming, even for very tight 80 PPI filter elements.
  • the excitation of the coil can be stopped. Thereafter, conventional casting procedures can be used. On completion of the batch casting process, it is typical to dispose of the filter media because it is difficult to reuse in the absence of continuous metal flow.
  • a used filter element can be reused until its capacity to remove inclusions is completely exhausted.
  • a used filter element can be reused by applying a period of inductive heating prior to priming with liquid metal or by maintaining the filter filled with liquid metal between casts by using continuous induction heating.
  • an excitation current higher than 60 Hz is advantageously used. This utilizes a dual frequency power supply, which could optionally be combined with a second coil specifically designed for the melting operation.
  • the patent or application file contains at least one drawing executed in color.
  • FIG. 1 shows a conventional filter 'bowl' 1 as typically used with Ceramic Foam Filters.
  • FIG. 1 is suitably modified in accordance with the present invention to include an induction coil 2 .
  • a two layer induction coil 2 is shown in FIG. 1 .
  • a single, double or more layer coil could also be used without changing the purpose of the invention.
  • a standard Ceramic Foam Filter element 3 is shown installed within the induction coil 2 .
  • two or more filter elements could be stacked without deviating from the purpose of the present invention, provided that the coil 2 extends above the upper surface of the top of filter 3 by one coil turn or at least 5% and preferably 10% of the coil radius, as indicated by dotted line 13 in FIG. 1 .
  • the induction coil 2 is preferably placed as close as possible to the edge of filter 3 to achieve the most advantageous results of the magnetic field. Suitable space must be allowed for gasket material 4 to prevent leakage of the liquid metal around the filter 3 and for thermal insulation and refractory material 5 . Sufficient thermal insulation and refractory material must be present to avoid the contact of the hot metal in the upper portion of the bowl 6 or discharge portion of the bowl 7 , with coil 2 or with the coil leads 8 . Those skilled in the art understand that a suitable cooling media (organic or water) must be used in combination with coil leads 8 and coil 2 , to prevent electrical or thermal overheating and damage to the electrical conductors.
  • a suitable cooling media organic or water
  • the bowl In order to function as a filtration device, the bowl must be equipped with a suitable liquid metal feed 9 and discharge means 10 .
  • the sides 11 and bottom 12 of the bowl must be designed with adequate refractory to maintain the heat balance of the metal to be filtered.
  • the filter 3 may be preheated by conventional means to prevent excessive thermal shock prior to use.
  • a current is impressed on the induction coil of sufficient magnitude to generate an average magnetic flux density of 0.05-0.25 T, across the width of the un-primed filter.
  • the frequency of the coil excitation current is preferably between 1 and 60 Hz.
  • the frequency of the coil excitation current is preferably in a range where the ratio between the electromagnetic penetration depth ( ⁇ ) in the liquid metal in the upper portion of the bowl 6 and the average radius or width of the filter 3 is between preferably 0.5 and 3.0, and more preferably between 0.7 and 1.4, in order to achieve both a sufficiently high magnetic penetration and avoid excessive heating.
  • liquid metal is added to the upper part of the bowl 6 via inlet 9 with current applied to coil 2 .
  • liquid metal is added first, and then current is applied to coil 2 .
  • liquid metal fills the upper portion of bowl 6 to a sufficient height over the last turn of coil 2, such that an electromagnetic meniscus is prevented from forming. This embodiment also avoids excessive oxidation of the metal during priming.
  • Electromagnetic priming can be accomplished with minimal liquid metal over the upper surface of the filter.
  • a liquid metal height of about 5-10 cm is over the top turn of the coil 2.
  • metallostatic pressures from about 1.1 to 3.6 kPa is preferred to achieve adequate priming of CFF filters between 30 and 80 PPI, while avoiding excessive meniscus formation, and using average magnetic flux densities in the range of 0.1-0.2 T in the space between coil and filter.
  • current is continued for periods of time from about 30 seconds to about 10 minutes, and even more preferably to about 3-6 minutes. Once adequate priming has been achieved, the excitation current to the coil 2 can be discontinued.
  • a filter element 3 can optionally be reused by first using induction coil 2 to re-melt the metal frozen in the pores of the filter 3 .
  • induction coil 2 to re-melt the metal frozen in the pores of the filter 3 .
  • a frequency >60 Hz can be applied.
  • a dual frequency power supply may therefore be beneficially used with the present method.
  • a skilled practitioner may specify the frequency, current and time in order to achieve the desired melting in the correct amount of time, without significant overheating and possible damage to the filter elements, while achieving a high electrical efficiency.
  • a second coil can optionally be designed and installed coaxially to coil 2 to achieve even more energy efficient melting.
  • CFF Ceramic Foam Filter
  • a standard aluminum casting alloy, A356 was used in all examples, to which various levels of contaminants were added.
  • oxide particles were also added by the addition of 20% by weight anodized and lacquered aluminum plates.
  • a laboratory scale filter bowl was created by cementing a nominal 105 mm diameter, 30 PPI CFF into two sections of 150 mm long by 4" diameter fiber insulating crucibles, such that the midline of Coil 1 was coincident with the bottom of the CFF and approximately a single turn of the coil was over the upper surface of the CFF.
  • the bottom of the bowl was constructed from a dense ceramic plate, ⁇ 25 mm thick, in which a 3.2 mm diameter discharge hole had been drilled.
  • the filter was preheated to a glowing red temperature using a hand held propane burner.
  • An RMS current of 731 A was applied to Coil 1 at 50 Hz.
  • A356 aluminum alloy, containing both SiC and oxide particles and at a nominal initial pouring temperature of 750°C (as measured by immersion thermocouple seconds before pouring) was added to the upper portion of the bowl up to a level of 100 mm over the top of the CFF. This level was maintained until the feeding crucible was emptied after 110 seconds. Power was interrupted after 260 seconds, when aluminum was no longer discharging from the outlet hole. The measured temperature over and under the filter and the discharge rate of the aluminum were data logged as indicated in FIGURE 7 .
  • the heating effect of the induction coil is clearly illustrated in FIGURE 13 , with the lower temperature rising with time, even as the temperature of the metal over the filter decreases. Average coil current during filtration was 715 A, due to the increased electrical resistance caused by the liquid metal. This effect is present in all examples and well known to those skilled in the art.
  • the filter was subsequently sectioned using abrasive water cutting, due to the high concentration of extremely hard and abrasive SiC particles.
  • One section is shown as FIG. 4 . Areas containing high gas porosity and exhibiting poor metal-ceramic wetting were ablated during the cutting process. In this example where the filter was primed with a 'strong' magnetic field, very little material was ablated and good wetting was observed macroscopically as well as microscopically during subsequent metallographic analysis with a scanning electron microscope.
  • An apparatus was constructed using Coil 2, but otherwise identical to EXAMPLE 1.
  • the filter was similarly preheated.
  • An RMS current of 956 A was applied to Coil 2.
  • the same recipe of alloy, SiC and oxide was added, at a nominal pouring temperature of 750°C.
  • the temperature over and under the filter and the discharge rate of the aluminum were again measured as shown in FIG. 8 .
  • the feeding crucible was emptied after 110 seconds and the power was interrupted after 215 seconds.
  • This filter element which had been primed with a 'weak' magnetic field, was again cut using water abrasive cutting and in this case much greater porosity and less wetting of the ceramic was observed as indicated by the loss of ceramic material during cutting shown clearly in FIG. 5 .
  • An apparatus was constructed without an induction coil, but otherwise identical to EXAMPLES 1 and 2.
  • the filter was preheated till glowing red and again the same feed recipe and target pouring temperatures were used.
  • the level of priming metal was maintained at 100 mm over the filter element for 145 seconds until the feeding crucible was emptied.
  • the temperature over, under and the discharge rate of the aluminum were again measured as shown in FIG. 9 .
  • One section of the filter element is pictured in FIG. 6 , showing the very high porosity and very poor wetting of the filter element, when compared to FIGS. 4 and 5 from EXAMPLES 1 and 2.
  • the poor priming of the filter is also indicated by the reduced discharge rate of the metal for the same metallostatic head over the filter and the same size of the discharge orifice. Priming results were best with the 'strong' field, less good with the 'weak' field and poorest with no magnetic field.

Description

    TECHNICAL FIELD
  • This invention involves the priming of filters for removal of solid inclusions from liquid metal. Disclosed herein are an apparatus and a method for priming a molten metal filter.
  • BACKGROUND OF THE INVENTION
  • Ceramic filters and commonly Ceramic Foam Filters (CFF) are currently available to purify liquid metal, such as disclosed in US Patent Number 3,893,917 . Most often this involves the removal of solid inclusions from liquid metal, such as steel and aluminum. These solid inclusions can lead to physical defects in the final metal products if not removed prior to solidification.
  • In order to most efficiently use the filter media, the open porosity of the filter must be completely filled with liquid metal. Completely filing the filter with liquid metal improves the wetting of the surface of the filter media to facilitate the collection of the solid inclusions. The problem to be solved is that incomplete priming results in locally higher liquid velocities in the active parts of the filter, higher operational pressure drops or lower total liquid metal throughput, combined with lower collection efficiency for the solid inclusions.
  • A common practice is to place a ceramic foam filter with a gasket material into a filtering device or 'bowl', such that the metal height builds up over the filter and is forced by gravity into and through the filter medium. The inclusions are then removed by either deep or bed filtration mechanisms. The poor wetting characteristics of these ceramic filters and the need to remove the air contained within the pores, often leads to difficulties, particularly at the start of the filtration operation.
  • The significance of priming in filtration is disclosed in a number of Patents and Patent Applications, such as US Patent Number 4,872,908, where Enright, P.G. et al. describe the definition and role of priming in detail and also give specific efficiency data when removing 20 micron particles (between -13.4 and 54.8%) using LiMCA for 30 PPI filters The large range in filtration efficiency can be partly attributed to the impact of priming on filter performance. US Patent Number 4,081,371, Yarwood, J.C. et al. describe the need to remove gas bubbles from within the ceramic foam filter, and the roles of metallostatic head and filter angle on priming. Generally speaking higher total pressure (from metallostatic head or other means) improves priming efficiency. In US Patent Application 09/867,144, Quackenbush, M.S. , disclose a filter media, without the application of mechanical forces to encourage air bubble release, for the purpose of releasing trapped air bubbles to ensure an easier and more complete priming of the filter media.
  • In US Patent Number 7,666,248, Belley, L., et al. disclose a method using a vacuum system to generate an additional pressure gradient of about 6 kPa or about 25 cm of liquid aluminum head equivalent for the express purpose of increasing the effective priming pressure to ensure adequate priming for ceramic foam filters with a thickness from 2.5 to 7.6 cm and a low average pore or "window" size of 150-500 microns, which are typical of filters with 60 or more PPI. These filters otherwise require substantial metallostatic heads (vertical distance from trough bottom to filter top) to ensure adequate priming. Belley et al. also disclose that the typical range of priming heads for Ceramic Foam Filters is from about 20-80 cm. Higher values are associated with higher pore density and smaller window sizes, and are often impractical to implement at existing casting operations.
  • Filters are normally preheated to try to improve the flow of metal into the filter media and, hence, the priming efficiency for a fixed metal height over the filter. Difficulties are often encountered in obtaining uniform heating without localized overheating that can lead to thermal damage of the filter media. This makes it difficult to ensure that the entire filter area will be available to pass liquid metal. In US Patent Number 4,834,876, Walker, N.G. claims a process by which the non-conductive ceramic filter is rendered electrically conductive by the coating of the filter media particles with a conductive substance like nickel or by using an electrically conductive material, such as silicon carbide to construct the filter media. By passing a current through the media or by surrounding the filter with an induction coil to induce eddy currents, the media could be caused to self-heat due to the resistive (I2R) losses to ensure preheating and complete priming.
  • A process involving the use of a low frequency induction coil and Ceramic Foam Filter elements has been presented in US Patent 4,837,385 by Calogero, C. et al. In this process a number of different means were presented, whereby a crossed current and magnetic field could be created, which would generate Lorentz forces. Some of these methods involve the use of electrodes and a so-called 'injection current' which is undesirable as the electrodes are a potential source of contamination to the liquid metal being filtered. The theory behind the process disclosed by Calogero et al. was that the Lorentz forces would act preferentially on the metal and not the inclusions, thus causing migration of the inclusions and interception of the inclusions by the walls of the filter media. The impact of the magnetic field on the priming of the filter media was not disclosed. Furthermore, the mechanism described by Calogero depends on the absence of any significant curl or vorticity in the magnetic and Lorentz force fields. However, as disclosed in US Patent 4,909,836 , vorticity is always present in these fields when a normal induction coil with a constant helical pitch is used as the source of crossed current and magnetic field. One aspect of the present invention uses an induction coil in order to avoid direct contact and contamination of the liquid metal. A standard constant pitch induction coil is used. The inventors are well aware of the vorticity in the magnetic and Lorentz forces produced via such an induction coil and have therefore designed the method to make maximum advantageous use of the vorticity, in order to press metal into the filter media to achieve a better degree of priming with a low metallostatic head.
  • A paper by Kennedy et al in Light Metals 2011, ed. Stephen J Lindsay, from TMS (The Minerals, Metals and Materials Society), discloses an experimental set-up in which the meniscus behavior of molten aluminum under varying magnetic field strength is studied. Batch type filtration experiments are conducted.
  • DEFINITIONS
  • As used herein, the term "priming" refers to the displacement of air contained in the open pore structure of a filter (e.g., a ceramic foam filter) and the improvement of wetting of the filter media by the liquid metal, thus, allowing the maximum volume and internal surface area to be available to pass flow and collect particles.
  • As used herein, the term "inclusion" refers to any contaminant of the liquid metal having a melting point greater than the metal, and therefore being solid at the processing temperature.
  • SUMMARY OF THE INVENTION
  • The invention is defined in the appended set of claims. Various aspects of the present invention relate to: (1) a method of priming, without the use of externally applied vacuum or gas pressure, by applying a low frequency induction coil (1-60 Hz) to ensure complete priming of a non-electrically conductive filter element; (2) a method of priming to improve priming and subsequent operation of ceramic foam filters with small 'window' size, such as those typical of 50-80 PPI commercial Ceramic Foam Filters, in order to operate with higher efficiency and produce a metal product containing fewer inclusions; (3) a method of priming which allows thicker than traditional ceramic foam filters or a stack of traditional filters to be primed; and (4) an apparatus that allows filter media including previously used filter media, to be maintained hot or reheated, and subsequently reused for more than one casting cycle.
  • In one embodiment, the apparatus for priming a filter includes a filter element contained in a filter bowl configured to receive a liquid metal flow; an induction coil surrounding the filter element, wherein said induction coil is accommodated in a separator separating the induction coil from the liquid metal flow and configured to produce a magnetic field, an axis of the induction coil being substantially aligned with an introduction direction of the liquid metal flow; and a gasket configured to provide a secure enclosure to a circumference of the filter element.
  • In one embedment, a low frequency induction coil is placed around and in very close proximity to a ceramic filter media, such as a Ceramic Foam Filter element or stack of said filter elements. The presence of a magnetic field allows priming of thicker filters than the conventional industry standard of approximately 50 mm. The total allowable thickness is determined by the installed length of the induction coil.
  • The orientation the coil and filter elements can be either vertical or horizontal, provided a path is made available for gas to escape during priming.
  • The electrical conductors of the induction coil can have many different shapes. For example, flat round, tubular, rectangular, or square. Unlike traditional induction furnace coils, the coils of the present invention need not be constructed for low electrical resistance, as they are not being used as part of a device primarily intended for electrically efficient melting. Thus, a higher current density can be advantageously used (e.g. 50 A/mm2 vs. typical values from 1-10 A/mm2) resulting in proportionately smaller diameter conductors that can provide more turns in a given height of coil, with a corresponding increase in the magnetic field strength. Single, double or more layers of coils can also be used advantageously to achieve even higher magnetic field strengths over the height of the filter media. Induction coils with more than 3 layers can also be used, but with diminishing benefits of additional magnetic field strength.
  • In one embodiment, the filter media is substantially horizontal and surrounded by an induction coil. The induction coil is positioned to extend over the upper surface of the filter element, which places the top of the filter within the zone of high longitudinal magnetic flux density. The flux density of the magnetic field is very strong over the complete height of the coil, but dissipates rapidly after the last turn of the coil.
  • Another aspect of the invention features metal poured onto the filter to at least as high as the top of the coil. In a preferred embodiment, the metal is substantially higher than the top of the coil to prevent the formation of a significant metal meniscus, and to reduce the potential for oxidation of the metal during priming. The magnetic field of the coil induces eddy currents in the metal sitting on the filter media, which interact with the coil's strong magnetic field, to produce powerful Lorentz forces. The depth at which these forces can be produced is enhanced by the use of a low alternating frequency in the coil excitation current. A filter element with a large width will require the use of a lower frequency to achieve similar results to those of a smaller width filter.
  • The heating efficiency of the coil increases with frequency. In an aspect of the invention, the frequency of the coil excitation current is preferably between 1 and 60 Hz, and more preferably between 50 to 60 Hz. This frequency range provides an optimal combination of stirring and heating. Higher frequencies can optionally be used if a greater degree of heating is required to re-melt metal frozen in previously used filter media. In a preferred embodiment, the radius of a round filter or the width of a rectangular or square filter is selected, such that the standard electrical line frequency of 50 or 60 Hz can be utilized to provide an optimal beneficial effect.
  • The coil and filter apparatus can be round, square or rectangular in section without deviating from the purpose of this invention. A rectangular shape has the advantage that the overall filter area can be maximized, while minimizing the width that the magnetic field must be made to penetrate. A rectangular shape can eliminate the need to use frequencies below the line frequency (50 or 60 Hz), where costly solid state power supplies become necessary.
  • The Lorentz forces are initially produced only in the metal and not in the non-electrically conductive filter media. Therefore, a large initial vorticity exists in the Lorentz force field, which causes rotation of the metal and impingement onto the surface of the filter element. It is the momentum of the impinging metal that forces metal into the filter.
  • The inventors have found that within the filter media, current flow is inhibited to a surprising degree by the presence of the ceramic matrix. As a result, less current flows within the filter than in the metal over or under the filter, thus reducing the magnitude of the Lorentz forces. The reduced effective electrical conductivity in the filter ensures that a substantial vorticity in the Lorentz forces continues to exist up to and past the point of complete filter priming. The result is that metal is forced into and through the filter media. Higher pore density filters, e.g. 50 and 80 PPI, have increased resistivity, which increases the vorticity in the Lorentz forces and provides the increased driving forces to prime these 'tighter' filter elements.
  • If the filter media is not preheated, liquid metal will initially freeze on the surface of the filter media. Given that solid metal has a substantially higher electrical conductivity than the liquid metal at the same temperature (approximately a factor of two for aluminum), the solid will preferentially conduct current, while at the same time being impinged upon by fast flowing liquid metal. Being forced to remain stationary and within the height of the inductor, it will experience continuous heating until it liquefies. In a preferred embodiment, the filter element is preheated by conventional means to reduce thermal stresses in order to prevent cracking. However, preheating is not a requirement for priming, even for very tight 80 PPI filter elements.
  • Once the filter media is substantially filled with metal, the excitation of the coil can be stopped. Thereafter, conventional casting procedures can be used. On completion of the batch casting process, it is typical to dispose of the filter media because it is difficult to reuse in the absence of continuous metal flow.
  • A used filter element can be reused until its capacity to remove inclusions is completely exhausted. A used filter element can be reused by applying a period of inductive heating prior to priming with liquid metal or by maintaining the filter filled with liquid metal between casts by using continuous induction heating. In one aspect, an excitation current higher than 60 Hz is advantageously used. This utilizes a dual frequency power supply, which could optionally be combined with a second coil specifically designed for the melting operation. References
    3,893,917 7/1975 Pror et al. 210/69
    4,081,371 3/1978 Yarwood et al. 210/69
    4,834,876 5/1989 Walker 210/185
    4,837,385 6/1989 Conti et al. 210/695
    4,872,908 10/1989 Enright et al. 75/68
    7,666,248 2/2010 Belley et al. 75/407
    09/867,144 12/2002 Quackenbush 210/510.1
    4,909,836 03/1990 El-Kaddah 75/10.67
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawing executed in color.
    • FIG. 1 is a schematic drawing of one embodiment of the present invention.
    • FIG. 2 is a Scanning Electron Microscope picture showing the relatively open structure of a new 30 PPI Ceramic Foam Filter.
    • FIG. 3 is a Scanning Electron Microscope picture showing the relatively closed structure perpendicular to the normal direction of metal flow of a new 80 PPI Ceramic Foam Filter.
    • FIG. 4 depicts a photograph of a non-limiting example of priming a 30 PPI ceramic filter in accordance with an embodiment of the present invention.
    • FIG. 5 depicts a photograph of a non-limiting example of priming a 30 PPI ceramic filter in accordance with an embodiment of the present invention.
    • FIG. 6 depicts a photograph of incomplete priming of a 30 PPI ceramic filter without the presence of an induction coil.
    • FIG. 7 is a graph showing the data logged data for EXAMPLE 1.
    • FIG. 8 is a graph showing the data logged data for EXAMPLE 2.
    • FIG. 9 is a graph showing the data logged data for EXAMPLE 3.
    • FIG. 10 depicts a photograph of a non-limiting example of priming a 50 PPI CFF in accordance with an embodiment of the present invention.
    • FIG. 11 depicts a photograph of negligible priming of a 50 PPI CFF without the presence of an induction coil.
    • FIG. 12 depicts a photograph of a non-limiting example of priming an 80 PPI CFF in accordance with an embodiment of the present invention.
    • FIG. 13 is a photograph showing negligible priming of an 80 PPI CFF without the presence of an induction coil.
    DETAILED DESCRIPTION OF THE INVENTION
  • For purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings. It will nonetheless be understood that no limitation of the scope of the invention is intended by the illustration and description of certain embodiments of the invention. In addition, any alterations and/or modifications of the illustrated and/or described embodiment(s) are contemplated as being within the scope of the present invention. Further, any other applications of the principles of the invention, as illustrated and/or described herein, as would normally occur to one skilled in the art to which the invention pertains, are contemplated as being within the scope of the present invention.
  • FIG. 1 shows a conventional filter 'bowl' 1 as typically used with Ceramic Foam Filters. FIG. 1 is suitably modified in accordance with the present invention to include an induction coil 2. A two layer induction coil 2 is shown in FIG. 1. A single, double or more layer coil could also be used without changing the purpose of the invention.
  • A standard Ceramic Foam Filter element 3 is shown installed within the induction coil 2. Alternatively, two or more filter elements could be stacked without deviating from the purpose of the present invention, provided that the coil 2 extends above the upper surface of the top of filter 3 by one coil turn or at least 5% and preferably 10% of the coil radius, as indicated by dotted line 13 in FIG. 1.
  • The induction coil 2 is preferably placed as close as possible to the edge of filter 3 to achieve the most advantageous results of the magnetic field. Suitable space must be allowed for gasket material 4 to prevent leakage of the liquid metal around the filter 3 and for thermal insulation and refractory material 5. Sufficient thermal insulation and refractory material must be present to avoid the contact of the hot metal in the upper portion of the bowl 6 or discharge portion of the bowl 7, with coil 2 or with the coil leads 8. Those skilled in the art understand that a suitable cooling media (organic or water) must be used in combination with coil leads 8 and coil 2, to prevent electrical or thermal overheating and damage to the electrical conductors.
  • Contact must be prevented between the conductors 8 and between the layers of the coil 2 to prevent electrical short circuiting of the excitation current.
  • In order to function as a filtration device, the bowl must be equipped with a suitable liquid metal feed 9 and discharge means 10. The sides 11 and bottom 12 of the bowl must be designed with adequate refractory to maintain the heat balance of the metal to be filtered. The filter 3 may be preheated by conventional means to prevent excessive thermal shock prior to use.
  • In a preferred embodiment of the invention, a current is impressed on the induction coil of sufficient magnitude to generate an average magnetic flux density of 0.05-0.25 T, across the width of the un-primed filter. The frequency of the coil excitation current is preferably between 1 and 60 Hz. The frequency of the coil excitation current is preferably in a range where the ratio between the electromagnetic penetration depth (δ) in the liquid metal in the upper portion of the bowl 6 and the average radius or width of the filter 3 is between preferably 0.5 and 3.0, and more preferably between 0.7 and 1.4, in order to achieve both a sufficiently high magnetic penetration and avoid excessive heating.
  • In one preferred embodiment, liquid metal is added to the upper part of the bowl 6 via inlet 9 with current applied to coil 2. Alternatively, liquid metal is added first, and then current is applied to coil 2. In a preferred embodiment, liquid metal fills the upper portion of bowl 6 to a sufficient height over the last turn of coil 2, such that an electromagnetic meniscus is prevented from forming. This embodiment also avoids excessive oxidation of the metal during priming.
  • Electromagnetic priming can be accomplished with minimal liquid metal over the upper surface of the filter. Preferably, a liquid metal height of about 5-10 cm is over the top turn of the coil 2. Alternatively, metallostatic pressures from about 1.1 to 3.6 kPa is preferred to achieve adequate priming of CFF filters between 30 and 80 PPI, while avoiding excessive meniscus formation, and using average magnetic flux densities in the range of 0.1-0.2 T in the space between coil and filter.
  • In one aspect of the invention, current is continued for periods of time from about 30 seconds to about 10 minutes, and even more preferably to about 3-6 minutes. Once adequate priming has been achieved, the excitation current to the coil 2 can be discontinued.
  • Once a filter element 3 has been used, it can optionally be reused by first using induction coil 2 to re-melt the metal frozen in the pores of the filter 3. Those skilled in the art understand that a higher frequency is advantageous for melting. A frequency >60 Hz can be applied. A dual frequency power supply may therefore be beneficially used with the present method. A skilled practitioner may specify the frequency, current and time in order to achieve the desired melting in the correct amount of time, without significant overheating and possible damage to the filter elements, while achieving a high electrical efficiency. A second coil can optionally be designed and installed coaxially to coil 2 to achieve even more energy efficient melting.
  • The present invention can be better understood with reference to specific examples. These examples are illustrative and are not intended to restrict the applicability of the present invention. These examples were conducted using several different coils as indicated in TABLE I. These coils were operated at 50 Hz using applied currents as indicated in the various examples. TABLE I
    Coils: Coil 1 Coil 2 Coil 3
    Number of layers 2 1 2
    Inside diameter, mm 126 126 127
    Average diameter, mm 140 132 142
    Height, mm 107 111 116
    Coil copper tube diameter, mm 6 6 6
    Coil copper tube thickness, mm 1 1 1
    Number of turns 31.0 16.5 31.0
    Measured inductance of empty coil, µH 103.3 27.6 101.5
  • Nominal filter dimensions of 100-105 mm diameter and 50 mm thick where used in these examples. 30, 50 and 80 PPI commercial Ceramic Foam Filter (CFF) elements were used. SEM pictures of 30 and 80 PPI commercial CFF's are shown in FIGS. 2 and 3. It can be clearly seen in these figures that the 30 PPI has a very open structure, while the pore and window size of the 80 PPI is much reduced. The open structure of the 30 PPI allows for very easy priming with low metal head and less preheating, but it also makes for reduced filtration efficiency especially for fine inclusions in the liquid metal. It is more difficult to get metal to penetrate and remove the air from the closed and tight structure of the 80 PPI CFF, thus requiring increased priming metal heights, as is well known to those skilled in the art.
  • A standard aluminum casting alloy, A356 was used in all examples, to which various levels of contaminants were added. 1.5 wt% (EXAMPLES 4-6) - 3 wt% (EXAMPLES 1-3) SiC was added, using 13-23 micron SiC particles embedded in a matrix of A356 alloy. In EXAMPLES 1-3, oxide particles were also added by the addition of 20% by weight anodized and lacquered aluminum plates.
  • EXAMPLE 1
  • A laboratory scale filter bowl was created by cementing a nominal 105 mm diameter, 30 PPI CFF into two sections of 150 mm long by 4" diameter fiber insulating crucibles, such that the midline of Coil 1 was coincident with the bottom of the CFF and approximately a single turn of the coil was over the upper surface of the CFF. The bottom of the bowl was constructed from a dense ceramic plate, ∼25 mm thick, in which a 3.2 mm diameter discharge hole had been drilled.
  • The filter was preheated to a glowing red temperature using a hand held propane burner. An RMS current of 731 A was applied to Coil 1 at 50 Hz. A356 aluminum alloy, containing both SiC and oxide particles and at a nominal initial pouring temperature of 750°C (as measured by immersion thermocouple seconds before pouring) was added to the upper portion of the bowl up to a level of 100 mm over the top of the CFF. This level was maintained until the feeding crucible was emptied after 110 seconds. Power was interrupted after 260 seconds, when aluminum was no longer discharging from the outlet hole. The measured temperature over and under the filter and the discharge rate of the aluminum were data logged as indicated in FIGURE 7. The heating effect of the induction coil is clearly illustrated in FIGURE 13, with the lower temperature rising with time, even as the temperature of the metal over the filter decreases. Average coil current during filtration was 715 A, due to the increased electrical resistance caused by the liquid metal. This effect is present in all examples and well known to those skilled in the art.
  • The filter was subsequently sectioned using abrasive water cutting, due to the high concentration of extremely hard and abrasive SiC particles. One section is shown as FIG. 4. Areas containing high gas porosity and exhibiting poor metal-ceramic wetting were ablated during the cutting process. In this example where the filter was primed with a 'strong' magnetic field, very little material was ablated and good wetting was observed macroscopically as well as microscopically during subsequent metallographic analysis with a scanning electron microscope.
  • EXAMPLE 2
  • An apparatus was constructed using Coil 2, but otherwise identical to EXAMPLE 1. The filter was similarly preheated. An RMS current of 956 A was applied to Coil 2. The same recipe of alloy, SiC and oxide was added, at a nominal pouring temperature of 750°C. The temperature over and under the filter and the discharge rate of the aluminum were again measured as shown in FIG. 8. The feeding crucible was emptied after 110 seconds and the power was interrupted after 215 seconds. This filter element, which had been primed with a 'weak' magnetic field, was again cut using water abrasive cutting and in this case much greater porosity and less wetting of the ceramic was observed as indicated by the loss of ceramic material during cutting shown clearly in FIG. 5.
  • EXAMPLE 3
  • An apparatus was constructed without an induction coil, but otherwise identical to EXAMPLES 1 and 2. The filter was preheated till glowing red and again the same feed recipe and target pouring temperatures were used. The level of priming metal was maintained at 100 mm over the filter element for 145 seconds until the feeding crucible was emptied. The temperature over, under and the discharge rate of the aluminum were again measured as shown in FIG. 9. One section of the filter element is pictured in FIG. 6, showing the very high porosity and very poor wetting of the filter element, when compared to FIGS. 4 and 5 from EXAMPLES 1 and 2. The poor priming of the filter is also indicated by the reduced discharge rate of the metal for the same metallostatic head over the filter and the same size of the discharge orifice. Priming results were best with the 'strong' field, less good with the 'weak' field and poorest with no magnetic field.
  • EXAMPLE 4
  • An apparatus similar to EXAMPLES 1-3 was constructed, but without a discharge hole in the bottom plate. Coil number 3 was used. A 50 PPI commercial Ceramic Foam Filter (CFF), 100 mm in diameter was placed such that the bottom of the filter was at the same elevation as the midline of the coil and the coil extended approximately one turn above the upper surface of the 50 mm thick filter. A feed consisting of A356 aluminum alloy and 1.5 wt% SiC was used. The filter was not preheated. The upper portion of the filter bowl was filled with the liquid aluminum feed material at a nominal pouring temperature of 750°C, up to a level of 100 mm over the upper surface of the filter element. An excitation current of 738 A was then applied to the coil. Over approximately 20 seconds, metal was drawn into the filter and metal was added to maintain a nearly constant height of 100 mm over the filter (104 mm measured after freezing). Current was maintained for precisely 180 seconds. The power was then stopped and the sample solidified. The filter element was then sectioned using a steel blade. The polished section is shown in FIG. 10, showing very low porosity and complete metal penetration of the filter element.
  • EXAMPLE 5
  • An apparatus substantially identical to EXAMPLE 4 was constructed, but without an induction coil. The same feed recipe and filling procedure were used. Again no preheating of the filter element was applied. After filling to 100 mm over the top of the CFF, no decrease in metal height was observed. On disassembly of the apparatus the filter element separated from the 100 mm of metal, which was frozen over the filter and it was observed that only a very minor amount of metal penetration had occurred (<20 mm) as shown in FIGURE 11. The balance of the filter media was completely devoid of metal and priming had therefore failed. The difference in the results between EXAMPLES 4 and 5 were dramatic, with the only substantial difference in execution being a 'strong' magnetic field in the case of EXAMPLE 4 and no magnetic field in EXAMPLE 5.
  • EXAMPLE 6
  • An apparatus substantially identical to EXAMPLES 4 and 5 was constructed, but using an 80 PPI, instead of a 50 PPI CFF. The same procedures and feed recipe from EXAMPLE 4 were used. After filling with liquid alloy to 100 mm over the top of the filter, an excitation current of 747 A was applied to coil 3. Over a period of approximately 30-40 seconds, metal was drawn into the filter element and metal was added over the filter to maintain a level of 100 mm (99 mm measured after freezing). Current was maintained again for precisely 180 seconds. The power was then stopped and the sample solidified. This filter element was then cut using water abrasive cutting. Priming was extremely successful as indicated by the complete metal penetration, low gas porosity and good wetting shown in FIG. 12.
  • EXAMPLE 7
  • An apparatus substantially identical to EXAMPLE 6 was constructed, but without an induction coil. The same filling procedures and feed recipe were again used. Liquid aluminum alloy containing the SiC particles was added over the 80 PPI filter element up to a height of approximately 100 mm. No decrease in the metal height was detected. The sample was then solidified. On disassembly, the metal which extended 103 mm over the top of the filter element, separated from the balance of the filter, which was completely free of metal. Approximately 0-5 mm of filter material remained attached to the frozen metal, as shown in FIG. 13. It was concluded that priming had completely failed. Again the only substantive difference between EXAMPLE 6 and 7 was that a 'strong' magnetic field had been used in EXAMPLE 6 and no magnetic field was applied in EXAMPLE 7.
  • The presence of the strong magnetic field in EXAMPLES 4 and 6 was responsible for the good priming even in the absence of filter preheating. The lack of magnetic fields, combined with no preheating and the low metallostatic height over the filters in EXAMPLES 5 and 7 resulted in a failure to prime.
  • It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the scope of the appended claims.

Claims (13)

  1. A method of priming a non-electrically conductive ceramic filter for removal of solid inclusions from liquid metal, wherein said filter is contained in a filter bowl, and is surrounded by an induction coil whose axis is substantially aligned with the direction of the desired net metal flow, said method comprising:
    a) applying an alternating excitation current to the induction coil;
    b) adding sufficient liquid metal to cover an upstream side of the filter element;
    c) allowing the currents induced in the liquid metal by the coil and the magnetic field of the coil to create Lorentz forces which press upon and stir the liquid metal such that the liquid metal is pressed into the ceramic, hence priming the filter; and
    d) discontinuing the excitation current once a predetermined degree of priming has been obtained.
  2. The method according to claim 1, wherein the design of the coil and magnitude of the applied current generate an average magnetic field strength of at least 0.05T, for example between 0.05 and 0.25T, for example between 0.1 and 0.2T, in a space between the coil and ceramic filter.
  3. The method according to claim 1 or 2, wherein the liquid metal is an aluminum alloy.
  4. The method according to any preceding claim, wherein the liquid metal is first added to the filter bowl and then current is applied to the induction coil.
  5. The method according to any preceding claim, wherein the non-electrically conductive ceramic filter is a ceramic foam filter of between 30 and 80 PPI and 25-75 mm of thickness.
  6. The method according to any preceding claim, wherein 2 or more ceramic foam filters are combined to a total thickness of 50-150 mm.
  7. The method according to any preceding claim, wherein the coil extends at least one turn and between 5 and 10% of the radius of the coil, but less than half of a total length of the coil, over the upper surface of the top of the filter.
  8. The method according to any preceding claim, wherein the metal extends between 5 and 15 cm over the top of the coil.
  9. The method according to any preceding claim, wherein the frequency applied to the induction coil is between 1-60 Hz, for example selected to give a ratio of electromagnetic penetration depth between 0.5 and 3.0 and preferably between 0.7 and 1.4.
  10. The method according to claim 9, wherein local electrical line frequency can be used by adjusting the width or diameter of the filter element to achieve the preferred ratios.
  11. An apparatus for priming a filter, comprising:
    a filter element 3 contained in a filter bowl 1 configured to receive a liquid metal flow;
    an induction coil 2, such as a single layer coil or multi-layer coil, surrounding the filter element 3, wherein said induction coil 2 is accommodated in a separator separating the induction coil 2 from the liquid metal flow and configured to produce a magnetic field, an axis of the induction coil 2 being substantially aligned with an introduction direction of the liquid metal flow; and
    a gasket 4 configured to provide a secure enclosure to a circumference of the filter element 3.
  12. The apparatus according to claim 11, wherein the induction coil 2 extends, along the axis, above an upper surface, facing the liquid metal flow, of the filter element 3.
  13. The apparatus according to claim 12, further comprising:
    - a liquid metal feed configured to lead the liquid metal feed to the filter element 3; and a discharge device 10; and/or
    - a preheating device configured to preheat the filter element prior to introducing the liquid metal flow.
EP13728509.4A 2012-04-27 2013-04-25 Apparatus and method for priming a molten metal filter Active EP2841608B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261639196P 2012-04-27 2012-04-27
PCT/IB2013/000775 WO2013160754A1 (en) 2012-04-27 2013-04-25 Apparatus and method for priming a molten metal

Publications (2)

Publication Number Publication Date
EP2841608A1 EP2841608A1 (en) 2015-03-04
EP2841608B1 true EP2841608B1 (en) 2019-05-29

Family

ID=48614066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13728509.4A Active EP2841608B1 (en) 2012-04-27 2013-04-25 Apparatus and method for priming a molten metal filter

Country Status (11)

Country Link
US (1) US9605332B2 (en)
EP (1) EP2841608B1 (en)
JP (2) JP6181743B2 (en)
KR (2) KR101808103B1 (en)
CN (2) CN106498175B (en)
CA (1) CA2871245C (en)
ES (1) ES2740430T3 (en)
HK (1) HK1207126A1 (en)
IN (1) IN2014DN09893A (en)
RU (1) RU2604082C2 (en)
WO (1) WO2013160754A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808103B1 (en) * 2012-04-27 2018-01-18 노르웨이전 유니버시티 오브 사이언스 앤드 테크놀러지(엔티엔유) Apparatus and method for priming a molten metal filter
EP3463613A4 (en) * 2016-05-31 2019-06-19 Alcoa Canada Co. Apparatus and methods for filtering metals
WO2018050751A1 (en) * 2016-09-16 2018-03-22 Technische Universität Bergakademie Freiberg Method for purifying a metal melt in an induction furnace
JP7125422B2 (en) * 2017-04-10 2022-08-24 パイロテック インコーポレイテッド filter handling tools
CN107916336A (en) * 2017-12-14 2018-04-17 宁夏太阳镁业有限公司 A kind of magnesium alloy refining copple
WO2020061459A1 (en) * 2018-09-21 2020-03-26 Pyrotek, Inc. Electromagnetic priming of molten metal filters
CA3173559A1 (en) * 2020-02-28 2021-09-02 Kenzo Takahashi Molten metal purification device
CA3188399A1 (en) 2020-08-24 2022-03-03 Reza KATAL Process for removing impurities in the recycling of lithium-ion batteries

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893917A (en) 1974-01-02 1975-07-08 Alusuisse Molten metal filter
JPS51106744A (en) * 1975-03-14 1976-09-21 Sankyo Co
US4024056A (en) 1975-07-21 1977-05-17 Swiss Aluminium Ltd. Filtering of molten metal
GB1537548A (en) 1975-03-28 1978-12-29 Alusuisse Ceramic foam filters
NO148381C (en) * 1975-03-28 1983-09-28 Alusuisse CERAMIC FOAM FILTER FOR MILT METAL FILTERING, PROCEDURE FOR ITS MANUFACTURING AND APPLICATION OF THE FILTER
US4212592A (en) * 1978-10-31 1980-07-15 General Electric Company Electromagnetic pump for molten metals
JPS5645717A (en) * 1979-09-21 1981-04-25 Hitachi Ltd Method and apparatus for filtration of magnetic coating agent
US4331621A (en) 1981-03-19 1982-05-25 Swiss Aluminium Ltd. Method for bonding a gasket seal to surface of ceramic foam filter
GB8631085D0 (en) 1986-12-31 1987-02-04 Alcan Int Ltd Metal treatment
FR2614801B1 (en) * 1987-05-07 1989-06-23 Pechiney Aluminium PROCESS FOR SEPARATION BY FILTRATION OF THE INCLUSIONS CONTAINED IN A LIQUID METAL BATH
JPH01127663A (en) * 1987-11-09 1989-05-19 Fujitsu Ltd Thin metallic film and target material for forming same
JPH01127663U (en) * 1988-02-12 1989-08-31
US4834876A (en) 1988-03-14 1989-05-30 Walker Nicholas G Filtration assembly having integral heating means for maintaining the metallic material being filtered in the molten state
US4909836A (en) 1988-10-18 1990-03-20 The University Of Alabama Apparatus and a method for improved filtration of inclusions from molten metal
US4990059A (en) * 1988-12-19 1991-02-05 Aluminum Company Of America Method for filtering liquid-phase metals
JPH10263798A (en) * 1997-03-14 1998-10-06 Selee Corp Device for removing inclusion from molten metal
RU2130503C1 (en) * 1998-06-17 1999-05-20 Красноярский государственный технический университет Device for electromagnetic refining of conducting melts
JP2000197947A (en) * 1998-10-26 2000-07-18 Kobe Steel Ltd Method for removing non-metallic inclusion
CN1151290C (en) * 2001-02-20 2004-05-26 上海交通大学 Electromagnetic filter method for purifying molten aluminium and aluminium alloy
CN1132947C (en) * 2001-02-20 2003-12-31 上海交通大学 Electromagnetic filter for purifying molten aluminium and aluminium allloy
CN1175118C (en) 2001-11-01 2004-11-10 上海交通大学 Electromagnetic filter method for removing iron element from aluminium-silicon alloy
CN1169980C (en) * 2001-12-11 2004-10-06 上海交通大学 Equipment for removing non-metal impurities from molten aluminium
CA2556860C (en) 2004-02-24 2008-11-18 Alcan International Limited Method of priming filter for molten metal
US20070022841A1 (en) * 2005-07-29 2007-02-01 Lectrotherm, Inc. Direct casting utilizing stack filtration
CN100503875C (en) * 2007-03-29 2009-06-24 上海交通大学 Continuous and electromagnetic separating method for zinc slag in heat galvanizing liquid
EP2462250B1 (en) * 2009-08-06 2017-03-29 Rolls-Royce Corporation Liquid device having filter
WO2011028549A2 (en) * 2009-08-24 2011-03-10 Porvair Plc Corrosion resistant glass coating applied to ceramic foam used to filter molten metal
CN201545895U (en) * 2009-10-09 2010-08-11 李扬德 Magnesium alloy recycled material remelting and refining device
KR101808103B1 (en) * 2012-04-27 2018-01-18 노르웨이전 유니버시티 오브 사이언스 앤드 테크놀러지(엔티엔유) Apparatus and method for priming a molten metal filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
IN2014DN09893A (en) 2015-08-07
CN104334758B (en) 2016-12-28
KR101750516B1 (en) 2017-06-23
CA2871245C (en) 2017-10-17
JP2018024020A (en) 2018-02-15
WO2013160754A8 (en) 2014-11-27
JP6181743B2 (en) 2017-08-16
US20150322543A1 (en) 2015-11-12
RU2014145808A (en) 2016-06-20
KR20170069306A (en) 2017-06-20
US9605332B2 (en) 2017-03-28
RU2604082C2 (en) 2016-12-10
JP2015536808A (en) 2015-12-24
JP6484674B2 (en) 2019-03-13
CN106498175A (en) 2017-03-15
KR20150018506A (en) 2015-02-23
CN106498175B (en) 2019-03-12
WO2013160754A1 (en) 2013-10-31
CA2871245A1 (en) 2013-10-31
ES2740430T3 (en) 2020-02-05
CN104334758A (en) 2015-02-04
KR101808103B1 (en) 2018-01-18
HK1207126A1 (en) 2016-01-22
EP2841608A1 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
EP2841608B1 (en) Apparatus and method for priming a molten metal filter
JP2731787B2 (en) Induction heating apparatus and method
US20230304124A1 (en) Filter handling tool
WO2007018243A1 (en) Purification apparatus and method of purification
EP3011245B1 (en) Method for holding and circulating a liquid metal and apparatus therefore
KR20160142871A (en) Continuous strip casting apparatus comprising a form adjustment system and continuous casting method
Fritzsch et al. Effect of electromagnetic fields on the priming of high grade ceramic foam filters (CFF) with liquid aluminum
US9574826B2 (en) Crucible and dual frequency control method for semi-liquid metal processing
Kennedy et al. Electromagnetically enhanced filtration of aluminum melts
Fritzsch et al. Electromagnetically modified filtration of liquid aluminium with a ceramic foam filter
JP7386854B2 (en) Electromagnetic priming of molten metal filters
JP2009543954A (en) Method for producing sputtering target and sputtering target produced by the method
JP2004099959A (en) Method and device for cleaning material containing impurity
JP3762141B2 (en) Control method of semi-melting separation method of brazing sheet scrap
JP3122321B2 (en) Continuous casting equipment and melting furnace by induction heating with magnetic flux interruption device
JPS5922099Y2 (en) Sliding type molten inorganic material discharge device
Yu et al. Refining Mechanism of Pure Aluminum under Local Electromagnetic Vibration
JPH0663706A (en) Continuous casting apparatus provided with mechanism for preventing mixture of slag

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1207126

Country of ref document: HK

17Q First examination report despatched

Effective date: 20161012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1138294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013056010

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2740430

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013056010

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

26N No opposition filed

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200425

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1138294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230310

Year of fee payment: 11

Ref country code: GB

Payment date: 20230302

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230412

Year of fee payment: 11

Ref country code: ES

Payment date: 20230510

Year of fee payment: 11

Ref country code: DE

Payment date: 20230307

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230327

Year of fee payment: 11