EP2839059B1 - Method of forming an electrolytic bath for making a platinum-based metallic underlayer on a metallic substrate - Google Patents

Method of forming an electrolytic bath for making a platinum-based metallic underlayer on a metallic substrate Download PDF

Info

Publication number
EP2839059B1
EP2839059B1 EP13722499.4A EP13722499A EP2839059B1 EP 2839059 B1 EP2839059 B1 EP 2839059B1 EP 13722499 A EP13722499 A EP 13722499A EP 2839059 B1 EP2839059 B1 EP 2839059B1
Authority
EP
European Patent Office
Prior art keywords
solution
platinum
bath
salt
hpo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13722499.4A
Other languages
German (de)
French (fr)
Other versions
EP2839059A1 (en
Inventor
Juliette Hugot
Frédéric Lagrange
Hervé MOLET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2839059A1 publication Critical patent/EP2839059A1/en
Application granted granted Critical
Publication of EP2839059B1 publication Critical patent/EP2839059B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • C25D3/52Electroplating: Baths therefor from solutions of platinum group metals characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated

Definitions

  • the invention relates to a method of manufacturing an electrolytic bath for producing a platinum-based metal underlayer on a metal substrate.
  • Such metal sub-layers belong in particular to a coating on a substrate consisting of a metal part called to withstand high mechanical and thermal stresses in operation, in particular a superalloy substrate.
  • a thermomechanical part constitutes in particular an aeronautical or terrestrial turbine engine part. Said part may for example be a blade or a turbomachine turbine distributor and in particular in a high-pressure turbojet or turboprop turboprop turbine.
  • the limit temperature of use of the superalloys is of the order of 1100 ° C, the temperature of the gases at the outlet of the combustion chamber or turbine inlet up to 1600 ° C.
  • thermal barriers in aircraft engines has become widespread over the last thirty years and makes it possible to increase the inlet temperature of the gases in the turbines, to reduce the cooling air flow and thus improve the efficiency of the engines.
  • this insulating coating makes it possible to create on a cooled part, in steady state of operation, a thermal gradient across the coating, whose total amplitude can exceed 100 ° C for a coating of about 150 to 200 microns thick. having a conductivity of 1.1 Wm -1 .K -1 .
  • the operating temperature of the underlying metal forming the substrate for the coating is reduced by the same gradient, which results in significant gains in the necessary cooling air volume, the service life of the part and the specific consumption of the material. turbine engine.
  • a thermal barrier comprising a yttria-stabilized zirconia-based ceramic layer, namely a yttria-containing zirconia comprising a molar content of yttrium oxide between 4 and 12% (especially between 6 and 8%), which has a coefficient of expansion different from the superalloy constituting the substrate and a relatively low thermal conductivity.
  • zirconia-based ceramic layer partially stabilized with yttrium oxide for example Zr 0.92 Y 0.08 O 1.96 .
  • a metal underlayer with a coefficient of expansion ideally close to the substrate, is generally interposed between the substrate of the part and the ceramic layer.
  • the metal sub-layer firstly makes it possible to reduce the stresses due to the difference between the thermal expansion coefficients of the ceramic layer and the superalloy forming the substrate.
  • This underlayer also provides adhesion between the substrate of the part and the ceramic layer, knowing that the adhesion between the underlayer and the substrate of the part is by inter-diffusion, and that the adhesion between the underlayer and the ceramic layer is made by mechanical anchoring and by the propensity of the underlayer to be developed at high temperature, at the ceramic / underlayer interface, a thin oxide layer which ensures the chemical contact with ceramics.
  • this metal sub-layer ensures the protection of the superalloy of the part against corrosion and oxidation phenomena (the ceramic layer is permeable to oxygen).
  • a sublayer consisting of a nickel aluminide comprising a metal selected from platinum, chromium, palladium, ruthenium, iridium, osmium, rhodium, or mixture of these metals and / or a reactive element selected from zirconium (Zr), cerium (Ce), lanthanum (La), titanium (Ti), tantalum (Ta), hafnium (Hf), silicon (Si) and yttrium (Y).
  • Zr zirconium
  • Ce cerium
  • La lanthanum
  • Ti titanium
  • Ta tantalum
  • Hf hafnium
  • Si silicon
  • Y yttrium
  • a (Ni, Pt) Al type coating is used in which the platinum is inserted into the nickel network of the ⁇ -NiAl intermetallic compounds.
  • platinum When developing thermal barriers, platinum has a dual role: it is a diffusion barrier to prevent the diffusion of aluminum from the layer to the substrate.
  • platinum aluminide increases the corrosion resistance at high temperature and the adhesion of protective layers.
  • platinum aluminide coatings rapidly degrade at 1100 ° C: there are phase transformations related to the inter-diffusion of the elements of the coating and the substrates.
  • this metal sub-layer may consist of a NiPtAl platinum-modified nickel aluminide, according to a process comprising the following steps: the preparation of the surface of the part by chemical etching and sanding; depositing on the part, by electrolysis, a platinum coating (Pt); the possible heat treatment of the assembly to diffuse Pt in the room; aluminum deposition (Al) by chemical vapor deposition (CVD) or physical vapor deposition (PVD); the possible heat treatment of the assembly to diffuse Pt and Al in the room; the preparation of the surface of the formed metallic underlayer; and electron beam evaporation (EB-PVD) deposition of a ceramic coating.
  • Pt platinum coating
  • Al aluminum deposition
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • EB-PVD electron beam evaporation
  • the platinum is deposited electrolytically before the thermochemical treatment of aluminization in the vapor phase.
  • electroplating reduces a complexed metal entity initially present in the solution by passing an electric current over a conductive part (the cathode). between an anode (electrode seat of an oxidation reaction) and a cathode on which deposition takes place (and on which other reduction reactions can take place simultaneously).
  • the pH of these solutions can be basic, acidic or neutral.
  • the compounds obtained after the extraction of platinum are ammonium hexachloroplatinate (IV): (NH 4 ) 2 PtCl 6 or potassium hexachloroplatinate (IV): K 2 PtCl 6 .
  • the main platinum compounds present in the casting baths are derived from the transformation of these compounds.
  • electroplating baths for depositing platinum have been proposed to date and include a number of chemical species in aqueous solution, giving the bath its properties.
  • the present invention aims to provide an electrolytic bath for the deposition of platinum on a metal substrate, which electrolytic bath has an improvement in technical performance, including identical or almost identical parameters and deposition conditions regardless of the geometry of the piece, an identical or almost identical deposition rate regardless of the current density applied, a deposition quality in accordance with the specifications, and an improved service life.
  • a complex resulting from the bond between an amino ligand and a platinum metal salt is preferred.
  • a ligand without carbon chain and a single amine function NH 3 (ammonia) or a salt xNH 4 + or an X-NH 2 ammonium) or X is chosen either as inert molecule, spectator of the main reaction is as an interacting molecule in formulation reactions.
  • the metal salt of the third system is chosen from platinum salts of oxidation state IV.
  • This solution also has the additional advantage of allowing, in addition, to use platinum salts of oxidation degree IV, much more stable than platinum salts of oxidation state II.
  • the first system, the second system and the fourth system are grouped into a single solution forming a first solution B.
  • the third system forms a second solution A consisting of an aqueous solution with platinum, comprising sodium hydroxide (NaOH) and at least one platinum salt of degree of oxidation IV.
  • a second solution A consisting of an aqueous solution with platinum, comprising sodium hydroxide (NaOH) and at least one platinum salt of degree of oxidation IV.
  • the molar ratio between the amount of sodium hydroxide NaOH and the amount of platinum salt of oxidation degree IV is 2.
  • a step f) is carried out during which said electrolytic bath is heated at a temperature of between 80 ° C. and 97 ° C. for at least two hours. then a step g) is carried out during which electroplating of a platinum deposit on a metal substrate is carried out with said electrolytic bath.
  • the second solution A is added to the first solution B.
  • the first solution B is brought to a temperature of 60 ° C.
  • said oxidation state platinum salt IV is diammonium hexachloroplatinate of formula (NH 4 ) 2 PtCl 6 .
  • said amine compound x p - (NH 4 ) + p comprises diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 and / or ammonium dihydrogen phosphate NH 4 H 2 PO 4 .
  • the first system comprises diammonium hydrogenophosphate (NH 4 ) 2 HPO 4 and ammonium dihydrogen phosphate NH 4 H 2 PO 4 with a molar ratio of 2 between the amount of ammonium dihydrogen phosphate NH 4 H 2 PO 4 and the amount of diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 .
  • said platinum salt of oxidation state IV is diammonium hexachloroplatinate of formula (NH 4 ) 2 PtCl 6 .
  • the molar ratio between the amount of sodium hydroxide NaOH and the amount of platinum salt of oxidation degree IV is 2.
  • said amine compound x p- (NH 4 ) + p comprises diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 and / or ammonium dihydrogen phosphate NH 4 H 2 PO 4 .
  • the first solution B comprises diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 and ammonium dihydrogen phosphate NH 4 H 2 PO 4 with a molar ratio of 2 between the amount of ammonium dihydrogenophosphate NH 4 H 2 PO 4 and the amount of diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 .
  • the invention also relates to the electrolytic bath resulting from the manufacturing method according to the invention.
  • Such an electrolytic bath for producing a platinum-based metal underlayer on a superalloying substrate is characterized in that it comprises a platinum amine complex of the wavelength of a Pt-NH bond. 3 or Pt-NH 2 and a buffer solution
  • An electrolytic bath makes it possible to deposit the platinum in a way which is particularly ecological and economical (short time of realization, realization under atmospheric pressure avoiding the equipment of putting under vacuum) compared to techniques of deposition in vapor phase or thermal projection.
  • this deposition method is compatible with pierced parts: the geometry of the current lines preventing significant deposition in the holes, in particular small cooling holes which are thus not obstructed.
  • the bath formulation is made from four ingredients distributed between two separate solutions, A and B, heated and stirred separately to react the ingredients together in each solution, before mixing together the two solutions A and B.
  • the mixture between the two solutions A and B is then itself heated and stirred. Once the heating time of the mixture A + B is respected, the platinum plating bath is ready for use for carrying out the electroplating.
  • solution A comprises, inter alia, the platinum salt (s)
  • solution B is the solution comprising, inter alia, ligands (it is recalled that a ligand is a chemical entity, ionic or molecular, bearing chemical functions allowing it to bind to one or more metallic entities, usually a cation, the association of a metallic entity with one or more ligands forming a soluble edifice in solution called complex).
  • the pH of the mixture of solutions A + B is set between 6 and 10 and preferably between 6 and 7.
  • T ° heating B (° C) Heating time B (h) T ° heater AB (° C) Heating time AB (h) 1 50 ° C 1:30 50 ° C 1 hour 2 50 ° C 4:30 85 ° C 3h 3 50 ° C 8h 95 ° C 8h 4 85 ° C 1:30 85 ° C 8h 5 85 ° C 4:30 95 ° C 1 hour 6 85 ° C 8h 50 ° C 3h 7 95 ° C 1:30 95 ° C 3h 8 95 ° C 4:30 50 ° C 8h 9 95 ° C 8h 85 ° C 1 hour
  • pions are coated with platinum at different intensities. Each pawn is weighed before and after deposit.
  • the bath of test 2 offers the following advantages:
  • the bath of test 2 shows little loss of platinum over time ( Figure 1 C) and that the average efficiency ( Figure 2A ) and speed ( Figure 2B ) of the bath is almost identical after three successive regenerations.
  • Concerning the platinum losses we encounter with the reference bath many platinum losses, mainly in the form of a platinum solid precipitate at the bottom of the tank.
  • the baths according to the invention it is observed for the baths according to the invention that the platinum losses are lower and above all constant in time (constant with the electrolyses).
  • the bath of test 2 is the one with less platinum losses, so the bath of test 2 is more economical from the economic point of view.
  • the manufacture of the electrolytic bath is similar to that of the recipe of Example 1, except for the following points.
  • Solution B comprises ammonium hydrogen sulphate of chemical formula (NH 4 ) 2 SO 4 in an amount of 43.5 g and diammonium sulphate of chemical formula NH 4 S O 4 in an amount of 76 g and water . The whole is brought to 50 ° C during 4:30.
  • the pH of the mixture of solutions A + B is set between 1 and 5.
  • the manufacture of the electrolytic bath is similar to that of the recipe of Example 1, except for the following points.
  • Solution B contains ammonium acetate of chemical formula CH 3 COONH 4 in an amount of 102.4 g and acetic acid of chemical formula CH 3 COOH in an amount of 39.6 g.
  • the whole is brought to 50 ° C during 4:30.
  • the pH of the mixture of solutions A + B is set between 1 and 5.
  • the ligand is chosen from aliphatic polyamines of 3 to 20 carbon atoms with a linear or branched carbon chain.
  • the ligand is chosen from primary polyamines such as diaminopropanes such as 1,3-diaminopropane and 1,2-diaminopropane, diethylenetriamine, 1,4-diaminobutane and 1,6-diaminohexane; secondary polyamines such as N, N 'dimethyl-1,3-propanediamine; and tertiary polyamines such as N, N, N ', N' tetramethylethylenediamine.
  • the ligands preferentially chosen are diaminopropanes.

Description

L'invention concerne un procédé de fabrication d'un bain électrolytique pour la réalisation d'une sous-couche métallique à base de platine sur un substrat métallique.The invention relates to a method of manufacturing an electrolytic bath for producing a platinum-based metal underlayer on a metal substrate.

De telles sous-couches métalliques appartiennent en particulier à un revêtement sur un substrat constitué d'une pièce métallique appelée à résister à des fortes sollicitations mécaniques et thermiques en fonctionnement, en particulier un substrat en superalliage. Une telle pièce thermomécanique constitue notamment une pièce de turbomachine aéronautique ou terrestre. Ladite pièce peut à titre d'exemple constituer une aube ou un distributeur de turbine de turbomachine et notamment dans une turbine haute pression de turboréacteur ou de turbopropulseur d'avion.Such metal sub-layers belong in particular to a coating on a substrate consisting of a metal part called to withstand high mechanical and thermal stresses in operation, in particular a superalloy substrate. Such a thermomechanical part constitutes in particular an aeronautical or terrestrial turbine engine part. Said part may for example be a blade or a turbomachine turbine distributor and in particular in a high-pressure turbojet or turboprop turboprop turbine.

La recherche de l'augmentation du rendement des turbomachines, en particulier dans le domaine aéronautique, et de la diminution de la consommation en carburant et des émissions polluantes de gaz et d'imbrûlés ont conduit à se rapprocher de la stoechiométrie de combustion du carburant. Cette situation s'accompagne d'une augmentation de la température des gaz sortant de la chambre de combustion en direction de la turbine.The search for increasing the efficiency of turbomachines, in particular in the aeronautical field, and the reduction in fuel consumption and pollutant emissions of gases and unburnt have led to approaching the fuel combustion stoichiometry. This situation is accompanied by an increase in the temperature of the gases leaving the combustion chamber towards the turbine.

Aujourd'hui, la température limite d'utilisation des superalliages est de l'ordre de 1100°C, la température des gaz en sortie de chambre de combustion ou en entrée de turbine pouvant atteindre 1600°C.Today, the limit temperature of use of the superalloys is of the order of 1100 ° C, the temperature of the gases at the outlet of the combustion chamber or turbine inlet up to 1600 ° C.

En conséquence, il a fallu adapter les matériaux de la turbine à cette élévation de température, en perfectionnant les techniques de refroidissement des aubes de turbines (aubes creuses) et/ou en améliorant les propriétés de résistance aux températures élevées de ces matériaux. Cette deuxième voie, en combinaison avec l'utilisation des superalliages à base de nickel et/ou de cobalt, a conduit à plusieurs solutions parmi lesquelles le dépôt d'un revêtement isolant thermique, dénommé barrière thermique, composé de plusieurs couches, sur le substrat en superalliage.As a result, the turbine materials had to be adapted to this temperature rise, by perfecting the cooling techniques of the turbine blades (hollow blades) and / or by improving the high temperature resistance properties of these materials. This second route, in combination with the use of superalloys based on nickel and / or cobalt, has led to several solutions among which the deposition of a thermal insulating coating, called a thermal barrier, composed of several layers, on the substrate in superalloy.

L'utilisation des barrières thermiques dans les moteurs aéronautiques s'est généralisée depuis une trentaine d'années et permet d'augmenter la température d'entrée des gaz dans les turbines, de réduire le flux d'air de refroidissement et ainsi d'améliorer le rendement des moteurs.The use of thermal barriers in aircraft engines has become widespread over the last thirty years and makes it possible to increase the inlet temperature of the gases in the turbines, to reduce the cooling air flow and thus improve the efficiency of the engines.

En effet, ce revêtement isolant permet de créer sur une pièce refroidie, en régime permanent de fonctionnement, un gradient thermique au travers du revêtement, dont l'amplitude totale peut dépasser 100°C pour un revêtement de 150 à 200 µm d'épaisseur environ présentant une conductivité de 1.1 W.m-1.K-1. La température de fonctionnement du métal sous-jacent formant le substrat pour le revêtement se trouve diminuée du même gradient, ce qui induit des gains important sur le volume d'air de refroidissement nécessaire, la durée de vie de la pièce et la consommation spécifique du moteur à turbine.Indeed, this insulating coating makes it possible to create on a cooled part, in steady state of operation, a thermal gradient across the coating, whose total amplitude can exceed 100 ° C for a coating of about 150 to 200 microns thick. having a conductivity of 1.1 Wm -1 .K -1 . The operating temperature of the underlying metal forming the substrate for the coating is reduced by the same gradient, which results in significant gains in the necessary cooling air volume, the service life of the part and the specific consumption of the material. turbine engine.

Il est connu de recourir à l'utilisation d'une barrière thermique comprenant une couche de céramique à base de zircone stabilisée à l'oxyde d'yttrium, à savoir une zircone yttriée comprenant une teneur molaire d'oxyde d'yttrium entre 4 et 12% (notamment entre 6 et 8%), qui présente un coefficient de dilatation différent du superalliage constituant le substrat et une conductivité thermique assez faible.It is known to use the use of a thermal barrier comprising a yttria-stabilized zirconia-based ceramic layer, namely a yttria-containing zirconia comprising a molar content of yttrium oxide between 4 and 12% (especially between 6 and 8%), which has a coefficient of expansion different from the superalloy constituting the substrate and a relatively low thermal conductivity.

Parmi les revêtements utilisés, on citera l'utilisation assez générale d'une couche de céramique à base de zircone partiellement stabilisée à l'oxyde d'yttrium, par exemple Zr0.92Y0.08O1.96.Among the coatings used, there will be mentioned the rather general use of a zirconia-based ceramic layer partially stabilized with yttrium oxide, for example Zr 0.92 Y 0.08 O 1.96 .

Afin d'assurer l'ancrage de cette couche de céramique, une sous-couche métallique, avec un coefficient de dilatation idéalement proche du substrat, est généralement interposée entre le substrat de la pièce et la couche de céramique. De cette façon, la sous-couche métallique permet tout d'abord de réduire les contraintes dues à la différence entre les coefficients de dilatation thermique de la couche de céramique et du superalliage formant le substrat.In order to ensure the anchoring of this ceramic layer, a metal underlayer, with a coefficient of expansion ideally close to the substrate, is generally interposed between the substrate of the part and the ceramic layer. In this way, the metal sub-layer firstly makes it possible to reduce the stresses due to the difference between the thermal expansion coefficients of the ceramic layer and the superalloy forming the substrate.

Cette sous-couche assure également l'adhérence entre le substrat de la pièce et la couche de céramique, sachant que l'adhérence entre la sous-couche et le substrat de la pièce se fait par inter-diffusion, et que l'adhérence entre la sous-couche et la couche de céramique se fait par ancrage mécanique et par la propension de la sous-couche à développer à haute température, à l'interface céramique/sous-couche, une couche d'oxyde mince qui assure le contact chimique avec la céramique.This underlayer also provides adhesion between the substrate of the part and the ceramic layer, knowing that the adhesion between the underlayer and the substrate of the part is by inter-diffusion, and that the adhesion between the underlayer and the ceramic layer is made by mechanical anchoring and by the propensity of the underlayer to be developed at high temperature, at the ceramic / underlayer interface, a thin oxide layer which ensures the chemical contact with ceramics.

En outre, cette sous-couche métallique assure la protection du superalliage de la pièce contre les phénomènes de corrosion et d'oxydation (la couche de céramique est perméable à l'oxygène).In addition, this metal sub-layer ensures the protection of the superalloy of the part against corrosion and oxidation phenomena (the ceramic layer is permeable to oxygen).

En particulier, il est connu d'utiliser une sous-couche constituée d'un aluminiure de nickel comprenant un métal choisi parmi le platine, le chrome, le palladium, le ruthénium, l'iridium, l'osmium, le rhodium, ou un mélange de ces métaux et/ou un élément réactif choisi parmi le zirconium (Zr), le cérium (Ce), le lanthane (La), le titane (Ti), le tantale (Ta), l'hafnium (Hf), le silicium (Si) et l'yttrium (Y).In particular, it is known to use a sublayer consisting of a nickel aluminide comprising a metal selected from platinum, chromium, palladium, ruthenium, iridium, osmium, rhodium, or mixture of these metals and / or a reactive element selected from zirconium (Zr), cerium (Ce), lanthanum (La), titanium (Ti), tantalum (Ta), hafnium (Hf), silicon (Si) and yttrium (Y).

Par exemple, on utilise un revêtement de type (Ni,Pt)Al, dans lequel le platine est en insertion dans le réseau du nickel des composés intermétalliques β-NiAl.For example, a (Ni, Pt) Al type coating is used in which the platinum is inserted into the nickel network of the β-NiAl intermetallic compounds.

Lors de l'élaboration de barrières thermiques, le platine a un double rôle : c'est une barrière de diffusion pour éviter l'interdiffusion de l'aluminium de la couche vers le substrat. De plus, l'aluminiure de platine augmente la résistance à la corrosion à haute température et l'adhérence de couches de protection. En fait, les revêtements en aluminures de platine se dégradent vite à 1100°C : il existe des transformations de phases liées à l'inter-diffusion des éléments du revêtement et des substrats.When developing thermal barriers, platinum has a dual role: it is a diffusion barrier to prevent the diffusion of aluminum from the layer to the substrate. In addition, platinum aluminide increases the corrosion resistance at high temperature and the adhesion of protective layers. In fact, platinum aluminide coatings rapidly degrade at 1100 ° C: there are phase transformations related to the inter-diffusion of the elements of the coating and the substrates.

Cette sous-couche métallique peut dans ce cas être constituée d'un aluminiure de nickel modifié platine NiPtAl, selon un procédé comprenant les étapes suivantes: la préparation de la surface de la pièce par décapage chimique et sablage; le dépôt sur la pièce, par électrolyse, d'un revêtement de platine (Pt); le traitement thermique éventuel de l'ensemble pour faire diffuser Pt dans la pièce; le dépôt d'aluminium (Al) par dépôt chimique en phase vapeur (CVD) ou par dépôt physique en phase vapeur (PVD); le traitement thermique éventuel de l'ensemble pour faire diffuser Pt et Al dans la pièce; la préparation de la surface de la sous-couche métallique formée; et le dépôt par évaporation sous faisceau d'électrons (EB-PVD) d'un revêtement en céramique.In this case, this metal sub-layer may consist of a NiPtAl platinum-modified nickel aluminide, according to a process comprising the following steps: the preparation of the surface of the part by chemical etching and sanding; depositing on the part, by electrolysis, a platinum coating (Pt); the possible heat treatment of the assembly to diffuse Pt in the room; aluminum deposition (Al) by chemical vapor deposition (CVD) or physical vapor deposition (PVD); the possible heat treatment of the assembly to diffuse Pt and Al in the room; the preparation of the surface of the formed metallic underlayer; and electron beam evaporation (EB-PVD) deposition of a ceramic coating.

Ainsi, le platine est déposé par voie électrolytique avant le traitement thermochimique d'aluminisation en phase vapeur.Thus, the platinum is deposited electrolytically before the thermochemical treatment of aluminization in the vapor phase.

Pour rappel, l'électrodéposition permet de réduire sur une pièce conductrice (la cathode) une entité métallique complexée présente initialement dans la solution grâce au passage d'un courant électrique entre une anode (électrode siège d'une réaction d'oxydation) et une cathode sur laquelle le dépôt a lieu (et sur laquelle d'autres réactions de réduction peuvent avoir lieu simultanément).As a reminder, electroplating reduces a complexed metal entity initially present in the solution by passing an electric current over a conductive part (the cathode). between an anode (electrode seat of an oxidation reaction) and a cathode on which deposition takes place (and on which other reduction reactions can take place simultaneously).

Il existe dans le commerce des solutions de platinage de différentes compositions. Le pH de ces solutions peut être basique, acide ou neutre.There are commercially available casting solutions of different compositions. The pH of these solutions can be basic, acidic or neutral.

Les composés obtenus au terme de l'extraction du platine sont l'hexachloroplatinate (IV) d'ammonium :(NH4)2PtCl6 ou l'hexachloroplatinate (IV) de potassium : K2PtCl6. Les principaux composés du platine présents dans les bains de platinage sont issus de la transformation de ces composés.The compounds obtained after the extraction of platinum are ammonium hexachloroplatinate (IV): (NH 4 ) 2 PtCl 6 or potassium hexachloroplatinate (IV): K 2 PtCl 6 . The main platinum compounds present in the casting baths are derived from the transformation of these compounds.

Hormis le degré d'oxydation 0 correspondant au métal, il existe deux autres degrés d'oxydation : +II et +IV, correspondant à des espèces complexes. Selon la nature des ligands en solution susceptibles de former des complexes avec les cations métalliques en solutions, la stabilité et la réactivité du complexe seront différentesApart from the degree of oxidation 0 corresponding to the metal, there are two other oxidation states: + II and + IV, corresponding to complex species. Depending on the nature of the ligands in solution capable of forming complexes with the metal cations in solution, the stability and reactivity of the complex will be different.

De nombreuses formulations de bains électrolytiques visant à déposer du platine ont été proposées jusqu'à ce jour et comportent un certain nombre d'espèces chimiques en solution aqueuse, conférant au bain ses propriétés. On peut aussi, par exemple, citer les documents GB 2 351 089 , EP 0 465 073 et US 4 427 502 qui divulguent des bains électrolytiques comportant des composés à base de platine.Many electroplating baths for depositing platinum have been proposed to date and include a number of chemical species in aqueous solution, giving the bath its properties. We can also, for example, quote documents GB 2 351 089 , EP 0 465 073 and US 4,427,502 which disclose electrolytic baths comprising platinum compounds.

Cependant, de nombreux inconvénients persistent. En particulier, les bains électrolytiques proposés ont un coût significatif, notamment du fait du coût des produits utilisés pour les régénérer. De plus, cette possibilité de régénération est limitée et conduit à une durée de vie courte du bain car celui-ci présente des caractéristiques techniques non stables et qui se dégradent avec le vieillissement du bain.However, many disadvantages persist. In particular, the electrolytic baths proposed have a significant cost, particularly because of the cost of the products used to regenerate them. In addition, this possibility of regeneration is limited and leads to a short life of the bath because it has unstable technical characteristics and which degrade with the aging of the bath.

La présente invention a pour objectif de fournir un bain électrolytique pour le dépôt de platine sur un substrat métallique, lequel bain électrolytique présente une amélioration des performances techniques, notamment des paramètres et conditions de dépôt identiques ou quasi-identiques quelle que soit la géométrie de la pièce, une vitesse de dépôt identique ou quasi-identique quel que soit la densité de courant appliquée, une qualité de dépôt conforme au cahier des charges, et une durée de vie améliorée.The present invention aims to provide an electrolytic bath for the deposition of platinum on a metal substrate, which electrolytic bath has an improvement in technical performance, including identical or almost identical parameters and deposition conditions regardless of the geometry of the piece, an identical or almost identical deposition rate regardless of the current density applied, a deposition quality in accordance with the specifications, and an improved service life.

A cet effet, selon la présente invention, le procédé de fabrication d'un bain électrolytique est caractérisé en ce qu'il comporte les étapes suivantes :

  1. a) on fournit un premier système comportant des ligands et des groupements fonctionnels amines, ledit premier système étant constitué d'une solution aqueuse avec ligand aminé comprenant au moins un composé X-(NH2)n, avec X appartenant au groupe constitué de (CH3, CH3-CH2, CH3-(CH2)m), ou NH3 ou un sel xp-(NH4)+p avec x un radical acide appartenant au groupe constitué de (PO4 3-, HPO4 2-, H2PO4 -, HPO4 2- et H2PO4 -, SO4 2-, HSO4 - et CH3COO-), n, m et p étant des entiers non nuls,
  2. b) on fournit un deuxième système formant un système tampon,
  3. c) on fournit un troisième système fournissant un sel métallique, et constitué d'une solution aqueuse avec platine,
  4. d) on fournit un quatrième système permettant d'apporter la propriété conductrice au milieu,
  5. e) On mélange les quatre systèmes, ce par quoi on obtient le dit bain électrolytique.
For this purpose, according to the present invention, the method of manufacturing an electrolytic bath is characterized in that it comprises the following steps:
  1. a) providing a first system comprising ligands and amine functional groups, said first system consisting of an aqueous solution with an amino ligand comprising at least one X- (NH 2 ) n compound, with X belonging to the group consisting of CH 3 , CH 3 -CH 2 , CH 3 - (CH 2 ) m ), or NH 3 or a salt x p- (NH 4 ) + p with x an acid radical belonging to the group consisting of (PO 4 3- , HPO 4 2- , H 2 PO 4 - , HPO 4 2- and H 2 PO 4 - , SO 4 2- , HSO 4 - and CH 3 COO - ), n, m and p being non-zero integers,
  2. b) providing a second system forming a buffer system,
  3. c) providing a third system providing a metal salt, and consisting of an aqueous solution with platinum,
  4. d) providing a fourth system for bringing the conductive property to the medium,
  5. e) The four systems are mixed, whereby the so-called electrolytic bath is obtained.

De cette manière, on comprend que l'on privilégie l'utilisation d'un complexe résultant de la liaison entre un ligand aminé et un sel métallique à base de platine. Notamment, on a choisi un ligand sans chaîne carbonée et une seule fonction amine : NH3 (ammoniaque) ou d'un sel xNH4 + ou d'un X-NH2 ammonium) ou X est choisi soit comme molécule inerte, spectatrice de la réaction principale soit comme molécule interagissant dans les réactions de formulations.In this way, it is understood that the use of a complex resulting from the bond between an amino ligand and a platinum metal salt is preferred. In particular, we chose a ligand without carbon chain and a single amine function: NH 3 (ammonia) or a salt xNH 4 + or an X-NH 2 ammonium) or X is chosen either as inert molecule, spectator of the main reaction is as an interacting molecule in formulation reactions.

On choisit à titre de sel métallique du troisième système des sels de platine de degré d'oxydation IV.The metal salt of the third system is chosen from platinum salts of oxidation state IV.

Cette solution présente aussi l'avantage supplémentaire, de permettre, en outre, d'utiliser des sels de Platine de degré d'oxydation IV, beaucoup plus stables que les sels de Platine de degré d'oxydation II.This solution also has the additional advantage of allowing, in addition, to use platinum salts of oxidation degree IV, much more stable than platinum salts of oxidation state II.

Globalement, grâce à la solution selon la présente invention, il est possible de fournir un bain électrolytique présentant une durée de vie améliorée pour des propriétés de dépôts satisfaisantes et stables dans le temps.Overall, thanks to the solution according to the present invention, it is possible to provide an electrolytic bath having an improved lifetime for satisfactory and stable residence properties over time.

Egalement, selon l'invention, le premier système, le deuxième système et le quatrième système sont regroupés en une seule solution formant une première solution B.Also, according to the invention, the first system, the second system and the fourth system are grouped into a single solution forming a first solution B.

Avantageusement, la première solution B comporte un sel xp- (NH4)+ p avec x =HPO4 et p=2 et/ou x=H2PO4 et p=1.Advantageously, the first solution B comprises a salt x p- (NH 4 ) + p with x = HPO 4 and p = 2 and / or x = H 2 PO 4 and p = 1.

De préférence, le troisième système forme une deuxième solution A constituée d'une solution aqueuse avec platine, comprenant de la soude (NaOH) et au moins un sel de platine de degré d'oxydation IV.Preferably, the third system forms a second solution A consisting of an aqueous solution with platinum, comprising sodium hydroxide (NaOH) and at least one platinum salt of degree of oxidation IV.

Dans ce cas, de préférence, que le ratio molaire entre la quantité de soude NaOH et la quantité de sel de platine de degré d'oxydation IV est de 2.In this case, preferably, the molar ratio between the amount of sodium hydroxide NaOH and the amount of platinum salt of oxidation degree IV is 2.

Egalement, selon l'invention, lors de l'étape c), le troisième système forme une deuxième solution A constituée d'une solution aqueuse avec platine, comprenant de la soude (NaOH) et au moins un sel de platine de degré d'oxydation IV, et lors de l'étape e), on réalise les sous-étapes suivantes :

  • e1) on couvre la première solution B et on porte sa température à 50°C minimum pendant au moins 1H30,
  • e2) on mélange la deuxième solution A avec la première solution B pour former un bain électrolytique qui comporte un complexe de platine aminé,
Also, according to the invention, during step c), the third system forms a second solution A consisting of an aqueous solution with platinum, comprising sodium hydroxide (NaOH) and at least one platinum salt with a degree of oxidation IV, and during step e), the following sub-steps are carried out:
  • e1) the first solution B is covered and its temperature is raised to at least 50 ° C for at least 1H30,
  • e2) mixing the second solution A with the first solution B to form an electrolytic bath which comprises a platinum amine complex,

Selon un mode de mise en oeuvre préféré, après l'étape e), on réalise une étape f) au cours de laquelle on chauffe ledit bain électrolytique à une température comprise entre 80°C et 97°C pendant au moins deux heures,
puis on réalise une étape g) au cours de laquelle on réalise l'électrodéposition d'un dépôt de platine sur substrat métallique avec ledit bain électrolytique.
According to a preferred embodiment, after step e), a step f) is carried out during which said electrolytic bath is heated at a temperature of between 80 ° C. and 97 ° C. for at least two hours.
then a step g) is carried out during which electroplating of a platinum deposit on a metal substrate is carried out with said electrolytic bath.

Par ailleurs, selon l'invention, lors de la sous-étape e2), on ajoute la deuxième solution A dans la première solution B.Furthermore, according to the invention, during the sub-step e2), the second solution A is added to the first solution B.

Dans ce cas, avantageusement, préalablement à la sous-étape e2), on porte la première solution B à une température de 60°C.In this case, advantageously, prior to substep e2), the first solution B is brought to a temperature of 60 ° C.

De préférence, ledit sel de platine de degré d'oxydation IV est défini par Y2PtM6 avec Y = NH4 +, H+ ou K+, et M = Cl- ou OH-.Preferably, said platinum salt of oxidation state IV is defined by Y 2 PtM 6 with Y = NH 4 + , H + or K + , and M = Cl - or OH - .

Avantageusement, dans la deuxième solution A ledit sel de platine de degré d'oxydation IV est de l'hexachloroplatinate de diammonium de formule (NH4)2PtCl6.Advantageously, in the second solution A, said oxidation state platinum salt IV is diammonium hexachloroplatinate of formula (NH 4 ) 2 PtCl 6 .

Avantageusement, dans le premier système, ledit composé aminé xp-(NH4)+p comporte du diammonium hydrogénophosphate (NH4)2HPO4 et/ou de l'ammonium dihydrogénophosphate NH4H2PO4.Advantageously, in the first system, said amine compound x p - (NH 4 ) + p comprises diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 and / or ammonium dihydrogen phosphate NH 4 H 2 PO 4 .

Selon une formulation préférentielle, le premier système comporte du diammonium hydrogénophosphate (NH4)2HPO4 et de l'ammonium dihydrogénophosphate NH4H2PO4 avec un ratio molaire de 2 entre la quantité d'ammonium dihydrogénophosphate NH4H2PO4 et la quantité de diammonium hydrogénophosphate (NH4)2HPO4.According to a preferred formulation, the first system comprises diammonium hydrogenophosphate (NH 4 ) 2 HPO 4 and ammonium dihydrogen phosphate NH 4 H 2 PO 4 with a molar ratio of 2 between the amount of ammonium dihydrogen phosphate NH 4 H 2 PO 4 and the amount of diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 .

L'une ou l'autre ou plusieurs des dispositions suivantes est/sont en outre de préférence adoptée(s) :

  • la première solution B fournie à l'étape a) est obtenue avec de l'eau présentant une température de l'ordre de 30°C,
  • la deuxième solution A fournie à l'étape c) est obtenue avec de l'eau présentant une température de l'ordre de 45°C,
  • lors de l'étape b), on porte la température de la première solution B à 50°C minimum pendant au moins 3H30,
  • lors de l'étape d), on chauffe ledit bain électrolytique à une température d'au moins 80°C pendant au moins trois heures (par exemple à 85°C pendant 3 heures).
One or more of the following provisions is / are preferably also adopted:
  • the first solution B supplied in step a) is obtained with water having a temperature of the order of 30 ° C,
  • the second solution A supplied in stage c) is obtained with water having a temperature of the order of 45.degree.
  • during step b), the temperature of the first solution B is brought to 50 ° C minimum for at least 3H30,
  • during step d), said electrolytic bath is heated to a temperature of at least 80 ° C for at least three hours (for example at 85 ° C for 3 hours).

La présente invention porte également sur un procédé de fabrication d'une sous-couche métallique à base de platine, à partir du bain électrolytique obtenu selon le procédé de fabrication qui vient d'être présenté, caractérisé en ce qu'il comporte les étapes suivantes :

  • f) On fournit un substrat métallique, notamment un substrat en superalliage,
  • g) on chauffe le dit bain électrolytique, et
  • h) On réalise l'électrodéposition d'un dépôt de platine sur ledit substrat métallique avec ledit bain électrolytique.
The present invention also relates to a process for manufacturing a platinum-based metal underlayer from the electrolytic bath obtained according to the manufacturing method which has just been described, characterized in that it comprises the following steps :
  • f) providing a metal substrate, especially a superalloy substrate,
  • g) the said electrolytic bath is heated, and
  • h) Electroplating a platinum deposit on said metal substrate with said electrolytic bath.

La présente invention porte aussi sur un ensemble de solutions pour la fabrication d'un bain électrolytique pour la réalisation d'une sous-couche métallique à base de platine sur un substrat métallique, caractérisé en ce qu'il comporte :

  • une première solution B constituée d'une solution aqueuse avec ligand aminé, comprenant au moins un composé X-(NH2)n, avec X appartenant au groupe constitué de (CH3, CH3-CH2, CH3-(CH2)m), ou NH3 ou un sel xp- (NH4)+p présentant une seule ou plusieurs fonctions amine et avec x un radical acide appartenant au groupe constitué de (PO4 3-, HPO4 2-, H2PO4 -, HPO4 2- et H2PO4 -, SO4 2-, HSO4- et CH3COO-, n, m et p étant des entiers non nuls, et
  • une deuxième solution A constituée d'une solution aqueuse avec platine, comprenant de la soude (NaOH) et au moins un sel de platine de degré d'oxydation IV.
The present invention also relates to a set of solutions for the manufacture of an electrolytic bath for the production of a platinum metal underlayer on a metal substrate, characterized in that it comprises:
  • a first solution B consisting of an aqueous solution with an amino ligand, comprising at least one compound X- (NH 2 ) n , with X belonging to the group consisting of (CH 3 , CH 3 -CH 2 , CH 3 - (CH 2 ) m ), or NH 3 or a salt x p- (NH 4 ) + p having one or more amine functions and with x an acid radical belonging to the group consisting of (PO 4 3- , HPO 4 2- , H 2 PO 4 - , HPO 4 2- and H 2 PO 4 - , SO 4 2- , HSO 4 - and CH 3 COO - , n, m and p being non-zero integers, and
  • a second solution A consisting of an aqueous solution with platinum, comprising sodium hydroxide (NaOH) and at least one platinum salt of oxidation degree IV.

De préférence, dans la deuxième solution A ledit sel de platine de degré d'oxydation IV est défini par Y2PtM6 avec Y = NH4 +, H+ ou K+, et M = Cl- ou OH.Preferably, in the second solution A, said platinum salt of degree of oxidation IV is defined by Y 2 PtM 6 with Y = NH 4 + , H + or K + , and M = Cl - or OH.

Avantageusement, ledit sel de platine de degré d'oxydation IV est de l'hexachloroplatinate de diammonium de formule (NH4)2PtCl6.Advantageously, said platinum salt of oxidation state IV is diammonium hexachloroplatinate of formula (NH 4 ) 2 PtCl 6 .

De préférence, le ratio molaire entre la quantité de soude NaOH et la quantité de sel de platine de degré d'oxydation IV est de 2.Preferably, the molar ratio between the amount of sodium hydroxide NaOH and the amount of platinum salt of oxidation degree IV is 2.

Selon un mode de mise en oeuvre préférentiel, dans la première solution B, ledit composé aminé xp-(NH4)+ p comporte du diammonium hydrogénophosphate (NH4)2HPO4 et/ou de l'ammonium dihydrogénophosphate NH4H2PO4.According to a preferred embodiment, in the first solution B, said amine compound x p- (NH 4 ) + p comprises diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 and / or ammonium dihydrogen phosphate NH 4 H 2 PO 4 .

Dans une variant préférentielle, la première solution B, comporte du diammonium hydrogénophosphate (NH4)2HPO4 et de l'ammonium dihydrogénophosphate NH4H2PO4 avec un ratio molaire de 2 entre la quantité d'ammonium dihydrogénophosphate NH4H2PO4 et la quantité de diammonium hydrogénophosphate (NH4)2HPO4.In a preferred variant, the first solution B comprises diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 and ammonium dihydrogen phosphate NH 4 H 2 PO 4 with a molar ratio of 2 between the amount of ammonium dihydrogenophosphate NH 4 H 2 PO 4 and the amount of diammonium hydrogen phosphate (NH 4 ) 2 HPO 4 .

Enfin l'invention porte également sur le bain électrolytique résultant du procédé de fabrication selon l'invention. Un tel bain électrolytique pour la réalisation d'une sous-couche métallique à base de platine sur un substrat en superalliage, est caractérisé en ce qu'il comporte un complexe de platine aminé de la longueur d'onde d'une liaison Pt-NH3 ou Pt-NH2 et une solution tamponFinally, the invention also relates to the electrolytic bath resulting from the manufacturing method according to the invention. Such an electrolytic bath for producing a platinum-based metal underlayer on a superalloying substrate is characterized in that it comprises a platinum amine complex of the wavelength of a Pt-NH bond. 3 or Pt-NH 2 and a buffer solution

D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :

  • les figures 1A à 1I, 2A et 2B représentent différentes courbes montrant les caractéristiques et le comportement de différents bains électrolytiques fabriqués selon la méthode de fabrication de l'invention.
Other advantages and characteristics of the invention will become apparent on reading the following description given by way of example and with reference to the appended drawings in which:
  • the FIGS. 1A to 1I, 2A and 2B represent different curves showing the characteristics and behavior of different electrolytic baths manufactured according to the manufacturing method of the invention.

Un bain électrolytique permet de déposer le platine selon une voie qui est particulièrement écologique et économique (temps court de réalisation, réalisation sous pression atmosphérique évitant les matériels de mise sous vide) par rapport à des techniques de dépôt en phase vapeur ou de projection thermique.An electrolytic bath makes it possible to deposit the platinum in a way which is particularly ecological and economical (short time of realization, realization under atmospheric pressure avoiding the equipment of putting under vacuum) compared to techniques of deposition in vapor phase or thermal projection.

En outre, la mise en oeuvre de cette méthode de dépôt est compatible avec des pièces percées : la géométrie des lignes de courant empêchant tout dépôt significatif dans les trous, en particulier des trous de refroidissement de petite taille qui ne sont ainsi pas obstrués.In addition, the implementation of this deposition method is compatible with pierced parts: the geometry of the current lines preventing significant deposition in the holes, in particular small cooling holes which are thus not obstructed.

Egalement, il faut noter que l'emploi d'une telle méthode évite le recours à des produits chimiques dangereux ainsi que la production de déchets toxiques.It should also be noted that the use of such a method avoids the use of dangerous chemicals and the production of toxic waste.

EXEMPLE 1EXAMPLE 1

Dans cet exemple, la formulation de bain est réalisée à partir de quatre ingrédients répartis entre deux solutions distinctes, A et B, chauffées et agitées séparément afin de faire réagir les ingrédients entre eux au sein de chaque solution, avant de mélanger entre elles les deux solutions A et B.In this example, the bath formulation is made from four ingredients distributed between two separate solutions, A and B, heated and stirred separately to react the ingredients together in each solution, before mixing together the two solutions A and B.

Le mélange ente les deux solutions A et B est ensuite lui-même chauffé et agité. Une fois le temps de chauffe du mélange A+B respecté, le bain d'électrodéposition de platine est prêt à l'emploi pour la réalisation de l'électrodéposition.The mixture between the two solutions A and B is then itself heated and stirred. Once the heating time of the mixture A + B is respected, the platinum plating bath is ready for use for carrying out the electroplating.

En particulier, la solution A comprend, entre autres, le ou les sels de platine, et la solution B est la solution comprenant, entre autres, les ligands (on rappelle qu'un ligand est une entité chimique, ionique ou moléculaire, portant des fonctions chimiques lui permettant de se lier à une ou plusieurs entités métalliques, généralement un cation, l'association d'une entité métallique avec un ou plusieurs ligands formant un édifice soluble en solution appelé complexe).In particular, solution A comprises, inter alia, the platinum salt (s), and solution B is the solution comprising, inter alia, ligands (it is recalled that a ligand is a chemical entity, ionic or molecular, bearing chemical functions allowing it to bind to one or more metallic entities, usually a cation, the association of a metallic entity with one or more ligands forming a soluble edifice in solution called complex).

Pour fabriquer un litre de bain électrolytique à 8g/litre de platine, on procède de la façon suivante :

  • préparation de la solution B : dans 300 ml d'eau distillée (< 500Ω) à 30°C, mettre 44,0 g de diammonium hydrogénophosphate de formule chimique (NH4)2HPO4 (soit 0.33 mole) et 75,0 g d'ammonium dihydrogénophosphate de formule chimique NH4H2PO4 (soit 0.65 mole). Le ratio molaire entre la quantité d ammonium dihydrogénophosphate et la quantité de diammonium hydrogénophosphate est de 2. Une fois les sels dissous, couvrir la solution et la porter à 50°C pendant 4H 30.
  • Préparation de la solution A : dans 300 ml d'eau distillée à 45°C, mettre 5g de soude de formule chimique NaOH (soit 0,080 mole) et 18,3 g de sel de platine hexachloroplatinate de diammonium de formule (NH4)2PtCl6 (soit 0,040 mole). Le ratio molaire entre la quantité de soude et de sel d'hexachloroplatinate de diammonium est de 2. Laisser dissoudre les sels de platine au sein de la solution A ;
  • Une fois la solution B prête et chaude, la solution A est préparée et est ajoutée dans la solution B préalablement portée à 60°C.
  • Pour finir, le mélange A+B (dont le pH est au préalable ajusté à 6.3 par ajout d'une solution basique telle que, par exemple, de la soude, de la potasse, du triphosphate de sodium) est portée à 85°C pendant 3 heures. Toutes les solutions sont couvertes pendant les étapes de chauffe.
To manufacture a liter of electrolytic bath at 8 g / liter of platinum, the procedure is as follows:
  • preparation of solution B: in 300 ml of distilled water (<500 Ω) at 30 ° C., put 44.0 g of diammonium hydrogen phosphate of chemical formula (NH 4 ) 2 HPO 4 (ie 0.33 mole) and 75.0 g ammonium dihydrogenphosphate of chemical formula NH 4 H 2 PO 4 (ie 0.65 mol). The molar ratio between the amount of ammonium dihydrogen phosphate and the amount of diammonium hydrogen phosphate is 2. Once the salts have dissolved, cover the solution and bring it to 50 ° C. for 4 hours 30 minutes.
  • Preparation of solution A: in 300 ml of distilled water at 45 ° C., put 5 g of sodium hydroxide of the chemical formula NaOH (ie 0.080 mole) and 18.3 g of diammonium hexachloroplatinate platinum salt of formula (NH 4 ) 2 PtCl 6 (ie 0.040 mol). The molar ratio between the amount of sodium hydroxide and diammonium hexachloroplatinate salt is 2. Let the platinum salts dissolve in solution A;
  • Once solution B is ready and hot, solution A is prepared and is added to solution B previously heated to 60 ° C.
  • Finally, the mixture A + B (whose pH is previously adjusted to 6.3 by addition of a basic solution such as, for example, sodium hydroxide, potassium hydroxide, sodium triphosphate) is brought to 85 ° C. during 3 hours. All solutions are covered during the heating stages.

Plus généralement avec cette solution B comportant du diammonium hydrogénophosphate de formule chimique (NH4)2HPO4 et de l'ammonium dihydrogénophosphate de formule chimique NH4H2PO4, on fixe le pH du mélange de solutions A+B entre 6 et 10 et de préférence entre 6 et 7.More generally, with this solution B comprising diammonium hydrogen phosphate of chemical formula (NH 4 ) 2 HPO 4 and ammonium dihydrogenphosphate of chemical formula NH 4 H 2 PO 4 , the pH of the mixture of solutions A + B is set between 6 and 10 and preferably between 6 and 7.

Dans le cadre de cette formulation, et afin d'identifier les meilleures conditions opératoires pour la réalisation de l'électrodéposition de platine, un plan d'expérience avec 9 bains a été mené, où les températures de chauffe et les temps de chauffe de la solution B puis du mélange A+B sont différents et mentionnés dans le tableau 1 qui suit, l'essai 2 correspondant à la recette détaillée qui précède : Tableau 1 N° essai T° chauffe B (°C) Tps chauffe B (h) T° chauffe AB (°C) Tps chauffe AB (h) 1 50°C 1h30 50°C 1h 2 50°C 4h30 85°C 3h 3 50°C 8h 95°C 8h 4 85°C 1h30 85°C 8h 5 85°C 4h30 95°C 1h 6 85°C 8h 50°C 3h 7 95°C 1h30 95°C 3h 8 95°C 4h30 50°C 8h 9 95°C 8h 85°C 1h As part of this formulation, and in order to identify the best operating conditions for the realization of the platinum plating, an experiment plan with 9 baths was conducted, where the heating temperatures and the heating times of the solution B then of the mixture A + B are different and mentioned in table 1 which follows, test 2 corresponding to the above detailed recipe: Table 1 Test no. T ° heating B (° C) Heating time B (h) T ° heater AB (° C) Heating time AB (h) 1 50 ° C 1:30 50 ° C 1 hour 2 50 ° C 4:30 85 ° C 3h 3 50 ° C 8h 95 ° C 8h 4 85 ° C 1:30 85 ° C 8h 5 85 ° C 4:30 95 ° C 1 hour 6 85 ° C 8h 50 ° C 3h 7 95 ° C 1:30 95 ° C 3h 8 95 ° C 4:30 50 ° C 8h 9 95 ° C 8h 85 ° C 1 hour

Pour chaque bain formulé, des pions sont revêtus de platine à différentes intensités. Chaque pion est pesé avant et après dépôt.For each bath formulated, pions are coated with platinum at different intensities. Each pawn is weighed before and after deposit.

Grâce à la prise de masse, on peut ainsi déterminer :

  • La vitesse de dépôt (g/h/dm2) pour chaque intensité
  • Le plateau du bain
  • L'intensité de début de plateau
  • La vitesse moyenne du plateau
  • L'écart-type du plateau
  • L'écart entre la vitesse minimale et maximale obtenue sur le plateau.
Thanks to the mass gain, we can thus determine:
  • The deposition rate (g / h / dm 2 ) for each intensity
  • The bath tray
  • Intensity of plateau start
  • The average speed of the plateau
  • The standard deviation of the plateau
  • The difference between the minimum and maximum speed obtained on the board.

Les trois tableaux 2-1 à 2-3 ci-dessous présentent les résultats obtenus avec les 3 bains donnant les meilleurs résultats à l'issue du plan d'expérience. Tableau 2-1 Paramètres d'expérience T° chauffe B (°C) Temps chauffe B (h) T° chauffe AB (°C) Temps chauffe AB (h) Couleur bain après chauffe Essai 2 50°C 4h30 85°C 3h Limpide Essai 4 85°C 1h30 85°C 8h Limpide Essai 7 95°C 1h30 95°C 3h Limpide Tableau 2-2 Vitesse de dépôt (g/h/dm2) 8A 1A 4A 16A 24A 8A Essai 2 2,4455 0,8164 1,9618 2,2618 2,2564 1,6127 Essai 4 2,0782 0,1727 1,4982 2,0236 2,2891 1,4945 Essai 7 2,0509 0,6782 1,5600 2,1164 1,9073 1,5109 Tableau 2-3 Caractéristiques plateau Couleur bain après électrolyse Début du plateau Vitesse moyenne du plateau (g/h/dm2) Ecart type plateau Ecart Vmin/Vmax du plateau Essai 2 Limpide 4A 2,0232 0,27 0,65 Essai 4 Trouble 4A 1,8264 0,34 0,79 Essai 7 Trouble 4A 1,7736 0,25 0,61 The three tables 2-1 to 2-3 below present the results obtained with the 3 baths giving the best results at the end of the experimental plan. Table 2-1 Experience settings T ° heating B (° C) Heating time B (h) T ° heater AB (° C) AB heating time (h) Bath color after heating Trial 2 50 ° C 4:30 85 ° C 3h limpid Trial 4 85 ° C 1:30 85 ° C 8h limpid Trial 7 95 ° C 1:30 95 ° C 3h limpid Deposit rate (g / h / dm 2 ) 8A 1A 4A 16A 24A 8A Trial 2 2.4455 .8164 1.9618 2.2618 2.2564 1.6127 Trial 4 2.0782 .1727 1.4982 2.0236 2.2891 1.4945 Trial 7 2.0509 0.6782 1.5600 2.1164 1.9073 1.5109 Tray characteristics Bath color after electrolysis Start of the plateau Average speed of the plateau (g / h / dm 2 ) Standard deviation plateau Distance Vmin / Vmax of the plateau Trial 2 limpid 4A 2.0232 0.27 0.65 Trial 4 Trouble 4A 1.8264 0.34 0.79 Trial 7 Trouble 4A 1.7736 0.25 0.61

Par ailleurs, le bain de l'essai 2 offre les avantages suivants :In addition, the bath of test 2 offers the following advantages:

C'est un bain dont la grande répétabilité a été constatée, et qui par rapport à un bain de référence, la vitesse moyenne de dépôt est importante pour un bain neuf (Figure 1.A), et reste suffisamment importante lors du fonctionnement (Figure 1.A). Le bain de l'essai 2 est en effet répétable car les courbes de la vitesse moyenne et de la dispersion des fabrications 1 et 2 sont superposables, ce qui montre bien l'extrême réproductibilité de la fabrication. A contrario, on peut distinguer les courbes de la fabrication 1 et 2 pour le Bain de l'essai 7 et encore plus pour le bain de l'essai 4, qui, lui, est moins répétable, ce pourquoi le bain 4 n'est pas privilégié.It is a bath whose great repeatability has been observed, and which compared to a reference bath, the average deposition rate is important for a new bath ( Figure 1.A ), and remains sufficiently important during operation ( Figure 1.A ). The bath of the test 2 is indeed repeatable because the curves of the average speed and the dispersion of the fabrications 1 and 2 are superimposable, which shows the extreme reproducibility of the manufacture. On the other hand, one can distinguish the curves of the manufacture 1 and 2 for the Bath of the test 7 and even more for the bath of the test 4, which, him, is less repeatable, why the bath 4 is not not privileged.

Par ailleurs, le bain de l'essai 2 présente une bonne dispersion du plateau (Figure 1.B), étant rappelé que la présence d'un « plateau » correspond au fait d'obtenir une vitesse de dépôt identique quelle que soit la densité de courant appliquée et quelle que soit la géométrie de la pièce traitée. En effet, à chaque fabrication, deux plateaux ont été réalisés. Un plateau est l'étude de la prise de masse en fonction de la densité de courant appliqué. Dans les fabrications maisons, la dispersion diminue au plus on effectue d'électrolyse dans le bain. Ceci n'est pas le cas dans le bain de référence où, plus on réalise d'électrolyses plus le bain disperse.In addition, the bath of test 2 shows a good dispersion of the plateau ( Figure 1.B ), being reminded that the presence of a "plateau" corresponds to obtaining an identical deposition rate regardless of the current density applied and regardless of the geometry of the treated part. Indeed, each production, two trays were made. A plateau is the study of the mass gain as a function of the current density applied. In domestic manufacture, the dispersion decreases at the most electrolysis is carried out in the bath. This is not the case in the reference bath where the more electrolysis is carried out the more the bath disperses.

Egalement, on relève que le bain de l'essai 2 présente peu de perte en platine au cours du temps (Figure 1 C) et que l'efficacité moyenne (Figure 2A) et la vitesse (Figure 2B) du bain est quasi identique après trois régénérations successives. Concernant les pertes de platine, nous rencontrons avec le bain de référence de nombreuses pertes platine, principalement sous la forme d'un précipité solide de platine au niveau du fond de la cuve. De plus, pour le bain de référence, plus le bain subit d'électrolyse et plus il a tendance à former des précipités en fond de cuve. En revanche, on observe pour les bains selon l'invention que les pertes en platine sont moindres et surtout constantes dans le temps (constantes avec les électrolyses). De plus, le bain de l'essai 2 est celui qui présente moins de pertes de platine donc le bain de l'essai 2 est plus rentable du point de vue économique.Also, it is noted that the bath of test 2 shows little loss of platinum over time ( Figure 1 C) and that the average efficiency ( Figure 2A ) and speed ( Figure 2B ) of the bath is almost identical after three successive regenerations. Concerning the platinum losses, we encounter with the reference bath many platinum losses, mainly in the form of a platinum solid precipitate at the bottom of the tank. In addition, for the reference bath, the more the bath undergoes electrolysis and the more it tends to form precipitates at the bottom of the tank. On the other hand, it is observed for the baths according to the invention that the platinum losses are lower and above all constant in time (constant with the electrolyses). In addition, the bath of test 2 is the one with less platinum losses, so the bath of test 2 is more economical from the economic point of view.

Globalement, comme il ressort des courbes des Fig 1.D à 1.F et 1.G à 1.I, les bains des essais 4 et 7 offrent des résultats assez analogues à ceux de l'essai 2.Overall, as can be seen from the curves of Fig 1.D to 1.F and 1.G to 1.I , the baths of tests 4 and 7 offer results quite similar to those of test 2.

Par ailleurs, comme il ressort des figures 2.A et 2.B, le bain électrolytique de l'essai 2 donne des résultats stables dans le temps, en termes de vitesse de dépôts, et ce après plusieurs régénérations du bain : la vitesse de dépôt est quasi-inchangée entre la première et la troisième régénération.Moreover, as Figures 2.A and 2.B the electrolytic bath of test 2 gives stable results over time, in terms of deposition rate, after several regenerations of the bath: the deposition rate is almost unchanged between the first and the third regeneration.

Pour régénérer un bain, on rajoute des sels de Platine au sein du bain afin de rehausser sa teneur en Platine. Une fois l'ajout des sels effectué, le bain est laissé sous agitation à 65°C pendant 12 à 24 heures afin que l'intégralité des sels soit dissoute dans le bain.To regenerate a bath, we add platinum salts in the bath to enhance its platinum content. Once the salts have been added, the bath is left stirring at 65 ° C. for 12 to 24 hours so that all the salts are dissolved in the bath.

EXEMPLE 2EXAMPLE 2

La fabrication du bain électrolytique est analogue à celui de la recette de l'exemple 1, hormis sur les point suivants.The manufacture of the electrolytic bath is similar to that of the recipe of Example 1, except for the following points.

La solution B comporte de l'hydrogénosulfate d'ammonium de formule chimique (NH4)2SO4 d'une quantité de 43,5g et le sulfate de diammonium de formule chimique NH4HSO4 d'une quantité de 76g et de l'eau. Le tout est porté à 50°C pendant 4h30.Solution B comprises ammonium hydrogen sulphate of chemical formula (NH 4 ) 2 SO 4 in an amount of 43.5 g and diammonium sulphate of chemical formula NH 4 S O 4 in an amount of 76 g and water . The whole is brought to 50 ° C during 4:30.

On fixe le pH du mélange de solutions A+B entre 1 et 5.The pH of the mixture of solutions A + B is set between 1 and 5.

EXEMPLE 3EXAMPLE 3

La fabrication du bain électrolytique est analogue à celui de la recette de l'exemple 1, hormis sur les point suivants.The manufacture of the electrolytic bath is similar to that of the recipe of Example 1, except for the following points.

La solution B comporte de l'acétate d'ammonium de formule chimique CH3COONH4 d'une quantité de 102,4g et de l'acide acétique de formule chimique CH3COOH d'une quantité de 39,6g.Solution B contains ammonium acetate of chemical formula CH 3 COONH 4 in an amount of 102.4 g and acetic acid of chemical formula CH 3 COOH in an amount of 39.6 g.

Le tout est porté à 50°C pendant 4h30.The whole is brought to 50 ° C during 4:30.

On fixe le pH du mélange de solutions A+B entre 1 et 5.The pH of the mixture of solutions A + B is set between 1 and 5.

Selon l'invention, de préférence,le ligand est choisi parmi les polyamines aliphatiques de 3 à 20 atomes de carbone à chaîne carbonée linéaire ou ramifiée.According to the invention, preferably, the ligand is chosen from aliphatic polyamines of 3 to 20 carbon atoms with a linear or branched carbon chain.

Avantageusement, le ligand est choisi parmi les polyamines primaires telles que les diaminopropanes comme le 1,3-diaminopropane et le 1,2-diaminopropane, la diéthylènetriamine, le 1,4-diaminobutane, le 1,6-diaminohexane ; les polyamines secondaires telles que la N,N' diméthyl-1,3-propanediamine ; et les polyamines tertiaires telles que la N, N, N', N' tétraméthyléthylènediamine. Les ligands préférentiellement choisis sont les diaminopropanes.Advantageously, the ligand is chosen from primary polyamines such as diaminopropanes such as 1,3-diaminopropane and 1,2-diaminopropane, diethylenetriamine, 1,4-diaminobutane and 1,6-diaminohexane; secondary polyamines such as N, N 'dimethyl-1,3-propanediamine; and tertiary polyamines such as N, N, N ', N' tetramethylethylenediamine. The ligands preferentially chosen are diaminopropanes.

Claims (9)

  1. A fabrication method for fabricating a bath of electrolyte for plating a platinum-based metal underlayer on a metal substrate, the method comprising the following steps:
    a) providing a first system having ligands and amine functional groups, said first system being constituted by an aqueous solution of an amino ligand comprising at least one compound X-(NH2)n, where X belongs to the group constituted by (CH3, CH3-CH2, CH3-(CH2)m), or NH3 or an xp-(NH4)+ p salt where x is an acid radical belonging to the group constituted by (PO4 3-, HPO4 2-, H2PO4 -, HPO4 2- and H2PO4 -, SO4 2-, HSO4 -, and CH3COO-) and where n, m, and p are non-zero integers;
    b) providing a second system forming a buffer system;
    c) providing a third system providing a metallic salt, and constituted by an aqueous solution of platinum;
    d) providing a fourth system suitable for imparting the property of conduction to the medium; and
    e) mixing together the four systems so as to obtain the said electrolyte bath;
    the method being characterized in that the first system, the second system, and the fourth system are grouped together in a single solution forming a first solution B, in that during step c), the third system forms a second solution A constituted by an aqueous solution of platinum comprising sodium hydroxide (NaOH) and at least one salt of platinum of degree of oxidation IV, and in that during step e), the following substeps are performed:
    e1) covering the first solution B and raising its temperature to at least 50°C for at least 1h30; and
    e2) adding the second solution A to the first solution B and mixing the second solution A with the first solution B to form an electrolyte bath including a platinum amino complex.
  2. A method according to claim 1, characterized in that the first solution B includes an xp-(NH4)+ p salt, where x=HPO4 2- and p=2, and/or x=H2PO4 - and p=1.
  3. A fabrication method according to claim 2, characterized in that after step e), a step f) is performed during which said bath of electrolyte is heated to a temperature lying in the range 80°C to 97°C for at least two hours; and
    then a step g) is performed during which a deposit of platinum is electroplated on a metallic substrate using said bath of electrolyte.
  4. A method according to the preceding claim, characterized in that prior to substep e2), the first solution B is raised to a temperature of 60°C.
  5. A method according to claim 1, characterized in that said salt of platinum of degree of oxidation IV is defined by Y2PtM6 with Y=NH4 +, H+, or K+, and M=Cl- or OH-.
  6. A method according to the preceding claim, characterized in that in the second solution A, said salt of platinum of degree of oxidation IV is diammonium hexachloroplatinate of formula (NH4)2PtCl6.
  7. A method according to claim 4, characterized in that the molar ratio of the quantity of sodium hydroxide (NaOH) to the quantity of salt of platinum of degree of oxidation IV is 2.
  8. A method according to any preceding claim, characterized in that the first system, said xp-(NH4)+ p amine compound comprises diammonium hydrogen phosphate (NH4)2HPO4 and/or ammonium dihydrogen phosphate NH4H2PO4.
  9. A method according to the preceding claim, characterized in that the first system includes diammonium hydrogen phosphate (NH4)2HPO4 and ammonium dihydrogen phosphate NH4H2PO4 with a molar ratio of 2 between the quantity of ammonium dihydrogen phosphate NH4H2PO4 and the quantity of diammonium hydrogen phosphate (NH4)2HPO4.
EP13722499.4A 2012-04-19 2013-04-18 Method of forming an electrolytic bath for making a platinum-based metallic underlayer on a metallic substrate Active EP2839059B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1253599A FR2989694B1 (en) 2012-04-19 2012-04-19 PROCESS FOR PRODUCING AN ELECTROLYTIC BATH FOR PRODUCING A PLATINUM METAL SUB-LAYER ON A METALLIC SUBSTRATE
PCT/FR2013/050855 WO2013156737A1 (en) 2012-04-19 2013-04-18 Process for manufacturing an electrolytic bath for the production of a platinum‑based metallic sublayer on a metallic substrate

Publications (2)

Publication Number Publication Date
EP2839059A1 EP2839059A1 (en) 2015-02-25
EP2839059B1 true EP2839059B1 (en) 2016-04-13

Family

ID=47002945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13722499.4A Active EP2839059B1 (en) 2012-04-19 2013-04-18 Method of forming an electrolytic bath for making a platinum-based metallic underlayer on a metallic substrate

Country Status (10)

Country Link
US (1) US9752243B2 (en)
EP (1) EP2839059B1 (en)
JP (1) JP6290179B2 (en)
CN (1) CN104271811B (en)
BR (1) BR112014026033B1 (en)
CA (1) CA2870760C (en)
FR (1) FR2989694B1 (en)
IN (1) IN2014DN08735A (en)
RU (1) RU2625923C2 (en)
WO (1) WO2013156737A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975312A (en) * 2015-07-30 2015-10-14 江苏金曼科技有限责任公司 Electroplating method capable of prolonging service life of plating solution
FR3058165B1 (en) 2016-10-27 2018-12-14 Safran Aircraft Engines METHOD AND DEVICE FOR REGENERATING PLATINUM BATH
FR3066505B1 (en) 2017-05-16 2021-04-09 Safran Aircraft Engines IMPROVED PROCESS AND DEVICE FOR PLATINUM BATH FILTRATION BY ELECTRODIALYSIS
CN110894617A (en) * 2018-09-13 2020-03-20 深圳市永达锐国际科技有限公司 3D platinum electroforming process method
CN114214685A (en) * 2021-09-22 2022-03-22 湘潭大学 High-temperature protective coating and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL124423C (en) * 1963-03-20
US3285839A (en) * 1963-12-16 1966-11-15 American Chem & Refining Co Method and bath for electroplating rhenium
GB1431548A (en) * 1972-09-21 1976-04-07 Engelhard Ind Ltd Electrodeposition of plantinum
US4182724A (en) * 1976-04-06 1980-01-08 Rustenburg Platinum Mines Limited Compositions containing platinum
SU707382A1 (en) * 1978-05-30 2000-06-20 Р.В. Джагацпанян PLATING ELECTROLYTE
SU954527A1 (en) * 1980-12-30 1982-08-30 Предприятие П/Я В-2287 Electrolyte for platinum plating of titanium
US4427502A (en) * 1981-11-16 1984-01-24 Bell Telephone Laboratories, Incorporated Platinum and platinum alloy electroplating baths and processes
GB8821005D0 (en) * 1988-09-07 1988-10-05 Johnson Matthey Plc Improvements in plating
US5041196A (en) * 1989-12-26 1991-08-20 Olin Corporation Electrochemical method for producing chlorine dioxide solutions
JP2577832B2 (en) * 1990-06-29 1997-02-05 日本エレクトロプレイテイング・エンジニヤース株式会社 Platinum electroforming bath
JPH04333589A (en) * 1990-06-29 1992-11-20 Electroplating Eng Of Japan Co Production of high-hardness platinum material and its material
AU648316B2 (en) 1990-06-29 1994-04-21 Electroplating Engineers Of Japan, Limited Platinum electoforming and platinum electroplating
US5788823A (en) * 1996-07-23 1998-08-04 Howmet Research Corporation Platinum modified aluminide diffusion coating and method
GB2351089B (en) * 1999-06-15 2001-04-18 Hong Kong Productivity Council Platinum electroforming/electroplating bath and method

Also Published As

Publication number Publication date
WO2013156737A1 (en) 2013-10-24
RU2625923C2 (en) 2017-07-19
CA2870760C (en) 2021-02-23
IN2014DN08735A (en) 2015-05-22
BR112014026033A2 (en) 2017-06-27
CA2870760A1 (en) 2013-10-24
CN104271811A (en) 2015-01-07
US9752243B2 (en) 2017-09-05
US20150075996A1 (en) 2015-03-19
FR2989694A1 (en) 2013-10-25
EP2839059A1 (en) 2015-02-25
BR112014026033B1 (en) 2020-11-24
CN104271811B (en) 2016-10-12
FR2989694B1 (en) 2015-02-27
RU2014146284A (en) 2016-06-10
JP6290179B2 (en) 2018-03-07
JP2015514873A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
EP2839059B1 (en) Method of forming an electrolytic bath for making a platinum-based metallic underlayer on a metallic substrate
US6933052B2 (en) Diffusion barrier and protective coating for turbine engine component and method for forming
EP0848079B1 (en) Method for depositing a protective coating with great efficiency against corrosion at high temperatures for superalloys, protective coating and pieces protected with such a coating
EP0792948B1 (en) Thermal barrier coating with improved underlayer and articles having this thermal barrier coating
EP1528118A2 (en) Gas turbine component with a protective coating and process for its manufacture
FR2814473A1 (en) PROCESS FOR MAKING A PROTECTIVE COATING FORMING THERMAL BARRIER WITH BONDING UNDERLAYER ON A SUBSTRATE IN SUPERALLY AND PART OBTAINED
US20050064228A1 (en) Protective coating for turbine engine component
CA2769196A1 (en) Part comprising a substrate supporting a ceramic coating layer
US8968528B2 (en) Platinum-modified cathodic arc coating
EP3469112B1 (en) Method for the protection of a hafnium-free, nickel-based monocrystalline superalloy part against corrosion and oxidation
EP2459781B1 (en) Method of manufacturing a thermal barrier
WO2012146864A1 (en) Part comprising a coating over a metal substrate made of a superalloy, said coating including a metal sublayer
EP1686200B1 (en) Protective coating for single crystal superalloy
EP3532653B1 (en) Part comprising a nickel-based monocrystalline superalloy substrate and method for manufacturing same
FR2941966A1 (en) METHOD FOR DEPOSITING A PROTECTIVE LAYER ON A WORKPIECE
FR2941967A1 (en) Fabricating a thermal barrier covering a superalloy metal substrate, comprises depositing a platinum layer containing platinoids on the substrate, performing a thermal treatment of the piece, and depositing a ceramic layer on treated piece
CA2802817C (en) Method for aluminizing a surface by means of the advance deposition of a platinum and nickel layer
FR2999611A1 (en) Forming coating on metal substrate of thermochemical component e.g. turbine blade, by providing superalloy article, and forming metallic sub-layer by depositing platinum group metal on substrate layer and providing aluminum in vapor phase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 790265

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

Ref country code: CH

Ref legal event code: EP

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013006515

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 790265

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160413

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160816

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160714

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013006515

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

26N No opposition filed

Effective date: 20170116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160418

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230327

Year of fee payment: 11

Ref country code: IT

Payment date: 20230322

Year of fee payment: 11

Ref country code: GB

Payment date: 20230321

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 11