EP2837468A2 - Bit holder with floating magnet sleeve - Google Patents

Bit holder with floating magnet sleeve Download PDF

Info

Publication number
EP2837468A2
EP2837468A2 EP20140180985 EP14180985A EP2837468A2 EP 2837468 A2 EP2837468 A2 EP 2837468A2 EP 20140180985 EP20140180985 EP 20140180985 EP 14180985 A EP14180985 A EP 14180985A EP 2837468 A2 EP2837468 A2 EP 2837468A2
Authority
EP
European Patent Office
Prior art keywords
tool bit
bit
sleeve
floating sleeve
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20140180985
Other languages
German (de)
French (fr)
Other versions
EP2837468B1 (en
EP2837468A3 (en
Inventor
Darren B. Moss
Aland Santamarina
David B. Lee
Michael P Peters
Mark E Brunson
Ruth E. Mitchener Keffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Black and Decker Inc
Original Assignee
Black and Decker Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/967,775 external-priority patent/US9227309B2/en
Priority claimed from US14/285,799 external-priority patent/US9505108B2/en
Application filed by Black and Decker Inc filed Critical Black and Decker Inc
Publication of EP2837468A2 publication Critical patent/EP2837468A2/en
Publication of EP2837468A3 publication Critical patent/EP2837468A3/en
Application granted granted Critical
Publication of EP2837468B1 publication Critical patent/EP2837468B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/02Arrangements for handling screws or nuts
    • B25B23/08Arrangements for handling screws or nuts for holding or positioning screw or nut prior to or during its rotation
    • B25B23/12Arrangements for handling screws or nuts for holding or positioning screw or nut prior to or during its rotation using magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/0007Connections or joints between tool parts
    • B25B23/0035Connection means between socket or screwdriver bit and tool

Definitions

  • the present disclosure relates to power tool and hand tool bits and bit holders and more particularly, to a bit and a quick change bit holder with a floating ring magnet for retaining a fastener to the bit.
  • auxiliary chucks for power and hand tools have become increasingly common, especially as the need and desirability of wider versatility in the use of power tools and hand tools has increased.
  • Such auxiliary chucks allow the hand or power tool to be used with any of a number of interchangeable bits. This, in turn, has resulted in demands for greater speed, convenience and ease of insertion and removal of tool bits from such chucks.
  • one or more detent balls are positioned within a hollow, barrel-shaped tool bit holder body and are resiliently biased into engagement with a circumferentially-extending groove or recess on the shank of the tool bit.
  • An example of such a ball-type mechanism is disclosed in commonly assigned U.S. Patent No. 5,988,957 .
  • a spring biased clip is used to engage the bit within the tool bit holder body. Examples of the spring biased clip design are disclosed in commonly assigned U.S. Patent Nos. 7,086,813 and 6,929,266 .
  • the present disclosure provides a simple, relatively inexpensive quick-acting chuck assembly or bit holder that includes a ring magnet at a forward end of the retraction collar to magnetize a fastener and assist in both retaining the fastener to the bit and stabilizing the fastener during its installation.
  • the ring magnet can be supported to allow the magnet to float in a forward direction to engage the fastener or a rearward direction to release the bit for a rapid one handed bit change.
  • the length of the float and the geometry of the magnet are such as to allow for the feature to work with fasteners of different head configurations and with all bit lengths within the normally accepted industry tolerances.
  • the present disclosure provides a body having a coaxially extending hex-shaped bore therein for receiving a hex-shaped bit.
  • a spring biased retraction collar is mounted to the body and engages means for releasably retaining the hex-shaped tool within the bore.
  • the retraction collar supports a magnet at a forward end thereof and allows the magnet to float in a forward direction to engage and magnetize a fastener engaging the bit.
  • the magnet can be in the form of a ring magnet and can be fixedly mounted to the retraction collar, wherein the magnet causes the retraction collar to move in the forward direction.
  • the retraction collar can include a floating sleeve that supports the magnet and allows the magnet to float forward relative to a remainder of the retraction collar.
  • a bit holder is provided with a floating ring magnet supported on the bit holder.
  • the bit holder can be a pivoting bit holder or a multi-tool bit holder such as a six-in-one rotary tool.
  • a tool bit is provided with a floating sleeve that supports a ring magnet at a forward end of the tool bit.
  • the floating sleeve can be supported on the tool bit by various techniques as will be disclosed herein.
  • the tool bit can be a torsion bit that includes a shank portion and a working region with a reduced diameter torsion zone disposed therebetween.
  • the reduced diameter torsion zone has a shoulder on a forward and rearward end of the torsion zone to aid in retaining the floating sleeve on the tool bit.
  • a magnet assembly for retaining a fastener on a tool bit, the magnet assembly including a floating sleeve and a first ring magnet disposed at a front end portion of the floating sleeve.
  • a second ring magnet is disposed at a rear end portion of the floating sleeve, wherein the first and second ring magnets are arranged with their poles opposing one another such that the floating sleeve is moveable freely along a length of the tool bit, and the first ring magnet is configured to engage a head of a fastener.
  • the first and second ring magnets are disposed approximately 10mm apart from each other and can include an O-ring disposed inside of the sleeve between the first and second ring magnets to resist movement of the floating sleeve along the tool bit.
  • a bit holder assembly for a rotary tool, the bit holder assembly comprising a body having a shank at its rearward end and a coaxial socket formed at a second end to allow a tool bit to be inserted therein, an exterior surface of said body including a threaded portion at said second end; a threaded cap having internal threads engaging said threaded portion of said body and securing an O-ring at an open end of said coaxial socket; a floating collar slidably disposed on said body and including a ring magnet disposed at a forward end of the floating collar to magnetize a fastener to retain the fastener to the tool bit.
  • the ring magnet may be attached directly to said floating collar.
  • the threaded cap may be tightened against said O-ring to cause said O-ring to expand radially inward to engage and retain a bit within said coaxial socket.
  • the floating collar may include an internal groove on an inner surface thereof and the floating collar may be retained on said body by a C-shaped ring received in said internal groove and a first annular groove in the exterior surface of said body.
  • One of the internal groove and first annular groove may be elongated in an axial direction to allow the C-shaped ring to move along an axial length of said one of the internal groove and first annular groove.
  • the floating collar may support a spacer ring between said ring magnet and said threaded cap.
  • the body may include a second annular groove in said exterior surface adjacent to said threaded portion, wherein said threaded cap has an internal shoulder that engages a forward shoulder of said second annular groove to limit a forward axial movement of said threaded cap.
  • a tool bit assembly comprising a shaft having a shank at a first end and a working region disposed at a second end, said shaft having a shaft section between said shank and said working region having a reduced diameter region disposed between two shoulders, the tool bit assembly further comprising a floating sleeve movably disposed at said second end of said shaft and having a pair of opposed window openings therein and a ball disposed in each of said pair of window openings and received in said reduced diameter region of said shaft, and a ring magnet supported at a forward end of said floating sleeve to magnetize a fastener to retain the fastener to the working region of the tool bit.
  • the tool bit assembly may further comprise a spring clip surrounding said floating sleeve and retaining said pair of balls in said pair of window openings.
  • a tool bit assembly comprising a tool bit including a shaft having a polygonal shank at a first end and a working head region disposed at a second end, a base collar secured to said shaft and a floating sleeve assembly slidably received on said base collar and including a ring magnet disposed at a forward end of said floating sleeve to magnetize a fastener to retain the fastener to the working head region of the tool bit.
  • the base collar may include an exterior surface with a first recessed groove, wherein an interior surface of said floating sleeve includes an axially extending second recessed groove that receives a retainer ring that is disposed in said first recessed groove.
  • the base collar may include a stop shoulder axially spaced from said first recessed groove, wherein a rear end of said floating sleeve engages said stop shoulder.
  • the shaft may include a recess and the base collar may include an interior surface with a recessed groove and a retainer ring, wherein said retainer ring engages the recess in said shaft to retain said base collar to said shaft.
  • the recess may comprise an annular groove formed in the polygonal shank.
  • the recess may comprise a plurality of recessed grooves at corner edges of the polygonal shank.
  • the base collar may include an interior shoulder that engages a rearward shoulder of a reduced diameter region of said tool bit.
  • a tool bit holder assembly comprising a shank removably receivable in a tool holder of a rotary tool, a body coupled to the shank and defining a socket with a longitudinal axis, the socket being open at a front end of the body to removably receive a tool bit therein, an annular recess defined in an exterior surface of the body and having a rear shoulder, a front shoulder, and an axial length, a floating sleeve slidably received over the body, an elastic retainer coupled to an interior of the floating sleeve and having an axial length less than the axial length of the annular recess, the retainer movably received in the annular recess to enable the floating sleeve to float axially between a rear position where the retainer abuts the rear shoulder and a front position where the retainer abuts the front shoulder; and a ring magnet disposed at a forward end of the
  • the elastic retainer may deform to frictionally engage the body when the floating sleeve is moved to the parked position.
  • the elastic member may comprise one of a C-shaped elastic ring and an O-shaped elastic ring.
  • the body may further define a groove rearward of the annular recess that is configured to receive the elastic retainer when the floating sleeve is in the parked position.
  • the floating sleeve may be moveable axially forward from the front position to be removable from the body.
  • the body may include at least one of a retaining ring, a ball, and a magnet in the socket to retain a tool bit in the socket.
  • the body may include a threaded portion at a front end of the body, and may further comprise a threaded cap having threads engaging the threaded portion and securing a retaining ring in an open end of the socket to retain a tool bit in the socket.
  • the shank may be pivotable relative to the body.
  • the body may define an elongate axial internal groove and an elongated elastic finger received in the axial internal groove, the finger having a front end configured to project radially inward into the socket to retain a tool bit in the socket.
  • the bit holder may further comprise an actuator sleeve coupled to the elongated elastic finger to move the elastic finger between a locked position in which the front end projects radially inward into the socket to engage a tool bit and a released position in which the front end moves radially outward to allow a tool bit to be released from the socket.
  • the tool bit holder may further comprise a plunger disposed inside of the socket and biased toward an open end of the socket to at least partially eject a tool bit from the socket when the actuator is moved to the released position, and a magnet may be coupled to the plunger to prevent complete ejection of a tool bit from the socket.
  • a tool bit holder comprising a shank removably receivable in a tool holder of a rotary tool, a body coupled to the shank and defining a socket with a longitudinal axis, the socket being open at a front end of the body to removably receive a tool bit therein, an elongated elastic finger extending axially along the body and having a front end configured to project radially inward into the socket to retain a tool bit in the socket, an actuator sleeve coupled to the elongated elastic finger to move the elastic finger between a locked position in which the front end projects radially inward into the socket to engage a tool bit and a released position in which the front end moves radially outward to allow a tool bit to be released from the socket, an annular recess defined in an exterior surface of the body and having a rear shoulder, a front shoulder, and an axial length; a floating sleeve slidably received over
  • the tool bit holder may further comprise a plunger disposed inside of the socket and biased toward an open end of the socket to at least partially eject a tool bit from the socket when the actuator is moved to the released position.
  • a magnet may be coupled to the plunger to prevent complete ejection of a tool bit from the socket.
  • the floating sleeve may be further axially moveable rearward from the rear position to a parked position where the elastic retainer engages the body rearward of the rear shoulder, to enable removal of a tool bit from the socket.
  • the retainer may comprise an elastic member.
  • the elastic member may comprise at least one of a C-ring and an O-ring. The elastic member may deform to frictionally engage the body when the floating sleeve is moved to the parked position.
  • the body may define a groove rearward of the annular recess to receive the retainer when the floating sleeve is in the parked position.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • spatially relative terms such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures.
  • Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features.
  • the example term “below” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • the bit holder 10 includes a body 12 and retraction collar 14 slidably mounted on the body and retained in place by a sleeve bushing 32, as illustrated in Figure 2 .
  • the body 12 can include a hex or polygonal-shaped shank 16 for mounting the bit holder 10 for rotation by a hand tool or a power tool.
  • the body 12 also includes a hex or polygonal-shaped socket or bore 20 with the bore 20 opening axially outwardly toward the front or forward end of the bit holder 10.
  • a plunger bore 22 extends axially from the hex-shaped socket or bore 20 toward the rear end of the bit holder assembly 10.
  • an ejection spring 24 can be disposed in the plunger bore 22.
  • the body 12 includes an angular slot 26 formed transversely therein, with the slot 26 extending from the radially outer surface of the body 12 in an axially forward and radially inward direction to communicate with the interior of the hex bore or socket 20.
  • a coil spring 30 surrounds a portion of the body 12 and is disposed between the body 12 and the retraction collar 14.
  • the coil spring 30 abuttingly engages a clip 44 which is received in a groove around a mid-portion of the body 12 and terminates in an integrally formed clip 34 that is disposed in the angular slot 26 and is designed to releasably engage a recess 38 in a hex or polygonal-shaped bit tip 40 as illustrated in Figure 3 .
  • An internal annular sleeve 32 attaches to the rear portion of the retraction collar 14.
  • the sleeve 32 can be secured to the collar 14 by adhesive, a press fit, thermal bonding, fasteners, pins, or other known attachment techniques.
  • a clip 44 Received in a groove around a mid-portion of the body 12 is a clip 44 that acts as a stop against the sleeve 32 to limit forward travel of the retractable collar 14.
  • the retractable collar 14 includes a forward shoulder portion 48 that, when pulled rearward, can engage the spring 30 and pull the clip portion 34 of the spring 30 pulling it rearward out of engagement with a bit 40 received in the hex-shaped cavity 20.
  • the retractable collar 14 is of a non-magnetic material with the exception of a magnetic tip 50 that can be in the form of a ring magnet.
  • Alternative magnetic arrangements can be used including multiple non-ring shaped magnets combined to form a ring-like shape mounted at the tip of the collar 14. Both faces and the internal bore of the magnet, however, may remain accessible.
  • the collar 14 starts in a neutral position with the collar biased forward and the spring clip 34 extending into the bore 20.
  • a bit 40 is inserted into the bore 20 so that the spring clip 34 engages a notch 38 in the side of the bit 40 to prevent removal of the bit 40 from the bore 20.
  • the bit 40 also compresses the ejection spring 24.
  • the retraction collar 14 remains in the neutral position.
  • the collar 14 floats as a result of the magnetic force radiating from the outer face to a forward position until the outer face of the magnet 50 reaches the fastener, enabling the outer face of the ring magnet 50 to magnetically adhere to the screw 54. This occurs before the bearing sleeve 32 engages the stop ring 44.
  • the magnetic force generating from the inner face of the magnet 50 by design, then draws the fastener 54 and the sleeve 14 jointly towards the body 12, the material of which it is made exhibiting magnet attractable properties resulting in holding the fastener 54 tight against the bit 40.
  • the outer face of the magnet 50 also provides a stable surface to reduce movement of the fastener (wobble) during installation.
  • the surface geometry of the face of the magnet 50 being such as to provide support to fasteners of multiple sizes, shapes, and configurations.
  • the bit holder 60 includes a body 62 and a retraction collar assembly 64 mounted thereon.
  • the body 62 includes a hex shank 66 and a hex-shaped socket or bore 70 formed in the body 62, with the bore 70 opening axially outwardly toward the front or forward end of the bit holder assembly 60.
  • a plunger bore 72 extends axially from the hex-shaped socket or bore 70 toward the rear end of the bit holder assembly 60.
  • an ejection spring 74 can be disposed in the plunger bore 72.
  • the body 62 includes an angular slot 76 similar to the slot 26 as described above.
  • a coil spring 80 having an integral spring clip 84 surrounds the body 62 and is disposed between the body and the clip 84 such that the spring clip 84 is disposed in the angular slot 76 for engaging a bit tip 40 in the manner as discussed above with regard to the previous embodiment.
  • the retraction collar assembly 64 includes a rear collar 64a, an intermediate collar 64b and a forward collar 64c.
  • a retainer clip 86 is disposed in a recessed groove in the outer surface of the body 62 and is disposed against a forward facing shoulder 88 of the rearward collar 64a.
  • the intermediate collar 64b is press fit onto the rearward collar 64a to trap the retainer clip 86 therebetween.
  • a rearward facing shoulder 90 is provided in a forward direction from the spring 80 on the intermediate collar 64b.
  • the forward collar 64c is slidably supported on a forward end of the intermediate collar 64b and includes a magnetic tip 50 in the form of a magnet ring.
  • the forward collar 64c acts as a floating sleeve and includes a rearward shoulder portion 90 that engages a forward shoulder portion 92 of the intermediate collar 64b to limit the forward travel of the forward collar 64c.
  • the rear end of the forward collar 64c can be stretched over the forward end of the intermediate collar 64b to complete the collar assembly 64. Slots can be provided in the rear end of the forward collar 64c to facilitate assembly on the intermediate collar 64b.
  • the collar could be retained through the usage of a spring ring mounted in a groove on the OD of the intermediate collar 64b and a mating taper and groove in the ID of the forward collar 64c.
  • a bit tip 40 can be inserted into the hex-shaped bore 70 of the bit holder body 62.
  • the spring clip 84 engages a recess 38 in the bit tip 40 in order to retain the bit tip 40 within the bore 70.
  • the forward collar 64c is able to float in a forward direction to engage a fastener that is engaged by the bit tip 40 in order to magnetically retain the fastener to the bit tip 40.
  • the retraction collar 64 can be pulled in a rearward direction so that rearward facing shoulder 94 of intermediate collar 64c pulls rearward on the spring 80 to disengage the spring clip portion 84 from the recess 38 in the bit tip 40.
  • the magnetic sleeve on this bit holder 60 works just like the other in that it grabs the screw and pulls it back towards the body 62 and against the bit while reducing wobble.
  • the bit holder 10, 60 can be mounted to a drill 2 as shown in Figure 8 by inserting the hex-shaped shank 16, 66 into a chuck device.
  • the bit holder of the present disclosure can be integrally constructed into the chuck device of the power tool 2, as shown in Figure 9 .
  • the present disclosure discloses a spring clip 34, 84 that is integral with the spring 30, 80, other arrangements of spring clips that are separate from the coil spring have also been utilized and can be utilized with the present disclosure. Examples of other arrangements include U.S. Patent Nos. 7,086,813 ; 6,929,266 ; 6,261,035 ; and 5,988,957 which are incorporated herein by reference in their entirety.
  • a ball detent mechanism is also known in the art, and can be used in place of the integral spring clip and spring arrangement of the present disclosure.
  • other previous bit holder designs can be modified to include a ring magnet near the front of the outer actuation sleeve to allow the magnet and/or actuation sleeve to float forward to magnetize a fastener during operation.
  • the bit holder 110 includes a body 112 and a retraction collar 114 slidably mounted on the body 112 and retained in place by a sleeve bushing 132, as illustrated in Figure 11 .
  • the body 112 can include a hex or polygonal-shaped shank 116 for mounting the bit holder 110 for rotation by a hand tool or a power tool.
  • the body 112 also includes a hex or polygonal-shaped socket or bore 120 with the bore 120 opening axially outwardly toward the front end of the bit holder 110.
  • a plunger bore 122 extends axially from the hex-shaped socket or bore 120 toward the rear end of the bit holder assembly 110.
  • an ejection spring 124 can be disposed in the plunger bore 122.
  • the body 112 includes an angular slot 126 formed transversely therein, with the slot 126 extending from the radially outward surface of the body 112 in and axially forward and radially inward direction to communicate with the interior of the hex bore or socket 120.
  • a coil spring 130 surrounds a portion of the body 112 and is disposed between the body 112 and the retraction collar 114.
  • the coil spring 130 abuttingly engages a clip 144 which is received in a groove 145 around a mid-portion of the body 112 and terminates as an integrally formed clip 134 that is disposed in the angular slot 126 and is designed to releasably engage a recess 38 in a hex or polygonal-shaped bit tip 40 in the same manner as the embodiment illustrated in Figures 3 and 4 .
  • the internal annular sleeve 132 attaches to the rear portion of the retraction collar 114.
  • Sleeve 132 can be secured to the collar 114 by adhesive, a press fit, thermal bonding, fasteners, pins, or other known attachment techniques.
  • the clip 144 acts as a stop against the sleeve 132 to limit for travel of the retractable collar 114.
  • Retractable collar 114 includes a forward shoulder portion 148 that when pulled rearward can engage the spring 130 and pull the clip portion 134 of the spring 130, pulling it rearward out of engagement with a bit 40 received in the hex-shaped cavity 120.
  • Retractable collar 114 supports a removable magnet ring 150 that is supported by a removable sleeve 152.
  • Removable sleeve 152 is secured to the retractable collar 114 by a retainer such as an O-ring or bull nose ring 154 that is received in a groove in a forward portion thereof.
  • the sleeve 152' is press fit over top of the retainer ring in order to releasably secure the sleeve 152 to the retraction collar 114.
  • bit tip holder 110 The operation of the bit tip holder 110 as described is the same as the bit tip holder 10 as described above.
  • a bit holder 160 including a hex-shaped or polygonal-shaped shank 162 and a body portion 164 including a hex-shaped or polygonal-shaped bore 166 in an end thereof for receiving a bit 40.
  • the outer surface of the body 164 is provided with an elongated annular recess 168.
  • a floating sleeve 170 is provided on the end of the body 164 and supports a ring magnet 50 at an end thereof.
  • the floating sleeve 170 includes an interior annular groove 172 that receives a retainer 174 therein.
  • the floating sleeve 170 can be removably attached to the body 164 by force fitting the body 164 into a rear opening 176 of the floating sleeve 170 until the retainer 174 is received in the recess 168 of the body 164.
  • the recess 168 is provided with a forward shoulder 178 and a rearward shoulder 180 that allow the floating sleeve 170 to travel in a forward and rearward direction as indicated by arrow A while the shoulders 178 and 180 limit the travel of the floating sleeve 170 by engagement with the retainer member 174.
  • the floating sleeve can float freely between a front position, as shown in Fig. 12B , in which the retainer 174 engages the front shoulder 178, and a rear position as shown in Fig. 12C , in which the retainer 174 engages the rear shoulder 180.
  • the retainer 174 can take the form of a non-elastic member, such as a steel or elastic hog ring 174A, as shown in Figure 13 , or an elastic member, such as an elastic O-ring 174B as shown in Figure 14A or an elastic C-ring 174C as shown in Figure 14B .
  • the floating sleeve 170 can also be moved rearward to a parked position in which the retainer 174 is positioned rearward of the rear shoulder 180.
  • the retainer 174 comprises an elastic element (such as an elastic O-ring 174A or an elastic C-ring 174B) that is stretched and expands when the sleeve 170 is pulled axially rearward to the parked position.
  • the expanded elastic retainer 174 frictionally engages the outer wall of the body portion 164 in a tight manner to maintain the sleeve in the parked position until the user pulls the outer sleeve forward back to one of the floating positions shown in Figures 12A-12C .
  • the body portion 164 may be formed with an annular parking groove 175 rearward of the annular recess 168 to more securely retain the retainer 174 and the sleeve 170 in the parked position.
  • the bit holder 160' can use an alternative retainer in the form of a ball 190 which can be received in an opening 192 in the floating sleeve 170' and can be retained therein by an annular spring band 194 that can be made of steel or plastic or other suitable material.
  • the ball is received in an annular recess 168' so that the floating sleeve 170' can float between a forward position in which the ball 190 engages a front shoulder 178' of the annular recess 168 and a rear position in which the ball engages a rear shoulder 180' of the annular recess 168'.
  • the bit holder 160, 160' can be used to engage a fastener via the tool bit 40 and the floating sleeve 170, 170' allows the ring magnet 50 to float forward under its magnetic force to engage the fastener and magnetize the fastener to improve the retention of the fastener with the tool bit 40.
  • the floating sleeve 170' may be moveable to a parked position where the ball 190 is rearward of the rear shoulder 180' and engages the body portion 164 or a parking groove in the body portion 164, to facilitate easier removal of the tool bit 40.
  • the bit holder 200 can be configured as a six-in-one rotary tool that includes a floating ring magnet 50.
  • the tool holder 200 includes a shank 202 that is integral with, and that extends rearwardly from a socket 204.
  • Shank 202 is preferably hex-shaped or polygonal and includes a circumferential groove 206.
  • the tool socket 204 includes a bore 208 that extends axially from the socket end and that is also preferably hex-shaped or polygonal.
  • a reversible bit assembly 210 is received in the bore 208 and includes a sleeve 212 having a pair of axial storage cavities 216, 218 separated by a web 220.
  • the sleeve 212 receives a first and a second bit driver 222, 224 therein.
  • the outer surface of the sleeve 212, each of the cavities 216, 218, as well as a center section of the first and second bit drivers 222, 224 are each again preferably hex-shaped or polygonal such that each of the bit drivers 222, 224 rotate with the sleeve 212 and socket 204.
  • Each of the first and second bit drivers 222, 224 are reversible within their respective cavities such that either of the bit ends 22a, 22b, 224a, 224b of the first and second bit drivers 222, 224 can extend from the sleeve 212.
  • sleeve 212 is reversible within the socket bore 208 such that either the first or second bit drivers 222, 224 operably extend from the socket 204.
  • the tool may be configured such that any of the four bit driver ends 222a, 222b, 224a, 224b operably project from the socket 204.
  • Either of the bit drivers 222, 224 may be removed from the sleeve 212 to expose the hex-shaped cavity 216, 218 for use as a nut driver.
  • the tools sixth driver is provided by removing the reversible bit assembly 210 from the socket bore to expose the hex-shaped bore 208 for use as a second nut driver.
  • the bore 208 is larger than the cavities 216, 218 thereby providing the ability to accommodate larger hex-shaped screw heads or nuts.
  • the bore 208 is a 5/16 inch hex-opening while the cavities 216, 218 are each 1 ⁇ 4 inch hex openings.
  • the outer surface of the socket 204 can be provided with an elongated annular recess 228 that can be engaged by a retainer 230 of a floating sleeve 232 that supports a ring magnet 50 at a forward end thereof. Accordingly, as the tool holder 200 is used to engage a fastener, one of the bit drivers 222, 224 engage the fastener and the floating sleeve 232 allows the ring magnet 50 to move in a forward direction to engage the fastener to secure the fastener to the bit driver 222, 224.
  • the floating sleeve 232 can be removed by applying a slight force in a forward direction to overcome the retaining force of the retainer 230 within the elongated annular recess 228. Upon removal of the floating sleeve 232, the reversible bit assembly 210 can be removed from the socket 204 so that the bit drivers 222, 224 can be chosen for use. In another embodiment herein disclosed, similar to the embodiments described herein above, the floating sleeve 232 can be moved to a parked position in which the retainer 230 engages the socket 204 or a parking groove in the socket 204, rearward of the annular recess 228 to facilitate easier removal of the bits from the sleeve 212.
  • a pivotal/rigid accessory 250 for power and hand tools includes a drive component 252 adapted to be connected to a power tool or hand tool and a driven component 254 that is pivotally connected to the drive component 252.
  • a locking sleeve 256 is provided for securing the driven component 254 for non-pivotal movement relative to the drive component 252, or the locking sleeve 256 can be moved to a disengaged position that allows the driven component 254 to pivot relative to the drive component 252.
  • a pivot mechanism of this type is disclosed in U.S. Patent No. 7,942,426 , which is herein incorporated by reference.
  • a floating sleeve 260 can be provided at the forward end of the driven component 254 and supports a magnetic ring 50 at a forward end thereof to aid in retaining a fastener on a bit 40 received in a hex-shaped bore in the driven component 254.
  • the floating sleeve can include a retainer 262 that can be received in an elongated annular recess 264 on the outer surface of the driven component 254 to allow the floating sleeve 260 to move in a forward and rearward axial direction as indicated by arrow A.
  • the floating sleeve 260 can be moved to and retained in a parked position in which the retainer 262 frictionally engages the driven component 254 or a parking groove in the driven component 254, rearward of the annular recess 264, to facilitate easier removal of the bit 40 from the driven component 254.
  • the ring magnet 50 can be secured to the front end of the locking sleeve 256' which can be allowed to float in a forward direction to allow the ring magnet 50 to engage a fastener secured to the tool bit 40 received in a bore in the driven component 254 of the tool holder.
  • Figure 21 illustrates the pivoting arrangement between the driving component and the driven component which, again, is detailed in U.S. Patent No. 7,942,426 , which is herein incorporated by reference in its entirety.
  • the tool bit 300 includes a shaft having a hex-shaped shank 302 at a first end, and a working region 304 disposed at a second end.
  • the shaft can have a section between the hex-shaped shank 302 and the working region 304 that has a reduced diameter region 306 that is disposed between two shoulders 308, 310.
  • the reduced diameter region 306 provides a torsion zone that allows the shaft to twist to absorb forces while the tool bit 300 is being used to drive a fastener.
  • a tool bit 300 having a torsion zone of this type is generally known in the art as disclosed by U.S. Patent No. 5,704,261 .
  • the working region 304 of the tool bit 300 can be provided with various types of drive heads such as Phillips, flat, hex, square, and other known types of drive heads.
  • a recessed groove 312 is provided in the working region 304 for receiving a retainer ring 314 therein.
  • a ring magnet 50 is supported by a sleeve 316 that is retained on the tool bit 300 by the retainer ring 314 that is received within the recessed groove 312.
  • the floating sleeve 316 is moved in a forward direction to allow the ring magnet 50 to engage the fastener to assist in retaining the fastener to the tool bit 300.
  • the floating sleeve 316 includes an interior shoulder 318 that engages the retainer 314 to limit the sleeve's forward axial travel.
  • the tool bit 300 includes a shoulder 320 at an end of the working region 304 that limits the axial travel of the floating sleeve 316 in the opposite direction.
  • the floating sleeve 316 can optionally be removed from the tool bit 300 by pulling on the floating sleeve 316 in an axial direction to overcome the retainer 314.
  • the retainer 314 can be a rubber O-ring or a steel hog ring that can be flexed inward when the floating sleeve 316 is either inserted onto or pulled off of the tool bit 300.
  • the ring magnet 50 is supported by a floating sleeve 330 that is slidably received on a forward end of the tool bit 300.
  • the floating sleeve 330 includes a plurality of axially extending fingers 332 that are integrally formed with the sleeve 330 and releasably engage the reduced diameter region of the tool bit between the two shoulders 308, 310.
  • Figure 28 illustrates the floating sleeve 330 in a rearward position
  • Figure 29 illustrates the floating sleeve 330 in a forward position for the ring magnet 50 to engage a fastener to help retain the fastener on the tool bit 300.
  • the floating sleeve 330 can be removed from the tool bit by pulling forward on the floating sleeve 330, thus causing the fingers 332 to flex radially outward over top of the increased diameter portion at the head 304 of the tool bit 300.
  • the floating sleeve 330 can be made from plastic, rubber, or other materials that allow flexibility of the fingers 332.
  • the ring magnet 50 can be secured to the floating sleeve 330 by adhesives, in-molding, or other known fastening techniques.
  • an alternative floating sleeve 340 design is shown for supporting a ring magnet 50 that can be received on a tool bit 300.
  • the sleeve 340 includes a first end 342 supporting the ring magnet 50 and a second end 344 including a single elongated slot 346 that allows the second end 344 of the sleeve 340 to flex outward for insertion of a tool bit 300 therein.
  • the interior of second end 344 of the sleeve 340 includes a plurality of radially inwardly extending tabs 348 that are received in the reduced diameter portion 306 of the tool bit 300 and engage the forward and rearward shoulders 308, 310 to limit axial movement of the sleeve 340 along the length of the tool bit 300.
  • the floating sleeve 340 can be made from plastic or rubber.
  • a floating sleeve 350 can include a plastic cup 352 that receives the ring magnet 50 at a forward end thereof and a rubber sleeve 354 at a rearward end thereof.
  • the interior surface of the rubber sleeve 354 includes a plurality of radially inwardly extending tabs 356 at its rearward end, as illustrated in phantom in Figure 31 .
  • the radially inwardly extending tabs 356 are flexible to allow a tool bit 300 to be inserted into the sleeve 350 so that the tabs 356 engage the reduced diameter portion 306 between the forward and rearward shoulders 308, 310 of the tool bit 300.
  • the sleeve 350 is allowed to float in a forward and rearward direction in the manner as described with regard to the above described embodiments.
  • an alternative floating sleeve 360 design is provided in which a floating ring magnet 50 is supported at a first end of a rubber sleeve 360.
  • the second end of the sleeve includes a plurality of radially inwardly extending tabs 362 that are flexible to allow a tool bit 300 to be inserted into the sleeve 360 wherein the tabs 362 are disposed in the reduced diameter portion 306 between the forward and rearward shoulders 308, 310 of the tool bit 300.
  • the ring magnet 50 can be reinforced with a metal or plastic cap 364 disposed between the ring magnet 50 and the first end of the rubber sleeve 360.
  • an alternative floating sleeve 370 is provided for supporting a ring magnet 50 in a forward end 372 thereof.
  • the floating sleeve 370 can be made from plastic and can include one or more flexible fingers 374 that engage the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 thereof.
  • the fingers 374 can include a radially inwardly protruding end portion 376 that engages the reduced diameter portion 306 of the tool bit 300.
  • the elongated fingers 374 are integrally formed with the plastic sleeve 370 to allow the fingers 374 to flex radially outward when a tool bit 300 is inserted therein or removed therefrom.
  • FIG. 37-39 an alternative arrangement of a floating sleeve 380 is provided wherein the flexible fingers 382 are made from a spring steel and are separately attached to the floating sleeve 380 which can be made from plastic or metal.
  • the flexible fingers 382 operate in the same manner as the fingers 374 disclosed in Figures 33-36 to retain the floating sleeve 380 onto a tool bit 300 while allowing the sleeve 380 to float in a forward and rearward direction until the fingers 382 engage the forward or rearward shoulders 308, 310 of the tool bit 300.
  • the fingers 382 include radially inwardly protruding portions 384 that engage the reduced diameter portion 306 of the tool bit 300.
  • the flexible fingers 382 can be secured to the sleeve 380 by a rivet 386 or can be in-molded into the sleeve 380.
  • the sleeve 380 includes a pair of opposing windows 388 to receive the fingers 382.
  • an alternative floating sleeve 390 is provided for supporting a ring magnet 50 in a forward end thereof.
  • the floating sleeve 390 can be made from plastic, rubber, or metal and can include a recessed annular groove 392 on an exterior surface thereof as well as a pair of oppositely disposed windows 394 that extend from the groove 392 into the interior of the sleeve 390.
  • a rubber O-ring or a hog ring 396 can be provided in the annular groove 392 so as to extend into the window portion 394 of the annular sleeve 390 in such a manner that the O-ring or hog ring 396 can be received in the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 thereby retaining the floating sleeve 390 onto the tool bit 300.
  • the reduced diameter portion 306 of the tool bit allows the floating sleeve 390 to move in a forward and rearward direction to allow the ring magnet 50 to engage a fastener for securing the fastener to the tool bit 300.
  • FIG. 43-46 a still further alternative embodiment of the floating sleeve 400 is shown wherein the floating sleeve 400 supports a ring magnet 50 at a forward end and includes an exterior annular groove 402 with an opening 404 on one side that communicates to the interior of the sleeve 400.
  • the annual groove 402 receives a D-shaped ring 406 having a generally flat portion 408 along one side thereof that is received in the window opening 404 of the annular groove 402 so that it communicates to the interior of the sleeve 400.
  • the flat portion 408 of the D-shaped ring 406, as shown in Figure 46 is received in the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 to limit the axial movement of the floating sleeve 400 in the forward and rearward directions.
  • the floating sleeve 410 includes an elongated annular recess 412 on an outer surface thereof and a plurality of window openings 414 extending therethrough within the elongated annular recess 412.
  • the openings 414 each receive a ball 416 therein and a spring band 418 is received within the elongated annular recess 412 over top of the balls 416 to secure the balls 416 within the openings 414.
  • the balls 416 are designed to be received in the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 to limit the axial movement of the floating sleeve 410 in the forward and rearward directions.
  • the spring band 418 allows the balls 414 to be pushed radially outward against the spring force of the band 418 while the head of the tool bit 300 is inserted into, or removed from, the sleeve 410.
  • the balls 416 move radially inward reducing the force of the spring band 418 on the balls 414. It is intended that the balls 414 provide an interference when engaging the forward and rearward shoulders 308, 310 of the reduced diameter portion 306, but do not provide significant resistance to the floating motion of the sleeve 410 along the tool bit 300.
  • an alternative floating sleeve 420 is shown utilizing a single ball 422 wherein the spring band 424 is provided with an opening 426 therein for maintaining the position of the spring band 424 relative to the ball 422 that is received in the single opening 426 of the floating sleeve 420.
  • the floating sleeve 430 supports a ring magnet 50 at a forward end thereof and includes a pair of lock jaws 432 that are pivotally mounted to the floating sleeve by pivots 434.
  • the lock jaws 432 each include radially inwardly extending tabs 436 that are designed to be engaged within the reduced diameter portion 306 of the tool bit 300.
  • the lock jaws 432 can be pivoted to an engaged position, as illustrated in Figure 54 , and a lock collar 438 can be pulled over top of the lock jaws 432, as illustrated in Figure 56 , to secure the lock jaws 432 to the tool bit 300.
  • the ring magnet 50 is supported at the forward end of the floating sleeve 430 and the lock jaws 432 limit the axial movement of the floating sleeve 430 along the tool bit 300 to allow the ring magnet 50 to float to an engaged position when the tool bit 300 is engaged with a fastener.
  • the lock collar 438 can be pulled in a forward position allowing the lock jaws 432 to be pivoted radially outward so that the tool bit 300 can be removed from the floating sleeve 430.
  • the lock collar 438 can be made of a flexible material, or can have a rigid outer ring with a flexible material on the interior thereof that allows the lock collar 438 to be retained on the lock jaws 432 when they are in the locked position.
  • an alternative floating sleeve 440 including a ring magnet 50 at a forward end of a plastic sleeve.
  • the plastic sleeve 440 has a slot 442 therein and has exterior cam surfaces 444 thereon.
  • a rotating sleeve 446 is engaged with the cam surfaces 444 of the sleeve 440 and the rotating sleeve 446 can be rotated to cause plastic sleeve 440 to be retained in a radially inward direction to positively engaged the radially inwardly extending tabs 448 of the sleeve 440 within the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 thereof.
  • the rotating sleeve 446 can also be rotated to an unlocking position that allows the sleeve 440 to flex outwardly sufficiently enough to allow removal of the bit 300 from the floating sleeve 440.
  • a floating sleeve 454 is provided with two interior ring magnets 456, 458 (as illustrated in Figure 58 with the sleeve 454 removed) which are positioned with both poles opposing one another at approximately 10mm apart. With both poles of the ring magnets 456, 458 opposing one another, the sleeve 454 will move freely along a length of the tool bit 452 as they are captured by the non-magnetic sleeve 454.
  • An O-ring 460 can optionally be placed between the two magnets 456, 458 to provide resistance to movement of the floating sleeve 454 if so desired.
  • the opposing poles of the magnets 456, 458 cause the sleeve 454 to float on the bit 450 until a face of the forward magnet 458 contacts a head of a fastener that has been placed on the driving end 462 of the tool bit 450. Once that contact is made, the sleeve 454 then positions itself such that the fastener remains in place on the bit 450 during installation. Once the faster is securely started, the sleeve 454 can be drawn back onto the bit 450 if desired where it will remain during the driving and seating of the fastener.
  • a bit holder assembly 470 including a body 472 and a floating sleeve 474.
  • the body 472 includes a first end defining a shank 476 and a second end defining a polygonal cavity 478 that can be hex-shaped or can have another polygonal shape.
  • an additional bore 480 can be provided for receiving a magnet 482 therein.
  • An exterior surface of the body 472 at the second end includes a threaded portion 484 which is adapted to receive a threaded cap 486.
  • the threaded cap 486 includes interior threads 488 that engage the threaded portion 484.
  • the threaded cap 486 also includes a radially inwardly extending shoulder 490 that captures an O-ring 492 axially between the shoulder 490 and an end surface 494 of the body 472.
  • a radially inwardly extending shoulder 490 that captures an O-ring 492 axially between the shoulder 490 and an end surface 494 of the body 472.
  • an annular groove 496 is formed having a forward shoulder 498.
  • a shoulder 500 is formed for engagement with the shoulder 498 at the forward end of the annular groove 496. The shoulders 498, 500 limit the axial movement of the threaded cap 486 in the forward axial direction.
  • the threaded cap 486 When a bit 40 (not shown) is inserted into the polygonal cavity 478, the threaded cap 486 can be tightened against the O-ring 492 causing the O-ring 492 to expand radially inwardly to engage the bit 40 and secure the bit 40 within the cavity 478. In order to remove the bit 40, the threaded cap 486 can be rotated to release the clamping force against the O-ring 492 thereby allowing the O-ring 492 to disengage the bit 40 and allow the bit 40 to be removed.
  • the body 472 also includes an annular groove 502 located at an intermediate location along the body 472.
  • the annular groove 502 is disposed in the exterior surface of the body and is elongated in the axial direction so as to receive a C-shaped hog ring 504 that is received in an annular recess 506 on the interior of the floating sleeve 474.
  • the C-shaped hog ring 504 can travel axially along the length of the annular groove 502 to allow the floating sleeve 474 to float in a forward and rearward direction.
  • the annular groove 502 has forward and rearward shoulders that limit the axial movement of the floating sleeve.
  • the C-shaped hog ring 504 is flexible to allow removal of the floating sleeve 474 from the body 472 in order to gain access to the threaded cap 486 for tightening and loosening the cap 486 to allow insertion and removal of bits 40 from the polygonal cavity 478.
  • a forward end of the floating sleeve 474 supports a ring magnet 50 that is allowed to move in forward and rearward directions to engage and magnetize a fastener to retain the fastener to the tool bit 40.
  • a spacer sleeve 508 can be disposed rearward of the ring magnet 50 and can limit the rearward movement of the floating sleeve 474 by engagement with a forward end of the threaded cap 486.
  • the shank 476 can be inserted into a drill either directly or indirectly via a quick release chuck device.
  • the floating sleeve 474 can be removed from the body 472 and a bit 40 can be inserted into the polygonal cavity 478.
  • the magnet 482 would attract the tool bit 40 to the rearward-most location within the polygonal cavity 478.
  • the threaded cap 486 can then be tightened in the rearward direction R to cause the O-ring 492 to expand radially inward while being compressed and thereby engage the bit 40 and secure the bit 40 in the polygonal cavity 478.
  • the floating sleeve 474 can then be slid over the end of the body 472 so that the C-shaped hog ring 504 is received within the annular groove 502 to limit the axial movement of the floating sleeve 474.
  • a fastener 54 (not shown) is brought into engagement with the tool bit 40, the floating sleeve 474 under the influence of the ring magnet 50 can slide axially forward to engage the fastener 54 to thereby magnetize the fastener 54 and retain it to the bit 40.
  • a bit holder assembly 470' may comprise the body 472, shank 476 and threaded cap 486 described above with a modified floating sleeve 474'.
  • the floating sleeve 474' may include a retainer 504', such as an O-shaped or C-shaped elastic ring, that is received in the annular groove 502 on the exterior of the body 472 to allow the floating sleeve 474' to float between a forward position and a rearward position as limited by a forward shoulder 503 and a rearward shoulder 501 of the annular groove 502.
  • the floating sleeve 474' supports a ring magnet 450 and that is allowed to move in forward and rearward directions to engage and magnetize a fastener to retain the fastener to the tool bit 40, as described above.
  • the floating sleeve 474' differs from the floating sleeve 474 of Figure 61A in that there is no spacer 508 and the floating sleeve 474' can be moved further rearward to a parked position as shown in Figure 61B .
  • the retainer 504' engages an outer wall of the body 472 (or a parking groove formed in the outer wall of the body 472). This exposes the threaded cap 486 to enable the threaded cap 486 to be removed from the body 472 without removing the floating sleeve 474' from the body 472.
  • the floating sleeve 510 includes an elongated annular recess 512 on an outer surface thereof and a pair of tapered window openings 514 extending through the sleeve 510 opposite one another within the elongated annular recess 512.
  • the window openings 514 each receive a ball 516 therein and a spring band 518 is received within the elongated annular recess 512 over top of the balls 516 to secure the balls 516 within the tapered window openings 514.
  • the balls 516 are designed to be received in a reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 to limit the axial movement of the floating sleeve 510 in the forward and rearward directions.
  • the spring band 518 allows the balls 514 to be pushed radially outward against the spring force of the band 518 while the working region 304 of the tool bit 300 is inserted into, or removed from, the sleeve 510.
  • the balls 516 move radially inwardly reducing the force of the spring band 518 on the balls 514.
  • a ring magnet 50 is disposed at the forward end of the floating sleeve 510 and is designed to magnetize a fastener 54 (not shown) that is engaged to the bit 300.
  • Figure 65 shows the floating sleeve 510 in a forward position while Figure 66 shows the floating sleeve 510 in a rearward position.
  • Figures 71-75 illustrate an alternative arrangement of the floating sleeve 530 which is arranged with the same construction as the floating sleeve 510 with different external dimensions and appearance. Accordingly, the same reference numerals used for describing the components of the floating sleeve 510 are used for the components of the floating sleeve 530 and a detailed description of the floating sleeve 530 is not believed to be necessary, other than to note that its dimensions are different from that of the floating sleeve 510 in order to be used with a different type of bit having a smaller working head region and/or longer reduced diameter portion.
  • the tool bit assembly 550 includes a tool bit 552, a base collar 554 that is received on the tool bit 552, and a floating sleeve 556 that is slidably received on the base collar 554.
  • a front end of the sleeve 556 is tapered inwardly. This intuitively prevents the user from attaching the sleeve backwards on the bit.
  • the tool bit 552 can be of the type that includes a shank portion 558 and a working end 560 with a reduced diameter portion 561 and an annular groove 562 disposed in an intermediate location thereon.
  • the tool bit 552' as shown in Figure 77 , can include recessed grooves at the corner edges of the hex-shaped shank 558 instead of the annular groove 562.
  • the base collar 554 includes an internal recessed groove 568 that receives a retainer ring 570 therein.
  • the retainer ring 570 is designed to be received in the annular groove 562 of the tool bit 552 or within the recessed grooves 564 of the alternative bit 552'.
  • Retainer ring 570 secures the base collar to the tool bit 552, 552'.
  • the base collar 554 includes a reduced diameter portion 572 having a recessed groove 574 in an outer surface thereof.
  • a stop shoulder 576 is disposed at a rearward end of the reduced diameter portion 572.
  • the floating sleeve 556 is movably received on the reduced diameter portion 572.
  • the floating sleeve 556 includes an internal annular groove 578 that receives a retaining ring 580 received in the recessed groove 574. Retaining ring 580 limits the axial movement of the floating sleeve 556 via the forward and rearward shoulders 582, 584 of the annular groove 578. The rearward end 586 of the floating sleeve 556 engages the stop shoulder 576 of the base collar 554.
  • a ring magnet 50 is received in a forward end of the floating sleeve 556 and is designed to magnetize a fastener to retain the fastener to the working head region 560 of the tool bit 552.
  • the base collar 554' of the tool bit assembly 550 of Figures 76-81 has been modified to include an internal shoulder portion 590 that engages a forward shoulder 592 of the reduced diameter portion 561 of the tool bit 552.
  • the shoulder portion 590 and the retainer ring 570 secure the base collar 554' relative to the tool bit 552 so that the movement of the floating sleeve 556 can be better controlled.
  • Figures 82 and 84 show the modified base collar 554' engaged with alternative tool bits 552, 552'.
  • a bit holder assembly 800 includes a body portion 820 coupled to a shank 840, and a floating sleeve 810 received over the body portion 820.
  • the body portion 820 and shank 840 are similar to the sleeve 20 and connecting rod 40 of the bit holder described in U.S. Pat. App. Pub. No. 2012/0126497 , titled "Small Outer Diameter Quick Release Extension Rod,” (the '497 application).
  • the body 820 includes a socket 823 configured to receive a tool bit 40.
  • a pair of lateral accommodation portions 832 is defined in a circumference of the socket 823.
  • Each elongated elastic element 870 is sheet shaped and includes a body portion 871 connected between a pushed end portion 872 and an engaging end portion 873, which extends from the body portion 871 at an angle of approximately 45 ⁇ 15 degrees.
  • An actuator sleeve 830 is received over the shank 840 and a rear end of the body 820 and is moveable axially relative to the body 820 and the shank 840.
  • a return spring 860 is held axially by a first positioning ring 850 that is fixedly connected to the shank 840.
  • the return spring 860 biases the actuator sleeve 830 toward a forward or locked position.
  • the actuation sleeve 830 is fixedly connected to a second positioning ring 880.
  • the second positioning ring 880 is fixedly connected to the pushed end portions 872 of the elongated elastic elements 871.
  • the engaging end portions 873 of the elongated elastic elements 870 project into the socket 823 to engage and retain a tool bit 40 in the socket 823.
  • the actuator sleeve 830 is retracted against the force of the return spring 860 (as shown in Fig. 6 of the '497 application)
  • the second positioning ring 880 pulls the end portions 872 of the elongated elastic elements 870 to retract the engaging end portions 873 from the socket 823, enabling removal of the tool bit 40 from the socket 823.
  • an ejection mechanism 890 Inside of the socket 823 is an ejection mechanism 890 includes a plunger 891, a magnetic element 892 and an elastic element 893.
  • the magnetic element 892 is disposed on one end of the plunger 891, and the other end of the plunger 891 abuts against one end of the elastic element 893.
  • the other end of the elastic element 893 abuts against an end of the connecting rod 840.
  • the magnetic element 892 faces toward front end of the socket 823.
  • the elastic element 893 When a tool bit is inserted into the socket 823, the elastic element 893 is compressed.
  • the elastic element 893 pushes the plunger 891 toward the open end of the socket, causing at least partial ejection of the tool bit out of the socket 823. This helps enable removal of the tool bit from the socket 823.
  • the magnetic element 892 prevents the tool bit from being fully ejected from the socket 823 when the actuator sleeve 830 is retracted to release the
  • the outer surface of the body 820 is provided with an elongated annular recess 812.
  • the floating sleeve 810 is substantially surrounds the body 820 and supports a ring magnet 814 at an end thereof.
  • the floating sleeve 810 includes an interior annular groove 816 that receives a retainer 818 therein.
  • the floating sleeve 810 can be removably attached to the body 820 by force fitting the body 820 into a rear opening 822 of the floating sleeve 810 until the retainer 818 is received in the recess 812 of the body 820.
  • the recess 812 is provided with a forward shoulder 824 and a rearward shoulder 826 that allow the floating sleeve 170 to travel in a forward and rearward direction as indicated by arrow A while the shoulders 824 and 826 limit the travel of the floating sleeve 810 by engagement with the retainer member 818.
  • the floating sleeve can float freely between a rear position, as shown in Fig. 87A , in which the retainer 818 engages the rear shoulder 826, and a front position as shown in Fig. 87B , in which the retainer 818 engages the front shoulder 824 and the ring magnet 814 can engage the head of a threaded fastener 819.
  • the retainer 818 can take the form of a non-elastic member, such as a steel hog ring 818a, as shown in Figure 88A , or an elastic member, such as an elastic O-ring 818b as shown in Figure 88B or an elastic C-ring 818c as shown in Figure 88C .
  • the floating sleeve 810 can also be moved rearward to a parked position in which the retainer 818 is positioned rearward of the rear shoulder 826.
  • the retainer 818 comprises an elastic element (such as an elastic O-ring 818b or an elastic C-ring 818c) that is stretched and expands when the floating sleeve 810 is pulled axially rearward to the parked position.
  • the expanded elastic retainer 818 frictionally engages the outer wall of the body portion 820 in a tight manner to maintain the floating sleeve 810 in the parked position until the user pulls the floating sleeve 810 forward back to one of the floating positions shown in Figures 87A and 87B .
  • An internal shoulder 877 on the front end of the floating sleeve 810 abuts a front end 879 of the body portion 820 to prevent further rearward movement of the floating sleeve 810 beyond the parked position. In the parked position, it is easier for the user to grasp and remove the bit 40 when it is ejected from the socket 823 when the actuator sleeve 830 is retracted.
  • the body portion 820 may be formed with an annular parking groove rearward of the annular recess 812 to more securely retain the retainer 818 and the floating sleeve 810 in the parked position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

A bit holder assembly (470) for a rotary hand or powered tool, includes a body (472) having a hex shank (476) at its rearward end and a retraction collar (474) slidably disposed on the body (472). The body (472) has a coaxial hex socket (478) formed therein to allow a tool bit (40) to be inserted thereinto. The bit (40) is removed by sliding the retraction collar (474). A ring magnet (50) is disposed at the forward end of the retraction collar (474) to magnetize a fastener (54) to retain the fastener (54) to the bit (40).

Description

  • The present disclosure relates to power tool and hand tool bits and bit holders and more particularly, to a bit and a quick change bit holder with a floating ring magnet for retaining a fastener to the bit.
  • This section provides background information related to the present disclosure which is not necessarily prior art.
  • Auxiliary chucks for power and hand tools have become increasingly common, especially as the need and desirability of wider versatility in the use of power tools and hand tools has increased. Such auxiliary chucks allow the hand or power tool to be used with any of a number of interchangeable bits. This, in turn, has resulted in demands for greater speed, convenience and ease of insertion and removal of tool bits from such chucks.
  • In one exemplary type of such conventional quick-release chucks, one or more detent balls are positioned within a hollow, barrel-shaped tool bit holder body and are resiliently biased into engagement with a circumferentially-extending groove or recess on the shank of the tool bit. An example of such a ball-type mechanism is disclosed in commonly assigned U.S. Patent No. 5,988,957 . In other conventional quick release chucks, a spring biased clip is used to engage the bit within the tool bit holder body. Examples of the spring biased clip design are disclosed in commonly assigned U.S. Patent Nos. 7,086,813 and 6,929,266 .
  • This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
  • Although the above types of bit holders have been found to function acceptably, the present disclosure provides a simple, relatively inexpensive quick-acting chuck assembly or bit holder that includes a ring magnet at a forward end of the retraction collar to magnetize a fastener and assist in both retaining the fastener to the bit and stabilizing the fastener during its installation. The ring magnet can be supported to allow the magnet to float in a forward direction to engage the fastener or a rearward direction to release the bit for a rapid one handed bit change. The length of the float and the geometry of the magnet are such as to allow for the feature to work with fasteners of different head configurations and with all bit lengths within the normally accepted industry tolerances.
  • The present disclosure provides a body having a coaxially extending hex-shaped bore therein for receiving a hex-shaped bit. A spring biased retraction collar is mounted to the body and engages means for releasably retaining the hex-shaped tool within the bore. The retraction collar supports a magnet at a forward end thereof and allows the magnet to float in a forward direction to engage and magnetize a fastener engaging the bit. The magnet can be in the form of a ring magnet and can be fixedly mounted to the retraction collar, wherein the magnet causes the retraction collar to move in the forward direction. Alternatively, the retraction collar can include a floating sleeve that supports the magnet and allows the magnet to float forward relative to a remainder of the retraction collar.
  • According to further aspects of the present disclosure, a bit holder is provided with a floating ring magnet supported on the bit holder. The bit holder can be a pivoting bit holder or a multi-tool bit holder such as a six-in-one rotary tool.
  • According to a still further aspect of the present disclosure, a tool bit is provided with a floating sleeve that supports a ring magnet at a forward end of the tool bit. The floating sleeve can be supported on the tool bit by various techniques as will be disclosed herein. The tool bit can be a torsion bit that includes a shank portion and a working region with a reduced diameter torsion zone disposed therebetween. The reduced diameter torsion zone has a shoulder on a forward and rearward end of the torsion zone to aid in retaining the floating sleeve on the tool bit.
  • According to another aspect, a magnet assembly is provided for retaining a fastener on a tool bit, the magnet assembly including a floating sleeve and a first ring magnet disposed at a front end portion of the floating sleeve. A second ring magnet is disposed at a rear end portion of the floating sleeve, wherein the first and second ring magnets are arranged with their poles opposing one another such that the floating sleeve is moveable freely along a length of the tool bit, and the first ring magnet is configured to engage a head of a fastener. The first and second ring magnets are disposed approximately 10mm apart from each other and can include an O-ring disposed inside of the sleeve between the first and second ring magnets to resist movement of the floating sleeve along the tool bit.
  • According to one aspect of the present disclosure, there may be provided a bit holder assembly for a rotary tool, the bit holder assembly comprising a body having a shank at its rearward end and a coaxial socket formed at a second end to allow a tool bit to be inserted therein, an exterior surface of said body including a threaded portion at said second end; a threaded cap having internal threads engaging said threaded portion of said body and securing an O-ring at an open end of said coaxial socket; a floating collar slidably disposed on said body and including a ring magnet disposed at a forward end of the floating collar to magnetize a fastener to retain the fastener to the tool bit. The ring magnet may be attached directly to said floating collar. The threaded cap may be tightened against said O-ring to cause said O-ring to expand radially inward to engage and retain a bit within said coaxial socket. The floating collar may include an internal groove on an inner surface thereof and the floating collar may be retained on said body by a C-shaped ring received in said internal groove and a first annular groove in the exterior surface of said body. One of the internal groove and first annular groove may be elongated in an axial direction to allow the C-shaped ring to move along an axial length of said one of the internal groove and first annular groove. The floating collar may support a spacer ring between said ring magnet and said threaded cap. The body may include a second annular groove in said exterior surface adjacent to said threaded portion, wherein said threaded cap has an internal shoulder that engages a forward shoulder of said second annular groove to limit a forward axial movement of said threaded cap.
  • According to one aspect of the present disclosure there may be provided a tool bit assembly comprising a shaft having a shank at a first end and a working region disposed at a second end, said shaft having a shaft section between said shank and said working region having a reduced diameter region disposed between two shoulders, the tool bit assembly further comprising a floating sleeve movably disposed at said second end of said shaft and having a pair of opposed window openings therein and a ball disposed in each of said pair of window openings and received in said reduced diameter region of said shaft, and a ring magnet supported at a forward end of said floating sleeve to magnetize a fastener to retain the fastener to the working region of the tool bit. The tool bit assembly may further comprise a spring clip surrounding said floating sleeve and retaining said pair of balls in said pair of window openings.
  • According to one aspect of the present disclosure there may be provided a tool bit assembly comprising a tool bit including a shaft having a polygonal shank at a first end and a working head region disposed at a second end, a base collar secured to said shaft and a floating sleeve assembly slidably received on said base collar and including a ring magnet disposed at a forward end of said floating sleeve to magnetize a fastener to retain the fastener to the working head region of the tool bit. The base collar may include an exterior surface with a first recessed groove, wherein an interior surface of said floating sleeve includes an axially extending second recessed groove that receives a retainer ring that is disposed in said first recessed groove. The base collar may include a stop shoulder axially spaced from said first recessed groove, wherein a rear end of said floating sleeve engages said stop shoulder. The shaft may include a recess and the base collar may include an interior surface with a recessed groove and a retainer ring, wherein said retainer ring engages the recess in said shaft to retain said base collar to said shaft. The recess may comprise an annular groove formed in the polygonal shank. The recess may comprise a plurality of recessed grooves at corner edges of the polygonal shank. The base collar may include an interior shoulder that engages a rearward shoulder of a reduced diameter region of said tool bit.
  • According to one aspect of the present disclosure there may be provided a tool bit holder assembly comprising a shank removably receivable in a tool holder of a rotary tool, a body coupled to the shank and defining a socket with a longitudinal axis, the socket being open at a front end of the body to removably receive a tool bit therein, an annular recess defined in an exterior surface of the body and having a rear shoulder, a front shoulder, and an axial length, a floating sleeve slidably received over the body, an elastic retainer coupled to an interior of the floating sleeve and having an axial length less than the axial length of the annular recess, the retainer movably received in the annular recess to enable the floating sleeve to float axially between a rear position where the retainer abuts the rear shoulder and a front position where the retainer abuts the front shoulder; and a ring magnet disposed at a forward end of the floating sleeve to magnetize a fastener being engaged by a tool bit, wherein the floating sleeve is further axially moveable rearward from the rear position to a parked position where the elastic retainer engages the body rearward of the rear shoulder, to enable removal of a tool bit from the socket.
  • The elastic retainer may deform to frictionally engage the body when the floating sleeve is moved to the parked position. The elastic member may comprise one of a C-shaped elastic ring and an O-shaped elastic ring. The body may further define a groove rearward of the annular recess that is configured to receive the elastic retainer when the floating sleeve is in the parked position. The floating sleeve may be moveable axially forward from the front position to be removable from the body. The body may include at least one of a retaining ring, a ball, and a magnet in the socket to retain a tool bit in the socket. The body may include a threaded portion at a front end of the body, and may further comprise a threaded cap having threads engaging the threaded portion and securing a retaining ring in an open end of the socket to retain a tool bit in the socket. The shank may be pivotable relative to the body. The body may define an elongate axial internal groove and an elongated elastic finger received in the axial internal groove, the finger having a front end configured to project radially inward into the socket to retain a tool bit in the socket.
  • The bit holder may further comprise an actuator sleeve coupled to the elongated elastic finger to move the elastic finger between a locked position in which the front end projects radially inward into the socket to engage a tool bit and a released position in which the front end moves radially outward to allow a tool bit to be released from the socket. The tool bit holder may further comprise a plunger disposed inside of the socket and biased toward an open end of the socket to at least partially eject a tool bit from the socket when the actuator is moved to the released position, and a magnet may be coupled to the plunger to prevent complete ejection of a tool bit from the socket.
  • According to one aspect of the present disclosure there may be provided a tool bit holder comprising a shank removably receivable in a tool holder of a rotary tool, a body coupled to the shank and defining a socket with a longitudinal axis, the socket being open at a front end of the body to removably receive a tool bit therein, an elongated elastic finger extending axially along the body and having a front end configured to project radially inward into the socket to retain a tool bit in the socket, an actuator sleeve coupled to the elongated elastic finger to move the elastic finger between a locked position in which the front end projects radially inward into the socket to engage a tool bit and a released position in which the front end moves radially outward to allow a tool bit to be released from the socket, an annular recess defined in an exterior surface of the body and having a rear shoulder, a front shoulder, and an axial length; a floating sleeve slidably received over the body, a retainer coupled to an interior of the floating sleeve and having an axial length less than the axial length of the annular recess, the retainer movably received in the annular recess to enable the floating sleeve to float axially between a rear position where the retainer abuts the rear shoulder and a front position where the retainer abuts the front shoulder; and a ring magnet disposed at a forward end of the floating sleeve to magnetize a fastener being engaged by a tool bit.
  • The tool bit holder may further comprise a plunger disposed inside of the socket and biased toward an open end of the socket to at least partially eject a tool bit from the socket when the actuator is moved to the released position. A magnet may be coupled to the plunger to prevent complete ejection of a tool bit from the socket. The floating sleeve may be further axially moveable rearward from the rear position to a parked position where the elastic retainer engages the body rearward of the rear shoulder, to enable removal of a tool bit from the socket. The retainer may comprise an elastic member. The elastic member may comprise at least one of a C-ring and an O-ring. The elastic member may deform to frictionally engage the body when the floating sleeve is moved to the parked position. The body may define a groove rearward of the annular recess to receive the retainer when the floating sleeve is in the parked position.
  • Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
  • The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
    • FIG. 1 is a perspective view of a bit holder assembly according to the principles of the disclosure published as EP2628570 ;
    • FIG. 2 is a longitudinal or axial cross-sectional view of the bit holder assembly of FIG. 1;
    • FIG. 3 is a longitudinal cross-sectional view similar to that of FIG. 2, but illustrating a tool bit fully inserted in the bit holder assembly;
    • FIG. 4 is a longitudinal cross-sectional view similar to that of FIG. 3, but illustrating a fastener engaged with the tool bit and the retraction sleeve moved forward for magnetically engaging the fastener;
    • FIG. 5 is a longitudinal cross-sectional view similar to that of FIG. 2, but illustrating the retraction collar pulled rearward and the tool bit being removed from the bit holder assembly;
    • FIG. 6 is a perspective view of an alternative bit holder assembly according to the principles of the previous disclosure;
    • FIG. 7 is a longitudinal or axial cross-sectional view of the bit holder assembly of FIG. 6;
    • FIG. 8 is a side view of a power tool with the bit holder assembly of the previous disclosure mounted therein;
    • FIG. 9 is a side view of a power tool with the bit holder assembly integrally formed therein;
    • FIG. 10 is a perspective view of a bit holder assembly;
    • FIG. 11 is a cross-sectional view of the bit holder assembly of Figure 10;
    • FIGS. 12A-12C are partial cross-sectional views of a bit holder assembly;
    • FIG. 12D is a partial cross-sectional view of a bit holder assembly according to an alternative embodiment;
    • FIG. 12E is a partial cross-sectional view of a bit holder assembly according to an alternative embodiment;
    • FIG. 13 is a plan view of a hog ring type retainer utilized in the embodiments of Figures 12A-12E;
    • FIGS. 14A and 14B are plan views of an elastic O-ring and an elastic C-ring that can be utilized in the embodiments of Figures 12A-12E;
    • FIG. 15 is a partial cross-sectional view of a bit holder according to a further embodiment according to the principles of previous disclosure;
    • FIG. 16 is a perspective view of a ball and spring band which are utilized according to the alternative embodiment shown in Figure 15;
    • FIG. 17 is a side plan view of a six-in-one rotary tool having a floating ring magnet according to the principles of the previous disclosure;
    • FIG. 18 is a side plan view of the six-in-one rotary tool shown in Figure 17 with the ring magnet in a forward position;
    • FIG. 19 is a cross-sectional view of the six-in-one rotary tool and floating ring magnet as shown in Figures 17 and 18;
    • FIG. 20 is a cross-sectional view of a pivotal bit holder accessory having a floating ring magnet mounted on a forward end thereof;
    • FIG. 21 is an alternative pivotal bit holder accessory having a ring magnet mounted to a floating locking sleeve of the accessory, according to the principles of the previous disclosure;
    • FIG. 22 is a perspective view of a tool bit having a magnetic ring supported by a floating sleeve, according to the principles of the previous disclosure;
    • FIG. 23 is a side plan view of the tool bit and floating sleeve shown in Figure 22;
    • FIG. 24 is a cross-sectional view of the tool bit and floating sleeve shown in Figures 22 and 23;
    • FIG. 25 is a side plan view of the tool bit shown in Figure 22;
    • FIG. 26 is a perspective view of the tool bit with a floating sleeve, according to the principles of the previous disclosure;
    • FIG. 27 is a perspective view of the floating sleeve shown in Figure 26;
    • FIG. 28 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 26;
    • FIG. 29 is a cross-sectional view similar to Figure 28, with the floating sleeve in a forward position, according to the principles of the previous disclosure;
    • FIG. 30 is a perspective view of an alternative floating sleeve design, according to the principles of the previous disclosure;
    • FIG. 31 is a perspective view of a floating sleeve according to an alternative embodiment of the previous disclosure;
    • FIG. 32 is a perspective view of a floating sleeve according to the previous disclosure;
    • FIG. 33 is a perspective view of a tool bit having a floating sleeve, according to an alternative embodiment of the previous disclosure;
    • FIG. 34 is a side plan view of the tool bit and floating sleeve shown in Figure 33;
    • FIG. 35 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 33;
    • FIG. 36 is a side plan view of the floating sleeve shown in Figure 33;
    • FIG. 37 is a perspective view of a tool bit and an alternative floating sleeve, according to the previous disclosure;
    • FIG. 38 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 37;
    • FIG. 39 is a cross-sectional view of the floating sleeve shown in Figure 37;
    • FIG. 40 is a perspective view of a tool bit and alternative floating sleeve design, according to the previous disclosure;
    • FIG. 41 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 40;
    • FIG. 42 is a perspective view of the floating sleeve shown in Figure 40;
    • FIG. 43 is a perspective view of a tool bit having a floating ring magnet supported by a floating sleeve, according to a further embodiment of the previous disclosure;
    • FIG. 44 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 43;
    • FIG. 45 is a side plan view of the floating sleeve shown in Figure 43;
    • FIG. 46 is a perspective view of a D-shaped ring utilized with the floating sleeve shown in Figure 45;
    • FIG. 47 is a perspective view of a tool bit and alternative floating sleeve design according to the previous disclosure;
    • FIG. 48 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 47;
    • FIG. 49 is a cross-sectional view taken along line 49-49 of Figure 48;
    • FIG. 50 is a side plan view of the floating sleeve shown in Figure 47;
    • FIG. 51 is a perspective view of a spring band utilized in the embodiment of Figure 47;
    • FIG. 52 is a side plan view of a tool bit having a floating sleeve according to an alternative embodiment;
    • FIG. 53 is an exploded perspective view of the floating sleeve, ball, and spring band utilized in the embodiment of Figure 52;
    • FIG. 54 is a perspective view of a tool bit and alternative floating sleeve design, according to the principles of the previous disclosure;
    • FIG. 55 is a perspective view of the floating sleeve design as shown in Figure 54 with the locking jaws in a disengaged position;
    • FIG. 56 is a perspective view of the floating sleeve design shown in Figure 54 with the lock collar shown in the locked position for engaging the floating sleeve to the tool bit;
    • FIG. 57 is a partial cutaway perspective view of an alternative floating sleeve design according to the previous disclosure;
    • FIG. 58 is a side plan view of a pair of ring magnets disposed around a tool bit with a connecting sleeve removed for illustrative purposes, according to the principles of the previous disclosure;
    • FIG. 59 illustrates a sleeve that is mounted to the pair of ring magnets as shown in Figure 58;
    • FIG. 60 is a side plan view of an alternative bit holder assembly according to the principles of the present disclosure;
    • FIG. 61A is a longitudinal or axial cross-sectional view of the bit holder assembly of Figure 60;
    • FIG. 61B is a longitudinal or axial cross-sectional view of an alternative embodiment of the bit holder assembly of Figure 60;
    • FIG. 62 is a side plan view of the body portion of the bit holder assembly shown in Figure 60;
    • FIG. 63 is a longitudinal or axial cross-sectional view of the floating sleeve of the bit holder assembly of Figure 60;
    • FIG. 64 is a perspective view of a tool bit and alternative floating sleeve design according to the present disclosure;
    • FIG. 65 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 64 with the floating sleeve in a forward position;
    • FIG. 66 is a cross-sectional view of the tool bit and floating sleeve shown in Figure 64 with the floating sleeve in a rearward position;
    • FIG. 67 is a perspective view of the floating sleeve shown in Figure 64;
    • FIG. 68 is a side plan view of the floating sleeve shown in Figure 64;
    • FIG. 69 is a longitudinal cross-sectional view of the floating sleeve shown in Figure 64;
    • FIG. 70 is a side plan view of the tool bit shown in Figure 64;
    • FIG. 71A is a cross-sectional view of a tool bit and floating sleeve according to a further embodiment of the present application with the floating sleeve shown in a forward direction;
    • FIG. 71B is a cross-sectional view of the tool bit and floating sleeve shown in Figure 71A with the floating sleeve in a rearward position;
    • FIG. 72 is a perspective view of the floating sleeve shown in Figure 71 A;
    • FIG. 73 is a longitudinal cross-sectional view of the floating sleeve assembly shown in Figure 71 A;
    • FIG. 74 is a longitudinal cross-sectional view of the floating sleeve shown in Figure 71 A;
    • FIG. 75 is a side plan view of the floating sleeve shown in Figure 71 A;
    • FIG. 76 is a cross-sectional view of a tool bit and floating sleeve according to a further embodiment of the present application;
    • FIG. 77 is a cross-sectional view of the floating sleeve shown in Figure 76 with an alternative tool bit;
    • FIG. 78 is a perspective view of floating sleeve assembly shown in Figure 76;
    • FIG. 79 is a disassembled cross-sectional view of the floating sleeve shown in Figure 76;
    • FIG. 80 is a cross-sectional view of the floating sleeve shown in Figure 76 with the floating sleeve in a rearward position;
    • FIG. 81 is a cross-sectional view of the floating sleeve shown in Figure 76 with the floating sleeve in a forward position;
    • FIG. 82 is a cross-sectional view of a tool bit and floating sleeve according to a further embodiment of the present application;
    • FIG. 83 is a side plan view of the tool bit shown in Figure 82;
    • FIG. 84 is a cross-sectional view of a tool bit and floating sleeve according to a further embodiment of the present application;
    • FIG. 85 is a side plan view of the tool bit shown in Figure 84;
    • FIG. 86 is a partial cross-sectional perspective view of another embodiment of a tool bit holder assembly;
    • FIGS. 87A-87B are partial cross-sectional plan views of the tool bit holder assembly of FIG. 86.
    • FIG. 87C is a partial cross-sectional plan view of an alternative embodiment of the tool bit holder assembly of FIG. 86.
    • FIGS. 88A-88b are plan views of various retention members for use with the bit holder assemblies of FIGS. 87A-87C.
  • Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms "comprises," "comprising," "including," and "having," are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
  • When an element or layer is referred to as being "on," "engaged to," "connected to," or "coupled to" another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly engaged to," "directly connected to," or "directly coupled to" another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between" versus "directly between," "adjacent" versus "directly adjacent," etc.). As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
  • Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as "first," "second," and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • Spatially relative terms, such as "inner," "outer," "beneath," "below," "lower," "above," "upper," and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the example term "below" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • With reference to Figures 1-5, a first embodiment of the quick-change bit holder 10, according to the principles of the previous disclosure, will now be described. The bit holder 10 includes a body 12 and retraction collar 14 slidably mounted on the body and retained in place by a sleeve bushing 32, as illustrated in Figure 2. The body 12 can include a hex or polygonal-shaped shank 16 for mounting the bit holder 10 for rotation by a hand tool or a power tool.
  • With reference to Figure 2, the body 12 also includes a hex or polygonal-shaped socket or bore 20 with the bore 20 opening axially outwardly toward the front or forward end of the bit holder 10. A plunger bore 22 extends axially from the hex-shaped socket or bore 20 toward the rear end of the bit holder assembly 10. Optionally, an ejection spring 24 can be disposed in the plunger bore 22. The body 12 includes an angular slot 26 formed transversely therein, with the slot 26 extending from the radially outer surface of the body 12 in an axially forward and radially inward direction to communicate with the interior of the hex bore or socket 20.
  • A coil spring 30 surrounds a portion of the body 12 and is disposed between the body 12 and the retraction collar 14. The coil spring 30 abuttingly engages a clip 44 which is received in a groove around a mid-portion of the body 12 and terminates in an integrally formed clip 34 that is disposed in the angular slot 26 and is designed to releasably engage a recess 38 in a hex or polygonal-shaped bit tip 40 as illustrated in Figure 3. An internal annular sleeve 32 attaches to the rear portion of the retraction collar 14. The sleeve 32 can be secured to the collar 14 by adhesive, a press fit, thermal bonding, fasteners, pins, or other known attachment techniques. Received in a groove around a mid-portion of the body 12 is a clip 44 that acts as a stop against the sleeve 32 to limit forward travel of the retractable collar 14. The retractable collar 14 includes a forward shoulder portion 48 that, when pulled rearward, can engage the spring 30 and pull the clip portion 34 of the spring 30 pulling it rearward out of engagement with a bit 40 received in the hex-shaped cavity 20.
  • The retractable collar 14 is of a non-magnetic material with the exception of a magnetic tip 50 that can be in the form of a ring magnet. Alternative magnetic arrangements can be used including multiple non-ring shaped magnets combined to form a ring-like shape mounted at the tip of the collar 14. Both faces and the internal bore of the magnet, however, may remain accessible.
  • In operation, as shown in Figure 2, the collar 14 starts in a neutral position with the collar biased forward and the spring clip 34 extending into the bore 20. Next, as shown in Figure 3, a bit 40 is inserted into the bore 20 so that the spring clip 34 engages a notch 38 in the side of the bit 40 to prevent removal of the bit 40 from the bore 20. The bit 40 also compresses the ejection spring 24. The retraction collar 14 remains in the neutral position. Next, as shown in Figure 4, when the bit 40 is used to drive a screw or fastener 54, the collar 14 floats as a result of the magnetic force radiating from the outer face to a forward position until the outer face of the magnet 50 reaches the fastener, enabling the outer face of the ring magnet 50 to magnetically adhere to the screw 54. This occurs before the bearing sleeve 32 engages the stop ring 44. The magnetic force, generating from the inner face of the magnet 50 by design, then draws the fastener 54 and the sleeve 14 jointly towards the body 12, the material of which it is made exhibiting magnet attractable properties resulting in holding the fastener 54 tight against the bit 40. The outer face of the magnet 50 also provides a stable surface to reduce movement of the fastener (wobble) during installation. The surface geometry of the face of the magnet 50 being such as to provide support to fasteners of multiple sizes, shapes, and configurations.
  • Next, as shown in Figure 5, when the operation has finished and the user desires to remove the bit 40 from the bit holder 10, the user retracts the retraction collar 14 relative to the body 12, causing the spring 30 to compress, and the spring clip 34 to disengage from the bit 40, which allows the ejection spring 24 to attempt to eject the bit 40 from the holder 10. The ejection is, however, limited in movement to the point where the bit notch 38 is clear, and remains as such, of the clip 34 allowing for easy one handed removal, but not to the point where it leaves the bore 20. This controlled ejection is accomplished as a result of the magnetic field generating from the inner bore of the magnet 50 surrounding the bit 40.
  • With reference to Figures 6 and 7, an alternative quick change bit holder 60, according to the previous disclosure, will now be described. The bit holder 60 includes a body 62 and a retraction collar assembly 64 mounted thereon. The body 62 includes a hex shank 66 and a hex-shaped socket or bore 70 formed in the body 62, with the bore 70 opening axially outwardly toward the front or forward end of the bit holder assembly 60. A plunger bore 72 extends axially from the hex-shaped socket or bore 70 toward the rear end of the bit holder assembly 60. Optionally, an ejection spring 74 can be disposed in the plunger bore 72. The body 62 includes an angular slot 76 similar to the slot 26 as described above. A coil spring 80 having an integral spring clip 84 surrounds the body 62 and is disposed between the body and the clip 84 such that the spring clip 84 is disposed in the angular slot 76 for engaging a bit tip 40 in the manner as discussed above with regard to the previous embodiment.
  • The retraction collar assembly 64 includes a rear collar 64a, an intermediate collar 64b and a forward collar 64c. A retainer clip 86 is disposed in a recessed groove in the outer surface of the body 62 and is disposed against a forward facing shoulder 88 of the rearward collar 64a. The intermediate collar 64b is press fit onto the rearward collar 64a to trap the retainer clip 86 therebetween. A rearward facing shoulder 90 is provided in a forward direction from the spring 80 on the intermediate collar 64b. The forward collar 64c is slidably supported on a forward end of the intermediate collar 64b and includes a magnetic tip 50 in the form of a magnet ring. The forward collar 64c acts as a floating sleeve and includes a rearward shoulder portion 90 that engages a forward shoulder portion 92 of the intermediate collar 64b to limit the forward travel of the forward collar 64c. The rear end of the forward collar 64c can be stretched over the forward end of the intermediate collar 64b to complete the collar assembly 64. Slots can be provided in the rear end of the forward collar 64c to facilitate assembly on the intermediate collar 64b. Alternatively, the collar could be retained through the usage of a spring ring mounted in a groove on the OD of the intermediate collar 64b and a mating taper and groove in the ID of the forward collar 64c.
  • In operation, a bit tip 40 can be inserted into the hex-shaped bore 70 of the bit holder body 62. The spring clip 84 engages a recess 38 in the bit tip 40 in order to retain the bit tip 40 within the bore 70. The forward collar 64c is able to float in a forward direction to engage a fastener that is engaged by the bit tip 40 in order to magnetically retain the fastener to the bit tip 40. When the fastener is inserted and the user wishes to remove the bit tip 40, the retraction collar 64 can be pulled in a rearward direction so that rearward facing shoulder 94 of intermediate collar 64c pulls rearward on the spring 80 to disengage the spring clip portion 84 from the recess 38 in the bit tip 40. The magnetic sleeve on this bit holder 60 works just like the other in that it grabs the screw and pulls it back towards the body 62 and against the bit while reducing wobble.
  • It should be understood that in each of the embodiments described herein, the bit holder 10, 60 can be mounted to a drill 2 as shown in Figure 8 by inserting the hex-shaped shank 16, 66 into a chuck device. Alternatively, the bit holder of the present disclosure can be integrally constructed into the chuck device of the power tool 2, as shown in Figure 9. Furthermore, although the present disclosure discloses a spring clip 34, 84 that is integral with the spring 30, 80, other arrangements of spring clips that are separate from the coil spring have also been utilized and can be utilized with the present disclosure. Examples of other arrangements include U.S. Patent Nos. 7,086,813 ; 6,929,266 ; 6,261,035 ; and 5,988,957 which are incorporated herein by reference in their entirety. Furthermore, the use of a ball detent mechanism is also known in the art, and can be used in place of the integral spring clip and spring arrangement of the present disclosure. Further, other previous bit holder designs can be modified to include a ring magnet near the front of the outer actuation sleeve to allow the magnet and/or actuation sleeve to float forward to magnetize a fastener during operation.
  • With reference to Figures 10 and 11, a third embodiment of the quick-change bit holder 110, according to the principles of the previous disclosure, will now be described. The bit holder 110 includes a body 112 and a retraction collar 114 slidably mounted on the body 112 and retained in place by a sleeve bushing 132, as illustrated in Figure 11. The body 112 can include a hex or polygonal-shaped shank 116 for mounting the bit holder 110 for rotation by a hand tool or a power tool.
  • With reference to Figure 11, the body 112 also includes a hex or polygonal-shaped socket or bore 120 with the bore 120 opening axially outwardly toward the front end of the bit holder 110. A plunger bore 122 extends axially from the hex-shaped socket or bore 120 toward the rear end of the bit holder assembly 110. Optionally, an ejection spring 124 can be disposed in the plunger bore 122. The body 112 includes an angular slot 126 formed transversely therein, with the slot 126 extending from the radially outward surface of the body 112 in and axially forward and radially inward direction to communicate with the interior of the hex bore or socket 120.
  • A coil spring 130 surrounds a portion of the body 112 and is disposed between the body 112 and the retraction collar 114. The coil spring 130 abuttingly engages a clip 144 which is received in a groove 145 around a mid-portion of the body 112 and terminates as an integrally formed clip 134 that is disposed in the angular slot 126 and is designed to releasably engage a recess 38 in a hex or polygonal-shaped bit tip 40 in the same manner as the embodiment illustrated in Figures 3 and 4. The internal annular sleeve 132 attaches to the rear portion of the retraction collar 114. Sleeve 132 can be secured to the collar 114 by adhesive, a press fit, thermal bonding, fasteners, pins, or other known attachment techniques. The clip 144 acts as a stop against the sleeve 132 to limit for travel of the retractable collar 114. Retractable collar 114 includes a forward shoulder portion 148 that when pulled rearward can engage the spring 130 and pull the clip portion 134 of the spring 130, pulling it rearward out of engagement with a bit 40 received in the hex-shaped cavity 120.
  • Retractable collar 114 supports a removable magnet ring 150 that is supported by a removable sleeve 152. Removable sleeve 152 is secured to the retractable collar 114 by a retainer such as an O-ring or bull nose ring 154 that is received in a groove in a forward portion thereof. The sleeve 152' is press fit over top of the retainer ring in order to releasably secure the sleeve 152 to the retraction collar 114.
  • The operation of the bit tip holder 110 as described is the same as the bit tip holder 10 as described above.
  • With reference to Figures 12A-12C, a bit holder 160 is shown including a hex-shaped or polygonal-shaped shank 162 and a body portion 164 including a hex-shaped or polygonal-shaped bore 166 in an end thereof for receiving a bit 40. The outer surface of the body 164 is provided with an elongated annular recess 168. A floating sleeve 170 is provided on the end of the body 164 and supports a ring magnet 50 at an end thereof. The floating sleeve 170 includes an interior annular groove 172 that receives a retainer 174 therein. The floating sleeve 170 can be removably attached to the body 164 by force fitting the body 164 into a rear opening 176 of the floating sleeve 170 until the retainer 174 is received in the recess 168 of the body 164.
  • The recess 168 is provided with a forward shoulder 178 and a rearward shoulder 180 that allow the floating sleeve 170 to travel in a forward and rearward direction as indicated by arrow A while the shoulders 178 and 180 limit the travel of the floating sleeve 170 by engagement with the retainer member 174. Thus, the floating sleeve can float freely between a front position, as shown in Fig. 12B, in which the retainer 174 engages the front shoulder 178, and a rear position as shown in Fig. 12C, in which the retainer 174 engages the rear shoulder 180. As shown in Figures 13 and 14A-14B, the retainer 174 can take the form of a non-elastic member, such as a steel or elastic hog ring 174A, as shown in Figure 13, or an elastic member, such as an elastic O-ring 174B as shown in Figure 14A or an elastic C-ring 174C as shown in Figure 14B.
  • With reference to Figure 12D, in an alternative embodiment disclosed herein, the floating sleeve 170 can also be moved rearward to a parked position in which the retainer 174 is positioned rearward of the rear shoulder 180. In this embodiment, the retainer 174 comprises an elastic element (such as an elastic O-ring 174A or an elastic C-ring 174B) that is stretched and expands when the sleeve 170 is pulled axially rearward to the parked position. The expanded elastic retainer 174 frictionally engages the outer wall of the body portion 164 in a tight manner to maintain the sleeve in the parked position until the user pulls the outer sleeve forward back to one of the floating positions shown in Figures 12A-12C. An internal shoulder 177 on the front end of the sleeve 170 abuts a front end 179 of the body portion 164 to prevent further rearward movement of the sleeve 170 beyond the parked position. In the parked position, it is easier for the user to grasp and remove the bit 40 from the socket 166. Referring to Figure 12E, in another embodiment, the body portion 164 may be formed with an annular parking groove 175 rearward of the annular recess 168 to more securely retain the retainer 174 and the sleeve 170 in the parked position.
  • As an alternative, as illustrated in Figure 15, the bit holder 160' can use an alternative retainer in the form of a ball 190 which can be received in an opening 192 in the floating sleeve 170' and can be retained therein by an annular spring band 194 that can be made of steel or plastic or other suitable material. The ball is received in an annular recess 168' so that the floating sleeve 170' can float between a forward position in which the ball 190 engages a front shoulder 178' of the annular recess 168 and a rear position in which the ball engages a rear shoulder 180' of the annular recess 168'. In operation, the bit holder 160, 160' can be used to engage a fastener via the tool bit 40 and the floating sleeve 170, 170' allows the ring magnet 50 to float forward under its magnetic force to engage the fastener and magnetize the fastener to improve the retention of the fastener with the tool bit 40. In an alternative embodiment herein disclosed, the floating sleeve 170' may be moveable to a parked position where the ball 190 is rearward of the rear shoulder 180' and engages the body portion 164 or a parking groove in the body portion 164, to facilitate easier removal of the tool bit 40.
  • As shown in Figures 17-19, the bit holder 200 can be configured as a six-in-one rotary tool that includes a floating ring magnet 50. In particular, as illustrated in Figure 19, the tool holder 200 includes a shank 202 that is integral with, and that extends rearwardly from a socket 204. Shank 202 is preferably hex-shaped or polygonal and includes a circumferential groove 206. The tool socket 204 includes a bore 208 that extends axially from the socket end and that is also preferably hex-shaped or polygonal. A reversible bit assembly 210 is received in the bore 208 and includes a sleeve 212 having a pair of axial storage cavities 216, 218 separated by a web 220. The sleeve 212 receives a first and a second bit driver 222, 224 therein. The outer surface of the sleeve 212, each of the cavities 216, 218, as well as a center section of the first and second bit drivers 222, 224 are each again preferably hex-shaped or polygonal such that each of the bit drivers 222, 224 rotate with the sleeve 212 and socket 204. Each of the first and second bit drivers 222, 224 are reversible within their respective cavities such that either of the bit ends 22a, 22b, 224a, 224b of the first and second bit drivers 222, 224 can extend from the sleeve 212. Additionally, sleeve 212 is reversible within the socket bore 208 such that either the first or second bit drivers 222, 224 operably extend from the socket 204. Accordingly, the tool may be configured such that any of the four bit driver ends 222a, 222b, 224a, 224b operably project from the socket 204. Either of the bit drivers 222, 224 may be removed from the sleeve 212 to expose the hex-shaped cavity 216, 218 for use as a nut driver. Finally, the tools sixth driver is provided by removing the reversible bit assembly 210 from the socket bore to expose the hex-shaped bore 208 for use as a second nut driver. It is noted that the bore 208 is larger than the cavities 216, 218 thereby providing the ability to accommodate larger hex-shaped screw heads or nuts. In a preferred embodiment, the bore 208 is a 5/16 inch hex-opening while the cavities 216, 218 are each ¼ inch hex openings.
  • Similar to the above embodiments, the outer surface of the socket 204 can be provided with an elongated annular recess 228 that can be engaged by a retainer 230 of a floating sleeve 232 that supports a ring magnet 50 at a forward end thereof. Accordingly, as the tool holder 200 is used to engage a fastener, one of the bit drivers 222, 224 engage the fastener and the floating sleeve 232 allows the ring magnet 50 to move in a forward direction to engage the fastener to secure the fastener to the bit driver 222, 224. The floating sleeve 232 can be removed by applying a slight force in a forward direction to overcome the retaining force of the retainer 230 within the elongated annular recess 228. Upon removal of the floating sleeve 232, the reversible bit assembly 210 can be removed from the socket 204 so that the bit drivers 222, 224 can be chosen for use. In another embodiment herein disclosed, similar to the embodiments described herein above, the floating sleeve 232 can be moved to a parked position in which the retainer 230 engages the socket 204 or a parking groove in the socket 204, rearward of the annular recess 228 to facilitate easier removal of the bits from the sleeve 212.
  • With reference to Figure 20, a pivotal/rigid accessory 250 for power and hand tools is disclosed and includes a drive component 252 adapted to be connected to a power tool or hand tool and a driven component 254 that is pivotally connected to the drive component 252. A locking sleeve 256 is provided for securing the driven component 254 for non-pivotal movement relative to the drive component 252, or the locking sleeve 256 can be moved to a disengaged position that allows the driven component 254 to pivot relative to the drive component 252. A pivot mechanism of this type is disclosed in U.S. Patent No. 7,942,426 , which is herein incorporated by reference. According to the principles of the present disclosure, a floating sleeve 260 can be provided at the forward end of the driven component 254 and supports a magnetic ring 50 at a forward end thereof to aid in retaining a fastener on a bit 40 received in a hex-shaped bore in the driven component 254. As illustrated in Figure 20, the floating sleeve can include a retainer 262 that can be received in an elongated annular recess 264 on the outer surface of the driven component 254 to allow the floating sleeve 260 to move in a forward and rearward axial direction as indicated by arrow A. In another embodiment herein disclosed, similar to the previously described embodiments herein, the floating sleeve 260 can be moved to and retained in a parked position in which the retainer 262 frictionally engages the driven component 254 or a parking groove in the driven component 254, rearward of the annular recess 264, to facilitate easier removal of the bit 40 from the driven component 254.
  • As an alternative, as illustrated in Figure 21, the ring magnet 50 can be secured to the front end of the locking sleeve 256' which can be allowed to float in a forward direction to allow the ring magnet 50 to engage a fastener secured to the tool bit 40 received in a bore in the driven component 254 of the tool holder. Figure 21 illustrates the pivoting arrangement between the driving component and the driven component which, again, is detailed in U.S. Patent No. 7,942,426 , which is herein incorporated by reference in its entirety.
  • With reference to Figures 22-25, a tool bit 300 having a floating ring magnet 50, according to the principles of the previous disclosure, will now be described. The tool bit 300 includes a shaft having a hex-shaped shank 302 at a first end, and a working region 304 disposed at a second end. The shaft can have a section between the hex-shaped shank 302 and the working region 304 that has a reduced diameter region 306 that is disposed between two shoulders 308, 310. The reduced diameter region 306 provides a torsion zone that allows the shaft to twist to absorb forces while the tool bit 300 is being used to drive a fastener. A tool bit 300 having a torsion zone of this type is generally known in the art as disclosed by U.S. Patent No. 5,704,261 .
  • As illustrated in Figures 24 and 25, the working region 304 of the tool bit 300 can be provided with various types of drive heads such as Phillips, flat, hex, square, and other known types of drive heads. A recessed groove 312 is provided in the working region 304 for receiving a retainer ring 314 therein. A ring magnet 50 is supported by a sleeve 316 that is retained on the tool bit 300 by the retainer ring 314 that is received within the recessed groove 312. As the tool bit 300 is engaged with a fastener, the floating sleeve 316 is moved in a forward direction to allow the ring magnet 50 to engage the fastener to assist in retaining the fastener to the tool bit 300. The floating sleeve 316 includes an interior shoulder 318 that engages the retainer 314 to limit the sleeve's forward axial travel. The tool bit 300 includes a shoulder 320 at an end of the working region 304 that limits the axial travel of the floating sleeve 316 in the opposite direction. The floating sleeve 316 can optionally be removed from the tool bit 300 by pulling on the floating sleeve 316 in an axial direction to overcome the retainer 314. The retainer 314 can be a rubber O-ring or a steel hog ring that can be flexed inward when the floating sleeve 316 is either inserted onto or pulled off of the tool bit 300.
  • With reference to Figures 26-29, an alternative arrangement for mounting a ring magnet 50 to a tool bit 300 such as the tool bit as described above, will now be described. The ring magnet 50 is supported by a floating sleeve 330 that is slidably received on a forward end of the tool bit 300. The floating sleeve 330 includes a plurality of axially extending fingers 332 that are integrally formed with the sleeve 330 and releasably engage the reduced diameter region of the tool bit between the two shoulders 308, 310. Figure 28 illustrates the floating sleeve 330 in a rearward position, while Figure 29 illustrates the floating sleeve 330 in a forward position for the ring magnet 50 to engage a fastener to help retain the fastener on the tool bit 300. The floating sleeve 330 can be removed from the tool bit by pulling forward on the floating sleeve 330, thus causing the fingers 332 to flex radially outward over top of the increased diameter portion at the head 304 of the tool bit 300. It is noted that the floating sleeve 330 can be made from plastic, rubber, or other materials that allow flexibility of the fingers 332. The ring magnet 50 can be secured to the floating sleeve 330 by adhesives, in-molding, or other known fastening techniques.
  • With reference to Figure 30, an alternative floating sleeve 340 design is shown for supporting a ring magnet 50 that can be received on a tool bit 300. The sleeve 340 includes a first end 342 supporting the ring magnet 50 and a second end 344 including a single elongated slot 346 that allows the second end 344 of the sleeve 340 to flex outward for insertion of a tool bit 300 therein. The interior of second end 344 of the sleeve 340 includes a plurality of radially inwardly extending tabs 348 that are received in the reduced diameter portion 306 of the tool bit 300 and engage the forward and rearward shoulders 308, 310 to limit axial movement of the sleeve 340 along the length of the tool bit 300. The floating sleeve 340 can be made from plastic or rubber.
  • With reference to Figure 31, a floating sleeve 350, according to an alternative embodiment, can include a plastic cup 352 that receives the ring magnet 50 at a forward end thereof and a rubber sleeve 354 at a rearward end thereof. The interior surface of the rubber sleeve 354 includes a plurality of radially inwardly extending tabs 356 at its rearward end, as illustrated in phantom in Figure 31. The radially inwardly extending tabs 356 are flexible to allow a tool bit 300 to be inserted into the sleeve 350 so that the tabs 356 engage the reduced diameter portion 306 between the forward and rearward shoulders 308, 310 of the tool bit 300. Thus, the sleeve 350 is allowed to float in a forward and rearward direction in the manner as described with regard to the above described embodiments.
  • With reference to Figure 32, an alternative floating sleeve 360 design is provided in which a floating ring magnet 50 is supported at a first end of a rubber sleeve 360. The second end of the sleeve includes a plurality of radially inwardly extending tabs 362 that are flexible to allow a tool bit 300 to be inserted into the sleeve 360 wherein the tabs 362 are disposed in the reduced diameter portion 306 between the forward and rearward shoulders 308, 310 of the tool bit 300. The ring magnet 50 can be reinforced with a metal or plastic cap 364 disposed between the ring magnet 50 and the first end of the rubber sleeve 360.
  • With reference to Figures 33-36, an alternative floating sleeve 370 is provided for supporting a ring magnet 50 in a forward end 372 thereof. The floating sleeve 370 can be made from plastic and can include one or more flexible fingers 374 that engage the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 thereof. The fingers 374 can include a radially inwardly protruding end portion 376 that engages the reduced diameter portion 306 of the tool bit 300. The elongated fingers 374 are integrally formed with the plastic sleeve 370 to allow the fingers 374 to flex radially outward when a tool bit 300 is inserted therein or removed therefrom.
  • With reference to Figures 37-39, an alternative arrangement of a floating sleeve 380 is provided wherein the flexible fingers 382 are made from a spring steel and are separately attached to the floating sleeve 380 which can be made from plastic or metal. The flexible fingers 382 operate in the same manner as the fingers 374 disclosed in Figures 33-36 to retain the floating sleeve 380 onto a tool bit 300 while allowing the sleeve 380 to float in a forward and rearward direction until the fingers 382 engage the forward or rearward shoulders 308, 310 of the tool bit 300. The fingers 382 include radially inwardly protruding portions 384 that engage the reduced diameter portion 306 of the tool bit 300. The flexible fingers 382 can be secured to the sleeve 380 by a rivet 386 or can be in-molded into the sleeve 380. The sleeve 380 includes a pair of opposing windows 388 to receive the fingers 382.
  • With reference to Figures 40-42, an alternative floating sleeve 390 is provided for supporting a ring magnet 50 in a forward end thereof. The floating sleeve 390 can be made from plastic, rubber, or metal and can include a recessed annular groove 392 on an exterior surface thereof as well as a pair of oppositely disposed windows 394 that extend from the groove 392 into the interior of the sleeve 390. A rubber O-ring or a hog ring 396 can be provided in the annular groove 392 so as to extend into the window portion 394 of the annular sleeve 390 in such a manner that the O-ring or hog ring 396 can be received in the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 thereby retaining the floating sleeve 390 onto the tool bit 300. The reduced diameter portion 306 of the tool bit allows the floating sleeve 390 to move in a forward and rearward direction to allow the ring magnet 50 to engage a fastener for securing the fastener to the tool bit 300.
  • With reference to Figures 43-46, a still further alternative embodiment of the floating sleeve 400 is shown wherein the floating sleeve 400 supports a ring magnet 50 at a forward end and includes an exterior annular groove 402 with an opening 404 on one side that communicates to the interior of the sleeve 400. The annual groove 402 receives a D-shaped ring 406 having a generally flat portion 408 along one side thereof that is received in the window opening 404 of the annular groove 402 so that it communicates to the interior of the sleeve 400. The flat portion 408 of the D-shaped ring 406, as shown in Figure 46, is received in the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 to limit the axial movement of the floating sleeve 400 in the forward and rearward directions.
  • With reference to Figures 47-51, an alternative arrangement of the floating sleeve 410, according to the principles of previous disclosure, will now be described. The floating sleeve 410 includes an elongated annular recess 412 on an outer surface thereof and a plurality of window openings 414 extending therethrough within the elongated annular recess 412. The openings 414 each receive a ball 416 therein and a spring band 418 is received within the elongated annular recess 412 over top of the balls 416 to secure the balls 416 within the openings 414. The balls 416 are designed to be received in the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 to limit the axial movement of the floating sleeve 410 in the forward and rearward directions. During insertion of the tool bit 300 into the floating sleeve 410, the spring band 418 allows the balls 414 to be pushed radially outward against the spring force of the band 418 while the head of the tool bit 300 is inserted into, or removed from, the sleeve 410. As the balls 416 reach the reduced diameter portion 306, the balls 416 move radially inward reducing the force of the spring band 418 on the balls 414. It is intended that the balls 414 provide an interference when engaging the forward and rearward shoulders 308, 310 of the reduced diameter portion 306, but do not provide significant resistance to the floating motion of the sleeve 410 along the tool bit 300.
  • With reference to Figures 52 and 53, an alternative floating sleeve 420 is shown utilizing a single ball 422 wherein the spring band 424 is provided with an opening 426 therein for maintaining the position of the spring band 424 relative to the ball 422 that is received in the single opening 426 of the floating sleeve 420.
  • With reference to Figures 54-56, an alternative floating sleeve 430, according to the principles of previous disclosure, will now be described. The floating sleeve 430 supports a ring magnet 50 at a forward end thereof and includes a pair of lock jaws 432 that are pivotally mounted to the floating sleeve by pivots 434. The lock jaws 432 each include radially inwardly extending tabs 436 that are designed to be engaged within the reduced diameter portion 306 of the tool bit 300. The lock jaws 432 can be pivoted to an engaged position, as illustrated in Figure 54, and a lock collar 438 can be pulled over top of the lock jaws 432, as illustrated in Figure 56, to secure the lock jaws 432 to the tool bit 300. The ring magnet 50 is supported at the forward end of the floating sleeve 430 and the lock jaws 432 limit the axial movement of the floating sleeve 430 along the tool bit 300 to allow the ring magnet 50 to float to an engaged position when the tool bit 300 is engaged with a fastener. In order to remove the sliding sleeve 430 from the tool bit 300, the lock collar 438 can be pulled in a forward position allowing the lock jaws 432 to be pivoted radially outward so that the tool bit 300 can be removed from the floating sleeve 430. It is noted that the lock collar 438 can be made of a flexible material, or can have a rigid outer ring with a flexible material on the interior thereof that allows the lock collar 438 to be retained on the lock jaws 432 when they are in the locked position.
  • With reference to Figure 57, an alternative floating sleeve 440 is shown including a ring magnet 50 at a forward end of a plastic sleeve. The plastic sleeve 440 has a slot 442 therein and has exterior cam surfaces 444 thereon. A rotating sleeve 446 is engaged with the cam surfaces 444 of the sleeve 440 and the rotating sleeve 446 can be rotated to cause plastic sleeve 440 to be retained in a radially inward direction to positively engaged the radially inwardly extending tabs 448 of the sleeve 440 within the reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 thereof. The rotating sleeve 446 can also be rotated to an unlocking position that allows the sleeve 440 to flex outwardly sufficiently enough to allow removal of the bit 300 from the floating sleeve 440.
  • With reference to Figures 58 and 59, a further embodiment of the present disclosure will now be described. With this embodiment, the use of a tool bit 450 having a hex-shaped shaft 452 without a reduced diameter portion is provided. A floating sleeve 454 is provided with two interior ring magnets 456, 458 (as illustrated in Figure 58 with the sleeve 454 removed) which are positioned with both poles opposing one another at approximately 10mm apart. With both poles of the ring magnets 456, 458 opposing one another, the sleeve 454 will move freely along a length of the tool bit 452 as they are captured by the non-magnetic sleeve 454. An O-ring 460 can optionally be placed between the two magnets 456, 458 to provide resistance to movement of the floating sleeve 454 if so desired. The opposing poles of the magnets 456, 458 cause the sleeve 454 to float on the bit 450 until a face of the forward magnet 458 contacts a head of a fastener that has been placed on the driving end 462 of the tool bit 450. Once that contact is made, the sleeve 454 then positions itself such that the fastener remains in place on the bit 450 during installation. Once the faster is securely started, the sleeve 454 can be drawn back onto the bit 450 if desired where it will remain during the driving and seating of the fastener.
  • With reference to Figures 60, 61A, 62 and 63, a bit holder assembly 470 is disclosed including a body 472 and a floating sleeve 474. The body 472 includes a first end defining a shank 476 and a second end defining a polygonal cavity 478 that can be hex-shaped or can have another polygonal shape. At the inner end of the polygonal cavity 478, an additional bore 480 can be provided for receiving a magnet 482 therein. An exterior surface of the body 472 at the second end includes a threaded portion 484 which is adapted to receive a threaded cap 486. The threaded cap 486 includes interior threads 488 that engage the threaded portion 484. The threaded cap 486 also includes a radially inwardly extending shoulder 490 that captures an O-ring 492 axially between the shoulder 490 and an end surface 494 of the body 472. At a rear end of the threaded portion 484, an annular groove 496 is formed having a forward shoulder 498. At the rearward end of the threaded cap 486, a shoulder 500 is formed for engagement with the shoulder 498 at the forward end of the annular groove 496. The shoulders 498, 500 limit the axial movement of the threaded cap 486 in the forward axial direction.
  • When a bit 40 (not shown) is inserted into the polygonal cavity 478, the threaded cap 486 can be tightened against the O-ring 492 causing the O-ring 492 to expand radially inwardly to engage the bit 40 and secure the bit 40 within the cavity 478. In order to remove the bit 40, the threaded cap 486 can be rotated to release the clamping force against the O-ring 492 thereby allowing the O-ring 492 to disengage the bit 40 and allow the bit 40 to be removed.
  • The body 472 also includes an annular groove 502 located at an intermediate location along the body 472. The annular groove 502 is disposed in the exterior surface of the body and is elongated in the axial direction so as to receive a C-shaped hog ring 504 that is received in an annular recess 506 on the interior of the floating sleeve 474. The C-shaped hog ring 504 can travel axially along the length of the annular groove 502 to allow the floating sleeve 474 to float in a forward and rearward direction. The annular groove 502 has forward and rearward shoulders that limit the axial movement of the floating sleeve. The C-shaped hog ring 504 is flexible to allow removal of the floating sleeve 474 from the body 472 in order to gain access to the threaded cap 486 for tightening and loosening the cap 486 to allow insertion and removal of bits 40 from the polygonal cavity 478. A forward end of the floating sleeve 474 supports a ring magnet 50 that is allowed to move in forward and rearward directions to engage and magnetize a fastener to retain the fastener to the tool bit 40. A spacer sleeve 508 can be disposed rearward of the ring magnet 50 and can limit the rearward movement of the floating sleeve 474 by engagement with a forward end of the threaded cap 486.
  • In operation, the shank 476 can be inserted into a drill either directly or indirectly via a quick release chuck device. The floating sleeve 474 can be removed from the body 472 and a bit 40 can be inserted into the polygonal cavity 478. The magnet 482 would attract the tool bit 40 to the rearward-most location within the polygonal cavity 478. The threaded cap 486 can then be tightened in the rearward direction R to cause the O-ring 492 to expand radially inward while being compressed and thereby engage the bit 40 and secure the bit 40 in the polygonal cavity 478. The floating sleeve 474 can then be slid over the end of the body 472 so that the C-shaped hog ring 504 is received within the annular groove 502 to limit the axial movement of the floating sleeve 474. When a fastener 54 (not shown) is brought into engagement with the tool bit 40, the floating sleeve 474 under the influence of the ring magnet 50 can slide axially forward to engage the fastener 54 to thereby magnetize the fastener 54 and retain it to the bit 40.
  • With reference to Figure 61B, in an alternate embodiment, a bit holder assembly 470' may comprise the body 472, shank 476 and threaded cap 486 described above with a modified floating sleeve 474'. The floating sleeve 474' may include a retainer 504', such as an O-shaped or C-shaped elastic ring, that is received in the annular groove 502 on the exterior of the body 472 to allow the floating sleeve 474' to float between a forward position and a rearward position as limited by a forward shoulder 503 and a rearward shoulder 501 of the annular groove 502. The floating sleeve 474' supports a ring magnet 450 and that is allowed to move in forward and rearward directions to engage and magnetize a fastener to retain the fastener to the tool bit 40, as described above. The floating sleeve 474' differs from the floating sleeve 474 of Figure 61A in that there is no spacer 508 and the floating sleeve 474' can be moved further rearward to a parked position as shown in Figure 61B. In the parked position, the retainer 504' engages an outer wall of the body 472 (or a parking groove formed in the outer wall of the body 472). This exposes the threaded cap 486 to enable the threaded cap 486 to be removed from the body 472 without removing the floating sleeve 474' from the body 472.
  • With reference to Figures 64-70, an alternative arrangement of the floating sleeve 510, according to the principles of the present disclosure, will now be described. The floating sleeve 510 includes an elongated annular recess 512 on an outer surface thereof and a pair of tapered window openings 514 extending through the sleeve 510 opposite one another within the elongated annular recess 512. The window openings 514 each receive a ball 516 therein and a spring band 518 is received within the elongated annular recess 512 over top of the balls 516 to secure the balls 516 within the tapered window openings 514. The balls 516 are designed to be received in a reduced diameter portion 306 of the tool bit 300 between the forward and rearward shoulders 308, 310 to limit the axial movement of the floating sleeve 510 in the forward and rearward directions. During insertion of the tool bit 300 into the floating sleeve 510, the spring band 518 allows the balls 514 to be pushed radially outward against the spring force of the band 518 while the working region 304 of the tool bit 300 is inserted into, or removed from, the sleeve 510. As the balls 516 reach the reduced diameter portion 306 of the tool bit 300, the balls 516 move radially inwardly reducing the force of the spring band 518 on the balls 514. It is intended that the balls 514 provide an interference when engaging the forward and rearward shoulders 308, 310 of the reduced diameter portion 306, but do not provide significant resistance to the floating motion of the sleeve 510 along the tool bit 300. A ring magnet 50 is disposed at the forward end of the floating sleeve 510 and is designed to magnetize a fastener 54 (not shown) that is engaged to the bit 300. Figure 65 shows the floating sleeve 510 in a forward position while Figure 66 shows the floating sleeve 510 in a rearward position.
  • Figures 71-75 illustrate an alternative arrangement of the floating sleeve 530 which is arranged with the same construction as the floating sleeve 510 with different external dimensions and appearance. Accordingly, the same reference numerals used for describing the components of the floating sleeve 510 are used for the components of the floating sleeve 530 and a detailed description of the floating sleeve 530 is not believed to be necessary, other than to note that its dimensions are different from that of the floating sleeve 510 in order to be used with a different type of bit having a smaller working head region and/or longer reduced diameter portion.
  • With reference to Figures 76-81, an alternative tool bit assembly 550 will now be described. The tool bit assembly 550 includes a tool bit 552, a base collar 554 that is received on the tool bit 552, and a floating sleeve 556 that is slidably received on the base collar 554. A front end of the sleeve 556 is tapered inwardly. This intuitively prevents the user from attaching the sleeve backwards on the bit.
  • As shown in Fig. 76, the tool bit 552 can be of the type that includes a shank portion 558 and a working end 560 with a reduced diameter portion 561 and an annular groove 562 disposed in an intermediate location thereon. As an alternative, the tool bit 552', as shown in Figure 77, can include recessed grooves at the corner edges of the hex-shaped shank 558 instead of the annular groove 562.
  • The base collar 554 includes an internal recessed groove 568 that receives a retainer ring 570 therein. The retainer ring 570 is designed to be received in the annular groove 562 of the tool bit 552 or within the recessed grooves 564 of the alternative bit 552'. Retainer ring 570 secures the base collar to the tool bit 552, 552'. The base collar 554 includes a reduced diameter portion 572 having a recessed groove 574 in an outer surface thereof. A stop shoulder 576 is disposed at a rearward end of the reduced diameter portion 572. The floating sleeve 556 is movably received on the reduced diameter portion 572. The floating sleeve 556 includes an internal annular groove 578 that receives a retaining ring 580 received in the recessed groove 574. Retaining ring 580 limits the axial movement of the floating sleeve 556 via the forward and rearward shoulders 582, 584 of the annular groove 578. The rearward end 586 of the floating sleeve 556 engages the stop shoulder 576 of the base collar 554. A ring magnet 50 is received in a forward end of the floating sleeve 556 and is designed to magnetize a fastener to retain the fastener to the working head region 560 of the tool bit 552.
  • With reference to Figures 82-85, the base collar 554' of the tool bit assembly 550 of Figures 76-81 has been modified to include an internal shoulder portion 590 that engages a forward shoulder 592 of the reduced diameter portion 561 of the tool bit 552. The shoulder portion 590 and the retainer ring 570 secure the base collar 554' relative to the tool bit 552 so that the movement of the floating sleeve 556 can be better controlled. Figures 82 and 84 show the modified base collar 554' engaged with alternative tool bits 552, 552'.
  • With reference to Figures 86-88C, a bit holder assembly 800 includes a body portion 820 coupled to a shank 840, and a floating sleeve 810 received over the body portion 820. The body portion 820 and shank 840 are similar to the sleeve 20 and connecting rod 40 of the bit holder described in U.S. Pat. App. Pub. No. 2012/0126497 , titled "Small Outer Diameter Quick Release Extension Rod," (the '497 application). As described in greater detail in the '497 application, the body 820 includes a socket 823 configured to receive a tool bit 40. A pair of lateral accommodation portions 832 is defined in a circumference of the socket 823. A pair of elongated elastic elements 870 are each received in the lateral accommodation portions 832. Each elongated elastic element 870 is sheet shaped and includes a body portion 871 connected between a pushed end portion 872 and an engaging end portion 873, which extends from the body portion 871 at an angle of approximately 45±15 degrees.
  • An actuator sleeve 830 is received over the shank 840 and a rear end of the body 820 and is moveable axially relative to the body 820 and the shank 840. A return spring 860 is held axially by a first positioning ring 850 that is fixedly connected to the shank 840. The return spring 860 biases the actuator sleeve 830 toward a forward or locked position. The actuation sleeve 830 is fixedly connected to a second positioning ring 880. The second positioning ring 880 is fixedly connected to the pushed end portions 872 of the elongated elastic elements 871. When the actuator sleeve 830 is in its forward position (as shown in Fig. 4 of the '497 application), the engaging end portions 873 of the elongated elastic elements 870 project into the socket 823 to engage and retain a tool bit 40 in the socket 823. When the actuator sleeve 830 is retracted against the force of the return spring 860 (as shown in Fig. 6 of the '497 application), the second positioning ring 880 pulls the end portions 872 of the elongated elastic elements 870 to retract the engaging end portions 873 from the socket 823, enabling removal of the tool bit 40 from the socket 823.
  • Inside of the socket 823 is an ejection mechanism 890 includes a plunger 891, a magnetic element 892 and an elastic element 893. The magnetic element 892 is disposed on one end of the plunger 891, and the other end of the plunger 891 abuts against one end of the elastic element 893. The other end of the elastic element 893 abuts against an end of the connecting rod 840. The magnetic element 892 faces toward front end of the socket 823. When a tool bit is inserted into the socket 823, the elastic element 893 is compressed. When the tool bit is released from the socket 823, the elastic element 893 pushes the plunger 891 toward the open end of the socket, causing at least partial ejection of the tool bit out of the socket 823. This helps enable removal of the tool bit from the socket 823. The magnetic element 892 prevents the tool bit from being fully ejected from the socket 823 when the actuator sleeve 830 is retracted to release the tool bit.
  • The outer surface of the body 820 is provided with an elongated annular recess 812. The floating sleeve 810 is substantially surrounds the body 820 and supports a ring magnet 814 at an end thereof. The floating sleeve 810 includes an interior annular groove 816 that receives a retainer 818 therein. The floating sleeve 810 can be removably attached to the body 820 by force fitting the body 820 into a rear opening 822 of the floating sleeve 810 until the retainer 818 is received in the recess 812 of the body 820.
  • The recess 812 is provided with a forward shoulder 824 and a rearward shoulder 826 that allow the floating sleeve 170 to travel in a forward and rearward direction as indicated by arrow A while the shoulders 824 and 826 limit the travel of the floating sleeve 810 by engagement with the retainer member 818. Thus, the floating sleeve can float freely between a rear position, as shown in Fig. 87A, in which the retainer 818 engages the rear shoulder 826, and a front position as shown in Fig. 87B, in which the retainer 818 engages the front shoulder 824 and the ring magnet 814 can engage the head of a threaded fastener 819. As shown in Figures 88A-88C, the retainer 818 can take the form of a non-elastic member, such as a steel hog ring 818a, as shown in Figure 88A, or an elastic member, such as an elastic O-ring 818b as shown in Figure 88B or an elastic C-ring 818c as shown in Figure 88C.
  • With reference to Figure 87C, in an alternative embodiment, the floating sleeve 810 can also be moved rearward to a parked position in which the retainer 818 is positioned rearward of the rear shoulder 826. In this embodiment, the retainer 818 comprises an elastic element (such as an elastic O-ring 818b or an elastic C-ring 818c) that is stretched and expands when the floating sleeve 810 is pulled axially rearward to the parked position. The expanded elastic retainer 818 frictionally engages the outer wall of the body portion 820 in a tight manner to maintain the floating sleeve 810 in the parked position until the user pulls the floating sleeve 810 forward back to one of the floating positions shown in Figures 87A and 87B. An internal shoulder 877 on the front end of the floating sleeve 810 abuts a front end 879 of the body portion 820 to prevent further rearward movement of the floating sleeve 810 beyond the parked position. In the parked position, it is easier for the user to grasp and remove the bit 40 when it is ejected from the socket 823 when the actuator sleeve 830 is retracted. In another embodiment, similar to the embodiment of Figure 12E, the body portion 820 may be formed with an annular parking groove rearward of the annular recess 812 to more securely retain the retainer 818 and the floating sleeve 810 in the parked position.
  • The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims (17)

  1. A bit holder assembly for a rotary tool, comprising:
    a body having a shank at its rearward end and a coaxial socket formed at a second end to allow a tool bit to be inserted therein, an exterior surface of said body including a threaded portion at said second end;
    a threaded cap having internal threads engaging said threaded portion of said body and securing an O-ring at an open end of said coaxial socket;
    a floating collar slidably disposed on said body and including a ring magnet disposed at a forward end of the floating collar to magnetize a fastener to retain the fastener to the tool bit.
  2. The bit holder assembly according to claim 1, wherein the ring magnet is attached directly to said floating collar.
  3. The bit holder assembly according to claim 1, wherein said threaded cap is tightened against said O-ring to cause said O-ring to expand radially inward to engage and retain a bit within said coaxial socket.
  4. The bit holder assembly according to claim 1, wherein said floating collar includes an internal groove on an inner surface thereof and said floating collar is retained on said body by a C-shaped ring received in said internal groove and a first annular groove in the exterior surface of said body.
  5. The bit holder assembly according to claim 4, wherein one of said internal groove and said first annular groove is elongated in an axial direction to allow the C-shaped ring to move along an axial length of said one of said internal groove and said first annular groove.
  6. The bit holder assembly according to claim 1, wherein said floating collar supports a spacer ring between said ring magnet and said threaded cap.
  7. The bit holder assembly according to claim 1, wherein said body includes a second annular groove in said exterior surface adjacent to said threaded portion, wherein said threaded cap has an internal shoulder that engages a forward shoulder of said second annular groove to limit a forward axial movement of said threaded cap.
  8. A tool bit assembly, comprising:
    a shaft having a shank at a first end and a working region disposed at a second end, said shaft having a shaft section between said shank and said working region having a reduced diameter region disposed between two shoulders; and
    a floating sleeve movably disposed at said second end of said shaft and having a pair of opposed window openings therein and a ball disposed in each of said pair of window openings and received in said reduced diameter region of said shaft and a ring magnet supported at a forward end of said floating sleeve to magnetize a fastener to retain the fastener to the working region of the tool bit.
  9. The tool bit assembly according to claim 8, further comprising a spring clip surrounding said floating sleeve and retaining said pair of balls in said pair of window openings.
  10. A tool bit assembly, comprising:
    a tool bit including a shaft having a polygonal shank at a first end and a working head region disposed at a second end; and
    a base collar secured to said shaft; and
    a floating sleeve assembly slidably received on said base collar and including a ring magnet disposed at a forward end of said floating sleeve to magnetize a fastener to retain the fastener to the working head region of the tool bit.
  11. The tool bit assembly according to claim 10, wherein said base collar includes an exterior surface with a first recessed groove, wherein an interior surface of said floating sleeve includes an axially extending second recessed groove that receives a retainer ring that is disposed in said first recessed groove.
  12. The tool bit assembly according to claim 11, wherein said base collar includes a stop shoulder axially spaced from said first recessed groove, wherein a rear end of said floating sleeve engages said stop shoulder.
  13. The tool bit assembly according to claim 10, wherein said shaft includes a recess and said base collar includes an interior surface with a recessed groove and a retainer ring, wherein said retainer ring engages the recess in said shaft to retain said base collar to said shaft.
  14. The tool bit assembly according to claim 13, wherein the recess comprises an annular groove formed in the polygonal shank.
  15. The tool bit assembly according to claim 13, wherein the recess comprises a plurality of recessed grooves at corner edges of the polygonal shank.
  16. The tool bit assembly according to claim 10, wherein said base collar includes an interior shoulder that engages a rearward shoulder of a reduced diameter region of said tool bit.
  17. A tool bit holder assembly comprising:
    a shank removably receivable in a tool holder of a rotary tool;
    a body coupled to the shank and defining a socket with a longitudinal axis, the socket being open at a front end of the body to removably receive a tool bit therein;
    an annular recess defined in an exterior surface of the body and having a rear shoulder, a front shoulder, and an axial length;
    a floating sleeve slidably received over the body;
    an elastic retainer coupled to an interior of the floating sleeve and having an axial length less than the axial length of the annular recess, the retainer movably received in the annular recess to enable the floating sleeve to float axially between a rear position where the retainer abuts the rear shoulder and a front position where the retainer abuts the front shoulder; and
    a ring magnet disposed at a forward end of the floating sleeve to magnetize a fastener being engaged by a tool bit,
    wherein the floating sleeve is further axially moveable rearward from the rear position to a parked position where the elastic retainer engages the body rearward of the rear shoulder, to enable removal of a tool bit from the socket.
EP14180985.5A 2013-08-15 2014-08-14 Bit holder with floating magnet sleeve Active EP2837468B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/967,775 US9227309B2 (en) 2012-02-15 2013-08-15 Quick change bit holder with ring magnet
US14/285,799 US9505108B2 (en) 2012-02-15 2014-05-23 Bit holder with floating magnet sleeve

Publications (3)

Publication Number Publication Date
EP2837468A2 true EP2837468A2 (en) 2015-02-18
EP2837468A3 EP2837468A3 (en) 2015-11-04
EP2837468B1 EP2837468B1 (en) 2017-07-05

Family

ID=51357772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14180985.5A Active EP2837468B1 (en) 2013-08-15 2014-08-14 Bit holder with floating magnet sleeve

Country Status (3)

Country Link
EP (1) EP2837468B1 (en)
CN (1) CN204397783U (en)
TW (1) TWM500658U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061572A1 (en) * 2015-02-25 2016-08-31 Witmann Corporation Screwdriver bit positioning structure
RU178624U1 (en) * 2016-12-20 2018-04-13 Мин-Хун КО SCREWDRIVER TOOL
CN108237497A (en) * 2017-09-05 2018-07-03 慈溪市诚佳五金工具有限公司 A kind of screwdriver
EP3366396A1 (en) * 2017-02-24 2018-08-29 Unitek Enterprise Corp. Quick release connector
EP3838438A1 (en) * 2019-12-17 2021-06-23 Techtronic Cordless GP Work member holder
CN114102030A (en) * 2021-12-28 2022-03-01 深圳市中天超硬工具股份有限公司 Clamp for welding PCD (Poly Crystal Diamond) micro drill bit
TWI762912B (en) * 2019-07-17 2022-05-01 美商施耐寶公司 Tool extension

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105563408A (en) * 2016-03-17 2016-05-11 叶淑惠 Magnetic tool sliding device
TWI601605B (en) * 2016-11-01 2017-10-11 陸同五金機械有限公司 Bit holder with magnetic attraction
TWI610767B (en) * 2016-11-21 2018-01-11 Screwdriver tool
CN107263180A (en) * 2017-08-19 2017-10-20 合肥智贤智能化科技有限公司 A kind of boring cutter magnetic force fixed device
US10391566B2 (en) * 2017-10-16 2019-08-27 Iscar, Ltd. Milling kit including bore-less indexable insert and positioning tool having an insert holding surface
CN110095048A (en) * 2018-01-31 2019-08-06 杨斌堂 Screw, nut and fastener combination
CN109909935A (en) * 2018-05-15 2019-06-21 程蕾 A kind of cutter head for electric screw driver
SG11202104938YA (en) * 2018-11-15 2021-06-29 Penn Eng & Mfg Corp Machine tooling with rotary punch
CN114589655A (en) * 2022-03-25 2022-06-07 苏州浪潮智能科技有限公司 High-efficiency multifunctional electric screwdriver head and electric screwdriver

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704261A (en) 1992-12-22 1998-01-06 Wera Werk Hermann Werner Gmbh & Co. Torque-transmitting tool
US5988957A (en) 1998-12-21 1999-11-23 Black & Decker Inc. Quick clamp
US6261035B1 (en) 1998-11-12 2001-07-17 Black & Decker Inc. Chuck, bit, assembly thereof and methods of mounting
US6929266B2 (en) 2002-06-18 2005-08-16 Black & Decker Inc. Bit holder
US7086813B1 (en) 1998-06-26 2006-08-08 Black & Decker Inc. Quick-acting tool bit holder
US7942426B2 (en) 2006-07-12 2011-05-17 Black & Decker Inc. Pivotal/rigid accessories for power and hand tools
US20120126497A1 (en) 2010-11-23 2012-05-24 Ying-Mo Lin Small outer diameter quick release extension rod
EP2628570A2 (en) 2012-02-15 2013-08-21 Black & Decker Inc. Quick change bit holder with ring magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182973A (en) * 1988-10-13 1993-02-02 Martindell J Richard Depth locator apparatus for insert bit holders
WO2005000530A1 (en) * 2003-06-25 2005-01-06 Vessel Industrial Co., Ltd. Bit holder device
DE102007012892A1 (en) * 2007-03-17 2007-12-20 Daimlerchrysler Ag Tool used for turning Allen screws comprises a holding device provided with a magnet peripherally surrounding a ball hexagon socket and used for holding a hexagon socket screw turned by the tool
DE102011000710A1 (en) * 2011-02-14 2012-08-16 Wera-Werk Hermann Werner Gmbh & Co. Kg Torque transmission device in the form of a bit lining

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704261A (en) 1992-12-22 1998-01-06 Wera Werk Hermann Werner Gmbh & Co. Torque-transmitting tool
US7086813B1 (en) 1998-06-26 2006-08-08 Black & Decker Inc. Quick-acting tool bit holder
US6261035B1 (en) 1998-11-12 2001-07-17 Black & Decker Inc. Chuck, bit, assembly thereof and methods of mounting
US5988957A (en) 1998-12-21 1999-11-23 Black & Decker Inc. Quick clamp
US6929266B2 (en) 2002-06-18 2005-08-16 Black & Decker Inc. Bit holder
US7942426B2 (en) 2006-07-12 2011-05-17 Black & Decker Inc. Pivotal/rigid accessories for power and hand tools
US20120126497A1 (en) 2010-11-23 2012-05-24 Ying-Mo Lin Small outer diameter quick release extension rod
EP2628570A2 (en) 2012-02-15 2013-08-21 Black & Decker Inc. Quick change bit holder with ring magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061572A1 (en) * 2015-02-25 2016-08-31 Witmann Corporation Screwdriver bit positioning structure
RU178624U1 (en) * 2016-12-20 2018-04-13 Мин-Хун КО SCREWDRIVER TOOL
EP3366396A1 (en) * 2017-02-24 2018-08-29 Unitek Enterprise Corp. Quick release connector
CN108237497A (en) * 2017-09-05 2018-07-03 慈溪市诚佳五金工具有限公司 A kind of screwdriver
CN108237497B (en) * 2017-09-05 2023-10-03 慈溪市诚佳五金工具有限公司 Screw driver
TWI762912B (en) * 2019-07-17 2022-05-01 美商施耐寶公司 Tool extension
US11318590B2 (en) 2019-07-17 2022-05-03 Snap-On Incorporated Tool extension
EP3838438A1 (en) * 2019-12-17 2021-06-23 Techtronic Cordless GP Work member holder
CN114102030A (en) * 2021-12-28 2022-03-01 深圳市中天超硬工具股份有限公司 Clamp for welding PCD (Poly Crystal Diamond) micro drill bit
CN114102030B (en) * 2021-12-28 2024-05-14 深圳市中天超硬工具股份有限公司 Clamp for welding PCD micro drill bit

Also Published As

Publication number Publication date
TWM500658U (en) 2015-05-11
EP2837468B1 (en) 2017-07-05
EP2837468A3 (en) 2015-11-04
CN204397783U (en) 2015-06-17

Similar Documents

Publication Publication Date Title
US10556329B2 (en) Tool bits with floating magnet sleeves
US9505108B2 (en) Bit holder with floating magnet sleeve
EP2837468B1 (en) Bit holder with floating magnet sleeve
US9227309B2 (en) Quick change bit holder with ring magnet
US10040179B2 (en) Fastener tool assemblies
US10150205B2 (en) Fastening tools with floating magnet sleeves
EP1637285B1 (en) Bit holder device
US7086813B1 (en) Quick-acting tool bit holder
US6668941B2 (en) Screw holding and driving device
US6688610B2 (en) Chuck with quick change
US6347914B1 (en) Rotary tool holder
US20090174157A1 (en) Tool connecting device
US6394715B1 (en) Rotary tool holder
CA2696125A1 (en) Screw guide
US20150102567A1 (en) Tool joint
US20090139378A1 (en) Driver tool having adjustable structure
US20060254394A1 (en) Fastener driver
EP3009234B1 (en) Tool bits with floating magnet sleeves
GB2441023A (en) Locking chuck
EP3162506A1 (en) Fastening tools with floating magnet sleeves
US20060053986A1 (en) Screw driver with bit storage cylinder
US11440167B2 (en) Anti-marring bit holder
US20240123582A1 (en) Double-ended quick-change tool bit holder assembly and quick-change bit driver modification

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140814

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B23B 31/107 20060101ALI20150930BHEP

Ipc: B25B 23/12 20060101ALI20150930BHEP

Ipc: B25B 23/00 20060101AFI20150930BHEP

R17P Request for examination filed (corrected)

Effective date: 20160428

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 906271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014011428

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 906271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170705

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014011428

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

26N No opposition filed

Effective date: 20180406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180712

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240819

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 11